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ABSTRACT: Nanoparticles, exhibiting functionally relevant
structural heterogeneity, are at the forefront of cutting-edge
research. Now, high-throughput single-particle imaging (SPI)
with X-ray free-electron lasers (XFELs) creates opportunities
for recovering the shape distributions of millions of particles
that exhibit functionally relevant structural heterogeneity. To
realize this potential, three challenges have to be overcome: (1)
simultaneous parametrization of structural variability in real
and reciprocal spaces; (2) efficiently inferring the latent
parameters of each SPI measurement; (3) scaling up
comparisons between 105 structural models and 106 XFEL-
SPI measurements. Here, we describe how we overcame these
three challenges to resolve the nonequilibrium shape distribu-
tions within millions of gold nanoparticles imaged at the European XFEL. These shape distributions allowed us to quantify the
degree of asymmetry in these particles, discover a relatively stable “shape envelope” among nanoparticles, discern finite-size
effects related to shape-controlling surfactants, and extrapolate nanoparticles’ shapes to their idealized thermodynamic limit.
Ultimately, these demonstrations show that XFEL SPI can help transform nanoparticle shape characterization from
anecdotally interesting to statistically meaningful.
KEYWORDS: XFEL, gold nanoparticle, Monte Carlo, structural heterogeneity, high-throughput single-particle imaging

Colloidal, solid-state nanoparticles have properties
defined by their size and shape, making them
attractive for applications ranging from the broad

field of photonics and electronics to catalysis.1−3 In the case of
catalysis, for example, a crystalline nanoparticle’s catalytic
activity strongly depends on its size and its exposed facets,
which have a strong correlation with its shape.4,5 Similarly, the
shape of noble metal nanoparticles significantly affects their
absorption and scattering cross sections in the Near-Infrared
Region, which in turn impact their uses in biomedical
imaging.6 Hence, understanding and controlling nanoparticles’
structural variations is an important aspect of synthesis.7

Commonly used post-synthesis characterization techniques
(like UV−vis,8 small-angle X-ray scattering (SAXS)9),
however, mostly measure the mean of and standard deviation
of the size of nanoparticles.

To directly resolve shape variations among nanoparticles,
however, requires imaging many nanoparticles individually, for
example, using scanning or transmission electron microscopy
(SEM or TEM).10,11 Tomography is sometimes used, but is
time-consuming and hence limited to a few nanoparticles.12

Nevertheless, electron microscopy-based characterization
typically numbers in the hundreds (e.g., 300−500 particles11).
Furthermore, for larger nanoparticles, multiple scattering limits
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such three-dimensional (3D) shape characterization. As such,
shape characterization by SEM remains largely two-dimen-
sional (2D). Furthermore, characterization by SEM and TEM
suffer from orientation bias13 since the nanoparticles are
arrested on substrates for imaging.
In contrast, high-throughput single-particle imaging with

intense, ultrafast, X-ray free electron lasers (XFELs)14 can
fundamentally transform how we characterize nanoparticles.
Single particle imaging (SPI) at the European XFEL can
interrogate millions of nanoparticles in a few hours.15

Compared to electron microscopy, XFEL SPI is less limited
by multiple scattering. Hence, XFEL diffraction patterns of
single nanoparticles closely correspond to Ewald sphere
sections of the particles’ Fourier volume, which in turn allows
the matching of 3D structure to single-particle 2D diffraction
patterns.16 Furthermore, nanoparticles are injected at different
random orientations into the XFEL interaction region, thus
avoiding the orientation bias when imaging substrate-bound
nanoparticles.
Resolving the 3D shape variations among a million

nanoparticles can uncover statistically meaningful insights
about nanoparticles’ nonequilibrium synthesis pathways.
Lurking within this opportunity, however, is a formidable
statistical learning challenge: to infer the hidden parameters of
the measurement of each nanoparticle, such as orientation,
incident photon fluence, structural class, complex phases
missing from the diffraction intensities. This problem is
typically tackled by two types of approaches.
The first approach induces a family of statistically likely 3D

structures de novo from large numbers of SPI patterns. Each
measurement’s hidden parameters are iteratively corefined with
these induced 3D structures. This approach uses only prior
knowledge from basic scattering physics (e.g., weak phase
approximation, shot-noise limited images, etc). Some examples
in this class extend the expand-maximize-compress algorithm
(EMC),17−20 to multiple structural models.15,21 Notably, this
approach recovers an oversampled 3D diffraction volume of
each 3D structure from which its corresponding real-space
electron density map is recovered using computational phase
retrieval.22 However, the number of candidate 3D structures
recoverable is limited (≲ 100) by the computational memory
needed to store them.23

The second approach to learning each pattern’s hidden
parameters uses diffraction template matching, which draws
heavily on structural prior knowledge about the samples.
Template diffraction patterns, typically created from a pool of
idealized models, are used to match and classify experimentally
measured SPI patterns. This approach does not generally
require phase retrieval because each template is associated with
a particular real-space model. Template-matching approaches
were used to study variations among XFEL pulses24,25 and
recover the histogram of sizes in >10,000 organelles by
assuming their protein shells are spheroids.26 Atsushi Tokuhisa
et al. proposed a template matching method for biomolecules16

using diffraction templates generated from 3D structures in
molecular dynamics simulations. However, just like the first
approach, the space of possible conformations if nonparametric
is again limited by memory and compute requirements.
Here, we show how gold nanoparticles’ shape variations

(beyond the mere radius of gyration) can be simultaneously
and efficiently parametrized in both real and reciprocal spaces.
This simultaneous parametrization allows us to efficiently infer
the latent parameters (including complex phases) of the

individual SPI patterns given a pool of 3D structures. More
importantly, this parametrization allows a principled and
efficient approach to proposing and evaluating upward of 105
candidate 3D structures de novo.
The recovered distribution of shapes (and sizes) of the

millions of gold nanoparticles (two ensembles with edge
lengths of approximately 30 and 40 nm, respectively15) is
telling. We quantified the degree of asymmetry in each
nanoparticle from the distribution of their (111) and (100)
facet areas. We also discovered a relatively stable “shape
envelope” in two different ensembles of nanoparticles. Since
both ensembles were extracted at different times in a common
crystal growth trajectory, we could extrapolate their particle
shapes to large crystals in the thermodynamic limit.
Furthermore, we found hints of finite-size effects related to
the surfactant used to control the nanoparticles’ shape. This
model suggests that the minimum number of van der Waals
contacts Nmin of a surfactant could be a crucial property in
controlling the shape of samples during synthesis. A higher
Nmin may facilitate the synthesis of nanoparticles with sharper
peaks, particularly for smaller ones. These studies demonstrate
the potential of XFEL for studying nonequilibrium systems
that are difficult to image directly by conventional means or
too heavy for molecular dynamics simulation.

1. RESULTS AND DISCUSSION
1.1. Synthesis and Measurements of Nanoparticle

Ensembles. Two ensembles of truncated octahedral gold
nanoparticles were synthesized using the protocols detailed
elsewhere but reproduced here in brief.5,27 A solution was
prepared by dissolving 2.5 mL of HAuCl4·3H2O in 1,5-
pentanediol (PD) to achieve a final concentration of 20 mM,
and adding 800 μL of poly(diallyldimethylammonium) chlor-
ide (PDDA) (400−500 kDa) to 50 mL of PD in a round-
bottom flask. The mixture was gently stirred before being
refluxed in an oil bath at 225 °C. Upon submerging the round-
bottom flask, the mixture’s yellow hue faded to colorless before
gradually developing a pinkish-red tint within a few minutes.
The oct30 was synthesized by cooling it in a room-temperature
water bath 4 min after the mixture began to show pink shades,
while the oct40 was produced similarly after 7 min. The
resulting crude nanoparticle mixture underwent thorough
purification to eliminate excess ligands. This purification
process involved sequential centrifugation steps in acetone
(1 × ) and water (2 × ) at 12 700 rcf. The supernatant was
discarded, and the pellet were redispersed in water. After
concentrating from initial 50 to 1 mL, for further purification
or concentration, then centrifugation was carried at 5000 rcf
for 5 min in 1.5 mL Eppendorf tubes and the pellet was
redispersed in 250 to 500 μL water. The resulting nanoparticle
pellet was resuspended in ammonium acetate (pH = 7), which
is used for subsequent XFEL imaging. Using UV−vis, SEM
and TEM (Figure S2) on small batches of the nanoparticles
from these two ensembles, we determined their nominal
average widths as 30 nm (oct30) and 40 nm (oct40). However,
as outlined in the introduction, UV−vis spectroscopy provides
only an average assessment of the sample. Additionally,
because of strong multiple electron scattering and absorption
in such relatively large particles, TEM and SEM cannot give a
penetrative characterization of the 3D shapes of individual
particles, let alone resolve the 3D shape variations among
them.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.4c00378
ACS Nano 2024, 18, 15576−15589

15577

https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c00378/suppl_file/nn4c00378_si_001.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c00378?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The samples were injected by an electrospray injector and
focused with an aerodynamic lens stack into the stream of
XFEL pulses at the European XFEL (EuXFEL), as described in
Ayyer et al.15 Due to the high pulse repetition rates of the
EuXFEL, approximately 105 and 65 diffractions of single
particles were accumulated per second to comprise the oct30
and oct40 data sets, respectively. Millions of such XFEL
measurements were used to reconstruct two average 3D
structures, each representing either the oct30 or oct40
ensembles.15 The widths of these two average 3D structures
(for oct30 and oct40 respectively) were 35 and 40 nm; the
longest edge lengths of their (111) facets were 20 and 27 nm.
Two-dimensional (2D) in-silico classification15 filtered out

empty shots, multiple-particle shots, and diffraction patterns
likely belonging to nonoctahedral nanoparticles in both oct30
and oct40 ensembles. After post-filtration, 12 87 570 and 8 23
202 patterns remained in the oct30 and oct40 data sets,
respectively (see section 3.5).
1.2. Parametrizing Structural Variations. Earlier anal-

yses of the large oct30 and oct40 data sets showed15 noticeable
structural variations among truncated octahedral nanoparticles,
which led to the averaged 3-dimensional models showing
“rounded” (100) facets. Our goal here is to characterize these
variations in a statistically robust and meaningful way.
The space of nanoparticle structural variations, which is

resolvable by our experiment, lives in a 105-dimensional space
(section 3.1). However, we seek only the posterior distribution
of their f irst-order distortions f rom the average truncated
octahedron. Such distortions can be efficiently parametrized
with a simpler 42-dimensional f ree-facet truncated octahedron
(FFTO) model, which consists of the vertex positions of 14
facets of a truncated octahedron (Figure 2(b)).
We used a weighted Monte Carlo importance sampling

scheme to sample the oct30 and oct40 ensembles’ posterior
distribution in the 42-dimensional FFTO space. We then
parametrized the dominant structural variations within these

posterior distributions, which allowed us to infer the
nanoparticles’ synthesis conditions directly.
1.3. Posterior Estimation Using Monte Carlo Impor-

tance Sampling. Exhaustively resolving the posterior
probability of a nanoparticle’s structure in a 42-dimensional
FFTO is computationally prohibitive. In a naive approach, this
would involve comparing each diffraction pattern against a
large number of possible 3-dimensional models that densely
cover this 42-dimensional space. Each comparison, in turn,
requires checking the most likely orientation in which each
pattern could arise within each model. Instead, we know these
structures stay close to a truncated octahedron,15 making the
vast majority of these models in the FFTO space unlikely or,
equivalently, unimportant in this analysis. Hence, a much
smaller and nonuniformly spaced pool of FFTO models can
capture the most important nanoparticle structures.
To estimate the posterior distribution of likely structures, we

seek a pool of FFTO models, , , ...1 2= { }, that efficiently
sample the posterior space (see Figure 1(a)). To paraphrase,
this pool should encompass the set of FFTO models that are
most likely to produce the experimentally measured oct30 and
oct40 diffraction patterns, K K, , ...1 2= { }.
We use a weighted Monte Carlo (MC) importance sampling

scheme to efficiently accumulate this pool of models (Figure
1(b)). This MC model pool starts with an initial model that is
randomly perturbed from the average 3D structure, which is
approximated from the single-model reconstruction result of
the whole data set. New models in the FFTO space are
iteratively added to this pool in three steps: (1) select a
weighted random model from the existing model pool; (2)
perturb this selected model; (3) add the perturbed model to
the pool and update all the models’ weights. For this MC
scheme to sufficiently sample the FFTO space, it needs to
explore the space of less likely models. We do this by
penalizing excessive selections of the most likely models in the
pool. Hence, the weights used to select random models in the

Figure 1. (a) Framework to estimate the structural posterior distribution of particles from their experimental measurements (i.e., diffraction
patterns). (b) The weighted Monte Carlo importance sampling scheme, which includes model selection (red numbers), perturbation (red
arrows), and weights updating. (c) Rotational degrees of freedom (α, β, γ) in our artificial ensemble of nanoparticles, each as a 4-ball chain.
(d) Posterior distribution of ensemble in (c) using our Monte Carlo scheme in (a). The ground truth structural trajectory is shown with the
twin black lines from which diffraction patterns are randomly generated. The pool of Monte Carlo models is rendered in a semitransparent
point cloud, where higher red intensity indicates models with higher data likelihood given the diffraction patterns.
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first step depend on the ratio between the following two
quantities: the percentage of diffraction patterns that are likely
due to each model in the pool as defined by eq 5 and shown as
numerators in Figure 1(b); and the number of times each
model was selected for perturbation in step 2, which starts at 1
for each added model, and shown as denominators in Figure
1(b). The numerator ensures that we explore the neighbor-
hood around likely models, while the denominator favors
selecting less frequently visited models.
With this pool of models, we can evaluate the posterior

probability of various nanoparticle features ν (e.g., length,
shape, volume, asymmetry, etc) given the diffraction measure-
ments of the oct30 and oct40 ensembles ( ). This probability
is similar to a weighted voting scheme: each model in the pool
(ρi) casts a vote for a particular feature, and this vote is
weighted by that model’s posterior probability given all
measurements. This leads to the posterior estimates in eqs 1
and 4, which we derive in section 3.2.

We demonstrate this framework on an artificial ensemble of
flexible particles. Each particle consists of four identical balls
that are sequentially attached (Figure 1(c)). Each particle’s
structure is described by three angles defined in their body axes
(bond angles α, and β; dihedral angle γ). All possible particle
structures are confined to a ground truth linear trajectory
(black line in Figure 1(c)). Since the four balls in each particle
are identical, swapping the first and last balls, which also swaps
α and β, yields identical diffraction patterns. This leads to a
duplicate of the ground truth trajectory in (α, β, and γ) space.
From 1 00 000 diffraction patterns of randomly rotated
particles with random structures along this ground truth
trajectory, we correctly reconstructed the posterior distribution
of structures shown in red in Figure 1(d). Details about this
artificial ensemble are discussed in section 3.3.
Validating our estimated posterior distribution is important,

especially when the raw data is sparse and incomplete. Since
we did not have the ground truth posterior for the oct30 and

Figure 2. Quantifying the dominant modes of variation in nanoparticle ensembles. (a) Principal Component Analysis (PCA) was applied to
the facet-area features of three nanoparticle ensembles: oct30, oct40, and a randomly generated synthetic one. The PCA modes of these
features are shown as rows of the matrices (middle block, linear color scale from blues to reds as negative to positive); these modes (i.e.,
rows) are sorted by their explained variance ratio (left block). In the right block, we see the corresponding net plots of the two most
dominant PCA modes of each ensemble, where the facets are colored according to the modal variations. The facet indices of the PCA mode
columns are laid out on the bottom net plot. (b) The coordinate system for our FFTO models, where the total areas of the (111) and (100)
facets, denoted as S111 and S100, are shown in orange and blue, respectively. (c) The facet-area features of oct30 and oct40 are projected onto
the S111-S100 subspace. (d) The distribution of the S111/S100 area ratio for oct30 and oct40 demonstrates that the former experiences a more
significant truncation along the (100) directions.
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oct40 data sets for validation, we checked that our estimated
posterior has converged and is self-consistent. Briefly, we used
the reconstructed model pools as a “proxy” to the ground truth
to generate random test diffraction patterns. These generated
test patterns were then used to accumulate a second pool of
models, which were compared to the ground truth “proxy” for
repeatability. Details are described in section 3.9.
1.4. Dominant Structural Modes in Nanoparticle

Ensembles. Our weighted Monte Carlo importance sampling
of the nanoparticles’ posterior distribution yielded a pool of
FFTO models representing the most probable nanoparticle
structures in our oct30 and oct40 diffraction data sets.
However, each FFTO model is described by a 42-element
vector, which still has far too many dimensions for us to
visualize.
Fortunately, these 42 numbers are not mutually independ-

ent, as they can describe the same nanoparticle structure but at
a different orientation and/or translation. Hence, dimension-
ality reduction should be possible. To accomplish this, we
mapped each FFTO model into a facet-area representation,
which consists of an ordered list of the areas of each model’s
14 facets. In this representation, the areas of the (100)
direction facets are indexed from 0 to 5, and those of the (111)
direction facets are indexed from 6 to 13 (Figure 2(a)). This
set of facet-areas is not only invariant under rotations and
translations but is also conveniently related to each model’s
surface free energy.7

To simplify our analysis of the estimated posterior, we
“hard-assigned” each diffraction pattern K only to its most
probable model in the Monte Carlo FFTO model pool. Each

time an FFTO model is deemed most likely for a pattern, we
projected this FFTO model into its 14-dimensional facet-area
feature space and then appended this facet-area model to a
growing list. Since an FFTO model might be deemed most
likely by multiple diffraction patterns, this model’s facet-area
features might appear multiple times within this list. For
brevity, we will refer to this list of features as the facet-area
point cloud, or equivalently, the 14| | × matrix X.
Due to the octahedral symmetry of our models, the order of

these 14 numbers in a facet-area feature can be changed by
applying any rotation operation within this symmetry group.
This redundancy is eliminated (details in section 3.8) since we
are not interested in orientational differences among nano-
particles.
The primary structural variations manifest in this facet-area

point cloud (Xoct30 or Xoct40), which has been reduced in
symmetry, are examined using principal components analysis
(PCA) (Figure 2(a)). To do this, we decomposed X into 14
modes, sorted by their explained variances. Modes with higher
explained variance describe more frequent structural variations.
We color the modes of these facet-area variations in Figure
2(a) for both Xoct30 and Xoct40. For comparison, we include an
ensemble of randomly perturbed truncated octahedra Xrand
with 10 000 points. Each point was perturbed from an average
canonical FFTO model whose facets are aligned perfectly
along the (111) or (100) directions. The first two PCA modes
of Xoct30, Xoct40, and Xrand are colored in the same manner in
their accompanying polyhedral net plot.
These dominant facet-area PCA variations reveal that the

surface energy densities of the nanoparticles’ (111) and (100)

Figure 3. Signs of nonequilibrium growth in truncated octahedra. (a) A truncated octahedron (black edges) shown with the oct30 and oct40
octahedral envelopes (green and pink dashed lines). The distances of the h100 vertices in the oct30 and oct40 envelopes are 26.4 and 32.8
nm, respectively. The average longest edge lengths of the oct30 and oct40 (111) facets are 21.4 and 28.4 nm, respectively. (b) The posterior
distributions of h111 vs h100 for oct30 and oct40 denote the average distances between the origin and the (111) and (100) facets, respectively.
Gray lines show the (h111, h100) relationship for an equilibrium regular octahedron and a regular truncated octahedron. Blue dotted line
interpolates between the oct30 and oct40 posterior distributions (fit function as plot title). (c) Frequency histogram of R = h111/h100
projected from (b), annotated with the ratios of a regular truncated octahedron (0.577) and an octahedron (0.870). (d) The distributions of
the average lengths of the shorter and longer edges of the truncated octahedra in oct30 and oct40 (Llong vs Lshort), each fitted to a line. Both
lines fit for −0.5 slope, indicating most nanoparticles are constrained to an octahedral envelope of edge length (i.e., Llong + 2Lshort) of 26.4
nm (oct30), or 32.8 nm (oct40). (e) The frequency-distribution of the envelopes’ edge length, Llong + 2Lshort, show ≤3 nm fwhm deviation in
both oct30 and oct40.
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facets are distinct. More than 80% of the facet-area variations
of the millions of nanoparticles in Xoct30 and Xoct40 can be
explained by their respective first two PCA modes. The most
dominant PCA mode shows that the (111) facet-areas tend to
be correlated, while the next mode shows similar correlations
among the (100) facet-areas. This correlation is notably absent
in Xrand, where no constraints were imposed on the ratios
among the surface energy densities of different facets. The
correlations within the first two modes can be explained by the
fact that the free energy of a nanoparticle includes the terms
γ111S111 and γ100S100, where γ and S denote the surface energy
densities and total areas of the subscripted facets. Our
observed correlations are hence consistent with expectation
that γ111 and γ100 are different for these octahedral nano-
particles.5,27

Relatedly, the variations in the (111) facet areas are
approximately four times higher than those of (100) facets.
This indicates that much of the changes in the surface area of
oct30 and oct40 nanoparticles still lie on their (111) facets.
The third-ranked dominant PCA modes of Xoct30 and Xoct40

in Figure 2(a) are similar, but likely due to random fluctuations
since they resemble the top-ranked mode for Xrand. The
alternating signature of this mode is largely due to eliminating
symmetries in these features, which was also performed on
Xrand.
These observations quantify the degree to which each

nanoparticle’s structural variations are highly correlated to the
areas of their (111) and (100) facets. Furthermore, since the
areas of the (111) and (100) facets are separately correlated,
these variations can be further reduced to just the two-
dimensional space of S111 vs S100 (the sum of the (111) and
(100) facet-areas respectively). We project the posterior
distributions for Xoct30 and Xoct40 into the S111-S100 subspace
in Figure 2(c).
Finally, the S100/S111 ratio of each FFTO model is

proportional to the extent of truncation along the (100)
octahedral facet, where smaller ratios indicate less truncation.
By projecting the posterior distribution into the S100/S111
subspace in Figure 2(d), we see that the oct40 is less truncated
than the oct30 ensemble. In the size range of our experiment
(30 to 50 nm), smaller particles exhibit a tendency toward
being more spherical. A similar behavior was observed in
decahedral multiply twinned gold NPs.28

1.5. Evidence of Nonequilibrium Growth from
Posterior Distributions. The PCA of the posterior
distributions in Figure 2 show that the first-order structural
variations in either oct30 or oct40 can be further reduced to
features associated with either each nanoparticle’s (111) facets
or those with their (100) facets. Here are two possible feature
pairs that can be physically interpreted. The first pair we chose
is (h100, h111): the average distances of its (100) and (111)
facets from each nanoparticle’s origin, respectively. These
distances are key parameters in the Wulff construction used to
describe the equilibrium shapes of crystals. The second pair of
features is (Lshort, Llong), which are the average lengths of two
types of edges: 24 shorter edges of (100) facets (blue edges in
Figure 2(b)), and the remaining 12 longer edges (orange edges
in Figure 2(b)) respectively.
We can gain valuable insights into the overall growth

trajectory of both nanoparticle ensembles by extrapolating
from and interpolating between the (h100, h111) features of the
oct30 and oct40 ensembles (Figure 3(b)). According to the
Gibbs-Wulff theorem, when a constant volume crystal attains

its equilibrium shape, the ratio R = h100/h111 equals the ratio
between the surface tensions of its (100) and (111) facets,
denoted as γ100/γ111. In our specific case, density functional
theory29 predicts that R0 = 1.27. Additionally, the ideal
(untruncated) octahedron and regular truncated octahedron
exhibit R values of 3 and 4/3 , respectively.
In Figure 3(b), the posterior distributions of oct30 and

oct40, when they are projected to the (h100, h111) subspace, fit
the dashed blue line given by h111 = 0.584h100 + 3.345. Since
the only difference between the synthesis of the oct30 and
oct40 ensembles is their reaction times,15,27 we assume that
these two ensembles are two “snapshots” of the same crystal
growth trajectory connected by this fitted blue line.
If we extrapolate this fitted growth trajectory forward in

time, assuming the nanocrystals could grow toward their
thermodynamic limit (i.e., h100 → ∞)30 it would approach the
facet displacement ratio of R = h100/h111 → 1.71. This ratio is
smaller than R 3 1.73= of a regular (untruncated)
octahedron. This trend suggests that larger crystals beyond
those in oct40 will always exhibit some truncation on their
(100) facets. This is consistent with the larger octahedra
synthesized by Lu et al. that show “rounded” (100) facets.27

Extrapolating this growth trajectory backward in time, it
intersects the regular truncated octahedra ratio of
R 4/3 1.15= when h100 is around 11 nm, where the
particles are most spherically symmetric.
Both nanoparticle ensembles in Figure 3(c) deviate

significantly from the reference R0. The oct40 ensemble
(=1.42) deviates more prominently than the oct30 ensemble
(=1.34). This deviation can be attributed to the synthesis
process of these nanocrystals, wherein the cationic surfactant
PDDA was employed to inhibit the growth of (111) facets.
The presence of adsorbed PDDA molecules impedes the
contact between the crystal facets and free gold atoms in the
solution. It preferentially attaches to the (111) facets rather
than the (100) facets, this results in an increased value of the
sample’s R = h100/h111 compared to the R0.
In the section 3.10, we propose a phenomenological model

that shows how the adsorption efficiency of PDDA might
change as the nanocrystals grow due to finite-area effects.
Consider how each PDDA polymer (about 400 kDa to 500
kDa) is a linear molecule that spans several nanometers, which
is comparable to the sizes of small nanocrystals. We assume
that at our elevated nanocrystal growth temperatures, each
PDDA polymer must be securely adsorbed onto a crystal facet
via a minimum number of van der Waals contacts, Nmin.
Hence, the attachment of an incoming PDDA polymer to a
crystal facet will be frustrated by adsorbed PDDA that occupy
possible attachment sites (Figure 8(a)). When the area of a
facet that is covered by randomly adsorbed PDDA polymers
reaches a critical fraction, the average number of contiguous
attachment sites available to an incoming PDDA molecule falls
below Nmin. Consequently, the attachment rate of new PDDA
molecules slows dramatically due to frustrated attachment. Our
simple model shows that this critical area fraction is reached
sooner for smaller facet areas due to the size of randomly
adsorbed PDDA. Conversely, this finite-area effect will become
unimportant when the crystals are much larger than the
average size of the PDDA molecule.
The finite-area effect mentioned in the previous paragraph

suppresses both γ100 and γ111. Recall that the Gibbs-Wulff
theorem states that in an ideal crystal of constant volume at
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equilibrium, γ ∝ h. Since R = h100/h111 = γ100/γ111, one might
expect R to be constant for such idealized nanocrystals.
However, as shown in Figure 2(c), we observe that the area of
the (111) facets expands relative to the (100) facets as the
crystals grow from oct30 to oct40. Therefore, the finite-area
effect suppresses γ111 less than γ100 in oct40 compared to oct30.
This leads to R increasing in Figure 3(c) from oct30 to oct40.
The posterior distributions of oct30 and oct40 in the (Lshort,

Llong) subspace of Figure 3(d) show a linear trend with a 1
2

slope, which means Llong + 2Lshort is close to a constant. From
Figure 3(a) we see that Llong + 2Lshort is the edge length of the
enveloping octahedron. Hence, the distribution in Figure 3(d)
for the millions of nanoparticles reveals two notable insights: a
separate octahedral envelope that encompasses the structural
variations within each ensemble; and the relative truncation of
the (100) facets within this envelope decreases from oct30 to
oct40.
The edge lengths of the enveloping octahedra for oct30 and

oct40 are calculated from linear fits to their projected posterior
distributions in Figure 3(d). Consistent with the explained
variance ratios of the PCA in Figure 2(a), the nanoparticles’
shape variations within oct30 or oct40 are largely due to
different extents of (100) facet truncations within each
ensemble’s octahedral envelope. The h(100) distances of oct30
and oct40 octahedral envelopes increased from 26.4 to 32.8
nm (Figure 3(a)) respectively, while their corresponding edge
lengths increased from 37.3 to 46.4 nm (Figure 3(e)). Notably,
the average longest edge lengths of the (111) facets for oct30
and oct40 in Figure 3(a) are 21.3(28) nm and 28.4(33) nm,
respectively. These lengths overlap with those from the average
3-dimensional models reconstructed in Ayyer et al.15 (see
section 1).

2. CONCLUSIONS
Megahertz XFEL sources offer tremendous potential for
inferring properties of particle ensembles numbering in the
millions. The posterior distributions of these large ensembles
of nanoparticles detail their structural dynamics and inter-
actions. However, estimating these distributions is a computa-
tionally expensive and data-intensive endeavor.
This paper describes a scalable Monte Carlo importance-

sampling framework to robustly estimate the posterior
distribution of structural variations among very large numbers
of single nanoparticles. By explicitly parametrizing these
structures in the free-facet truncated octahedra (FFTO)
space, we were able to avoid ambiguous features that often
arise in prior-free induced “manifolds” on XFEL data sets.
Additionally, we also propose methods to validate the
consistency of the recovered posterior distributions that
circumvent the issues with Fourier Shell Correlation which is
typically used in XFEL single particle imaging.31

Our manuscript also details practical implementation
strategies to accelerate this importance sampling for millions
of noisy and incomplete single-particle XFEL diffraction
patterns. This includes an analytical approach to directly
compute the diffraction pattern from polyhedra that can be
efficiently implemented on GPGPUs (section “Finite volume
Fourier Transformation” in the Supporting Information).
These strategies allow us to infer structural heterogeneity
from data sets that are at least 2 orders of magnitude larger
than what was previously attempted for single-particle XFEL
imaging.

We interpreted such uncommonly high-dimensional poste-
rior distributions using PCA, which showed that the structural
variations within our truncated octahedra ensembles can be
described by two independent degrees of freedom. By picking
different projections of these two degrees of freedom, we
inferred key signatures of nonequilibrium growth dynamics of
nanocrystal growth, which led us to hypothesize a finite-area
effect that might drive these dynamics away from equilibrium.
Our work shows a scalable statistical learning path to

posterior estimation on massive data sets in high-throughput
XFEL facilities worldwide. Given the success of this experi-
ment on AuNP in terms of the number of collected diffraction
patterns and the average photon count per pattern, we
anticipate direct application of this method to other types of
nanoparticles (NPs) with lighter elements, such as semi-
conductor NPs. This method can serve as a valuable tool for
addressing shape-related problems in the nanoscience
community. More broadly, it illuminates a similar path for
data-driven heterogeneity mapping in single particle imaging,
including cryo-electron microscopy. The four-ball model
example in our manuscript shows that our framework also
works for flexible particle chains (e.g., polymers, polypetides,
etc). Here, efficiently parametrizing an object’s structure is
critical. Since the free-energy landscape of biomolecules can be
embedded in a low-dimensional surface,32 a low-dimensional
parametrization of their structures might be possible.
Ultimately, we have both the data sets and statistical learning
tools for studying the hidden and chaotic world of nanoparticle
dynamics.

3. METHODS
3.1. Degrees of Freedom in Nanoparticles’ Structure. Upon

inspecting the 2D class averages of oct40 nanoparticles (Figure 5), it
is observed that most diffraction patterns are characterized by
approximately 12−15 radial resolution elements, as defined by Loh
and Elser.17 Consequently, the electron density maps of each
nanoparticle can be represented by a 3D grid containing
approximately 105 resolution elements, calculated from ∼ (2 × 15
+ 1)3. Although it is possible to determine the modal structures21 of
our nanoparticle ensemble in this 105-dimensional space, efficiency
can be significantly enhanced with prior knowledge about these
variations.
3.2. Data Likelihood Model. Our aim is to infer the posterior

distribution p( )| , representing the structural conformations (ρs)
within an ensemble, using collected diffraction patterns ( ). However,
directly applying Bayes’ theorem, p p p p( ) ( ) ( ) ( )| = | , to
estimate p( )| is not feasible due to the imprecision in defining
both terms on the right-hand side. Conformation ρ is conceptualized
as a function that assigns electron densities to points in real space,
indicating that ρ’s domain is infinitely dimensional. Defining p(ρ) on
such domain is a significant challenge. Furthermore, since observed
patterns are derived from different instances of ρ, for any specific pair
of K and ρ, p( )| is likely to be zero. This leads to p( )|
frequently approaching zero, causing the formula to be ill-defined and
computationally unstable.
Instead of studying the full data set, we should focus on a single

pattern. In the context of a specific pattern pattern K and a particular
feature ν, the posterior probability, p(ν|K), essentially quantifies how
much K is distributed or “voted” to a ν. Then the averaged p(ν|K)
over K , p p K( ) ( ) K| | , gives us an overall posterior
estimation over a whole ensemble.
According to Bayes’ theorem:

p K p K p K p( ) ( ) ( ) ( )| = | (1)
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To make progress here, we will need an uninformative-prior
assumption about the feature space: p(ν) is a constant. In addition,
the value of p(K | ν) is approximated by

p K p K p( ; ) ( ) ( )| | |

. Assuming the uninformative prior, p N( ) 1/ ,| = , where N , is
the number models in having feature ν. The definition of p(K | ρ)
will be discussed later in eq 5. To summarize the discussion above
with formulas, we have

p K p K

p K

p K p

( ) ( ; )

( ; )

( ) ( )

| |

|

= | |
(2)

and

p D( ; )
1

( ; )|
| |

|
(3)

where

D p K( ; ) ( )
K

| |
(4)

It is worth to notice that D( ; )V | = | |.
In XFEL-SPI, numerous far-field diffraction patterns ( ) are

captured, each originating from a distinct particle in the ensemble
illuminated by a single X-ray pulse. Occasionally, multiple particles
may diffract from a single pulse, but this is predominantly filtered out
in silico (as explained below). Disregarding background and inelastic
scattering, these patterns represent the far-field diffraction resulting
from the phase shift induced on the X-ray pulses by a particle’s two-
dimensional (2D) projected scattering potential. The orientation of
each particle is unmeasured and has to be inferred.17 Due to the
photon limitation, these patterns essentially represent the Poisson-
sampled Ewald sphere tomograms of the target particle’s three-
dimensional (3D) diffraction intensity W. This diffraction intensity
varies linearly with the unmeasured local fluence of the XFEL pulse
that illuminated each particle. Taken together, the likelihood20 of
measuring a particular pattern K given a tomogram WQ of the particle
presented at orientation Q is

p K Q W
W

K
( , , )

e ( )

t

W
K Qt

K

tdetector

K Qt t

| =
! (5)

where t indexes the detector’s pixels, and ϕK is the local fluence
rescaling factor for K.18

For a weakly scattering particle ρ, its diffraction intensities W are
the squared modulus of the Fourier transform of the particle’s real-
space electron density distribution ρ(r), which is represented as
W q r( ) ( )r q

2= [ ] . Thus, the likelihood of measuring a pattern K
given an electron density ρ is

p K p K W

d p K Q W p Q p

( ) ( )

( , , ) ( ) ( )K
Q

K K

| |

= |
(6)

where is the set of orientations in SO(3) space considered for
particle ρ. The likelihood p(K | ρ) here estimates how well each
pattern K is matched to our Monte Carlo model ρ.
To simplify eq 6, we once more apply the uninformative prior but

this time on orientations: that the aerosolized particles do not have
any orientation bias when injected into the path of the X-ray pulses
(i.e., p(Q) is a constant). Following this, we need to determine the
most probable fluence rescaling factor for each pattern, ϕK, as it has
been demonstrated to be vital for accurate multiple model
reconstruction.33 For this purpose, we conducted a single model

EMC reconstruction17 on each data set K to ascertain the most
probable rescaling factor K for each pattern.20 Subsequently, we
made the assumption that p( ) ( )K K K= . The two
assumptions outlined in this paragraph result in a streamlined version
of the likelihood function in eq 6, which is employed to assign weight
to model importance in our Monte Carlo scheme:

p K p K Q W( ) ( , , )
Q

K| |
(7)

3.3. Four-Ball Artificial Model. As shown in Figure 1(c), the
artificial model consists of four identical balls with centers at 0, a1, a1
+ a2, and a1 + a2 + a3. The diameters of these balls are of unit length.
In other words, |a1| = |a2| = |a3| = 1. We are only concerned with the
model’s structure, which is described by three degrees of freedom: α,
β and γ. These are chosen as follows:

a a

a a

a a a a

,

,

,

1 2

2 3

1 2 2 3

=
=

= × ×

where ⟨v1, v2⟩ represents the angle between vectors v1 and v2. To
generate new models, we perturb our canonical four-ball model, (α, β,
γ) → (α + δ1, β + δ2, γ + δ3), where δi=1,2,3 ∈ [−0.02, 0.02] are three
independent uniform random numbers. We impose an extra
constraint on the perturbed models that their individual α, β, γ
cannot exceed the range [1, 2.5] × [1.2, 2.0] × [0, 2.0]. Perturbations
that violate this constraint are discarded.
To generate the 1 00 000 diffraction patterns (i.e., upper black line

in Figure 1(d)), we first generated an ensemble of 100 perturbed
models within the constrained angular ranges in the previous
paragraph. Then 1000 diffraction patterns were generated from each
perturbed model at random 3D orientations.
In the Monte Carlo search, to average out the effect from the

choice of first sampled model, we sampled the data set with 12
different random initial models, resulting 12 trajectories. The each
trajectory has a length of 5000.
3.4. Strategies to Accelerate Markov Chain Monte Carlo.

The importance weight of each candidate model ρ is linked to the
model’s data likelihood p(K | ρ) (eq 5). We accelerated this
calculation with the following four strategies.
First, we partitioned the Monte Carlo model searches into smaller

searches performed in parallel. Each data set of diffraction patterns,
oct30 or oct40, was randomly split into five similarly sized,

nonoverlapping partitions. We accumulated eight different pools of
Monte Carlo models for each partition, each containing 5000 models.
Each pool was started from a randomly perturbed version of the same
average model. Eventually, we accumulated 4 00 000 models: 2 00 000
for oct30, and 2 00 000 for oct40.
Second, the determination of every single diffraction pattern’s

orientation with respect to each 3D model is performed only once�
when the 3D model is first added to the model pool. When additional
models are added to this pool, we only need to rescale existing
models’ weights without comparing the latter against the diffraction
data again. Overall, the number of orientations to be determined
scaled like the product of the number of models and number of
diffraction patterns.
Third, we accelerated the calculation of the likelihood p(K | ρ),

which as defined in eq 6, compares each pattern K against tomograms
of all possible orientations of each 3D FFTO model ρ in the model
pool. However, in practice, only the likelihoods of a few orientations
within each model were significant.31 Put differently, p(K | ρ) is
sparse. Hence, we used coarse orientation sampling to first identify
rotational neighborhoods near these significant orientations. Then we
increased the orientation sampling around these neighborhoods for
each data-model pair (K and ρ).
Fourth, we employed a memory-efficient approach to compute the

two-dimensional Ewald sphere intensity section of each model ρ. A
direct way to perform this job is to voxelize the real-space electron
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density of ρ, and then apply a fast Fourier transform on this. Instead,
since ρ is a polyhedron with uniform density, we can compute its
Fourier transform more accurately using a finite-element approach
(see section 3.6). Briefly, each polyhedron is partitioned into
nonoverlapping tetrahedra, whose separately complex-valued Fourier
transforms can be analytically computed and then coherently added
together to give the Ewald sphere section of the original polyhedron.
These four time- and memory-saving approaches were imple-

mented across 20 parallel-running NVIDIA GTX 1080 Ti GPUs. The
4 00 000 models for the oct30 and oct40 data sets were accumulated
in approximately 240 h.
3.5. In Silico Filtration with 2D EMC. As SEM images in Figure

4 show, our synthesized particles contained shapes that did not

resemble truncated octahedra. Similar to previous analyses of this
EuXFEL data set,15 we filtered out (in silico) some of the undesirable
data heterogeneities using 2D classification via the EMC method.15

This method classifies diffraction patterns into multiple 2D models up
to an overall in-plane rotation. This effectively helps us to identify
significant patterns unlikely to arise from single truncated octahedra
without having to reconstruct or compare them against 3D models. In
Figure 5, these nonconforming patterns (dark red) clusters include:
multiple-particle shots or triangular particles (cluster 1, 2 and 8),
spherical patterns (cluster 2, 3, 4, 6, 11 and 27; absence of prominent
streaks), and patterns with feature-less stripe (cluster 4). To increase
the concentration of truncated octahedra, 2D EMC was applied in
three rounds on the oct30 and oct40 data sets separately. After each
round, nonconforming clusters were manually identified (like these
dark red clusters in Figure 5) and discarded before the next round.
Only patterns that survived all three times of filtration were used for

this paper: 1282k out of 1608k for the oct30 data set, and 823k of
1032k for the oct40 data set.
For reference, we show typical 2D intensity slices of an ideal

truncated octahedron from different orientations in Figure S1.
3.6. Finite-Element Fourier Transform. The finite-element

Fourier transform method explicitly calculates the Fourier transform
of a uniform density polyhedral volume parametrized by its surface
vertices without initially “voxelizing” the volume onto a grid. A
“voxelized” electron density is conventionally needed to compute its
3D discrete Fourier transform (DFT), which can be readily compared
with its XFEL diffraction patterns. Here, the interparticle variations of
Llong within the oct30 ensemble measures only 2-voxels in a 3D
electron density array with size 2513 according to the Nyquist−
Shannon sampling theorem.20 To minimize significant truncation
errors when describing small but measurable size/shape variations
among the nanoparticles using the voxelization approach, these
volumes are typically padded with extra zeros (equivalent to
oversampling their Fourier volumes by a multiplicative factor of α).
As shown in Figure 6, due to the linearity of the Fourier transform,

the Fourier transform of a 3D volume is the sum of the Fourier
transforms of its constituent nonoverlapping tetrahedra. We derive the
analytical formula for computing the Fourier transform of arbitrary
tetrahedra (section “Finite volume Fourier Transformation” in the
Supporting Information).
The complexity of computing Fourier transforms using this

tetrahedralization method is O(NM), where N is the number of
point samples in the 3D Fourier volume and M is the number of
tetrahedra. For the truncated octahedra in this work, M = 48.
Comparatively, the computational complexity of “voxelizing” then
performing Fast Fourier Transform (FFT) on each unique polyhedra
scales like O(Nα log2(αN)), where α is the typical oversampling
parameter needed to overcome the truncation issue with voxelizing
polyhedra (discussed above).
Hence, our tetrahedralization method will generally perform faster

when M < α log2(αN). This is true when we coarse-grain our
candidate nanoparticles to polyhedra with relatively few faces (small
M) while our diffraction patterns are highly oversampled (large αN).
There are further time savings for the tetrahedralization method when
we only need to compute a fraction of the full Fourier intensities (e.g.,
only along a handful of Ewald sphere slices).
3.7. Free Facet Truncated Octahedron (FFTO). The FFTO

model consists of 14 facets (Figure 2(b)): six for the (100) directions,
and eight for the (111) directions. Each facet is described by a 3D
vector h = (A, B, C), where (A, B, C) is a point on the facet where the
vector (A, B, C) is also normal to the facet. The plane equation for
such a facet is h · (x, y, z) = |h|2 or

Ax By Cz A B C2 2 2+ + = + + (8)

In total, 42 = 14 × 3 parameters are needed for each FFTO model.
For the special case of an ideal FFTO model with perfect octahedral
symmetry, their facets are described by the six cyclic permutations of
(±a, 0, 0) that describe the (100) facets, plus the eight combinations
of (±b, ±b, ±b) for the (111) facets.
To perturb an FFTO model, each facet, (A, B, C) is mapped to a

new facet (A, B, C) + v, where v is 3D uniform random vector within
a 0.84 nm-radius ball. Each perturbation also needs to satisfy two
constraints. The first constraint is that a model has to be a convex
volume. The second constraint ensures each FFTO model stays
reasonably close to the ideal truncated octahedron. To enforce these
two constraints, the closest ideal truncated octahedron model
(described in the previous paragraph) is found first for a given
candidate FFTO model. This closeness is defined as the Euclidean
distance between the 24 corresponding pairs of vertices between the
two models. Hence, the closest ideal truncated octahedron to a
perturbed FFTO model minimizes this total distance between the two
models. If the distance between any two paired vertices between these
two models is larger than 1.68 nm, then the perturbed FFTO
candidate is rejected. For the Monte Carlo importance sampling, we
will continue to perturb each FFTO model until these two constraints
are satisfied.

Figure 4. (a, b) SEM images of the oct30 and oct40 nanoparticle
samples, respectively, each exhibiting nominal average widths of
30 and 40 nm. It is important to acknowledge that within the
original sample, not all particles adopt an octahedral shape.
Nevertheless, these non-octahedral variants can be effectively
distinguished and filtered out through the application of the 2D
EMC classification process.
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3.8. Eliminate Symmetry Redundancy. Here we explain how
we checked if two FFTO models are similar up to a particular
permutation of their facet indices. This check is used to reorder the
facet indices of our pool of models in Figure 2 to then distill model−
model differences that are not due to trivial permutations of each

model’s facet indices. Each FFTO model is uniquely represented by
an 14-element vector that detailed the areas of each FFTO model’s 14
facets. Before any new facet-index permutation is attempted on model
ρ, its 14-element area vector, Aρ, is normalized to Aρ/V2/3 where V is
the model’s volume.
Rather than checking and permuting all possible pairs of models in

our pool , we aim to to reorder each model’s facet index to have the
smallest distortion from the pool’s average area vector
A A1= | | . This reordering is performed iteratively with two
alternating steps: in the first step we compute A̅ given each model’s
current index order; then in the second step we reorder each model’s
indices to minimize the model’s area vector from the mean vector
using P P A A( ) 2| | where P̂ refers to the facet-index permutation
over the symmetry orbit of the ideal truncated octahedra. This
iterative procedure is repeated until all reordering ceases and the
mean vector stops changing.
3.9. Convergence of Posterior Estimation. We need to

determine if our Markov Chain Monte Carlo (MCMC) scheme has
accumulated a sufficiently large pool of models that adequately
samples the posterior distribution over all possible models {ρ}.
Our demonstration of convergence comprises two steps. First, for

our posterior estimation to have converged, it is necessary that the
distribution differences between two iterations should be sufficiently
small after convergence, or

p p( ; ) ( ; )n m( ) ( )| · | ·
(9)

is a sufficiently small value when m, n are sufficiently large, where m
and n are iteration numbers, n( ) is the sampled model pool at nth
iteration, and some normalization, ∥·∥, is used here for multiple-
dimensional ν. Second, we further corroborate this convergence if
is a self-consistent generative model. We demonstrate this self-
consistency by assuming a subset model pool as the synthetic
ground truth from which a number of diffraction data are generated
; we then repeated our MCMC posterior estimation on to obtain

a third model pool, . For our posterior estimation to have

Figure 5. This is the 2D EMC classification of the raw oct40 data set. Clusters colored with dark red are unlikely generated from an
octahedral sample, hence filtered out for study in this paper.

Figure 6. (a) A polyhedral volume is divided into several smaller
nonoverlapping tetrahedra. Each tetrahedron includes the
coordinate origin (0,0,0) and the three vertices of its triangulated
meshes. (b) Each tetrahedron is linearly transformed into a
standard trirectangular tetrahedron. (c) We can compute the
complex-valued Fourier transform of each suitably “rectangular-
ized” tetrahedron in (b). Here, we show contours of such Fourier
intensities. (d) The linear transformation from (a) to (b) is
reversed to obtain the Fourier transform of the highlighted (in
orange) tetrahedron in (a).
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converged, it is necessary that the posterior predictive p ( )T |
marginalized over , , and are sufficiently similar.
Figure 7(a) shows the convergence of our posterior predictive

distribution p S S( , )111 100 | , where the feature pair ν = {S100, S111}
are the total areas of each FFTO model’s (100) and (111) facets,
respectively. In practice, as most patterns are only in favor of one
model, to speed up the calculation, we count only the best matched
model for each pattern instead of strictly following the definitions in
eqs 3 and 9.
We denote the area difference between two models, ρa and ρb, as

d d d

S S S S

( , ) ( , ) ( , )

( ) ( ) ( ) ( )

a b a b a b

a b a b

111 100

111 111 100 100

= +

= | | + | |

Then Figure 7(a) summarizes the change in area between the nth

and (n + 200)th MCMC iteration as d( , )n
K

n
K

K
( )

200
( )
+ , where the

ρn(K) stands for the best matched model for a pattern K in the model
pool {ρ1,ρ2,...,ρn}. The colored fills in Figure 7(a) span the largest and
smallest values among all 40 trajectories (eight trajectories for all five
nonoverlapping partitions of the full data set) at each iteration. By
iteration n = 5000, the magnitude of this areal differences is about 10
nm,2 which is less than 1% compared to the total area of a particle.
In the second step of our validation, we tested for self-consistency

of the MCMC model pool that was reconstructed from diffraction
data . From we picked the 2000 best-matched models of 2000
randomly selected patterns in . These 2000 models forms a synthetic
ground truth pool of models . We then generated 1000 diffraction
patterns from each model in , denoting these patterns as . Each of
these patterns are randomly oriented, and rescaled from the
distribution of factors recovered in the earlier single-model EMC
reconstruction of that initialized the reconstruction of .20

Thereafter, we used the same MCMC procedure used to recover a
third model pool from . Figure 7(b) shows three posterior
predictive distributions marginalized over the model pool
reconstructed from , the synthetic ground truth , and
reconstructed from . Since we know the ground truth models for
every pattern in the synthetic data set , we can evaluate the area
differences, d111 and d100, between the ground truth models and
reconstructed best-matched models in . The two red rectangles in
Figure 7(b) mark the average difference in d111 and d100 for the oct30
and oct40 data sets.
3.10. PDDA Coverage. A simple model is proposed to show the

finite size effect on PDDA coverage on crystal facet growth at elevated
temperatures (Figure 8(b)). The synthesis protocol creates different
shaped Au nanoparticles by adding PDDA polymer chains to the

growth solution.5,27 Each PDDA polymeric molecule has probability
of attaching to the crystal facets only if there is sufficient areal contact
between them. In this model, we use an N × N square lattice (the gray
lattice in Figure 8(a)) to simulate a crystal facet. Thus, N could be
regarded as the side length of a crystal facet whose typical size is few
tens nanometers. The PDDA molecules that attach to the facet are
abstracted as an L × L square (yellow square in Figure 8(a)). We
attempt to place PDDA molecules randomly over this facet such that
no two PDDA molecules overlap.
Then the coverage is nL2/N2, where n is the number of PDDAs

placed. Since the size of a PDDA is few nanometers, we choose L = 4
in the simulation. For each N, simulations were run 20 000 times. As
shown in Figure 8(b), the average coverage increases with the side
length of a facet, which causes effectively smaller surface tension.
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Figure 7. Validating the convergence and self-consistency of our reconstructed posterior predictive distribution p S S( , )111 100 | . (a)
Convergence in the difference areas between the most likely models in our reconstructed model pools from the n-th and (n + 200)-th MCMC
iteration. The maximum and minimum changes in areal differences averaged over 40 trajectories shown as faint color fills around the mean
change (darker line). (b) Self-consistency in our reconstructed p S S( , )111 100 | . Left panel (experiment): computed from Bayes model
averaging over the pool of FFTO models given the diffraction data . Middle panel (synthetic ground truth): p S S( , )111 100 | of a
synthetic ground truth model ensemble generated from a random subset of . Right panel (reconstructed): p S S( , )111 100 | of a new pool of
models reconstructed from random patterns generated by the synthetic ground truth.

Figure 8. Fractional coverage of nonoverlapping PDDA molecules
on a crystal facet depends on the facet’s area. (a) The gray lattice
represents a crystal facet covered by PDDA molecules (yellow
squares). The PDDA molecules are not allowed to overlap (i.e., a
next PDDA can occupy the green dashed square but not the red
one). (b) The PDDA coverage vs the side length of a facet.
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NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on May 29, 2024, with errors
in Figures 2 and 3. The corrected version was reposted on June
3, 2024.
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