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Starting from a low-energy continuum model for the band dispersion of the 2 x 2 charge-ordered
phase of the kagome metals AV3Sbs (A4 = K, Rb, Cs), we show that nematicity can develop in
this state driven either by 4 x 4 charge fluctuations preemptive of a 1 x 4 charge order (CO), or
by an actual zero momentum d-wave charge Pomeranchuk instability (PI). We perform an analysis
that starts from a Kohn-Luttinger theory in the particle-hole sector, which allows us to establish a
criterion for the development of an attractive nematic channel near the onset of the 1 x 4 CO and
near the d-wave charge PI, respectively. We derive an effective charge-fermion model for the d-wave
PI with a nematic susceptibility given via a random phase approximation (RPA) summation. By
contrast, for the finite momentum CO, the RPA scheme breaks down and needs to be improved upon
by including Aslamazov-Larkin contributions to the nematic pairing vertex. We then move to the
derivation of the Ginzburg-Landau potentials for the 4 x 4 CO and for the d-wave PI, and we obtain
the corresponding analytical expression for the nematic susceptibility at the nematic transition
temperature T ~ Tpem in both cases. The nematic response functions obtained in this way are
interpreted starting from the two charge-fermion models, and we underline under which assumptions
one recovers the Ginzburg-Landau result. Finally, we show an enhancement of the nematic character
that is rooted in the coupling of the order parameters to elastic deformations. Our work establishes
a relation between the nematicity observed in some of the iron-based superconductors, where the
nematic phase might be driven by spin fluctuations, and the vanadium-based kagome metals, where
charge fluctuations likely induce nematicity. The two microscopic mechanisms we propose for the
stabilization of the nematic state in AV3Sbs, i.e., the zero-momentum d-wave PI and the fluctuations
of the finite momentum CO, are distinguishable by diffusive scattering experiments, meaning that
it is possible to gauge which of the two theories, if any, is the most likely to describe this phase.
Both mechanisms might also be relevant for the recently discovered titanium-based family ATi3Sbs,

where nematicity has also been observed.

I. INTRODUCTION

Nematicity is a property originally observed in classi-
cal liquid crystals, where the microscopic structure of the
constituent molecules and their anisotropic interactions
lead to a breaking, on average, of the rotational symme-
try in the system but preserving the spatial isotropy of
the liquid. When nematicity occurs together with strati-
fication so that the molecules are arranged in layers and
show correlations in their positions, the liquid crystal is
in a smectic phase [1]. In the smectic phase, no long-
range crystalline order is present within each layer, and,
as a general rule, nematicity occurs at higher tempera-
tures than smecticity. The first quantum analog of the
nematic state was described in the context of interacting
spins on a lattice [2, 3], where the rotational symmetry
that is broken is the internal SU(2) spin symmetry [4, 5].
Another quantum counterpart of liquid crystals has been
found in correlated Fermi liquids [6]. On a lattice, the
properties of the Fermi liquid are only invariant under
the action of the discrete rotations C,, (n € {1,2,3,4,6})
of the point group symmetry of the host crystal, and
the continuous translational symmetry is always broken

down to a discrete one. Nevertheless, when the discrete
rotational symmetry of the lattice is broken, the system
is in a nematic phase, while if also the discrete transla-
tional symmetry breaks along one direction, the state is
called smectic.

As given, the definition of nematicity is purely phe-
nomenological, meaning that it provides room for sev-
eral microscopic mechanisms for the stabilization of a
(generic) nematic state. In some cases, the nematic char-
acter might be driven by a structural transition of the
system, while in some other cases the transition might
be electronically driven. The existence of a finite cou-
pling between the electronic and the structural degrees of
freedom makes the problem of understanding the leading
instability very challenging both from the experimental
and the theoretical points of view. In experiments, since
the electronic and the structural transitions take place to-
gether, one might hardly separate among the two condi-
tions, even if time-resolved measurements might provide
indications on the most important contribution. In the
theoretical works, if a model takes into account both the
degrees of freedom on the same footing, one might get a
different result concerning the most relevant contribution



to the instability depending by the values of the param-
eters employed for the description of the problem, and,
in several cases, it is hard to gauge their values against
experiments, making most of the theoretical predictions
not conclusive.

Even when it is clear that the nematic character comes
from the electrons, still there are several possibilities
for the microscopic mechanism driving the transition.
Nevertheless, one can identify two macro-types of ne-
matic states [7]: 1) A symmetry breaking which leads
to some bilinear fermionic operator with non-zero expec-
tation value such that the translational symmetry of the
problem is preserved while the rotational one is broken;
2) A symmetry breaking with quadrilinear fermionic op-
erators order parameter, i.e., the nematic character, in
this second case, is driven by the anisotropy of the fluc-
tuations in some degrees of freedom, a topic connected
to intertwined vestigial orders [8, 9] and to the original
observation of nematicity in liquid crystals, which sees
this property as arising from a melted or “unsuccessful”
smectic phase. In the first case, the nematic character of
the phase naturally emerges from the real- or momentum-
space structure of the order parameter, which, below the
critical temperature, becomes different from zero. For
instance, by considering the distortions of the Fermi sur-
face of a system projected on harmonics with angular
momentum [ and on the charge or the spin sectors, one
might get a charge (spin) I-wave Pomeranchuk instabil-
ity (PI) [10] where the order parameter has the form of
a bilinear in the fermionic operators [11, 12]. This in-
stability might take place in several systems, however, it
does not always correspond to a nematic state, as it hap-
pens for I = 0 (s-wave), where one gets phase separation
(Stoner instability [13]) in the charge (spin) channel. For
I =1 (p-wave) PI, conservation laws for the total charge
and spin prevent the onset of charge- and spin-current
order parameters [14], however the corresponding state
would be nematic [15]. Instead, no restrictions are found
for the order parameter of an | = 2 (d-wave) PI, which
also corresponds to a nematic state [16-21]. In case 2),
the fluctuations of some degree of freedom are assumed
to become large enough, and this might naturally oc-
cur nearby a second order phase transition. The lower
temperature phase [180] might even break the transla-
tional symmetry of the problem, leading to a smectic
state [22]. Another possibility consists in the presence of
a quantum critical point (QCP) at zero temperature [23—
26], which might also lead to strong fluctuations nearby
it. These fluctuations might give rise to non-Fermi lig-
uid behaviors [27, 28] and they might provide a pairing
glue between electrons leading to superconductivity, and
this becomes particularly relevant in the proximity of a
nematic QCP [29-32]. The poorly-understood relation
between nematicity and unconventional superconductiv-
ity explains the huge interest about the former phase: It
might explain the origins of the latter [33-36].

Coming to a more concrete example, in several of the
iron-based superconductors [37], one observes the follow-

ing phenomenology: Below a critical temperature Ty e,
an Ising Z, symmetry is broken and the nematic charac-
ter seems to have electronic origin [33]. Only by lowering
the temperature further, at Ty < Them, the system de-
velops an orbital order together with a spin-density wave
that breaks the SU(2) spin symmetry and the discrete
translational symmetry of the lattice along one direction
and, for this reason, this phase might be referred to as
smectic [38—40]. There are two main theories, based on
the above-mentioned scenario 2), which explain the onset
of nematicity in this class of compounds. The first one re-
lates the nematic properties of the system to orbital fluc-
tuations [41-43, 43], while the second one invokes a major
role of anisotropic spin fluctuations which should be large
right above the critical temperature Ty [22, 44-46]. The
breaking of the Ising Z; symmetry corresponds to two
ordering vectors for the broken rotational symmetry of
the lattice (C4 — Cy), ie., Q1 o (0,1) or Qz o (1,0)
(for 1-Fe unit cell) [45, 47, 48]. The spin density wave
fluctuations might also determine the symmetry of the
superconducting gap at lower temperatures [49]. Un-
derstanding the most prominent character of the fluc-
tuations that drive nematicity is particularly challenging
because the two orders (orbital and spin density wave)
are coupled and one can induce the other [50, 51]. This
leads to a typical the chicken or the egg problem, the
solution of which might rely on the presence of different
regimes where one mechanism dominates over the other
depending by the magnitude of the Fermi energy of the
system [52]. Also the development of a zero-momentum
orbital order, i.e., a d-wave PI, can explain the onset
of nematicity in the iron-based superconductor, and this
mechanism would rely on scenario 1) rather than on sce-
nario 2) [53, 54].

In the vanadium-based kagome metals AV3Sbs (A =
Cs, K, Rb), signatures of nematicity have been reported
in several experiments [32, 55-59]. However, the un-
derlying phenomenology is different with respect to the
one observed in most of the iron-based superconduc-
tors. At a critical temperature Ty, ~ 90K, these sys-
tems develop an unconventional charge order (CO) with
2 x 2 (x1 [60], x2 [61-63] or x4 [64]) in-plane (out-of-
plane) lattice reconstruction which might (or not [65])
break time reversal symmetry without any signature of
magnetism [66-70]. At Tsc ~ 1K, a superconducting
phase is observed [71, 72|, which might inherit the un-
conventional properties of the higher temperature state
[73-75]. Particularly, the superconducting state has a
two-dome structure, as observed by applying an external
pressure [59, 76-78] or by doping (CsV3Sbs_,Sn, [79]
and CsV3_,Ti,Sbs [80, 81]) which further complicates
the description of this phase. Interestingly, the double
dome structure is not observed by hole doping the potas-
sium and the rubidium compounds (K,Rb)V3Sbs_,Sn,
[82]. The different origin of the superconductivity in the
two domes is suggested by the different shape of the su-
perconductive gap, which has U- and V-shape, respec-
tively [80]. Immediately below T.,, a “weak” nematic-



ity is observed, probably due to a m-shift of the CO be-
tween consecutive kagome layers, while each vanadium
plane preserves the p6mm wallpaper group symmetry
[83-85]. At Them ~ 30 — 50K, several experiments per-
formed on CsV3Sbs, the family-member which has the
most controversial properties, report the transition to a
“strong” nematic state, where each kagome layer has a
lower rotational symmetry (Cg — C2) [58, 60]. Since
the kagome lattice has three independent directions, the
onset of nematicity in this context breaks a Potts Z3
symmetry [86-88], corresponding to the ordering vectors
Qi o (—v3,-1)/2, Q2 x (0,1) and Qs o (v3,-1)/2.
Other experiments find, in the same temperature range,
the stabilization of an additional 1 x4 CO that simultane-
ously breaks the rotational and the discrete translational
symmetry of the 2 x 2 CO [60, 89-92]. For this reason,
this state might be regarded as smectic, considering the
2 x 2 CO as the “pristine” or “parent” state of the sys-
tem [93]. Other experiments do not find, instead, any
transition at Them [94, 95], suggesting nevertheless that
both the nematic and the 1 x 4 COs might be stabilized
by applying a tiny perturbation to the system such as a
small magnetic field or a small strain [96]. The relation
between superconductivity and nematicity in this class
of compounds is suggested by the presence of strong ne-
matic fluctuations corresponding to the maximum of the
lower pressure/doping dome [32], i.e., the “superconduct-
ing glue” might be provided by the nematic fluctuations
related to a quantum critical point in one dome [30].

As opposed to the iron-based superconductors, the spin
order seems absent in the whole phase diagram of the
kagome metals, suggesting a minor contribution of the
spin fluctuations to the physics of AV3Sbs [59]. The or-
bital degree of freedom might play some role, even if it
is not so clear, so far, what this might be [97]. Indeed,
most of the theoretical approaches towards the physics
of kagome metals has focused on models with a single
orbital per site, in some cases even neglecting the sub-
lattice character of the states near the Fermi energy [98-
103]. Instead, charge fluctuations are found to play a
role already above T, [104-106] and the temperature-
pressure phase diagram shows the presence of several CO
phases [59, 107], so that, close to the phase boundaries,
the fluctuations of the symmetry broken states should
become strong [81]. As suggested by recent calculations
[108], even the low-temperature superconducting charac-
ter might be strongly influenced, if not determined, by
charge fluctuations. In this regard, instead of a spin-
fermion model [109, 110], the physics observed in the
kagome metals might be described by a charge-fermion
model, in analogy with the relevant role charge fluctua-
tions might play in the cuprates [111-114].

Here, we suggest two possibilities for the onset of ne-
maticity in the vanadium-based kagome metals as driven
by the charge degree of freedom: This might happen ei-
ther through a transition to a d-wave charge PI or by
spatially anisotropic finite momentum CO fluctuations.
In support of these ideas, we perform a Kohn-Luttinger

analysis [115-118] of a model [92] for the electronic states
at the Fermi level of the 2 x 2 CO in the particle-hole sec-
tor in the presence of electronic interactions [101, 119],
which allows us to obtain the renormalized nematic ver-
tices in the proximity of the zero- and finite-momentum
ordered states. These vertices allow us to define two
charge-fermion models describing the interactions among
the electrons at the Fermi level, driving the transition to
the nematic state in the two situations. Additionally, we
describe how to restore the validity of the Ward identities
for spin and charge conservation for the finite momentum
charge-fermion model by including the Aslamazov-Larkin
diagrams, i.e., by going beyond the random phase ap-
proximation (RPA) scheme. The analysis of the symme-
try broken nematic phases is then supplied by the deriva-
tion of the Ginzburg-Landau potentials for the d-wave
charge PI and the 1 x 4 CO. Since from the experimental
point of view, it is not clear if these states are actually
stable or not, we focus on a natural probe both of ne-
maticity and of nematic fluctuations [33, 120, 121], i.e.,
on the nematic susceptibility as can be defined in the two
cases and we connect the expressions obtained from the
Ginzburg-Landau analysis with the microscopic under-
standing coming from the charge fermion models.

The article is organized as follows: In Sec. II, we intro-
duce the microscopic model to describe the main prop-
erties of the 2 x 2 charge order. In Sec. III, we per-
form a Kohn-Luttinger analysis in the nematic channel.
Secs. IV-V are devoted to the derivation of the Ginzburg-
Landau theories for the two ordering mechanisms. In
Sec. VI, we discuss the nematic susceptibilities, which
represent a natural probe of the nematic fluctuations.
In Sec. VII, we discuss the relation between the micro-
scopic expression of the nematic susceptibilities one can
obtain in the two cases starting from the corresponding
charge-fermion model and the Ginzburg-Landau expres-
sions. Finally, Sec. VIII is devoted to concluding remarks
on the the role of the 2 x 2 charge fluctuations explaining
a few recent experimental findings and on the coupling of
the nematic order parameters to the elastic deformations
of the solid.

II. MICROSCOPIC MODEL

In the reduced Brillouin zone, the Fermi surface of the
system has three inequivalent pockets located at the re-
constructed M points (M’) [64, 101, 125-129] with hole-
like character related to the states coming from the d
orbitals of the vanadium atoms [92], see Fig. 1. A similar
band structure hosting only hole pockets is relevant for
some iron-based compounds [130], where a suppression
of the spin-density wave fluctuations was found in this
case [131], which might lead to d-wave superconductivity
[132]. The relevance of the hole pockets for the formation
of the superconducting state in the kagome metals is in
agreement with the experimental findings that observe an
increase of Ty by hole doping and a decrease by electron



FIG. 1: Fermi surface of the charge-ordered state
- (a) Brillouin zone of the pristine kagome lattice with van
Hove singularities [122, 123] at the three inequivalent mo-
menta M; = 7(v/3,1)/(2v3a), M2 = 7(0,—1)/(v/3a) and
M; = n(—/3,1)/(2v/3a), with a the nearest-neighbor dis-
tance. The ordering wave vectors for the 2 x 2 instability
are depicted as Qu,2,3 [124]. (b) Putative 2 x 2 charge-bond
order with trihexagonal shape. Solid (dashed) lines describe
a strong (weak) hopping. (c) Reduced Brillouin zone of the
2 x 2 charge-ordered state (the area is 1/4 of the one shown
in panel (a)). The orange ellipses are a sketch of the Fermi
surface, centered at the high-symmetry points M; = M, /2.
The Q' vectors are defined as Q; = M), — M}, with (4, j, k)
an even permutation of (1,2, 3).

doping [79, 80, 82, 133]. In the following, we assume that
the elliptical hole pockets are the relevant features of the
Fermi surface at zero doping. Even if the system hosts
a circular electronic pocket coming from the p orbitals
of the antimony atoms centered at I', this should not be
relevant for the properties of kagome metals at zero dop-
ing and no externally applied pressure given the strong
mismatch between the radius of the electron and hole
pockets, which should not provide any relevant nesting
among the two. Nevertheless, at finite tin doping [133],
the central Fermi pocket is tuned above the Fermi level
of the system, i.e., at some point a nesting condition will
be reached between the electron and the hole pockets,
potentially opening an additional channel for the stabi-
lization of the 1 x 4 CO. The analysis of this different
model goes beyond the present study.

We start from a minimal three-band model (six bands
counting the spin degeneracy) for the electronic struc-
ture in the 2 x 2 charge-ordered state with hole-pockets
centered at M{, M} and Mj. To keep the calculations
simple, we consider elliptic paraboloid dispersions, see

ka
€2k = — Z S0 C1/3k = E2R(ED)k (1)

where m, = m(1 4 6) and m, = m(1 — 0) are the elec-
tronic masses along the k;, and &, directions of reciprocal
space, respectively, proportional to the inverse hopping
m o 1/t [135, 136], while § quantifies the ellipticity of
the bands, i.e., the deviation of the pockets from being
perfectly circular. R(¢) is the rotation matrix about an
angle ¢ in the momentum plane k = (k;, k,). We take
t = 1 as our energy unit. To convert to physical units,
the value of the hopping is ¢t ~ 0.3eV [98]. Since the
dispersions Eq. (1) describe the physics of the system
in the 2 x 2 CO state, our theory applies for tempera-
tures T that fulfill Tec ~ 1K < T < Teo ~ 100K, i.e.,
3x107% < kpT/t <3 x 1074, with kp the Boltzmann
constant. The noninteracting Hamiltonian is

Ho= D > (cik—1)clyoCiko (2)
i=1,2,3 k,o

where c;rkg (¢ik,o) is the creation (destruction) opera-
tor of an electron in band €;x with spin o =1,] and
momentum k, and p is the chemical potential. We take
w/(tA?) = —3x1075 (A is the momentum/energy cutoff)
[99]. In Eq. (2), the momenta of the i-th band’s fermions
are defined relative to M;.
The structure of the interactions is described within the
g-ology model [99, 137, 138]:

1
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with N the number of unit cells in the system. Here
the couplings are the interpatch exchange interaction ¢,
interpatch density-density interaction go, umklapp scat-
tering g3, and interpatch density-density interaction g4,
respectively.

III. KOHN-LUTTINGER ANALYSIS

In this section, we analyze the conditions under which
the model introduced above has a tendency towards ei-
ther a 4 x 4 charge ordering or a d-wave charge Pomer-
anchuk instability. For now we will not investigate
whether or not these are the leading instabilities of the
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FIG. 2:

Diagrammatic expression of the charge order parameters - Diagrammatic representation of the interacting

vertex for the (a) Quq charge order and (b) for the charge Pomeranchuk instability dressed by interactions. Here, A3 (n?)
is an infinitesimally small order parameter for the Q4o CO (occupation of band 1) [134]. Continuous (dashed) [dotted] lines

represent propagators for band 1 (2) [3].

model. Indeed, to properly address this point, the or-
bital/sublattice character of the states at the Fermi level
has to be determined, but this information is lacking at
present. Essentially, we assume that the combined role
of the sublattice/orbital degrees of freedom consists of
reducing the tendency of the system to develop any spin
ordered state [139]. Nevertheless, we stress how recent
analysis suggests a charge-fluctuations scenario to be pre-
ferred over a dominant spin-fluctuations one for a large
number of lattice sites in the unit-cell of the system and
for long-range repulsion [140]. By defining Ay, Ay and
Ags as the three order parameters for the 4 x 4 CO, we
find that the system is unstable towards this phase, see
Fig. 2(a), when [141, 142]:

DT (Q) +1 =0, (4)
with ['?1e = g, —2¢; —g3. Instead, by defining n,, ny and
ng as the occupations of the three independent bands, we
find a d-wave PI, see Fig. 2(b), when:

4P, (0) + 1 =0, (5)

where I'4PT = 2¢5 — g4 — g1. II,,(0) and II,,(Q’) are the
particle-hole polarizations computed for the intra- and

inter-band cases, respectively. To understand if it is pos-
sible to obtain a charge-driven nematic state in this sys-
tem, we perform a Kohn-Luttinger analysis in the prox-
imity of these two phases [101, 115, 116, 119, 143]. This
procedure will allow us to understand if the nematic pair-
ing interaction is enhanced near the onset of the order,
if the interaction is attractive or repulsive, and what is
its nature, e.g., whether it can be viewed as mediated by
charge or spin fluctuations.
In the proximity of the d-wave charge PI, we expect
the diagrams containing II,,(0) to be the only rele-
vant ones for the renormalization of the nematic vertex
S/;‘;iyé(k,p;p, k) = US196,505, — chzl”émégg, diagram-
matically represented in Fig. 3(a).

pled equations for the renormalized interactions gf“ and

g represented in Fig. 3(b), taking into account the

renormalized vertex 4 shown in Fig. 3(c), one obtains
the expression for gf“ and g§2 '* that allow to compute
the fully dressed irreducible interaction U2« shown in
Fig. 3(d). Since Ule“ is not divergent near the onset of
the symmetry broken state, UZ' becomes the only rel-

evant contribution to the nematic pairing vertex, which,

By solving the cou-
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FIG. 3:

Diagrams for the renormalized interactions near the onset of the d-wave Pomeranchuk instability

- (a) Diagrammatic representation of the nematic interaction. (b) Relevant diagrams containing the polarization II,,(0) to
the renormalization of the interactions g4 and g2. (c) Diagrammatic representation of the dressed vertices (red dots). (d)
Expression of the effective interaction U2 including the first order corrections due to gi.

near the phase transition, acquires the form

Qu .1 daslpy (6)
a,B;7,6 3th(0) 1 +Fd—PIth(O)

The interaction in Eq. (6) has the following properties:
(i) it is divergent at the phase transition; (ii) it is negative
due to II,,(0) < 0, i.e., attractive; (iii) it is mediated by
both zero-momentum charge and spin fluctuations given
the spin structure, which can be rewritten by means of
the SU(2) Fierz identity dasds, = %(5047555 +0ay- 0'55).
The equal contribution coming from charge and spin fluc-
tuations suggests that the charge-fermion model arising
from this attractive interaction satisfies the Ward identi-
ties for charge and spin already at the RPA level, without

the need to correct the effective interaction with other di-
agrams [21, 110, 144].

Now we analyze the renormalization of the nematic
vertex in the proximity of the 4 x 4 CO instability.
In this case, the diagrams containing II,,(Q’) are the
most relevant ones for the renormalization of the vertex
Fgg‘;,yé(k,p;p, k) = US%6,505, — U,)Q“”éwégg, diagram-
matically represented in Fig. 4(a). The expression for
UQta = g?‘*a can be obtained by summing the ladder se-
ries in Fig. 4(c), while UbQ“ = 9?4" is obtained by solving
the coupled equations for ng““ and gy**, diagrammati-
cally represented in Fig. 4(b), taking into account the
renormalized vertex 4 shown in Fig. 4(d). Since U%4 is
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FIG. 4: Diagrams for the renormalized interactions near the onset of the Q4, CO - (a) Diagrammatic representation
of the nematic vertex, focusing on the interaction between band 1 and band 2 electrons. (b) Relevant diagrams containing
the polarization II,n(Q) to the renormalization of the interactions gi (equal to U;‘?““) and gs. (c) Perturbative series for the
renormalization of the interaction g» (equal to U%44). (d) Diagrammatic representation of the dressed vertex (red dots).
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FIG. 5: Renormalization of the charge-fermion vertex - The first diagram is the RPA vertex coming from I'?4e. The
last two diagrams are Aslamazov-Larkin contributions that restore the Ward identities. The first of these two diagrams comes
from I'>%4e while the second from I'@4e.

not divergent at the phase transition, the only relevant it is attractive; (iii) it is mediated by finite momentum
contribution to Fan’(-lv s comes from UbQ““, leading to the charge fluctuations. We also notice that, near the phase
expression transition, the interaction gg““ diverges as well, and the

corresponding interaction vertex is
Qia 1 507555 (7) P &

rQi o~ ’
@I 8(gr + g3) Iy (Q7) 1+ DT (QY)

The interaction in Eq. (7) has the following properties: Ly Gims & Ty ,
B, Qia /

(i) it is divergent at the phase transition; (ii) it is negative 8(g1 +g5)1 (Q7) 1+ I'Qeelpn(Q')

(g1 + g3 > 0) due to the minus sign in front of it, i.e., (8)

3,Q4a 1 %(Ua'y cOBs — 5a'y6,86)




e., the interaction is attractive in the charge channel
and repulsive in the spin channel. The violation of the
Ward identities of Eq. (7), i.e., the unequal prefactors of
the spin and the charge components of the vertex, sug-
gests that the inclusion of only the RPA diagrams does
not lead to a description of the corresponding charge-
fermion model consistent with the one coming from Fermi
liquid theory. However, one can restore spin and the
charge conservation by including the Aslamazov-Larkin
diagramb coming from I'?4e and I'>*%4« as displayed in
Fig. 5. The corresponding interaction between fermions
at the Fermi surface with collective charge fluctuations,
which represents a microscopic theory for the interaction
near a finite momentum CO quantum critical point, can
be written as

Heh-ch = Z Z ‘/;jl;aﬁ,w5(q)

a,i,5,l a,8,7,0

i T )
Z €l,p,~%5 k,6% k—a,aCl,p+q,5
k,p

where 4,7 and [ run over the band indices, and where

Vijtiap s () = |€1|Vi(Q)(0ar0ps + Tany - 0p5).

In the expression above, €;;; is the Levi-Civita tensor,
and the interaction potential V;(q) is peaked at Q} such
that near Q} it can be approximated as

g
£2+|qg- Q)

Here we have introduced the effective coupling g between
the charge fluctuations and the fermions, and the corre-
lation length ¢ of the CO.

While the crossed and uncrossed Aslamazov-Larkin di-
agrams are found to cancel out in the charge sector for
g = 0 spin [145] and charge [146] instabilities, we find
them to add up near a finite momentum CO. The ex-
planation of this difference comes from the different spin
structure of the two diagrams, see Fig. 5, which does not
lead to a cancellation of the two contributions despite the
fact that they have a different sign. Further details re-
garding the Kohn-Luttinger analysis and the restoration
of the charge and spin conservation are provided in the
Supplemental Material (SM) [147].

From the previous analysis, it follows that the nematic
susceptibility for the d-wave Pomeranchuk instability has
the standard RPA expression [21], while in the case of
the Q4 CO it has a form similar to what has been
discussed for iron-based superconductors [148-150], but
with charge fluctuations instead of spin fluctuations.
Now that we have shown that a divergent attraction ex-
ists in the nematic channel due to the presence of charge-
fluctuations in the proximity of the d-wave charge PI
and of the @4, CO, we analyze the precise form of these
phases by performing a Ginzburg-Landau analysis of the
symmetry broken states the system tends to or even sta-
bilizes.

Vi(q) =

IV. GINZBURG-LANDAU THEORY FOR THE
Q42 CHARGE ORDER

For the Q4, CO, the patch model interaction Eq. (3)
can be rewritten as:
w0
Hﬁg N7 Z PiPis 9)

‘5771|

Z Zq<A ;qaclﬂlﬂ is
the charge operator with momentum Q; =M, -M, ie,
it describes an instability towards charge ordered states
that might stabilize an additional 1x4 or 4x4 CO besides
the 2 x 2 one.

By decoupling the interaction Eq. (9) in the Hubbard-
Stratonovich (HS) sense and by integrating out the
fermions, we derive the effective free energy in terms of
the three fields Ay, Ay and Ajs up to the fourth order
[151]:

P =3 [ stknc

7@40

where ge, = '@ and p; =

Hk)A (k)

Q4a
/12A2

+ 52 e 251 o /ZAQ (10)

1<J

/A1 )Ag(7)Asz(7)

having included the contribution of the fluctuations of the
order parameters, and where 2y ! (k) = a®@t + J|v,| +
v + f(k) is the charge propagator in principle peaked
at one of the wave vectors QJ, the ordering vector corre-
sponding to the order parameter A, [152-154]. However,
the momentum k in the expression above is taken with
respect to the ordering vectors Q}, so in this regard the
dependence of the charge propagator on the index ¢ does
not appear. v, = 2n1n is the bosonic Matsubara fre-
quency, due to the bosonic nature of the excitations of
the charge-ordered state, k = (iv,, k), 4 is the Landau
damping coefficient, and f(k) = k2 + k2 [22, 155]. The
explicit expressions for the coefficients in Eq. (10), which
depend on temperature and chemical potential, are

1 1
Qua = — + 7/ k k )
a oty kgo,l( )Go,2(k)
3
12 =2 / Go.1(k)Go.2(k)Go 3 (k),
k
1
o= 1 [ GhugRath)
k
1
7= 1/90,1(k)90,2(k)g§,3(k)’
k

with g(;il (twn, k) = —iwp, +¢€; x — p the electronic Green’s
functions and w, = (2n + 1)7T the fermionic Matsubara
frequencies. Their temperature dependence is shown in

Fig. 6 [99, 156]. In Eq (10) the integrals are defined such
that [, =T, f_A (27rA it I, = foﬂded27‘ and r =



(7,r), with 7 the time variable and r the position. The
quartic part of the interaction can be decoupled by intro-
ducing three auxiliary HS fields A(z) — Y, A%(z)/V/3,
Oi(z) = Ni(z) = (AX(z) — 22@HA5@)Y /B3 ang
Oz(x) — Na(z) = (Af(z) — A3(2))/V2 (N = (N1, Na)),
where A(z) transforms as an A; irreducible representa-
tion (irrep), while Of(z) = (O1(z), O2(x)) transforms as
the two dimensional E5 irrep of Dg,. We use the Gaussian
approximation rewriting the fields A;(z) = A; + §A;(x).
Keeping only the quadratic contributions in the fluctua-
tions 0A;(z) and integrating them out [86, 157, 158], the
free energy becomes

_/[ A? ~ 2(0f +03)
& f?z}a + 52 4a 52 4a 251Q4a

1 _
+ §Z/kln (xi (k).
Here we have assumed A; = 0 and

X1 (k) = X7 (k) + 011/2/3,
Xz (k) = X1 (k) — O1/V6 + 02/V2,
X HE) — 01/V6 — 02/V?2,

with Y~ 1(k) = x~!(k) + A/V/3, where the field A renor-
malizes the bare mass term due to fluctuations (a@+ —
a® + A/4/3). Additional details of the derivation can
be found in the SM [147].

The temperature dependence of the coefficients in Fig. 6
shows that, below some temperature, £;°** < 0, indicat-
ing an instability of the theory, which might be cured
by higher-order contributions to the Ginzburg-Landau
free energy [22, 159]. We focus on the temperature range
where the theory is stable. At the mean-field level, a neg-
ative §2Q4‘" 72594“ < 0 prefers to stabilize a 3Q CO, i.e., a
state with A1, A and Az different from zero (4 x 4 CO),
while §2Q4”' — 2{?4“ > 0 points towards a 1Q solution,
corresponding to a 1 x4 CO. Since the quartic coefficient
&% — 2¢6°* changes from negative to positive values,
one would expect a transition from the 4 x 4 to the 1 x 4
CO. However, the mass renormalization coming from the
A field might suppress the 4 x 4 CO in the temperature
range where it appears at the mean-field level. Indeed,
this phase is not observed experimentally. Nevertheless,
A might become small enough to stabilize the 1 x 4 CO
close to the temperature where §§4“

Qaa _
fﬂ‘4—

€

(11)

—2§1Q4“ changes sign.

V. GINZBURG-LANDAU THEORY FOR THE
Qi1a --WAVE POMERANCHUK INSTABILITY

For the @y, d-wave charge PI, the patch model inter-
action Eq. (3) can be rewritten as

1
HSUI;E ~ _N§ Zgijnmj, (12)
i,J
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FIG. 6: Temperature evolution of the Ginzburg-
Landau coefficients - Log-log plot of the absolute value of
the coeflicients a®4e, ~Q4a, 5?4“ and {?4“ evaluated asymp-
totically in the limit of p, kpT < tA® (see the SM for their
analytical expression [147]) at p/tA> = —3 x 107° (A = 1).
Solid (dashed) lines indicate positive (negative) values. The
vertical dotted lines indicate the position of the zeros of £24e

and §2Q4" - 2&?4“. The band structure parameters are m = 1,
6 =0.3.

with g;; = g4 = —ga if i = 4, gi5 = go = —292 + 01
ifi #jand n; = 55>, D qeh czqﬂciﬁq’g is the charge
operator with zero momentum, i.e., Eq. (12) describes an
instability towards a 1 x 1 charge-ordered state within the
2 X 2 one, describing an intra-unit-cell CO.

Considering the interaction Eq. (12) and the effective
band structure Eq. (2), one might decouple the inter-
acting part of the Hamiltonian by introducing two HS
fields Ol — Ny = (nl — %)\/2/3 and 02 — Ny =
(no — n3)/v/2. By integrating out the fermions and by
expanding the resulting expression for small O; and O,
one arrives at the effective free energy (up to irrelevant
constants)

) a®1 ,YQ1
Fam =5 )07 = —5-0:(0% - 303)
=1
2
é’Qla 2
+2 (> 077, (13)
i=1

having defined the Ginzburg-Landau coefficients

1
+ / G2, (k),
gr%l% k 0.1

3
v =3 [ gim)
k

1
nga = é/ggﬁl(/ﬂ),
k

Q@ —




with gQ@le = gq—go = ['*"FL. The free energy Eq. (13) de-
scribes a three states Potts model [86, 87, 160-164]. De-
tails concerning the derivation of the expressions above

can be found in the SM [147].

VI. RISE OF NEMATICITY

We envisage two ways in which nematicity might arise
in the kagome metals: On the one hand, nematicity might
manifest itself as a vestigial order of the 1Q 1 x 4 charge
order related to the finite momentum charge fluctuations.
Within the saddle point approximation, one can write the
corresponding zero-momentum nematic susceptibility as
[148, 165-169]

i [ X2 (k)
1+ g% [ X2(k)

()A(I?eﬁi)hn = _6lm y (14)

with [, m = 1, 2, corresponding to the two-components of
the E5 irrep, and having introduced the nematic interac-
tion Qe = — (&5 —2£Q4e) 1f [, X*(k) becomes large,
it might produce a divergence of the nematic susceptibil-
ity in the temperature range where £2Q4“ — 2£1Q4“ > 0.
This condition is surely satisfied near the transition to
the 1 x 4 CO.

On the other hand, nematicity might occur as a symme-
try breaking in the zero momentum order parameters,
which, as such, would not lead to an increase of the unit
cell of the system. More explicitly, the @}, nematic re-
sponse function becomes [170, 171]:

o s SBRG
Xnem )im = l7n1 N Ot 92 (k)’
Jnem & Y0,i

with ¢ = 1,2 or 3 and g%« > 0. From Eq. (15), one
can obtain an analytic expression for the divergence of
the nematic susceptibility relating the hopping strength
of the effective dispersions Eq. (1) to the other parame-
ters of the problem (see the SM for the explicit relation
and for additional details on the calculations sketched
above [147]). The diagonal structure of Egs. (14)-(15)
reflects the degeneracy of the E5 irrep at the instabil-
ity level. However, below the instability level, the Cs,
nematic state is actually preferred [172, 173]. Differently
from the case of a system with Dyy, symmetry, where only
the B1g symmetry channel gives a contribution different
from zero, while the By, one goes to zero [149], here we
obtain a finite contribution in both the degenerate com-
ponents of Es.

VII. MICROSCOPIC INTERPRETATION OF
THE NEMATIC RESPONSE FUNCTIONS

The analysis performed in Sec. IIT allows us to intro-
duce two microscopic models that can explain the onset
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of nematicity in the kagome metals. These models rep-
resent a transposition of the spin-fermion [174] and of
the fermion-boson model [175] to the charge fluctuations
cases, i.e., we introduce two charge-fermion models. The
first model is described by the effective zero-momentum
charge-charge interaction Eq. (6), while the second one
comes from the effective finite momentum interaction de-
picted in Fig. 5. The nematic susceptibility for the zero-
momentum charge fluctuations (d-PI) can be described
at the RPA level [21], in agreement with the result of
the Ginzburg-Landau analysis we performed, compare
Eq. (15) and Fig. 3 (b) and (d).

The nematic susceptibility of the finite-momentum
charge fluctuations is related to the Aslamazov-Larkin
diagrams, i.e., its representation goes beyond the RPA
scheme. Indeed, the triangular fermionic loops that ap-
pear in these diagrams (by closing the external lines in
Fig. 5 with a zero-momentum vertex) become large in
the presence of nesting [176], i.e., when the ellipticity
of the hole pockets is small enough, and one can ap-
proximate the nematic susceptibility by the contribution
coming from the Aslamazov-Larkin diagrams, in anal-
ogy with the relevant role played by these diagrams in
determining the d-wave Raman response function in the
cuprates [113]. If we assume the charge fluctuations to
have a smaller energy scale than the electronic degree of
freedom, we might replace the triangular fermionic loop
by a constant. By considering the corresponding ladder
series, one arrives at Eq. (14) [150, 169].

VIII. DISCUSSION

There is a third possibility that we have not analyzed
so far for the onset of nematicity in the kagome met-
als, and this is related to the fluctuations of the three
charge order parameters stabilized immediately below
Teo. While the thermal fluctuations might be important
above the critical temperature 7' > T, as shown experi-
mentally [104], we do not expect them to play a relevant
contribution for T' < T.,. Moreover, a recent experi-
ment [177] has found an odd nematic state above T¢, in
the cesium member of the family, which points towards
a nematic order parameter belonging to the Ei, or Eg,
irreps. Any theory for the charge order stabilized below
Teo that considers it as a purely two-dimensional ordered
state fails to catch this feature. Since this phase might
actually have an out-of-plane component, one would need
to derive a microscopic model that leads to a 2 x 2 x 2
charge order, described by an effective theory that takes
into account the three-dimensional nature of the order
parameters [84]. The development of this theory goes
beyond the scope of the present work.

The coupling of the elastic deformations of the Eg ir-
rep to the nematic order parameter renormalizes the ne-
matic couplings g@ra (n = 1,4) appearing in Eqs. (14)-
(15). Indeed, considering the nemato-elastic interac-
tion Fing = § [, €, (z) - N(x) where €, = (g, ,,€E,,)



is the deformation tensor and the elastic contribution
Foa = CEQ(E?EZ1 + 6123212), with cg, an element of the
stiffness matrix [102], by integrating out the deforma-
tion tensor we can rewrite the nematic interactions as
i = gt — 357/ (8cr,) and g2k — gi2ia + 9%/ (2cx,).-
Generally speaking, the propensity to nematicity is in-
creased by the coupling to the lattice [176]. If, instead
of considering the coupling to the classical elastic de-
formations, we would consider the coupling to quan-
tum phonons, we would obtain a frequency and momen-
tum dependence of the renormalized nematic interaction
[148, 171].
One can also consider the effect of finite stress fields on
the system. The free energy of the problem after having
integrated out the elastic deformations would correspond
to a linear coupling between the stress field and the ne-
matic operator N. The presence of strain can induce
a non-zero expectation value of N; and N», irrespective
of the electronic effects previously discussed. The cru-
cial role played by stress in stabilizing the nematic state
seems to be in agreement with recent experimental find-
ings [96] (see the SM for additional details regarding this
calculation [147]).
To conclude, we have derived two microscopic theories to
explain the nematicity and the nematic fluctuations ob-
served in vanadium-based kagome metals, starting from
a purely electronic model of phenomenological inspira-
tion. In one case, the nematic state is described as a
zero-momentum d-wave charge Pomeranchuk instability,
while in the other case, it is stabilized by the anisotropic
character of the fluctuations of the 1 x 4 charge order
observed in several experiments. The two mechanisms
might be relevant in different regions of the phase dia-
gram [59], and diffusive scattering techniques can exper-
imentally distinguish them. The correlation between ne-
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maticity and superconductivity observed in the kagome
metals [32] suggests that charge fluctuations might play
a role in forming the superconducting pairs [108], mak-
ing this class of compounds complementary to the iron
pnictides.

Finally, the proposed mechanism for the @1, nematicity
suggested in this article might also be relevant for the
class of compounds ATisSbs (A = K, Rb, Cs) given the
presence of (rhombic-like) hole-pockets at the Fermi level
at the M points of the Brillouin zone, stressing the anal-
ogy between the nematic characters of the vanadium and
titanium kagome families [178, 179].
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Supplemental material for: Theories for charge-driven nematicity in kagome metals’

In this supplemental material, we present some additional information concerning the Kohn-Luttinger analysis of
the effective model for the kagome metals, the charge-fermion models, the computation of the nematic susceptibilities
as emerging from the 4 x 4 charge fluctuations and the zero momentum charge order. Moreover, we present the
calculation for the nematic response function coming from the fluctuations of the 2 x 2 order parameters. Finally, we
present the calculations for the presence of a finite stress in the system and the definition of a possible nematic order
parameter.

1. Microscopic analysis of the model
a. Microscopic model for the 2 X 2 charge order

In the reduced Brillouin zone (once the 2 x 2 charge order has settled in), the Fermi surface of the system is
composed of three inequivalent pockets located at the reconstructed M points (M’) [101, 125, 127] with hole-like
character related to the states coming from the d orbitals of the vanadium atoms [60], see Fig. 1 of the main text.
The relevance of the hole pockets for the formation of the superconducting state seems to be in agreement with
recent experimental findings that observe an increase in the superconducting critical temperature by hole doping and
a decrease by electron doping [79, 80, 82, 133]. In the following, we assume the elliptical hole pockets are the relevant
features of the Fermi surface.

We start from a minimal three-band model (six bands counting the spin degeneracy) for the electronic structure in
the 2 x 2 charge-ordered state with hole-pockets centered at Mj, M} and M}. To keep the calculations simple, we
consider elliptic paraboloid dispersions:

_ﬁ 3my +my, \/?:kay My — My kjmm + 3my

fLk =T 4mgmy, B 2 2mgmy, 2 dmymy,
K2k
e 7 16
2k 2m,  2my (16)
k2 3mg +my  \3kokymg —m, kI mg +3m,
€3k = — + -5

2 4dmgym,y 2 2mgmy, 2 4dmgym,

where m, = m(1+9) and m, = m(1 — ) are the electronic masses along the k, and k, directions of reciprocal space,
respectively, and they are proportional to the inverse hopping m = 1/¢, see Fig. 1c for a sketch of the Fermi surface
of the problem [135, 136]. In the following, we take ¢ = 1 as our energy unit. To convert in physical units the value
of the hopping is ¢ ~ 0.3eV [98]. Since the dispersions Eq. (1) describe the physics of the system in the 2 x 2 charge
ordered state, we consider temperatures Tge ~ 1K < T < Too ~ 100K, i.e., 3 107 S kpT/t <3 10~%, with kg the
Boltzmann constant. The noninteracting Hamiltonian can thus be rewritten as:

Ho = Z Z (Ei,k - N)C;r,k,gci,k,a, (17)

i=1,2,3 k,o

where c;r)kp (¢ik,o) is the creation (destruction) operator of an electron in the band ¢;x with spin ¢ =%, and
momentum k, and y is the chemical potential. We assume /(/tA?) = —3 1075 [99]. In Eq. (17), the momenta of the
i-th fermions are defined from M.

Since all the bands are of hole kind, there are no interactions between electrons and holes, but only between holes.
The structure of the interactions is described with the g-ology model [99, 137]:

1 T T
Hine = > O(ki+ke —ks —ky) [ > (916] 106t s o Cikes.o Citeaio F 92€L 1, 0Ch1es 1€y 07 Cikearo
[kil,o,[ka|<A i#j,0,07
v v
+ 93¢ 1, 0 Ch kg o0 Ciks o Cikaor) 1 94 Ciky,0Ci koo Cisks,o! Cika,or | (18)
i,0,0'

with N the number of unit cells in the system. g1 (g2) [g3] {94} is the interpatch exchange (interpatch density-density)
[umklapp] {intrapatch density-density} scattering process and A is a momentum and energy cutoff.
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FIG. 7: Irreducible vertices at the second order in the interactions - Diagrammatic representation of the irreducible
vertices I'q (intrapatch density-density), I'sa (umklapp), I'o, (interpatch density density) and I's . (interpatch exchange) up
to the second order in the interactions g1, g2, g3 and g4, having excluded the renormalizations coming from particle-particle
response functions. The ladder, the bubble and the wine-glass diagrams appear at the second order. A few of them cancel out.
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b. Kohn-Luttinger analysis

In this section, we study the microscopic model introduced in the previous section. We analyze under which
conditions it has a tendency towards the development of a 1 x 4 CO or towards a d-wave charge Pomeranchuk
instability (PI). At present, we will not consider if these are the leading instabilities of the model. Indeed, to properly
address this point, the orbital/sublattice character of the states at the Fermi level would have to be experimentally
determined, but this information is lacking at present. We perform a Kohn-Luttinger analysis of the particle-hole
vertices and we project them on the interesting channels to see if and under which conditions the system shows an
instability [115, 116, 143]. We analyze the renormalization of the vertices to the second order in the interactions,
and we neglect the renormalization coming from the particle-particle response function because we assume the main
instability to take place in the particle-hole sector. We write the particle-hole response function as:

i d*pdw’
I, (q) = z/ (@nh)? Go,i(p,w')Go, (P +q,w +w) <0,
with ¢ = (q,w) and Go (k) = m the single-particle Green’s function for the i-th band. In the following, we

define II,,(0) (I, (Q')) as the intraband (interband) particle-hole response function. We stress that IT,,(0) does not
correspond to the zero-momentum particle-hole response function.

The expressions for the irreducible vertices can be computed at the second order in perturbation theory by assuming
a small value of the coupling interactions g1, g2, g3 and g4. The corresponding analytical expressions can be read
from Fig. 7, leading to:

Ta = g4+ g3 + 297 — 492(g2 — 91)1pn(0),

Loa = g3+ 293(292 — 91)pn(Q'),

Tob = g2 — 2(92 — 91)(92 + 94)pn(0) + (95 + 93)Tpn(Q'),
Lo =914 91(294 + 91)I0(0) + 291 (g2 — 91) 0 (Q'),

where the second order contribution proportional to IT,,(0) or to II,,(Q') is, by the perturbative construction, smaller
than the first order term. In most of the physically relevant situations, g; > 0, ¢ = 1,2, 3,4, since they represent
repulsive interactions. Moreover, all the interactions are generally of the same order of magnitude g1 ~ g ~ g3 ~ gs
(even if, in many cases, g4 > ¢1,92,93). The considerations above, together with the perturbative nature of the
calculation, suggest that it is not possible for the second order contribution to overcome the magnitude of the linear
terms. To proceed in the analysis, we consider the case of g1 = g2 = g3 = g4 = g > 0, which simplify the expressions
above as:

Fa=g+ 392th( ),
Loa =g+ 2¢°Tpn(
Lo = g+ 2¢°Ipn(
Lo = g+ 3¢°Tn(0).

),

Q
Q"),

In the following, we analyze the tendency of the system towards the development of the 1 x 4 CO and the d-wave PI.

c. Instability in the 1 x 4 charge order channel

We introduce an infinitesimal coupling in the Q4, CO A?|€j’l,m| Y ko czrk oCmk,o> JI,m =1,2,3. We then dress
this vertex by interactions as shown in Fig. 8 [119, 141, 142]. We arrive at the relation:

A A9 100 A
Ao | = AY| —T1,n(Q)T9 [0 10 A, |,
Az A 001 As

which is already diagonal and it has the same form for the three order parameters, leading to:

A A
I T T @Il (Q)
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FIG. 8: Diagrammatic expression of the 1 x 4 CO instability - Diagrammatic representation of the interacting vertex
for the Q4. CO instability dressed by interactions.

FIG. 9: Diagrammatic expression of the Pomeranchuk instability - Diagrammatic representation of the interacting
vertex for the charge Pomeranchuk instability dressed by interactions.

In the previous expression, we introduced the effective vertex I'Q4e = Iop — 26 c —I'ga. To get an enhancement of
the Qu, instability, we must have T'?4e > 0 since II,,(Q’) < 0. The vertex can be written as

I = (g2 — 291 — g3) — 2[(92 — 91)(92 + 94) + 91(294 + g1)|pn(0)
+ [(95 + 93) —4((91 — 93)° + 91(93 — 92)) — 295(292 — g1) | TLpn(Q').

At the first order in the interactions, this expression becomes I'?4¢ = (g, — 2g; — g3). If we assume g, = g4 = 0, we
get ['Q1a = —(2g; + g3) — 2971, (0) — (492 — 69193 + 393)Lpn(Q’) ~ —(2g1 + g3) at the leading order. If we assume,
instead, gy = g2 = g3 = g4 = g, the leading order expression is [?%« ~ —2¢ < 0, i.e., in these cases there is no
tendency towards the Q4, CO. Generally speaking, the first order contribution to I'@4 is positive when gs > 2g1 + g3.

d. Instability in the charge Pomeranchuk channel

We introduce an infinitesimal coupling in the charge PI n? Zk’a c;r-’kﬁcj,k’g, 7 =1,2,3. We then dress this vertex
by interactions as shown in Fig. 9 [119, 141, 142]. This way, one arrives at the relation:

ni n(1) Fd 2]-—‘o,b - Fo,c 2]-—‘o,b - Fo,c ni
%) = ng + th (0) 2F07b - Fo,c Fd 2F07b - I10,C n2 )
n ng 205 —Toe 2lop —Toe T ns
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which, in the diagonal basis, becomes:

\/g(n1 — nging) \/g(n(l) - M) Pl 0 \/g(m — mafms)

0 0

”2;\/5713 = nz\;%% — th(O) 0 Fd—PI 0 LGs 7
ni+notns n94n3+ng 0 0 [sPl nitnotng
V3 /3 V3

with T4-PT — 2, —I'q — T'pc and rsPl — 2l — g — 46 p. 4Pl s doubly degenerate, in agreement with the
two-dimensional nature of the E5 irrep. By solving the relation above, one obtains the relations for the dressed order
parameters [134, 141]:

0,,0
No+n
no —+ ns TL? — 722 =
ny — =
2 1+ Fd'PIth(O) ’
ng — nl
N2 — N3 =

1+ D4-PIT, (0)°
n(l) + ng + ng

M T TR, (o)

We can explicitly write the expressions for the interaction vertices in the s- and d-PI channels:

Pl = (2g; — g4 — 492) — [94(94 — 492) + 4(392 + 94)(91 — 92)] L, (0)
- 4[(92 —91)(91+ 92) + 91(g2 + 93)]th(Q/)7

TP = (295 — g4 — 1) — (93 + 397 + 49294 — 29194) T, (0)
—2[(g91 — 92)(g1 + 92) — g1(92 + 93) | Tpn (Q").

At the lowest order in the interactions, we get T'9PT = 2¢g, — g4 — gy and T'5F!1 = 2¢; — g4 — 4¢5. If we assume the

zero-momentum exchanged interactions to be dominant, i.e., g2,94 > g1 = g3 = 0, the leading contribution to the
instabilities are TSP ~ — (g4 + 4g2) and I'*P1 ~ (2g5 — g4). While the s-wave channel is always negative I'*"TT < 0,
the d-wave one becomes positive when go > g4/2, a condition that might safely be reached. If we consider, instead,
the condition g1 = g» = g3 = g4 = g, we obtain I'*""! ~ —3g and I'*"F! ~ —2¢% (311, (0) — 2I1,,(Q’)). Once again, the
system does not show any tendency towards phase separation (s-wave charge PI) for positive interactions [12], while
it has a tendency towards nematicity (d-wave charge PI) when 3II,,(0) < 2II,,(Q’) [118].

e. Pairing interaction in the nematic channel near the onset of the d-wave charge Pomeranchuk instability

In this and in the next sections we aim to analyze the pairing interaction in the nematic channel that arises in the
proximity of the charge ordered states analyzed before [119]:

P2k, pip, k) = U2 Gasdy — U6 B, (19)

where «, 3, v and § are spin indexes and Ut (UbQ *) represents the fully dressed irreducible interaction with zero
(k — p) momentum transfer. We first focus on the d-wave charge PI. In this case, the diagrammatic representation of
Eq. (19) is provided in Fig. 10(a). In the proximity of the phase transition, the most relevant diagrams are the ones
that contain a zero-momentum polarization bubble II,;,(0). The diagrammatic expression of U1« is related to the

renormalized interaction g;'*, digrammatically shown in Fig. 10(b), which includes the ladder series for the vertex
renormalization (Fig. 10(c)):

1

¥ =1 - gallu(0) + g1 (0) + -+ = s,
5 9allpn(0) + g;115,, (0) 1+ ¢4I1,,(0)

as well as bubble diagrams and the renormalized interaction g5 '“. We can write analytically the coupled equations

diagrammatically shown in Fig. 10(b) as:

99 = 4294 + 29949 Tpn(0) + 499295 Tl (0),
35" = 7292 + 279295 Upn (0) + 2355 (92 + 94)pn (0).
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FIG. 10: Diagrams for the renormalized interactions near the onset of the d-wave Pomeranchuk instability -
(a) Diagrammatic representation of Eq. (19). (b) Relevant diagrams containing the polarization Iy, (0) to the renormalization
of the interactions g4 and g2. (c¢) Diagrammatic representation of the dressed vertex (red dot). (d) Expression of the effective

interaction U2 including the first order correction due to g;. (e) Coupled ladder series for the computation of UbQ“.

The solution of these equations leads to:

e — 94 B 4g3511,4(0)

4 - 27712 )
L=l (01— gaT1(0)] [1 = (94 + 492) 15 (0)| [1 4 (202 — 9) T (0)]

95" = =

1= (g4 + 492) T (0)| [1+ (292 = 9T (0)]
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To get the expression of the effective interaction U2e, we include the effect of the interaction g; at the first order, as
diagrammatically shown in Fig. 10(d). The corresponding analytical expression reads:

UQr = g@te + 491112, (0)g9' (257 + g&e). (20)

Near the onset of the phase transition, i.e, when (g4 — 2¢2)II,,(0) &~ 1, we can rewrite gy '*

the divergent part, as:

and g5 ', keeping only

7Q1a ~ 1 1
957 B1,,(0) T+ (292 — 94)TTpn(0)”
—Q1a 1 1

92 6 (0) 1+ (292 — 94)TTpn(0)

which, substituted into Eq. (20), lead to:

UQla ~ 1 1 [1 ngPh(O)
“ 3MIpn(0) 1+ (292 — g4)ILn(0) 1+ (292 — g4)11,1(0)
1 1
31Ipn(0) 1+ (292 — 94 — 91)IIpn(0)

Q

By proceeding in a similar manner, one can compute Ule“ considering the diagrammatic expressions shown in
Fig. 10(e). The corresponding analytical expressions are:

U2 = g4 — U2 T (0) — 291951 TT4(0)
G = = [0 + (o + 93] 0),

with solutions:

~Qla __ g1
g fr—
! [1— (g1 — 94)pn(0)] [1 + (291 + g4)pn(0)]
@ — 9a _ 29711,n(0)

C 14 0an(0) (14 gaTTpn(0)) [1 = (91 — 9a)Tpn(0)] [1 + (201 + 94)Tpn(0)]

From the expression of UbQ e it becomes clear that it is not divergent in the proximity of the phase transition, thus
it can be neglected. Finally, one arrives at the effective nematic pairing interaction:

o 5503
3pn(0) 1+ (292 — g4 — g1)ILn(0)

Fg,lg;»y,é(kv bbb, k)

(21)
We notice that the effective interaction Eq. (21) is strongly enhanced in the proximity of the phase transition, and
it is actually divergent. Moreover, for our choice of the particle-hole polarization, II,,(0) is negative, meaning that
Eq. (21) is attractive. Finally, the spin structure of the vertex 0,503, suggests that the nematic interaction is
mediated by both zero-momentum charge and spin fluctuations, as it becomes apparent by using the SU(2) Fierz
identity da508y = %(6a7555 +0ay- O'ﬂ(;), i.e., the interaction does not violate the Ward identities for spin and charge
conservation.

f. Pairing interaction in the nematic channel near the onset of the Q4q CO

In the proximity of the onset of the @4, CO, the nematic pairing vertex

Fg,élﬁ(l;mé(k’p;p? k) = UaQM‘Saédﬁv - U17Q4a5a75667 (22)
takes the diagrammatic form shown in Fig. 11(a). The expression of U%4 is equal to the renormalized interaction
§2Q4“, and it can be obtained summing the ladder series in Fig. 11(c):

1 g2 — g%th(Q’)
1+ goTLn (Q) 72 (1 + gITpn(Q))2(1 — g3112,(Q)) )

U§4a — §2Q4a —
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FIG. 11: Diagrams for the renormalized interactions near the onset of the Q4, CO - (a) Diagrammatic representation
of Eq. (22), focusing on the interaction between band 1 and band 2 electrons. (b) Relevant diagrams containing the polarization
I, (Q) to the renormalization of the interactions g1 (equal to U24e) and gs. (c) Perturbative series for the renormalization of
the interaction g2 (equal to UP4e). (d) Diagrammatic representation of the dressed vertices (red dots).

83\82-
A

~
~

The computation of UbQ““ is more involved, and one needs to solve a system of coupled equations for g;*** and g?““

as shown in Fig. 11(b):

3 =701+ 29(9197* + 9595 )Mpn(Q),

35 =795 + 23(0195" + 9557 Tpn (Q'). (23)
The renormalized vertex 7 is computed from the diagrams in Fig. 11(c), leading to:

1
1+ 92th<Q/) + gSth(Ql)

The solution of the system of equations Eq. (23) is:

7)/:

~Qaa __ g3
BT (14 (92 + 93)pn(Q)] [1 — (291 + 95 — 92)pn(Q') ] [1 — (291 — 393 — g2)IIpn(Q')]
UP = gt = ! {91
(14 (92 4+ 93)pn (Q)] [1 4 (92 + g3 — 291)Tpn(Q')]
+ 29?2,th(Ql) }
[1+ (92 — 291 — g3)Ipn(Q")] [1 + (92 — 291 + 393) T (Q)] 1

In the proximity of the Q4, CO phase transition, i.e., when (2g1 + g3 — g2)II,n(Q’) = 1, the effective nematic pairing
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0,k p.p 0,k p.p

FIG. 12: Diagrams for the renormalized umklapp interaction near the onset of the Qs, CO - Diagrammatic
representation of Eq. (26), focusing on the interaction between band 1 and band 2 electrons. In this case, U2@4a = Ug Qda

ok yvp  ak yp  ak v,P ak o, VP

- p- - -p-- staf p = Pom =
0, full — !

Faﬂ;yé - + M

--<-- --<-- 0, M- -4q--

0,k p.p Ok p.p 6.k T B 5.k lors  Bp

FIG. 13: Renormalization of the charge-fermion vertex - The first diagram is the RPA vertex coming from I'@4e,
The last two diagrams are Aslamazov-Larkin contributions that restore the Ward identities. The last two diagrams come from
I'%Q4a and ' respectively.

interactions becomes:
1 dar08s
8(g1 + ga)I2,(Q) 1+ (92 — 291 — g3)pn(Q')’

I (ke pip. k) ~ — (25)

given that UPt does not diverge when (2g1 + g3 — g2)[I,n(Q’) = 1. Eq. (25) is divergent at the phase transition.
Moreover, it is negative, i.e., attractive. Finally, the interaction is mediated only by finite momentum charge fluctu-
ations, i.e., as it is, the interaction Eq. (25) violates the Ward identities. We notice that the interaction QP;Q““ also
diverges at the phase transition, leading to an interacting vertex (retaining only the divergent part) of the form:

~Qua 1
3.Qua _ U3 1 3(Fary - 035 — dardps)

do =22 (O 085 — 0an0ps) R , 26
a,B;y,8 ) ( [e%% Bé ay /35) 8(91 + gS)Hih(QI) 1+ (92 — 291 — 93)th(Q’) ( )

which is a positive (repulsive) divergent quantity in the spin channel (o4 - 03s) and a negative (attractive) divergent
quantity in the charge channel (d4~035). The diagrammatic representation of Eq. (26) is reported in Fig. 12.

By combining the interaction vertices in Egs. (25)-(26), one can renormalize the charge-fermion vertex Eq. (25)
restoring charge and spin conservations. The full vertex is represented diagrammatically in Fig. 13. The spin structure
of the first Aslamazov-Larkin diagram that appears in Fig. 13 has the form:

1
1 Z(Uas Oty — 50456t'~/)(0'55 OBt — 68666t) =O0qy 03§ + 360476667
s,t

while the spin structure of the second Aslamazov-Larkin diagram in Fig. 13 is:

> 0050505504t = 5 (60085 + Tar - T45).

s,t

N |

Using the same notation of [144], we arrive writing the contribution to the full vertex coming from the Aslamazov-
Larkin diagrams as:

. 1 1 1
Loy = 5952 (Fary - 055 + 30ardps) — z952 (Oar G55 + Tary - T5) = 1952(5%555 + Gy - Tp5)
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where the minus sign between the two diagrams has been discussed previously [145]. The contribution coming from
the RPA diagram is

full, RPA _
Fotl,ﬁ;ry,g = _9525075,867

where the minus sign comes from the negative value of the vertex Eq. (25). In the previous expressions, g represents

the effective coupling between the charge fluctuations and the fermions and ¢ is the CO correlation length (further

details can be found in [144]). Adding up the two contributions, one obtains:

1
full, AL _
Labirvs = Tagoys + Laging = 396" (9ay09s + 0y - 0p5),

full Ffull,RPA
indeed leading to a restoration of the Ward identities.
Now that we have shown that a nematic attraction might exist in both the d-wave charge PI and the 4, charge
order channels, we analyze, in the following, the precise form of the corresponding symmetry breaking by performing
a Ginzburg-Landau analysis in the two channels.
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2. 4 x 4 fluctuations and 1 x 4 order within the 2 x 2 charge ordered state

The patch model interaction Eq. (18) can be rewritten as:

@ oy g
Hid N% Z PiPis (27)

with geo = I'g,, and p; = ‘6”" > Zq<A ;[,q »Clq,0 is the charge operator with momentum Q) = M; —Mj, ie., it
describes an instability towards three one-dimensional charge ordered states that might stabilize an additional 1 x 4
charge order besides the 2 x 2 one, see Fig. 14. We assume the interaction constant g, in Eq. (27) to be positive to
ensure the stabilization of the symmetry broken state.

a. Ginzburg-Landau theory

By decoupling the interaction Eq. (27) in the Hubbard-Stratonovich sense and by integrating out the fermionic
variables, we arrive at the effective free energy in terms of the three fields A;, As and Aj

FQa[Ay, Ay, Ag) = — Tr[In (QO (k) — ]}A)}’ (28)

where, in the absence of an interaction that involves an imaginary contribution to the charge order, the fields Ay,
Ay and Ajg are real quantities, see Eq. (27). In Eq. (28), the trace (Tr) implies both a summation over the fermionic
Matsubara frequencies w,, = (2n + 1)aT, with T the electronic temperature, and an integration over momentum k,

with k = (iwn, k). The Green’s function reads (Go(k))i; = S — 8:Go0.i(k), while the interaction Va has the

—iWn+E; k— M

expression:
Az Ay
: N 22
— 23 21
=L 2 A0
22 21
> 5 0

An expansion up to the fourth order in the Hubbard-Stratonovich fields of the last contribution to Eq. (28) yields:
~Tr[In (G (k) = Va)] ~ —Tr[In (G5 ' (k +Z————Ji (29)

where Tr[ln (QJ 1(k))] is a constant which is omitted in the following. The linear contribution (n = 1 in the sum in
Eq. (29)) trivially goes to zero, so we remain with the quadratic, the cubic and the quartic terms in the expression
above. These contributions lead to the free energy:

]:sz [AlaA%AS ~ = ZAz ’YA 1AsA; + 2 51 ZA 62 251 ZAQ (30)
1<j

where «, 7, £ and & depend on the inverse temperature 8 = 1/T and on the chemical potential p, and they have
the expressions:

1 1
(B, p) = oo T3 /k Go,1(k)Go,2(k), (31)
1B = 5 [ Gor ()02 (). (32
= 5 [ 98,058 0, (33)
&(0.1) = 7 [ G01(0902()G5 (8 (34)

where [ =T, f A (27r A (d is the dimensionality of the problem, i.e., in the case of kagome metals, d = 2). The
temperature dependence of a, v, & and & is shown in Fig. 6 of the main text. In Eqgs. (31)-(34), a permutation
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Q2a

FIG. 14: 1 x4 within the 2 x 2 charge order - Putative shapes of the 2 x 2 charge ordered state (left) and of the 1 x 4 one
(right) with the corresponding unit vectors. A dark blue (red) site or bond indicate low (high) occupation or weak (strong)
bond strength.

of indexes 1, 2 and 3 would lead to an equivalent expression, a property that derives from the Cg symmetry of the
underlying Hamiltonian. We assume the quadratic coefficient o < 0, i.e., at the mean-field level, the system has a
tendency to develop a 1 x 4 or a 4 x 4 charge order, see Fig. 6 of the main text. Moreover, also the coefficients
and & are always positive (v > 0 induces a preference for the so-called 3Q- charge order [99]), while £ becomes
negative for kpT/tA? < 1075, indicating a lack of stability of the Ginzburg-Landau theory in that temperature range.
In that regime, we expect the fifth and the sixth order contributions to the expansion Eq. (29) to become relevant.
However, we are not interested in exploring that temperature range. When the system shows perfect nesting, i.e.,
Go1(k) = Go2(k) = Go,3(k), & — 2&1 = 0 and no nematicity can be observed.

We generalize the expression for the free energy in Eq. (30) to include the momentum and frequency dependence of
the A; fields, so that A; — A;(k). This way, the prefactor of the quadratic term gets modified, at small &k (long
wavelength and low energies), as [152-154]:

1 1
a—2x (k)= —+ =

p 5 Goa(K)Go2 (K + k) = B, 1) + 7lvn| + v2 + fi(k), (35)
co k’

where the charge propagator x; ! (k) is actually peaked at the wave vector @, i.e., the ordering vector that corresponds
to the order parameter A;. In the previous expression, v, = 2nT'n is the bosonic Matsubara frequency, coherent with
the bosonic nature of the excitations of the charge ordered state, 7 is the Landau damping coefficient and f;(k) is a
function of k of the kind:

Fi(k) = (1—g)k2 V3nkak, + (1+ )k2
fa(k) = (L+n)kZ + (1 =)k,
Falk) = (1——)k2+\fnk k, +(1+ )k:2 (36)

where 7 is the anisotropy parameter 1 € (—1,1). These expressions come from including a gradient term of the fields
in the free energy. In the following, to simplify the calculations, we assume 1 = 0, which makes f;(k) = fo(k) =
fa(k) = f(k) = k2 +k§, i.e., the bare charge susceptibilities for the three order parameters are equal Xi_l(k) = x" (k).
The same assumption, in the context of nematicity driven by spin fluctuations in the iron-based superconductors, has
been shown not to qualitatively alter the results [22]. The free energy becomes:

P =3 [ M0 Wan -5 [ a@amae +§ [ (s
§a — 251 /ZAQ

1<)
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where fx = foﬂ dr [ d%r and x = (7,r). We can decouple the quartic part of the interaction by introducing three
auxiliary Hubbard-Stratonovich fields A(x) — >, A%(2)/V3, O1(z) — \/g(A%(x) - w) and Oy(z) —

%(A%(x) — A3(z)), where A(z) transforms as an A; irrep while O(z) = (O1(z),O2(z)) transforms as the two
dimensional E irrep of Dgy. Particularly, we rewrite the second quartic contribution to the free energy as:

D OATAT = ATA] + ATAS + AZA]

- (557 -3l - S (M)

This way, we might rewrite the free energy as:
A? 2(0% + 0%)
Fie = / Aq( - / Ay (2)Dg(z)A / B e
ot Z Al (B2l Bal) = [£1+52 &— 26 )

\/>/01A2 (> +7/02A2 \[Z/AAQ

From the expression above, it follows that a nonzero value of O; (O3) implies a nonzero expectation value of 52292151 =

f(AQ 2+A i)y £ 0 (522_02"’51 = %(A% — A2) # 0) and thus the nematicity of the state if, at the same time,

A=A = Ag = 0. Even if the nematic order parameter should be represented as a traceless symmetric tensor [48],
2 2

we will refer to N = (\/%(A% - AQ;_AB ) %(A% — A2)) as the nematic order parameter, as it became customary in

this context. By including the Hubbard-Stratonovich fields into the definition of x~1(k), we arrive at the expression
for the free energy:

2 [ a0t a0+ 7 [ aosansge - [ [ - 2ALA)
where:
G =W+ 20, (37)
1) = 1 A 0 0O
G =)+ - T (39)
) Ly g A _O1 02

It is also possible to add a field h = (hq, he) coupled to N by substituting, in Egs. (37)-(39), O1 — O1 + hy and
O3 — O3 + hs. In the following, we assume this substitution to be performed. Moreover, we include the gaussian
fluctuations of the fields A;(x), As(x) and Ag(x), which we generally rewrite as A;(z) = A;+0A;(2), i.e., A; = (A(x))
is the spatial average (- - -) of the field A;(x) (implying (§A;(x)) = 0) [86]. Formally, we treat them within the large-N
expansion of the fields A;. This way, we arrive at the expression:

2 2 2
T ”/‘W kA )6A(k)+ZA2'(O)X;1(O)A¢(O)—Q—%HAZ.(O)_/[ £ 208+ Ohy

g L&+ & & — 26

i

having defined the vector §A! = (§A1,6A5,5A3) and the matrix:

A_l(k) X;l(k) ()\0+ 3)\3+\/§)\8) + X;l(k)

33X — \/g)\s)
2

2
B () VB + L0 + A0+ 410N,
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where \; are the Gell-Mann matrices:

100 010 100

v=(o10], m=[100], x=[0-10
001 000 00 0
001 000 L (100

m=(o0o00], x=[o01], x=—1{f01 0
100 010 V3100 -2

By integrating out the fluctuations of the order parameters, we remain with the effective free energy:

k

7o = LA 080+ 3 T]a0) - [ e -2 ] [ mw @) (o

b. Expression of the coefficients of the Landau theory

Following [99], we write:

1 1 1 1 dk, dk rk — — Tk —
a(B,p) = — + 7/g0’1(k)g0’2(k) _ 2 7/ flempe — 1) = flengx — 1)
Gco 2 J o 2 A

c (2mA)? EM|k — EM}k
_ glo + ﬁ [ AA\\/Z da dy™ (51(5”79;(253 F ((Zz(;) ,y) — Bu)

having defined & (z,y) = —ﬁ [(1+ )2 + V38 zy + (1 — £)9?], &a(z,y) = —ﬁ [(1—06)2? + (1+6)y?] and
és3(z,y) = —ﬁ [(1+ $)a? — V38 xy + (1 - g)yQ], the Fermi distribution function f(¢) = 1/(1 + %) and the
rescaled Fermi distribution F(€) = 1/(1 + €°). In the fist step of the expression above, we explicitly computed the
summation over the Matsubara frequencies, then we performed a change of variable and the approximation (=) is
valid as soon as p, 1/8 < tA2. The last step follows from the symmetry of the integrand over the integration domain.
Similarly, we write:

(8. 1) /gm )Go2(K)Go 3(k)

_ _7/ dk, dk, [ flemx — 1) 4 flenmg e — 1)
2 J-on @rA)? Lemx —empa)Enm e —emgx)  (Eng — eny i) (Enry e — Enap k)
I f(aMé,k — 1) }
(5M’ k — &M k)(é‘M' k — &M} x)
F(éi(z,y) — Bu) F(&(z,y) — Bu)
- g d”“’/ YT ae D EE ) EED) T EE A ) EE ) HE)
F(&%(%?J) N) }
(&3(z,y) — é1(z,y))(E3(x, y) — Ea(x,y)) )
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&(0.1) = 7 [ G0(002(0)G3 (1)

2/ [Go.1(k)Go,2(k)GG 5(k) + G5 1 (k)Go,2(k)Go,3(k) + Go.1(k)G5 o (k)Go,3(k)]

1 /A dk, dk, [ f'(engx — 1) N f' (e — 1)
12 J_p (27A)% Lemy ke —empad) (En ke —enp)  (Enrgk — nra) (Enagx — Ensp i)
f'(EMg,k — ) }
(€M' k —&M; k)(€M' k — €My k)
F'(&1(z,y) — Bp) F'(&2 — Bu)
47r2A2t/ dx/ (@,9) — &2(2, )G (@, y) — E3(@,1)) | ol y) — 61(2,9)) Ealws ) — E3(w, )
F'(

+

/53—5,11) }
( ( ay)fsl( ay))( ( ,y)*é‘z(I,y))

n =3 [ GG

1 /A dk, dk, {f(fMé,k — ) — f(fzvq,k — ) f’(gM{,k — )+ f/(sM&k — “)}
= _ 7

A (2mA)2 (engx — emyx)? 2(en;x — enmpx)?
i /”MdV@mw—m%F@wwﬂm_F@mw—wwﬁ@mm—m>
~ T 16m2A2t 4 (Ea(z,y) — &1 (2, y))3 2(é1(z,y) — &2(z,y))?
2 oo F o~ _ F _ FI o~ F/ _
- 326A2t / dap(g)[ (¢ 5#)63 (e — Bu) n (—¢ ﬂu)g: (e ﬁu)]
_V1-828% [ rF(—e—fBu) = F(e—Bp)  F'(—c—pBp)+F'(c—Bp)
T T1287A% /0 ds[ &3 + 2 ]

having assumed that only the contributions of the kind: &1(z,y) — ¢, &(z,y) — —e are relevant and having taken
into account that the density of states for a two dimensional electron gas is p(e) = v/1 — 02/(4n).

c. Saddle point equations for the 4 X 4 charge order

In the effective action Eq. (40), one might first bring A~ (k) to its diagonal form f&d_l (k) and then take the logarithm
since Tr[In(A~*(k))] = Tr[In(A;'(k))]. The eigenvalues of A~'(k) read:
A 4P

_ -1 A _2r 1 3Q | 3y _ 2mm
Em(k, Ao, A, 01,02, hy, he) = X (k)‘*‘\/g‘f' 3 COS{SMCCOS(QP P) 3 }7 (41)

with m =0,1,2 and

1 22
P(Ag,01,02,h1,hy) = —3 {(01 +h1)* 4+ (02 + he)? + %A(ﬂ,

273A% 2\/3(01 i) (O1 + hy) — \/5(02 + ha) (O1+ hy) + \/5(02 + h2)’

3 2 2

Q(Ag,01,02,hi, hy) = — 97 3

having made explicit the functional dependence of P and Q. Eq. (41) provides three real independent solutions when
4P3 4+ 27Q? < 0, however it becomes meaningless if P = 0 since one would get a division by zero in the argument of
the arc cosine. The effective free energy Eq. (40) can be rewritten as:

3A2 AN A3 A2 202+ 02)
FQta _ 20 -1y 4+ 22 + 07/ _ 1 2
of 2 (X ) \/§> 3 k {51 + & §2 — 26 }
/ln [Eo(k, Ao, A, 01,04, by, hy) Er(k,Ag, A, 01,0, by, hy) Ea(k, Ao, A, O1,02,h1,h2)].  (42)
k

l\.’)\r—\



The expression of the derivative of the m-th eigenvalue with respect to the parameter 8 = Ag, 4, O1, Os is:

with:

and:

0E,, 1 0A 1 0P

90 300 ' V—3D 00

[ 4P 0Q 3QoP7 . rl 30 [ 3\ 2mn
- m[%_iﬁﬁ}smbmm(ﬁ _F)_T}’

1
—— COos [g arccos (ﬁ P 3

2

aa—i = f%ﬁm

% =—(01 + h1),

%32 = (O3 + hy),
0Q _ 29°Af
I 9 7
(%?1 _ f% [(O1 + h1)? — (02 + ha)?],
%22 _ \/g(o1 + h1)(On + ha),
g% — 0.

The saddle-point solution of Eq. (42) leads to the equations:

In the following, we analyze the condition A;(0) = Ay = 0 for each 4, i.e., the three order parameters are equal and

OF e 1 OE,

HF e 24 1
e _ \/§A2 _ + / _ O7
0A O H+6& ; Kk V3Ey,

OF Lo 40, 1 9B,
90; &% +;/k 2B, 00,

OF g™ _ 40, 1 0B,
90, ~ & -2 +;/k 2B, 00, "

d. Rise of nematicity

3Q E) 2mm

-2

A
—3A 1 A AQ /7 =
DA, 3A0(x™7(0) + \/g) TR0+ %: k2B, 00q 0
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null. Indeed, we want to explore the possibility of having a nematic transition in the regime where no order parameter
acquires a nonzero value. Using the saddle point approximation, one arrives at four coupled equations of state which
have solutions characterized by Ag = 0, see the previous section of this Supplemental Material. We might write the
nematic susceptibility Y&, which is a 2 x 2 matrix [166]:

In the saddle point approximation, one arrives at the expressions at zero exchanged momentum [148, 165]:

(X&) im (k) = (N1 (k) Ny (—F)).

(XQ4a)lm _ 00, = 6, gr%i‘ﬁ fk X (k)
nem ahnL h=0 1 —+ gr?eﬁ k )22 (k)

(43)

(44)
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Ex1 =%

FIG. 15: Signs and nodes of the first order E; Brillouin zone harmonics - (a) Representation of the first Brillouin
zone of the 2 x 2 charge ordered state and of the Fermi pockets at the reconstructed M-points. (b-c) Blue (red) areas represent
regions of the first Brillouin zone of negative (positive) values of the first order E2 harmonics. The small coloured circles indicate
the location of the hot-spots for different nesting vectors, clearly indicating that the first order harmonics do not change sign
for all the hot-spots, i.e., one expects both the components of the Es irrep to be different from zero [149].

with [,m = 1,2 and having introduced the propagator ¥~ '(k) = x~'(k) + A/+/3, where A simply renormalizes the
mass term due to fluctuations [157, 158], and the nematic interaction is gz = —1(& — 2&;). In the absence of a
direct symmetry breaking in the Es sector, i.e., O = 0, the nematic susceptibility has no off-diagonal elements and
the diagonal components are identical, signaling the degeneracy and the lack of coupling of the two fields O; and O2
at the instability level, see Fig. 15.
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3. Zero-momentum (Q1,) Pomeranchuk instability within the 2 x 2 charge ordered state

Starting from the band dispersion defined in Egs. (16), i.e., from the effective model for the 2 x 2 charge ordered
state, we can consider the interaction that drives a zero momentum instability in the charge sector, which reads:

Qo N
Hmé 5 Zgijninjv

where n; = Z\k|</\,a Cj,k,gci,k,m i = 1,2, 3 is the index of the hole pockets centered at M and g¢;; = §;;94+ (1 — ;) 9o,
with g9 = —T'q and g, = —2T'op + T'oc. We assume the system to be in the regime gq — go > 0, which ensures the
instability of the system towards the d-wave charge PI. The operators n; do not exchange any momentum differently
from the other p; operators defined when we were analyzing the 4 x 4 charge order. Following [137], we arrive at the
expression:

1 ~
FQo = Z/gg,}(iwn,k)nj,k — E<I>TAc1>,
: k

with g(;il (iwn, k) = —iw, + e;(k) — p, D' = (n1,n2,n3) and

B gd Yo Yo
A= 9o 9dd Yo |,
9o Yo 9d

having rescaled g4 — ga/N and g, — ¢go/N. The matrix A has two degenerate eigenvalues Fq 2 = g4 — go and
E3 = gq + 2¢,. One can rewrite the free energy as:

FQia = /901 (twn, k)1 % ZE V2

where V| = %(nl — %) Vo = f(ng —ng) and V3 = \/g(nl + ns 4+ n3). Since ny, ny and ng are actually

constrained by the conservation of the total electronic charge (ny +ns+mn3 = N), the three eigenvectors Vi, V2 and V3
are not independent. For this reason, we perform only two Hubbard-Stratonovich transformations, mapping V3 — O1
and Vo — Oy. We arrive writing:

0? + 03 2 no +n Ny — N + 29,
.Fgfla Z/goZ an, ’flz 2) \/;01<Tl1 22 3)+02 2 3*gd g N2.

2(90 gd \/§ 6
By defining:

G iwn, k) + /201 0 0

R (iwn, k) = 0 Go (iwn, k) — 9 + %2 0
0 0 Gos (iwn, k) — Ot — %2

X1 (iwn, k) 0 0
= 0 X3 ' (iwn, k) 0 , (45)
0 0 X5 ' (iwn, k)

the free energy becomes:

0?1+ 05  ga+2g
‘Ftea: /Xi_l(iwnak)n'kf ! 2 — ON27
f Z k " 2(go_gd) 6

and, by integrating out the fermionic fields, we end up with the expression:

0% + 02 +2
FQe = In (x; " (iwn, k) — A2 94T o 2. 46
Z/ k) 2(9o — 9a) 6 (46)
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From the effective free energy above, we get the nematic susceptibility:

00| _ gin J, 96.4(k)
e = —0im )
Ohy, h=0 1+ gr(?elr% b Qg,z(k)

where g%la = gq — go, i = 1,2 or 3 and having substituted O; — Oy + hy and Oy — Og + hy into Eq. (45). We might
explicitly compute:

(R im = (47)

/ggik SRE deF'(e — Bp)

~ 16m3A2t [(Af B,AVIB)
_ ﬁwﬁ E(A\/2B, AV/2B) — (—Bw)]. (48)

The argument of the integral in Eq. (48) is negative since F’ is always smaller than zero (£(Av/t3,AVtB3) < 0).
At high temperatures (8 — 07), the integral above goes to zero (indeed, £(0,0) = 0), while at zero temperature
(8 — +o0) the overall result of the integral is —1. Indeed, at zero temperature the chemical potential of the
system is negative and small p = —|u|, leading to F(—8u) = F(8|u|) —> 0% and to F(E(AVEB,AVIB) — Bp) =

F(—|E(AVEB, AVIB)| + Blul) B—+> +1, since the functional dependence of E(AVB, AV/1B) by B is still linear, but
— 400
the overall prefactor is larger than u. Thus, we can say that, if:
gd — Yo V 1—92 0
2 16m3A%t

a transition to a nematic state must have occurred in the system at some finite temperature, leading to the condition
for the hopping strength:

1-—

JV1_52
A%t < —— (g4 — o)
< 3973 (gd go)
Generally speaking, we have a divergence in the nematic response function when:
V1 — 62
A%t = W(gd [ E(AVEB, AVEB (=Bu)|-

By rewriting O; = O cos(f) and Oy = Osin(f) and by expanding the effective free energy Eq. (46) for small values
of the nematic order parameter up to the fourth order in O and taking into account that the integral over the three
Green’s functions are actually equivalent one to the other, we obtain:

2
]_‘Qla ~ _3/11,1 (gal (an7k)) + gd + 9o N2

6
+ 1—|— Ql“/g iw 073005(39) Go 1 (iw k)+04/g4 (iwn, k) =
9 r?elm Ynem 01 ’ﬂ? 3\/6 k 0,1 n 0,1 n
2
_ 1y 9d+290 ;0 | @ 2 2 2
- —3/kln (QO,I(zwn,k)) + BTSN 5;@ 20,(02 - 302) + § 02) (49)

which is the free energy for a three states Potts model [86, 87, 160, 162]. The lack of broken Z3 symmetry at the
phase transition, which is reflected in the diagonal structure of the nematic response function Eq. (47), is expected
for symmetry reasons. However, as soon as the nematic parameter O becomes finite, this symmetry breaks (below
the instability level). The divergence of the nematic response function is expected when the quadratic coefficient of
Eq. (49) goes to zero. Moreover, the state that preserves the mirror symmetry is preferred, reducing the point group
of the state to Cay. A similar expression to Eq. (49) is expected also by expanding ]-'g{‘", . (40), for small values
of the nematic fields O; and O in the case of Ag = 0.

In the last line of Eq. (49), we have introduced the coefficients:

(B, 1) = I%lm /901
-5 [9®
-5 [L9t
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that can be easily computed considering the relation:

n 1 A dky dky, -
/kg&l(k) = (’17,7 1)'/ (271’/\) (9 1f( )|5:E]u£,k_ﬂ'

Similarly to the approach we took in the previous section, we might take into account the spatial fluctuations of O
and Oy substituting [154, 155]

O[_>2X7‘_1(k) Qla / gOl gOz(ki/—Fk’) _O[(B /“‘L) ||l:|| +f( )

where x; 1(k) represents the propagator for the nematic fluctuations. Differently from the isotropic Fermi liquid, in
which one has to distinguish between longitudinal and transverse fluctuations because the latter is a gapless Goldstone
mode, in our anisotropic case we only have gapped (longitudinal) fluctuations [18, 19, 175]. In the expression above,
v, = 2nTn is the bosonic Matsubara frequency, coherent with the bosonic nature of the excitations of the charge
ordered state, ¥ is the Landau damping coefficient and f(k) = k2 + kz?n i.e., the bare susceptibilities are equal
x; '(k) = x"'(k). The same assumption, in the context of nematicity driven by spin fluctuations in the iron-based
superconductors, has been shown not to qualitatively alter the results [22]. The free energy becomes (neglecting the
first two irrelevant contributions):

P Z/o 10 - [ 00008 303+ 5 [ ( 202
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4. Finite stress

The action of a finite stress (st) field og, = (0E,,,0Rr,,) can be included by adding a contribution to the free
energy of the kind:

Fut = ga / 0B ()6 () + 00 / 08 () 5 (), (50)

where g, can be different from ¢, since o, is an external field and does not have to satisfy the symmetries of the
lattice. By integrating out the elastic deformations, one arrives at the expression:

~2 ~
Fo_r._ 9 2(p) - 9
Far=Fan= 1 [ N0 = 5 [ (o, @1 (2) + a0, a0 Na(2)
1 2 2 2 2
4CE2/w(9a0E2,1($)+9b0E2,2(93)), (51)

where Feg is one of the effective free energies described above and g represents the interaction strength of the nemato-
elastic coupling. The stresses have the effect of fields coupled to the nematic order parameters Ny and Ny so their
presence can induce a non-zero expectation value of N1 or Ns irrespective of purely electronic effects or of the coupling
to the elastic deformations. The relevant role played by externally applied stresses in stabilizing the nematic state is
not in disagreement with recent experimental findings [96].
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