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Abstract

Perception is biased by expectations and previous actions. Pre-stimulus brain

oscillations are a potential candidate for implementing biases in the brain. In two EEG

studies on somatosensory near-threshold detection, we investigated the pre-stimulus

neural correlates of an (implicit) previous choice bias and an explicit bias. The explicit

bias was introduced by informing participants about stimulus probability on a single-trial

level (volatile context) or block-wise (stable context). Behavioural analysis confirmed

adjustments in the decision criterion and confidence ratings according to the cued

probabilities and previous choice-induced biases. Pre-stimulus beta power with distinct

sources in sensory and higher-order cortical areas predicted explicit and implicit biases,

respectively, on a single subject level and partially mediated the impact of previous

choice and stimulus probability on the detection response. We suggest that pre-stimulus

beta oscillations in different brain areas are neural correlates of explicit and implicit

biases in somatosensory perception.

Keywords: expectations, choice history, somatosensory perception, oscillations,

pre-stimulus, beta oscillations, EEG
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Introduction

Perception is biased by our knowledge of what is probable. This has been successfully

formalised in the Bayesian brain theory,1 which assumes an integration of prior beliefs

and the sensory signal. It follows that the brain should rely more on prior beliefs when

sensory signals are “uncertain”, i.e., weak. Accordingly, providing human observers with

information about stimulus probability has been shown to bias perceptual reports of

weak visual stimuli2. In such situations, human observers adjust their decision criterion

while sensitivity to the sensory signal remains unaffected3. Additionally, providing

individuals with prior information about the probability of a stimulus has been shown to

impact confidence in a perceptual decision4. Besides external and explicit information

about the probability of upcoming stimuli, the perceptual choice history also influences

decision-making, with stronger choice history biases in ambiguous perceptual

decisions5. In the remainder, we refer to the bias induced by choice history as implicit

bias, as this bias originates from internal processes which are not explicitly controlled by

the experimenter. Although studies have demonstrated the adaptability of choice history

biases to participants' models of the environment6,7, whether and how they interact with

biases induced by stimulus probability environments remains poorly understood.

In addition, while a substantial body of research has established that explicit

expectations and choice history shape perception at the behavioural level, a notable

gap remains in our understanding of the distinct and/or shared neural correlates of

these processes2,8–10. Gustatory stimulation in rats in combination with computational

modelling showed that general stimulus expectations modulated pre-stimulus

metastable dynamics of neural activity11. Using MEG recordings in humans, Kok and

colleagues12 reported that neural representations of expected visual stimuli in

pre-stimulus activity closely resembled the evoked activity following the onset of

expected stimuli. The findings12 support the idea that the brain generates stimulus

templates in the sensory cortex to anticipate expected inputs. Importantly, pre-stimulus

activity has also been shown to reflect biases in perceptual choice history13,14.
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EEG and MEG studies have emphasised the impact of pre-stimulus oscillations,

particularly in the alpha and beta frequency range on perceptual decision-making.

Multiple studies have shown that pre-stimulus power in alpha and beta band oscillations

in the somatosensory cortex is negatively correlated with detection rates for a

subsequent weak tactile stimulus15–20. According to the baseline sensory excitability

model (BSEM)21, pre-stimulus alpha power correlates positively with the participants'

decision criterion in detection tasks. Indeed, recent studies in the visual22 and the

somatosensory domain,23 confirmed a positive correlation between spontaneous

modulations of pre-stimulus alpha power and the participants’ criterion. So far, only two

studies have examined the causal nature of this effect in humans. Both studies

employed a visual detection task, inducing criterion changes either through reward

strategy24 or priming25. The study by Kloosterman et al.24 incentivised either a liberal or

conservative criterion and showed a correlation between visual pre-stimulus alpha

power and the experimentally induced criterion change. A study by Zhou et al.25,

however, did not find a correlation between visual pre-stimulus alpha power and

criterion changes that were induced via priming.

The beta frequency band has generally been suggested to carry signals of top-down

predictions26,27. Consistent with this notion, the control of goal-directed sensory

processing has been linked to beta power or more precisely occurrence of beta bursts28.

Beta power has also been proposed to be related to the maintenance of cognitive

states29, with evidence pointing to beta power not only maintaining but also reactivating

cognitive states that are required for the current task30, which again supports the idea of

a pre-stimulus template of expectations as has been suggested by Kok and

colleagues12.

Taken together, while previous work strongly supports the idea that pre-stimulus alpha

and beta rhythms in sensory areas influence perceptual decision-making, it is not clear

whether and how these influences are related to explicit and implicit biases. To address

this gap, we conducted two EEG studies that differed in the temporal context of stimulus

occurrence31. In the first study, participants were informed about the signal probability
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for a block of stimuli (“stable environment”), in the second study, the stimulus probability

was randomly assigned for each trial (“volatile environment”). The two studies with

different probability contexts allowed us to account for previous choice biases both in a

more ecologically valid paradigm (block design) and in a paradigm in which we

experimentally controlled for previous choice distributions (trial-by-trial design). We

hypothesised that human observers would adjust their detection and confidence ratings

based on the instructed stimulus probability and exhibit biases based on choice history

in both studies. Based on previous findings these biases should be reflected in

pre-stimulus alpha and beta frequency oscillations.

Results

Behavioural criterion shifts in correspondence to stimulus probability
We tested the effect of stimulus probability on somatosensory near-threshold detection

in two separate studies. The first study (n=43) informed participants about stimulus

probability at the beginning of each block consisting of 12 trials (stable environment).

The stimulus onset within a trial was cued by a colour change of the fixation cross. The

second study (n=39) provided information about stimulus probability at the beginning of

each trial (volatile environment). In both studies, signal detection theoretic (SDT)

analyses verified that participants adjusted their criterion to report a stimulus based on

the instructed stimulus probability, i.e., the criterion was lower (more “liberal”) in the high

probability condition (mean criterion change high vs. low stimulus probability: Δcrit. stable=

-.21, W = 172, p < .0001, fig 1Civ; Δcrit. volatile= -.21, W = 91, p < .0001, fig. 2Biv).

Participants reported that they perceived a stimulus more often in both signal (mean hit

rate (HR) change high minus low stimulus probability: ΔHR stable= .07, W = 151, p < .001;

ΔHR volatile= .08, W = 69, p < .0001) and noise trials (trials without a stimulus) (mean false

alarm rate (FAR) change high minus low stimulus probability: ΔFAR stable= .06, W = 185, p

< .001; ΔFAR. volatile= .03, W = 169, p = .002) under the high as compared to the low

probability condition (fig. 1Ci & ii and fig. 2Bi & ii). Stimulus sensitivity (measured by the

SDT parameter Dprime) did not significantly differ between conditions (mean Dprime
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change high minus low stimulus probability: ΔDprime stable= -.06, W = 391, p = .329, ΔDprime

volatile= .02, W = 361, p = .686, fig. 1Ciii & fig. 2Biii).

Fig. 1: Experimentally controlled stimulus expectations shift detection threshold
in a stable probability environment. A: Signal detection theory model: According to
SDT, valid stimulus probabilities should lead to a change in the decision criterion c while

sensitivity Dprime should not be affected. S: Signal, N: Noise. B: Overview of trial
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structure: Participants were presented with a valid probability cue (low or high) at the

beginning of each block. Each block consisted of 12 trials, with the proportion of

near-threshold and “catch” (i.e., no stimulus) trials according to the probability cue. C:
SDT analysis: Participants had a higher hit rate (i) as well as a higher false alarm rate

(ii) in the high expectation condition with no significant difference in Dprime (iii). c was
significantly higher in the low probability condition indicating a more conservative

criterion (iv). The mean of high confidence ratings in correct trials was higher in trials in
which the response matched the participants' expectations (v). See also S1.
Significance: *** p < .001, ** p < .01, * p < .05. Abbreviations: ns = not significant.

Analysis of confidence responses further confirmed that participants utilised stimulus

probability to inform their decision-making process. Specifically, confidence ratings in

correct trials were compared based on the congruency between the probability cue and

the response on each trial. We expected participants to be more confident in their

decision of a yes-response in high stimulus probability trials and of a no-response in low

stimulus probability trials (congruent trials). Indeed, participants reported significantly

higher confidence in congruent trials compared to incongruent trials (mean confidence

congruent minus incongruent correct trials: Δconf. stable= .08, W = 92, p < .0001, Δconf. volatile

=.04, W = 188, p = .005, fig. 1Cv & fig. 2Bv). Notably, the exclusion of three participants

with very high false alarm rates exceeding 40 % in the high stimulus probability

condition did not change the statistical outcomes in the stable context (fig. S1). While

we informed participants in both paradigms about the underlying stimulus probability, we

reasoned that the previous choice would be more informative in the stable probability

environment. In the volatile environment the stimulus probability changes from trial to

trial, and might thus influence the subjective estimated stimulus probability that an ideal

observer calculates less than compared to the blocked design (see fig. S2.1). We fitted

signal detection theoretic generalised linear mixed models (GLMMs) for both stimulus

probability environments, to investigate the relationship between the explicit, stimulus

probability-induced bias and the implicit, choice history bias.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2024. ; https://doi.org/10.1101/2024.06.12.598458doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.12.598458
http://creativecommons.org/licenses/by/4.0/


Fig. 2: Single-trial cues of stimulus probability shift the criterion (indexed by a
change in c) with no significant change in Dprime. A: Overview of trial structure:
Participants were presented with a probability cue (orange or blue circle) at the

beginning of each trial. B: SDT analysis: Participants had a higher hit rate (i) as well as
a higher false alarm rate (ii) in the high expectation condition with no significant

difference in Dprime (iii). The criterion was significantly more conservative in the low

probability condition (indexed by a higher value of c). (iv) The mean of high confidence

ratings in correct trials was higher in trials in which the response matched the

participants' expectations (v). See also Supplementary figures S2.1, S2.2, S2.3, S2.4.
Significance levels: *** p < .001, ** p < .01, * p < .05. Abbreviations: ns = not

significant.
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Response history bias interacts with stimulus probability in a stable

environment

To investigate how previous choices influence current choices, we included the previous

detection response as a regressor in our model, which improved the model fit in both

probability environments (ΔAIC stable= -229, 𝚾2(5) = 229.83, p < .001; ΔAIC volatile= -80, 𝚾2(5)

= 90.94, p < .001). Overall, participants demonstrated a tendency to repeat their

previous choice (βstable= .117, SE = .050, p = .021, βvolatile= .177, SE = .043, p < .001).

Importantly, even after controlling for the effect of the previous response, stimulus

probability still accounted for a significant amount of variance in the detection response

(βstable= .141, SE = .054, p = .010, βvolatile= .180, SE = .056, p = .001). Finally, we fitted a

model that included the interaction between the previous choice and stimulus

probability, which improved the model fit in the stable but not in the volatile context (ΔAIC

stable= -13, 𝚾2(1) = 14.91, p < .001; ΔAIC stable= +2, 𝚾2(1) = 0.08, p = .777). Specifically, the

model fitted with the data from the stable environment showed a significant interaction

between the stimulus probability and the previous choice regressor (βstable= .163, SE =

.042, p < .001). Post-hoc tests showed a significant influence of the previous choice on

the detection response both in the high and low stimulus probability conditions, but the

effect was weaker in the low probability condition (conditioned on low stimulus

probability and previous yes response: βstable= .058, SE = .025, p = .021, high stimulus

probability and previous yes response: βstable= .140, SE = .027, p < .001, FDR corrected,

see fig. S.2.2 for the visualisation of the model-free interaction effect of criterion

(indexed by c) and previous choice, model summaries in suppl. table 1 & 2).

A key feature of the stable environment is the difference in the previous response

distributions between the probability blocks. While in both environments the instructed

probability matched the actual stimulus probability (“valid cues”), the randomization of

probability cues within the volatile environment effectively balanced the distributions of

previous "yes" and "no" responses (fig. S2.3 Biii).
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Next, we fitted the interaction model separately for signal and noise trials, to investigate

whether the interaction effect was driven by the unequal amount of signal and noise

trials within the probability conditions. Both the “signal trials only” model (β = .182, SE =

.063, p = .004), as well as the “noise trials only” model (β = .213, SE = .097, p = .027)

showed a significant interaction between the choice history induced bias and the

stimulus probability induced bias. The model fitted with trials that previously contained a

signal confirmed an interaction between stimulus probability and previous response (β =

.149, SE = .065, p = .021). Interestingly, the interaction effect was no longer statistically

significant for trials that followed noise (β = .029, SE = .090, p = .742). Previous

research has shown that choice history biases are stronger after previous decisions of

high confidence6,32, which is confirmed by our data. Participants are more likely to

repeat their previous response if they indicated high confidence in the previous trial and

alternate their response if they indicated low confidence in the previous trial (interaction

β = .351, SE = .045, p < .001).

Lower pre-stimulus beta power in distinct areas associated with bias

introduced by stimulus probability and previous choice

After having confirmed the behavioural effects of the explicit stimulus probability

manipulation both on detection as well as confidence responses, we set out to

determine the neural correlates of both explicit and implicit biases on somatosensory

near-threshold detection. Our initial analysis in sensor space focused on low-frequency

oscillations in the pre-stimulus window. To determine the somatosensory region of

interest, we selected the EEG channel that showed the strongest early somatosensory

stimulus-evoked response (i.e., here assessed by the P50 component at around 50 ms

post-stimulus). In both studies, this was channel CP4, which is located over

centro-parietal areas contralateral to the somatosensory stimulation site (suppl. fig.

S3.1) Next, we computed time-frequency representations in the pre-stimulus window in

the frequency range from 3 to 35 Hz for both environments for our channel of interest. A

cluster-based permutation test showed no significant cluster for the contrast between

high and low stimulus probability trials (fig. 3Ai) in the stable environment (minimum
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cluster p-value: .175) but a significant cluster in the volatile environment, most likely

driven by lower power in the beta range in the high stimulus probability condition

(minimum cluster p-value: <.001, fig. 3Bi, see fig. S.3.2 for a shorter pre-stimulus

window). Next, we performed source reconstruction of pre-stimulus beta power. After

having validated our beamformer on post-stimulus data (fig. S3.3), we contrasted

pre-stimulus beta power for high minus low stimulus probability (visualisation of t-values

in each vertex obtained by a permutation t-test) and located the strongest modulation in

the postcentral gyrus for both environments (fig. 3Ai & 3Bi). Next, we aimed to identify

the effect of previous choices in the same pre-stimulus window. Threshold-free

cluster-based permutation testing in the pre-stimulus window showed a significant

cluster for the previous response contrast in the stable environment (minimum cluster

p-value: .020, fig. 3Ai), but no significant cluster in the volatile environment (minimum

cluster p-value: .443, fig. 3Bii). The strongest power modulation for the previous

response contrast was in the secondary somatosensory cortex for the stable

environment and in the posterior parietal cortex for the volatile environment.
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Fig. 3: Lower pre-stimulus beta power in high probability trials and after a
previous yes response in distinct cortical areas. Ai: In the stable environment, a

threshold-free cluster permutation test showed no significant cluster for the difference

between high and low stimulus probability in the pre-stimulus window (minimum

p-value: .175). A t-test on the source reconstructed pre-stimulus beta power contrast

shows the strongest modulation (most negative t-values) in the postcentral gyrus. Bi: In
the volatile environment, a threshold-free cluster permutation test detected a significant

cluster. The effect was most pronounced around stimulus onset in the beta band with

lower power in the high stimulus probability condition (minimum p-value: < .001). The

source was localised in the postcentral gyrus. Aii: A significant cluster was found in the

pre-stimulus window for the contrast between previous yes - previous no responses,

which was most likely driven by a beta power desynchronization (minimum p-value:

.020) and for which the strongest beta modulation originated from the secondary

somatosensory cortex (SII). Bii: No significant cluster for the contrast of previous

choices was found in the volatile environment (minimum p-value: .443). The strongest

beta modulation originated from the posterior-parietal cortex. The area marked in red

highlights the postcentral gyrus. The 10 % most negative t-values are highlighted in

source space, with darker colours representing more negative values. See S3.1, S.3.2,
S3.3.

Pre-stimulus beta power predicts criterion change in both
environments and interacts with the previous response in the stable
environment
The analysis so far showed a modulation in beta power before stimulation onset in

distinct cortical areas. Next, we investigated how the pre-stimulus beta power

modulations related to the behavioural outcomes of the stimulus probability

manipulation. Therefore, we averaged pre-stimulus beta power over voxels in source

space which were among the 10 % of voxels with the most negative t-values for the

probability contrast. Note that in both environments the strongest beta modulation was

in the postcentral gyrus. Behavioural modelling showed that the probability manipulation

led to a change in participants’ decision criteria in both studies, with an interaction
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between the previous response and stimulus probability only in the stable environment.

If pre-stimulus beta power is a neural correlate of the experimental manipulation of

stimulus probabilities, i.e., reflecting the change in criterion, it should also predict the

change in detection rates (for signal and noise trials) in both studies and mimic the

interaction with the previous choice in the stable environment. For the single-trial

analysis, we calculated the average pre-stimulus beta power averaged over the most

discriminative voxels for the stimulus probability contrast. Brain-behaviour modelling

confirmed that stimulus probability predicted pre-stimulus beta power on a single trial

level in both environments (βstable = -.025, SE = .007, p < .001, βvolatile= -.053, SE = .010,

p < .001), with lower power in the high stimulus probability condition. Participants

responded more often that they detected a stimulus both in signal and noise trials after

lower pre-stimulus beta power, which suggests that pre-stimulus beta power is a neural

correlate of the criterion change (βstable= -0.100, SE = .031, p = .001, βvolatile= -.175, SE =

.038, p < .001, fig. 4Ai). In the stable environment, the best-fitting model included an

interaction between the previous response and beta power (ΔAIC = -17.58, 𝚾2(2) =

21.578, p < .001). The interaction between beta power and previous choices was such

that for low beta power, the effect of the previous choice on the detection response was

reversed in comparison to the relationship for high beta power (fig. 4Aii). The best fitting

model in the volatile environment did not include an interaction between previous

choices and stimulus probability (ΔAIC= 2.65, 𝚾2(2) = 1.35, p = .508), participants

responded more often that they detected a stimulus after low beta power and after

previous yes responses (fig. 4 Bii, model summaries in suppl. table 3 & 4).
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Fig. 4: Pre-stimulus beta power predicts criterion change and interacts with
stimulus probability in the stable environment. Ai: the probability for a detection

response decreases with higher pre-stimulus beta power for both signal and noise trials

in the stable environment. Bi: the probability for a stimulus report decreases with higher
pre-stimulus beta power for both signal and noise trials in the volatile environment. Aii:
the effect of the previous response depends on the stimulus probability condition in the

stable environment (significant interaction). Bii: participants respond more often that

they detect a stimulus after previous yes responses in both probability conditions (no

significant interaction) in the volatile environment. Aiii: in the stable environment, the

previous response interacts with pre-stimulus beta power regarding its relationship with

the probability of a yes response such that with previous "no response” the probability of

a “yes response” decreases while there is no effect after a previous yes response. Biii:
The probability for a yes response decreases with increasing beta power independent of
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the previous response. Significance levels: *** p < .001, ** p < .01, * p < .05, shaded

areas and error bars show the 95 % confidence interval.

Pre-stimulus beta power mirrors the congruency effect on confidence

ratings

To reinforce the significance of pre-stimulus beta power as a neural correlate of stimulus

expectations, we aimed to validate its ability to account for the congruency effect on

confidence ratings observed in the behavioural model. Congruency was defined as the

alignment between stimulus probability and the detection response. For example, a

"yes" response in the high probability condition would be considered a

probability-congruent response. Participants were more confident in correct trials, after

a no response and following a previous high confidence rating. Crucially, pre-stimulus

beta power mimics the response congruency effect on confidence: Participants were

more confident in yes responses in the high probability condition as compared to the

low probability condition (βstable probability*response = 0.673, SE = .110, p <.001, βvolatile
probability*response = .342, SE = .084, p < .001, fig. 5Ai & Bi) and analogously in trials

with low pre-stimulus beta power (a feature of the high probability condition) as

compared to trials with high pre-stimulus beta power (βstable beta*response = -0.106, SE

= .035, p = .002, βvolatile beta*response = -0.095, SE = .040, p = .019, fig. 5Aii & Bii). The

inverse behaviour was seen for No-responses (for model summaries see suppl. table 5

& 6).
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Fig. 5: Pre-stimulus beta power predicts congruency effect on confidence ratings.
Ai: the congruency effect on confidence between response and stimulus probability in

the stable environment: participants are more confident in no responses in the low

probability condition and more confident in yes responses in the high probability

condition. Bi: the congruency effect on confidence between response and stimulus

probability in the volatile environment: participants are more confident in no responses

in the low probability condition and more confident in yes responses in the high

probability condition. Aii: significant congruency effect on confidence between response
and beta power in the stable environment: beta power does predict the confidence for

both yes and no responses conditional on the probability condition. Bii: significant
congruency effect on confidence between response and beta power in the volatile

environment for yes responses: lower beta power increases confidence in yes
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responses. The error bars show the 95 % confidence interval. Significance levels: ***
p < .001, ** p < .01, * p < .05.

Distinct pre-stimulus beta power sources partially mediate the effect of

stimulus probability and the previous response on somatosensory

near-threshold perception

Finally, a neural correlate of both explicit and implicit biases should partially mediate the

effect of stimulus probability and previous response on the detection response. Causal

inference methods33,34 allowed us to determine the indirect effect of either stimulus

probability or previous choice on detection that is mediated by pre-stimulus beta source

power (fig. 6A & B; c’ path). We used linear mixed-effects models to estimate the “a

path”, which represents the direct effect of either stimulus probability or previous choice

on pre-stimulus power. The “b path” is represented via the effect of pre-stimulus beta

power on the detection response. Pre-stimulus beta power in probability discriminative

areas partially mediated the effect of stimulus probability on detection with a less

pronounced effect in the stable environment (stable 0.6 % vs. 3 %, fig. 6Ai & Bi). The

proportion mediated for previous choice via beta power was similar in both

environments (stable env. 1.3 % vs. volatile env. 1.4 %, fig. 6Aii & Bii, model summaries

in suppl. table 7 & 8). In summary, the mediation analysis supports the role of

pre-stimulus beta power in implementing both explicit and implicit biases in distinct

cortical areas.
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Fig. 6: Distinct pre-stimulus beta power sources mediate the effect of stimulus
probability and previous choice on the detection response. A: Partial mediation of

probability (i) and previous response (ii) by distinct beta power sources on detection in

the stable environment. B: Partial mediation of probability (i) and previous response (ii)
by distinct beta power sources on detection in the volatile environment. Significance
levels: *** p < .001, ** p < .01, * p < .05.

Discussion

Here, we investigated the neural mechanisms underlying biases in somatosensory

perception in a stable and volatile stimulus probability environment. We manipulated the

expectation of stimulus occurrence via visual cues either in blocks or on a single trial

level in two separate studies. Participants adjusted both their perceptual decision

criterion as well as their confidence ratings based on the cued stimulus probability. Next

to the explicit biases, participants also exhibited strong previous choice biases. In EEG

recordings we identified pre-stimulus beta power in distinct brain areas as neural

correlates of explicit and implicit biases: Pre-stimulus beta power in the postcentral
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gyrus predicted single subject criterion changes and partially mediated the effect of

stimulus probability on the detection response. Pre-stimulus beta power also reflected a

key feature of the stable environment: its interaction with the previous choice. In the

volatile environment, the previous choice bias was reflected in pre-stimulus beta power

in the posterior parietal areas, whereas in the stable environment, it was reflected in the

secondary somatosensory cortex. Both mediated the effect of the previous response on

the current response. Beta power changes also mimicked the impact of the explicit bias

on confidence ratings in both environments. In summary, we suggest that pre-stimulus

beta power in distinct cortical areas implements both explicit and implicit biases.

Implicit and explicit priors

In the first experiment, participants were informed about stimulus probability in a

block-wise manner, which arguably is a more ecologically valid design. However, since

the probability cue was valid, the probability blocks contained an unequal amount of

signal and noise trials and thus the response distributions (and hence previous choice

frequencies) between the low and high probability conditions were unbalanced; for this

reason, in the second experiment, the probability cue was provided on a trial-by-trial

basis resulting in a balanced response (and previous choice) distribution. In both

environments, the probability cues altered the criterion successfully as previously shown

for the visual domain4,24,25. Also in both studies, the previous response significantly

predicted the detection response on the current trial, in line with previous findings on the

effects of response history35,36. Furthermore, in both environments, participants gave

higher confidence ratings in trials where their expectation matched their response as

shown in previous studies in the visual domain4,37,38. A difference between the two study

designs is that in the stable environment, the last trial is more informative for the current

subjective belief about stimulus probability within the same block (see S2.1). This

difference was also reflected in our model-based analysis of the participants’ behaviour:

The best model for the stable environment included an interaction term between the

previous response and stimulus probability, while the interaction term did not improve

the model for the volatile environment. In summary, behavioural modelling confirmed
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that both explicitly induced biases and implicit previous response biases determined

somatosensory near-threshold detection in the two paradigms and that they interact in

stable but not volatile probability environments.

Somatosensory pre-stimulus beta oscillations as a neural correlate of explicit
biases

After having confirmed the behavioural relevance of stimulus probability on

somatosensory detection and confidence in both environments, we examined how this

effect was implemented on a neural level before stimulation onset. Time-frequency

representations for the contrast of high minus low stimulus probability in the

pre-stimulus window showed a significant negative cluster, with a most profound effect

in the beta band for the volatile environment. While there was no significant cluster in

the stable environment, the t-values were also highest in the beta band. We speculate

that the lack of statistical significance in the stable environment may be partly explained

by the fact that the probability cue was presented only at the beginning of each block,

which may have led to less pronounced pre-stimulus modulations compared to the

probability cues before each stimulus in the volatile environment. Conversely, in the

volatile environment, the probability cue before each trial appears to “dominate” the

prestimulus characteristics over the effect of the previous trial. Nevertheless, and

importantly, in both paradigms, the localised sources of the strongest beta power

modulation for the probability manipulation were in similar locations within the

postcentral gyrus.

Our finding of beta modulation reflecting explicit probability bias is consistent with the

assumed role of beta for top-down modulation of perceptual decisions39 and more

generally as a neural correlate of top-down expectations40,41: For the somatosensory

domain, the study by van Ede et al. (2010) suggested pre-stimulus beta power as a

potential neural correlate of tactile expectations42 with lower power before an expected

somatosensory stimulus. Ede et al. regressed the impact of the trial history and were

able to confirm the role of pre-stimulus beta power in implementing top-down

expectations. This finding is consistent with the results from a study by Nickel et al.43
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who showed a decrease in alpha and beta power in the pre-stimulus time window in

trials with a high expectation for a painful stimulus in somatosensory channels. In the

visual domain, a similar finding was recently obtained by Ruuskanen et al44 (2024,

preprint) showing a mediating effect of pre-stimulus beta power on participants’ decision

criterion. Weisz et al.45 identified a pre-stimulus alpha/beta modulation in the

contralateral secondary somatosensory cortex during a near-threshold somatosensory

detection task. They interpreted these modulations as suggesting a change in the

starting point for perceptual decisions, which is in line with our interpretation of a lower

perceptual threshold in trials with low beta power.

Overall, our results show that beta power in the primary somatosensory cortex plays a

key role in the implementation of explicit biases; this leaves open how the implicit

(previous choice) bias, which we also clearly find in our behavioural analysis, is

implemented, which we analysed next.

Posterior parietal pre-stimulus and SII beta oscillations as a neural correlate of
implicit biases

Time-frequency representations for the previous response contrast revealed a

significant cluster in the beta band for the stable environment with lower power after

previous yes responses. Source reconstruction of pre-stimulus beta power for the

previous response contrast highlighted the posterior parietal cortex as the source of the

strongest difference between previous responses in the volatile environment. Neural

correlates of previous choice biases in non-human primates have been located in frontal

and posterior parietal cortex (PPC)46,47 and a recent study in humans suggested

pre-stimulus gamma power in the parietal cortex as a neural marker of previous choice

biases36. Consistently, also our findings emphasise the role of posterior parietal brain

areas in addition to a mediating effect of beta oscillations.

Interestingly, in the stable environment, source localization for the previous response

contrast highlighted another area, i.e., the secondary somatosensory cortex (SII). As

outlined above, in the stable environment, the subjective relevance of the previous
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response and thus the “cognitive process” underlying the previous choice bias must be

different as there is an interaction with the expected probability which we also

demonstrated computationally in our model. A study by Romo et al.48 in non-human

primates revealed that neurons in SII encoded both past and present sensory

information during a frequency discrimination task. This aligns with findings from a

rodent tactile working memory task49, which demonstrated that SII enables task

information to persist across different behavioural states. Given the evidence from

previous studies on the roles of both the PPC and SII, we tentatively conclude that both

areas are involved in previous choice bias, with each region's role being more strongly

emphasised in the corresponding paradigm. We suggest systematically disentangling

their possible contributions in future studies.

Pre-stimulus beta power predicts explicit and implicit biases, mimics the
congruency effect on confidence and mediates both stimulus probability and
previous response bias in distinct brain areas

To investigate the relationship between pre-stimulus power and behavioural outcomes,

we added pre-stimulus source power averaged over the most discriminative voxel for

either probability or previous responses in our perceptual models. The results confirm

the role of prestimulus beta power in predicting responses both for signal and for noise

trials in both experiments; pre-stimulus beta power also mimicked the interaction of the

previous response with the stimulus probability in the stable environment, further

confirming its role in implementing both biases. Finally, in a mediation analysis (fig. 6)

we show that beta power (again on the source level) partially mediated the effect of

stimulus probability and the previous response on the detection response in both

environments, albeit to a lesser degree in the stable environment.

Taken together, our results from a total of 83 participants strongly confirm prior findings

that link beta power to perceptual detection rates in both signal and noise trials22–24. A

recent review indicates that beta oscillations, particularly beta bursts, occur across

various cortical regions28. The authors suggest that beta oscillations act as

spatiotemporal filters, thereby controlling information flow throughout the brain via brief
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periods of functional inhibition. While we did not characterise beta bursting, our results

are in line with this idea, as we show distinct beta sources for implicit and explicit biases

in the pre-stimulus window that shape somatosensory perception.

The observed effect of higher confidence in response-congruent trials could be

replicated by a model that included pre-stimulus beta power as a neural correlate of

stimulus probability. Those results illustrate the intricate interplay between pre-stimulus

power and confidence, as it is not the absolute level of beta power that determines

confidence. Both high and low beta power before a stimulus can lead to a high

confidence perceptual decision – it depends on the response and whether it matches

the expected stimulus. Earlier studies have emphasised a negative association between

pre-stimulus alpha power and confidence50,51. Extending this perspective, Baumgarten

et al.15 demonstrated in a somatosensory discrimination task that the correlation

between pre-stimulus alpha power and confidence varies depending on accuracy. The

results of our study suggest that the relationship between pre-stimulus beta power and

confidence depends on the congruency between the response and the expectation,

further supporting the idea that beta oscillations are crucial for implementing top-down

biases.

Limitations and perspectives

We conducted two separate studies with two different samples of participants, which

allowed us to confirm the behavioural and neural results in an independent sample. A

follow-up study with a longitudinal study design could examine the temporal stability of

both externally induced biases and implicit previous-choice biases and their interaction

in different probability environments. This would address the interesting question of how

much of the results reported here are related to bias traits52 or states. In addition, the

computational models used are based on the assumption of a linear relationship

between pre-stimulus power and the detection response33,53,54. Consequently, non-linear

effects between power and behavioural outcomes might have been missed. Finally, the

electrical stimulation used in our study – although widely used in research - is not a
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naturalistic stimulus and therefore future studies could use more ecologically relevant

tactile stimuli.

In summary, our results suggest that explicit and implicit perceptual biases are reflected

in pre-stimulus beta power in distinct cortical areas.
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Methods
Participants

Forty-three healthy, young volunteers (22 females, age: 26.7 ± 4.4 years, [mean ± SD],

range: 21 to 35 years) were recruited for the first study and forty for the second study

(23 females, age: 25.7 ± 3.9 years, range: 19 to 35 years) from the database of the Max

Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. All

participants reported to be right-handed. The study was approved by the Ethics

Committee of the University of Leipzig’s Medical Faculty (462/15-ek). All participants

provided written informed consent and were reimbursed 9.00 Euro per hour for their

participation in the first study and – due to a change of regulations – 12.00 Euro per

hour in the second study.

Experimental setup

This study aimed to investigate how stimulus probability influences tactile perception

and confidence in humans. All data were acquired at the Max Planck Institute for

Human Cognitive and Brain Sciences, Leipzig. Electrical finger nerve stimulation was

performed with a constant-current stimulator (DS5 Isolated Bipolar Current Stimulator

(RRID:SCR_018001) using single square-wave pulses with a duration of 200 μs. A

waveform generator NI USB-6343 (National Instruments) and custom MATLAB scripts

using the Data Acquisition Toolbox (MATLAB (RRID:SCR_001622)) were used to

control the stimulation device. Steel wire ring electrodes were placed on the middle

(anode) and the proximal (cathode) phalanx of the index finger on the left hand. The

experimental procedure was controlled by custom MATLAB scripts using the

Psychophysics Toolbox (RRID:SCR_002881).

Experimental paradigm

At the beginning of the experimental session, we recorded five minutes of resting state

EEG with eyes open while participants were seated in a comfortable chair in the EEG

cabin and fixated on a grey cross on the screen. Next, participants were familiarised
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with the electrical finger nerve stimulation. An automatic threshold assessment was

performed to determine the stimulus intensity corresponding to the somatosensory

detection threshold. The threshold assessment entailed an up-and-down procedure (40

trials in the first run and 25 trials in subsequent runs) which served as a prior for the

following Bayesian approach (psi method; 45 trials in the first run and 25 trials in

subsequent runs) from the Palamedes Toolbox55 (RRID:SCR_006521) and finished with

a test block (5 trials without stimulation and 10 trials with stimulation intensity at the

threshold estimate by psi method). Based on the test block results for the psi method

threshold estimate and weighting in the results of the up-and-down procedure, the

experimenter selected a near-threshold intensity, approximately at a 60 % detection

rate.

Stable environment

In each trial, participants were instructed to indicate whether they perceived a weak

somatosensory stimulus (Yes/No) and then to state their retrospective confidence in this

decision using a binary rating (Confident/Unconfident). Participants were informed that

they would receive cues about the probability of a stimulus on a given trial throughout

the experiment. In study 1, a cue appeared at the beginning of each condition block for

three seconds and was valid until the next probability cue appeared (12 trials, the

number of trials in a block was not explicitly mentioned). The high stimulus probability

condition (75 %) instructed participants that there was a 75 % chance of a stimulus on a

given trial, whereas the low probability condition (25 %) informed participants that there

was a 25 % chance of a stimulus on a given trial. Crucially, those cues were always

valid, and participants were explicitly told about those contingencies. To ensure

motivation throughout the experiment, we provided participants with feedback

(percentage correct displayed for 2.5 seconds) at the end of each probability block.

Each of the five blocks contained 144 trials with six repetitions for each probability

condition. Thus, half of the trials included a near-threshold electrical pulse (mean

intensity = 1.9 mA, range: 0.9 - 3.7 mA). The stimulus intensity was adjusted after each

experimental block if the detection rate was no longer near-threshold. The other half of
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the trials did not contain a stimulus (noise trials). The order of signal and catch trials and

probability condition miniblocks were pseudo-randomized for each experimental block

and participant using the Shuffle56 function in Matlab. Participants responded with the

right index finger on a two-button box. Before starting the main experiment, participants

completed a training block of 48 trials.

Volatile environment

In the second study, participants were instructed to indicate whether they perceived a

weak somatosensory stimulus (Yes/No) and then to state their retrospective confidence

in this decision using a binary rating (Confident/Unconfident) in each trial. Participants

were informed that they would receive cues about the probability of a stimulus before

each trial throughout the experiment. In the second study, either an orange or blue circle

appeared at the beginning of each trial for one second and indicated either high or low

stimulus probability (the colour assignment was randomised across participants). The

high stimulus probability condition (75 %) instructed participants that there was a 75 %

chance of a stimulus on a given trial, whereas the low probability condition (25 %)

informed participants that there was a 25 % chance of a stimulus on a given trial.

Crucially, these cues were valid, and participants were explicitly told about these

contingencies. To motivate participants throughout the experiment, we provided

participants with feedback (percentage correct displayed for 2.5 seconds) after 30 trials.

Each of the five blocks contained 120 trials with an equal amount of high and low

stimulus probability trials overall. Thus, half of the trials contained a near-threshold

electrical pulse (mean intensity = 2.1 mA, range: 1.1 - 3.6 mA). The other half of the

trials did not contain a stimulus (catch trials). The order of high and low probability trials

and stimulus and noise trials was pseudo-randomized within blocks using the Shuffle56

function in Matlab. Participants responded with the right index finger on a two-button

box. Before starting the main experiment, participants completed a training block of 40

trials. Additionally, we asked participants about the colour-probability mapping after

each experimental block to ensure the probability cues were correctly remembered.
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Behavioural data preprocessing

Stable environment (study 1)

Across all participants, we collected 30.816 trials from 43 participants. 35 trials were

rejected due to missing EEG triggers (EEG recording started too late). Next, we

removed 39 no-response trials (no button pressed within 2.5 s) and 45 trials with a

detection response time of less than 100ms. We excluded eleven blocks that had a hit

rate greater than 90 % or less than 20 % and resulted from suboptimal threshold

estimation. These criteria were determined based on values that deviated more than

three times the standard deviation from the mean hit rate calculated across all blocks

and participants (mean hit rate: 58 %, standard deviation: 10 %). Additionally, for one

participant, one block was excluded based on a false alarm rate of more than 40 %.

After behavioural preprocessing, 28.977 trials remained.

Volatile environment (study 2)

We collected 24.000 trials from 40 participants. Data from one participant was rejected

due to technical issues with the somatosensory stimulation device. From the remaining

39 participants, 12 trials were rejected due to missing EEG triggers (the battery died,

EEG recording started too late). Next, we removed 133 no-response trials (no button

pressed within 2.5 s) and 102 trials with a detection response time of less than 100 ms.

We excluded ten blocks that had a hit rate greater than 90 % or less than 20 %.

Additionally, two blocks were excluded based on a false alarm rate of more than 40 %.

One block was excluded because the false alarm rate was higher than the hit rate. We

used the same exclusion criteria as in the first study (mean hit rate: 53 %, standard

deviation: 12 %). After behavioural data cleaning, 21.593 trials from 39 participants

remained.

Signal Detection Theory Analysis
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We employed Signal Detection Theory (SDT)57 to examine the sensitivity (Dprime) and

response bias (criterion c) in this study. SDT allows us to distinguish between the ability

to detect a signal (e.g., the presence of a stimulus) from a general tendency to report

either stimulus presence or absence.

Sensitivity (Dprime):

Sensitivity, also known as Dprime, quantifies the ability to discriminate between signal

and noise. It is calculated using the following formula:

d' = z(hit rate) - z(false alarm rate)

where z(hit rate) represents the z-score of the hit rate (proportion of correct responses

when the signal is present), and z(false alarm rate) represents the z-score of the false

alarm rate (proportion of incorrect responses when the signal is absent).

Response Bias (criterion c)

Response bias, represented by criterion c, assesses the individual's tendency to

respond "yes" or "no" irrespective of the presence (or absence) of the stimulus. It is

calculated using the formula:

c = -0.5 * [z(hit rate) + z(false alarm rate)]

In our analysis, we computed d' and c for each participant to examine their sensitivity to

the stimuli and response bias. Higher values of d' indicate better sensitivity, while a

positive value of c reflects a bias towards responding "no" (conservative criterion). The

Hautus log-linear correction method58 was employed to address zero false alarm rates.

Statistical Analysis: Behaviour

Non-parametric Wilcoxon signed-rank tests were applied to compare the paired

samples in this study. The Wilcoxon signed rank test is robust to deviations from
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normality and assesses whether the median difference between paired observations is

significantly different from zero.

Estimation of Signal Detection Theory Parameters using Generalized Linear Mixed

Effects Models

To investigate the influence of single trial variables on Signal Detection Theory (SDT)

parameters59, we employed generalized linear mixed effects models (GLMMs) using the

lme4 package60 in R (version 4.2.2). We specified a GLMM with a Binomial distribution

and probit link function to account for the binary nature of the outcome variable (signal

present or absent response, high or low confidence). In the simplest model, the

intercept represents the overall criterion (c), and the regressor that codes whether the

trial contained a stimulus corresponds to Dprime61. Random intercepts were included in

all models, random slopes for the main effects and interaction effects only if the models

did not show warnings about singularity62. To assess collinearity among the predictor

variables in our analysis, we utilised the 'check_collinearity' function from the

'performance' package and to ensure convergence of the models the check_converge

function63 in R. Variance inflation factor (VIF) values were computed for all models and

parameters, demonstrating low values (VIF < 3) and indicating the absence of

substantial multicollinearity for all SDT GLMMs. We used the emmeans (Estimated

Marginal Means) R package64 for FDR-corrected post-hoc tests on our fitted GLMMs.

Model summaries were saved as tables in a html file with the sjPlot package65.

EEG Recordings

EEG was recorded from 62 scalp positions distributed over both hemispheres according

to the international 10–10 system, using a commercial EEG acquisition system

(Standard 64ch actiCap Snap, BrainAmp; Brain Products, Brain Products

(RRID:SCR_009443). The mid-frontal electrode (FCz) was used as the reference and a

mid-frontal electrode was placed on the middle part of the forehead (between FP1 and

FP2) as ground. One additional electrode was used to measure electroocular activity

(placed below the right eye) and ECG activity (placed below the left clavicle),
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respectively. Electrode impedance was kept at ≤ 10 kΩ for all channels. EEG was

recorded with an online bandpass filter from 0.015 Hz to 1 kHz and digitised with a

sampling rate of 2.5 kHz for study 1 (stable environment) and 1 kHz for study 2 (volatile

environment).

EEG - preprocessing

We used custom Python scripts and the MNE python package (MNE software

(RRID:SCR_005972)66 to analyse the EEG data of both datasets. We applied a

bandpass filter between 0.1 and 40 Hz to the raw EEG data with the following IIR filter

parameters: Butterworth zero-phase (two-pass forward and reverse) non-causal filter,

filter order 16 (effective, after forward-backwards, cutoffs at 0.10, 40.00 Hz: -6.02, -6.02

dB). Next, we linearly detrended and epoched the data between -1 second before

stimulation onset and 1 second after stimulation onset. After downsampling the data to

250 Hz, we used the RANSAC package67 to detect bad channels (channels interpolated

study 1: mean = 1.0, max. = 4, study 2: mean = 0.7, max. = 5). Next, we ran ICA on the

1Hz high-pass filtered, epoched data using the extended infomax algorithm68. We

correlated ICA components with EOG and ECG activity and rejected components that

correlated strongly with eye movements and cardiac artefacts from the 0.1Hz filtered

data (components rejected study 1: mean = 3.5, max. = 7, study 2: mean = 3.5, max. =

6). Finally, we re-referenced the data to the common average of all EEG channels.

Evoked potentials

Electrode CP4 was selected as the channel of interest (COI) based on the post-stimulus

contrast between signal and noise trials. To compare the experimental conditions, we

initially averaged the epochs of the defined condition for each participant and ensured

that the epoch counts were equalised across all conditions. Subsequently, we

calculated the average evoked data across all participants. We used a baseline window

of 100 ms before stimulation onset and subtracted the averaged activity from the

post-stimulus activity for each epoch. To determine the channel of interest, we

compared signal and noise trials in the post-stimulus window and focused on the
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earliest somatosensory evoked potential, which was in our paradigm and with our data

preprocessing a positive evoked potential around 50ms post-stimulation (which we refer

to as P50 component in the following).

Time-frequency representation in the pre-stimulus window

We used the multitaper method69 to compute the time-frequency representation in the

frequency range of 3 to 34 Hz with a resolution of 1 Hz and a time-bandwidth of 4 Hz.

The number of cycles for each frequency was defined as a frequency divided by 4

cycles. The number of epochs was matched between conditions using the minimum

time difference method implemented in MNE Python. For the contrast between high and

low stimulus probability in the stable environment, we calculated averaged

time-frequency representations separately for previous hits (previous yes response in

previous signal trial), misses (previous no response in previous signal trial) and correct

rejections (previous no response in previous noise trial) for the high and low stimulus

probability conditions. Next, we subtracted the respective contrasts, e.g. high previous

hits vs. low previous hits etc. Finally, we averaged the time-frequency representations of

high vs. low stimulus probability corrected for previous trial history. The design in the

volatile environment allowed us to average over high and low probability trials without

controlling for previous trial characteristics, as the previous trial history was randomised

(see suppl. fig. 2.3 Biii). To specifically examine the influence of past choices on power

modulations, we restricted our analysis to trials occurring under high probability

conditions and those following a signal in the stable environment. In the volatile

environment, our analysis targeted trials with identical probability cues in both the

preceding and current trial in the high probability condition.

Cluster-based permutation tests

For statistical comparisons of the time and frequency domain, we used threshold-free

cluster-based permutation testing implemented in MNE with a cluster and statistical

threshold of p = 0.05 and 10.000 permutations. The test statistic was a two-tailed

one-sample t-test, as we tested whether the difference between conditions was
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significantly different from zero. Adjacency was defined over time (neighbouring time

points are considered as adjacent) and frequency (neighbouring frequencies are

considered as adjacent). All conditions were compared using paired two-sided t-tests.

We used a step size of 0.1 and an initial t-threshold of 0 for threshold-free cluster

enhancement70. The MNE defaults for the cluster height (2) and cluster extent (0.5)

were used.

Source localization of pre-stimulus beta band power contrast

Source localization was performed using Dynamic Imaging of Coherent Sources (DICS)
71 beamforming implemented in MNE. The source space encompassed a total of 8196

individual sources (5mm spacing between sources). We used the MNE standard BEM

(5120-5120-5120) model based on the freesurfer average brain and standard electrode

positions. For each participant, source localization was computed for the beta band

frequency range where we observed the strongest modulations in sensor space (15 - 25

Hz) in the pre-stimulus window, averaged over 600ms before stimulation onset (700ms

to 100ms before stimulation onset). Cross-spectral density was computed for all epochs

and separately for the high probability and low probability epochs and the previous yes

and no previous no responses. To compute source power in the beta band, we

estimated cross-spectral density for each epoch using Morlet wavelets with 4 cycles per

frequency. Next, we averaged over all frequencies and computed a common spatial

filter, before we applied the filter to the data of each condition. The filter was computed

for the orientation that maximised power. Finally, we subtracted beta source power of

low probability trials from beta source power of high probability trials before we

averaged the contrast over participants. To visualise the contrast, we ran a permutation

t-test (10 000 permutations) for all sources, and we highlight the source with the highest

t-values on the fsaverage template brain. To make sure our beamformer source

localization approach is valid, we located the beta power desynchronization for the

post-stimulus contrast between signal and noise trials, which verified a source in

postcentral gyrus (suppl. fig. 4.3).

Pre-stimulus beta source power per trial
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To extract pre-stimulus beta power in source space, we created a mask based on the

contrast for stimulus probability or previous response. We selected voxels based on the

highest t-values for each contrast and extracted power for each trial averaged over

those vertices. For the brain behaviour modelling, the source power was

log-transformed, z-scored and detrended over all trials and for each experimental block.

Trials with z-scored source power > 3 were excluded from the analysis. Pre-stimulus

beta power was entered as a continuous regressor in our models and only binned for

visualisation purposes.

Moderated mediation analysis

We conducted mediation analysis using the 'mediation' package72 in R. The package

provides a comprehensive set of functions for estimating and testing mediation effects

in both simple and complex models. The mediation analysis focused on examining the

mediating role of pre-stimulus power on the relationship between stimulus probability

(independent variable) and the detection response (dependent variable). To conduct the

mediation analysis, we set up a linear mixed effects model with the mediator as the

dependent variable (pre-stimulus power) and the independent variable as the predictor

(stimulus probability). Next, we fitted a GLMM with the detection response as the

outcome variable (dependent variable) and both the mediator (beta power) and the

independent variables as predictors. We included the stimulus on each trial, the

previous response as well as the interaction between stimulus probability and the

stimulus as additional predictor variables. Finally, we computed the indirect effect, the

total effect and the direct effect. The 95 % confidence intervals of the regression weights

were estimated using quasi-Bayesian approximation with 1000 Monte-Carlo draws.

Data and code availability

The experimental and analysis code is publicly available on Github. The raw

behavioural and electrophysiological data will be shared on EDMOND after publication.
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Supplemental information legends
Fig. S1: Figure 1 after excluding participants with a false alarm rate > 40 % (n=3)
in the high expectation condition. All statistical results remain after the exclusion.

Significance levels: *** p < .001, **p < .01, *p < .05. Abbreviations: ns = not

significant.

Fig. S2.1: The previous choice has a greater influence on the subjective stimulus
probability in the stable compared to the volatile environment. The block design

creates small environments of a stable stimulus probability. In the example (left box) the

stimulus probability is high (0.75 % of all trials contain a stimulus in the block). An ideal

human observer tries to track the previous choices and updates the current (subjective)

stimulus probability accordingly. The previous choice has a lesser influence on the

subjective stimulus probability in the trial-by-trial design (right box) as the participant

must track the previous choices over the whole experimental block of 120 trials.

Fig. S2.2: Model-free analysis of the interaction between criterion and previous
response: The criterion is always significantly higher (more conservative) in the low

probability condition in both environments. The criterion is also always more

conservative after previous no responses in both environments, except for the low

probability condition in the stable environment. This is in line with the model-based

results. Significance levels: *** p < .001, ** p < .01, * p < .05. ns = not significant.

Fig. S2.3: Response and confidence distributions differ significantly between
stimulus probability conditions in both environments. Previous response
distributions differ significantly in the stable but not in the volatile environment.
Ai & Bi: Participants respond more often that they detected a stimulus in the high

probability condition in the stable environment and the volatile environment. Aii & Bii:
confidence ratings are significantly higher for no responses in both environments. Aiii &
Biii: there are significantly fewer previous yes responses in the low probability condition

but there is no significant difference in the distribution of previous responses for the
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volatile environment due to the randomization of probability cues in the second study.

Significance levels: *** p < .001, ** p < .01, * p < .05. ns = not significant.

Fig. S3: Somatosensory region of interest definition based on the contrast
between signal and noise trials. A: Topography for the contrast signal - noise around
the earliest somatosensory evoked potential (P50), averaged between 40 and 56 ms in
the stable environment. B: Somatosensory evoked potential averaged over participants
for the contrast signal-noise trials in electrode CP4 in the volatile environment. C:
Topography for the contrast signal - noise around the earliest somatosensory evoked
potential (P50), averaged between 40 and 56 ms in the stable environment. D:
Somatosensory evoked potential averaged over participants for the contrast
signal-noise trials in electrode CP4 in the volatile environment. The signal was baseline
corrected with a mean from -100ms to stimulus onset.

Fig. S3.2: Cluster-based permutation test for a shorter pre-stimulus window.
Time-frequency contrasts for high – low stimulus probability (first row) and previous yes
– no response (second row). The time window was restricted to 400ms.

Fig. S.3.3: Control analysis for source reconstruction using DICS beamforming:
Beta power source reconstruction for signal–noise contrast in the post-stimulus window.
Lighter blue values indicate more negative t-values. The area highlighted in red marks
the postcentral gyrus.

Table 1: Generalized linear mixed effects model predicting the detection response on

each trial in the stable environment.

Table 2: Generalized linear mixed effects model predicting the detection response on

each trial in the volatile environment.

Table 3: Generalized linear mixed effects model predicting the detection response in

each trial including beta power in the stable environment.

Table 4: Generalized linear mixed effects model predicting the detection response in

each trial including beta power in the volatile environment.
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Table 5: Generalized linear mixed effects model predicting the confidence response in

each trial including either the probability cue or pre-stimulus beta power in the stable

environment.

Table 6: Generalized linear mixed effects model predicting the confidence response in

each trial including either the probability cue or pre-stimulus beta power in the volatile

environment.

Table 7: Generalized linear mixed effects models for mediation analysis predicting the
detection response by including pre-stimulus beta power for the probability contrast or
pre-stimulus beta power for the previous response contrast in the volatile environment.
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