
RESEARCH ARTICLE

Chunk boundaries disrupt dependency

processing in an AG: Reconciling incremental

processing and discrete sampling

Chia-Wen LoID
1☯*, Lars Meyer1,2☯

1 Research Group Language Cycles, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig,

Germany, 2 University Clinic Münster, Münster, Germany

☯ These authors contributed equally to this work.

* lo@cbs.mpg.de

Abstract

Language is rooted in our ability to compose: We link words together, fusing their meanings.

Links are not limited to neighboring words but often span intervening words. The ability to

process these non-adjacent dependencies (NADs) conflicts with the brain’s sampling of

speech: We consume speech in chunks that are limited in time, containing only a limited

number of words. It is unknown how we link words together that belong to separate chunks.

Here, we report that we cannot—at least not so well. In our electroencephalography (EEG)

study, 37 human listeners learned chunks and dependencies from an artificial grammar

(AG) composed of syllables. Multi-syllable chunks to be learned were equal-sized, allowing

us to employ a frequency-tagging approach. On top of chunks, syllable streams contained

NADs that were either confined to a single chunk or crossed a chunk boundary. Frequency

analyses of the EEG revealed a spectral peak at the chunk rate, showing that participants

learned the chunks. NADs that cross boundaries were associated with smaller electrophysi-

ological responses than within-chunk NADs. This shows that NADs are processed readily

when they are confined to the same chunk, but not as well when crossing a chunk boundary.

Our findings help to reconcile the classical notion that language is processed incrementally

with recent evidence for discrete perceptual sampling of speech. This has implications for

language acquisition and processing as well as for the general view of syntax in human

language.

Introduction

Language allows us to generate and process a huge, possibly unbounded number of word com-

binations. Not only can we link neighboring words, but also words that are separated by inter-

vening words. Such non-adjacent dependencies (NADs) are attested across languages. In

cognitive science, NAD processing is considered to be a working memory task: The first ele-

ment of an NAD must be memorized until the second element arrives [1–4]. For example, in

the sentence John saw himself., John must be held until the pronoun himself, which refers back

to him. Behavioral and electrophysiological studies have shown that infants and adults learn
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NADs from statistical regularities—our brains monitor the co-occurrence of the first and sec-

ond elements of NADs [5–11]. The tracking of all possible statistical regularities and the poten-

tial grouping of words may be affected by various cues such as transitional probabilities

between elements [10, 12–16], prosodic properties of speech [17–20], distributional properties

of elements [21–24], and other cues such as function words or morphology for constructing

well-formed dependencies [18, 24, 25]. Both adults and infants can learn short NADs in the

form of “AXB”, which forms an arbitrary dependency between A and B, interrupted by X (e.g.

[7, 10, 23]). While the length of NADs in real languages is not limited to such a short depen-

dency, it is widely accepted that intervening elements disrupt NAD processing. For example,

Bock and Miller [26] found that the intervening noun phrase between subject and verb depen-

dency can lead to more errors in a production task that adults tend to produce errors such as

*The bridge to the islands were crowded. Corpus analyses revealed that the dependency lengths

are shorter than the random baseline across 37 languages [27] and a preference for minimiza-

tion of the distance between two related syntactic elements was observed [28], suggesting that

people have a strong bias toward short dependencies (see also [29]).

Our ability to learn and process NADs conflicts with evidence that our brain samples

speech in larger chunks that contain only a limited number of words. Thus, in principle,

chunk endings may be cutting into NADs, as exemplified by Fig 1. In an earlier study, [30] pre-

sented long sentences with numerous complex NADs (e.g. boys who chase dogs see girls.) to a

connectionist network model. The model failed to capture the NADs when the whole sentence

was presented at one time. However, when the sentences were presented within a limited pro-

cessing window of 3-4 words or so chunk-by-chunk, the NAD patterns can be successfully

captured by the model. Human chunk-by-chunk sampling is thought to arise from memory

limitations: To counteract decay in working memory, we integrate information within limited

time windows of up to 3 seconds [31–33]. For language specifically, memory may be restricted

to about 2 seconds when articulating a word sequence [34]. In psycholinguistics, a processing

time window of six words has been proposed [35], roughly equaling 2.5 seconds when assum-

ing a speech rate of 150 words per minute [36]. Current neuroscientific work suggests that

such temporal limitations may arise from a neurobiological constraint: the wavelength of

slow-frequency neural oscillations. For instance, a recent study found electrophysiological

activity in the delta band (< 4 Hz) to align to phrases and sentences [37]. Specifically, phase

angles of delta-band activity predict the boundaries of multi-word chunks [38], particularly

when these exhibit a duration of 2.7 seconds [39].

Fig 1. A German example sentence annotated with dependency grammar and chunks. Words with deep and light gray indicate different chunks. Most

dependencies form locally within a chunk.

https://doi.org/10.1371/journal.pone.0305333.g001
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But if we sample and process one chunk at a time, how can we link words that belong to

separate chunks [40]—or can we? In the following, we present EEG results that show the

chunk boundaries appear to block NAD processing and possibly learning. We designed an

AG, composed of syllable sequences with equal duration. This allowed us to employ the fre-

quency-tagging paradigm to assess whether people sample continuous speech into the desired

size of units. Participants learned 6-syllable chunks from sequences, based on transitional

probabilities and an additional short pause and the chunk boundary. Syllable streams either

contain the NADs within a 6-syllable chunk or across two chunks (see Fig 2). Spectral analyses

of EEG indeed revealed a spectral peak at the chunk rate, suggesting that people are able to

learn the chunks. Crucially, smaller electrophysiological responses were observed in NADs

that traversed chunk boundaries, compared to the NADs within a chunk. This suggests that

NADs across chunk boundaries are harder to process than NADs within a chunk. Our findings

can help to bridge the gap between incremental processing of acoustic signals, such as speech;

moreover, they strengthen previously proposed links between periodic neurobiological activity

and the chunking of speech.

Materials and methods

To test the hypothesis of whether an NAD across chunks would be harder to process, the cur-

rent study applies an AG learning paradigm combined with frequency tagging (see Fig 3). By

using frequency tagging, we can see whether participants acquire chunks during the learning

phase. Thus the learning phase serves two purposes: first, participants learn NADs within and

across chunks; second, participants learn six syllables as a chunk. If participants are able to

learn six syllables as a chunk, a peak at the chunk frequency should be observed. Then during

the test phase, participants listen to trials with either correct NADs or incorrect NADs in both

within-chunk and across-chunk conditions. If NAD processing is indeed harder across chunk

boundaries, we expect the difference of amplitude from correct and incorrect elements that

complete NADs would be smaller in the across-chunk condition. The overall experimental

procedure is demonstrated in Fig 4.

Participants

Thirty-seven German native speakers (18 females, 19 males) between the ages of 18 and 34

(mean = 24.5) participated in the experiment (recruitment period: 01/03/2022-31/07/2022).

They were all right-handed and had normal hearing. They self-reported that they did not have

any neurological disorders. They gave written informed consent before participation and were

reimbursed for their time (9 Euros per hour). Data from four participants were excluded from

the analysis due to technical recording issues and two were removed due to poor accuracy in

the learning phase (< 50% accurate). Thus, data from 31 participants (16 female, 15 males)

were included in the final analysis. The study was approved by the local ethics committee of

the University of Leipzig (file 060/17-ek).

Materials

German syllables (see Tables 1 and 2) were recorded individually as isochronous speech from

Google Cloud Text-to-Speech (Male, de-DE-Wavenet-B). Complete stimuli can be found here:

https://github.com/chiawenl/NAD-exp. Two native German speakers confirmed that syllables

sounded naturally. Each syllable was adjusted to a duration of 240 ms and a 10-ms silence was

appended to each syllable using the Praat vocal toolkit [41] in Praat [42] and customized

Python scripts. Thus, each syllable lasts 250 ms. Six syllables were concatenated together to

form a chunk. After each chunk, an extra 80-ms silence was appended to indicate a chunk
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Fig 2. Experimental conditions. (A) Participants listened to both within-chunk and across-chunks in the learning phase. Target chunks in the within-chunk

condition were intervened with the filler chunks to have the same amount of NADs as the across-chunk condition. The transitional probability between

dependency is 1.; (B) Participants listened to both correct (NAD) and violation (NNAD) for both within-chunk and across-chunk conditions in the test

phase.

https://doi.org/10.1371/journal.pone.0305333.g002
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boundary. These boundary silences were included to ensure that participants would succeed in

learning the 6-syllabic chunks. It has been shown that prosodic cues aid both the formation of

an NAD and the sampling of chunks [43, 44]. Critically, this intentional redundancy of transi-

tional probability and pause duration would not affect the interpretability of any differences in

NAD processing hypothesized to surface at the second element of the NAD (see Fig 2).

Twenty-four target chunks for each condition (12 for NAD and 12 for violation) in one list

were created for each condition. To have equal length for both within-chunk and across-

chunk conditions, 24 filler chunks constructed from filler syllables (Table 1) were created and

inserted between target chunks in the within-condition. The same 12 target syllables and 12

filler syllables were used across participants. Four lists were created; each list includes two

dependency pairs. One participant learned one dependency pair in the within-chunk condi-

tion and the other dependency pair in the across-chunk condition. Four dependency pairs

Fig 3. Frequency-tagging paradigm. Participants listened to a sequence of syllables. In the time domain (left), each syllable lasts 250 ms; each chunk

consists of 6 syllables. An 80-ms silence was inserted between chunks. In the frequency domain (right), this leads to an according frequency of syllable

occurrence of 3.73 Hz, while 6-syllable chunks occurred with a frequency of 0.63 Hz. When participants’ brains track both syllables and chunks, we expect

to observe peaks in the EEG power / ITPC (= inter-trial phase coherence) spectra at both syllable and chunk rates.

https://doi.org/10.1371/journal.pone.0305333.g003

Fig 4. Experimental procedure. The whole experiment includes two phases: the learning phase and the test phase. During the learning phase, participants

listen to four 3-minute audios for each condition and then answer 40 questions. During the test phase, participants answer a question after each trial.

https://doi.org/10.1371/journal.pone.0305333.g004
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(Table 2) were balanced across within-chunk/across-chunk conditions. Thus, each syllable in

the pairs appears in the second and fifth positions equally.

For the learning phase, two experimental conditions were created—within-chunk and

across-chunk. An example stimulus is shown in Fig 2. As for the test phase, four conditions

were made—whether the second element of a dependency pair forms the dependency in both

within-chunk and across-chunk conditions. The elements of a dependency pair were situated

in the second and the fifth positions for the within-chunk condition while they were situated

in the fifth position of the first chunk and the second position of the next chunk for the across-

chunk condition. This positioning served to address the difficulty of ruling out the possibility

that participants of prior studies were merely sensitive to detecting the edge of a chunk, rather

than segmenting continuous stream by the formation of NADs [21, 45]: In some prior studies,

the second element of the NAD co-occurred with the (prosodic) chunk boundary. Endres and

Mehler [21] directly test the edge difference between strings (AXYZB vs. XAYBZ). They found

that participants are indeed sensitive to the NADs that occurred at the boundary, compared to

the medial positions. The remaining syllables were distributed evenly from the 12 target sylla-

bles for each condition.

Four 3-minute audios were created for both conditions for the learning phase. The within-

chunk condition included 72 target chunks and 72 filler chunks per audio while the across-

chunk condition included 144 chunks that contain a dependency pair across two chunks. Sev-

enty-two filler chunks were inserted between target chunks in the within-chunk condition to

balance the amount of NADs for both conditions.

For the test phase, 144 trials that include NADs or violations (NNADs) for both conditions

were created. To avoid additional learning, trials with either correct NADs or violations for

both conditions were randomly distributed during the test phase. Each list included 36 NAD

Table 1. Syllables for target and filler chunks.

Target syllable Filler syllable

1 BA 1 BI

2 BO 2 BU

3 FA 3 DE

4 FI 4 GO

5 GU 5 HE

6 ME 6 KI

7 MI 7 LE

8 MO 8 LI

9 NA 9 LU

10 NO 10 MA

11 PU 11 PE

12 SU 12 TU

https://doi.org/10.1371/journal.pone.0305333.t001

Table 2. Syllables for dependency pairs.

DEPENDENCY PAIRS

1 FU LA

2 TA PI

3 KE MÖ

4 WE HO

https://doi.org/10.1371/journal.pone.0305333.t002
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trials and 36 violated trials for both conditions. Four target chunks that either include correct

NADs or violations were included in one trial. Hence, 4 target chunks and 4 filler chunks were

included in the within-chunk condition while 4 target-across-chunk were included in the

across-chunk condition. After each trial, a comprehension question about whether a specific

chunk in the trial they just heard was assigned. The answers were balanced.

Procedure

Participants sat comfortably in front of a computer screen in a quiet room. Stimuli were pre-

sented using Presentation (Neurobehavioral Systems, Inc., Albany, US). Before the main ses-

sion, participants were fitted with an electrode cap. Electrolyte gel was applied to minimize

impedance below 10 kOhms. The setup took approximately 30 minutes.

The main session included two phases—the learning phase and the test phase (see Fig 4).

Participants were instructed to listen to the audio carefully and avoid unnecessary body move-

ment and frequent eye blinking during recording. During the learning phase, participants lis-

tened to four 3-minute audios in one condition and answered 40 questions about whether

they just heard a specific chunk in the previous audios. Then, participants continued the other

three 3-minute audios and 40 questions for the other condition. The order of conditions was

counterbalanced. The learning phase took roughly 30 minutes to finish.

During the test phase, participants listened to 144 trials (in six blocks) that included either

the corrected NAD or the violations in both conditions. Participants could take a short break

after each block. Before the main test, participants had four practice trials to become familiar

with the task. After each trial, participants had to answer whether they heard a specific chunk

in each trial. The test phase took roughly 40 minutes to finish. After the test phase, participants

removed the cap and a debrief of the goal of the experiment was given.

EEG recording and data analysis

EEG data were recorded at 500 Hz from 63 Ag/AgCl electrodes mounted in an elastic cap

(ANT Neuro GmbH, Berlin, DE) with online reference to the left mastoid (A1). Horizontal

and vertical eye movements were monitored by the bipolar electrodes placed above and below

the right eye and the electrodes placed on the outer canthi. An electrode on the stratum served

as the ground.

EEG pre-processing was done by applying the modified Harvard Automated Pre-process-

ing Pipeline [46] with a combination of EEGLAB [47] and FieldTrip [48] functions executed

in Matlab (The MathWorks, Inc., Natick, US). Line noise was removed by applying Zapline-

plus [49]. Then data were re-referenced offline to the average of the left and the right mastoid

electrodes. Bad channels were recognized by the normed joint probability of the average log

power and rejected if they were above the threshold of 3 SD (mean number of removed chan-

nels = 4.13, SD = 2.62). A high-pass filter of 0.1 was applied (FIR, Hamming windowed,

reversed filtering), and then the data were re-referenced to the common average of all elec-

trodes excluding the channels that were marked as bad (see also [50]). To obtain optimal

decomposition from independent component analysis (ICA, [51]), a wavelet-enhanced inde-

pendent component analysis (W-ICA, [46, 52]) before applying ICA to remove large artifacts.

ADJUST [53] was applied to detect artifact components based on a set of temporal and spatial

features of each component (mean number of removed components = 15.1, SD = 7.92). Data

in the learning phase were epoched to 12.64 seconds, resulting in 8 chunks in one trial. Thus

72 trials were analyzed for each condition. For the test phase, the elements of dependency pairs

were epoched from 100 ms pre-stimulus to 300 ms post-stimulus and then baseline-corrected.

After epoching, FASTER [54] was applied to each channel per epoch to detect artifacts
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automatically. Channels were spline interpolated if it is contaminated within each epoch. Then

channels that were recognized as bad previously were also interpolated by using surface spline

interpolation [55].

As the goal of the spectral analysis during the learning phase was to see whether participants

were able to derive 6-syllable chunks, we collapsed and analyzed neuronal synchrony across all

trials in both conditions together. The target frequency for the syllable rate is around 3.73 Hz

and for the chunk rate is 0.63 Hz. Neuronal synchrony was assessed from Evoked Power (EP)

and Inter-trial Phase Coherence (ITPC), following the algorithm defined by [56]. EP (Eq (1))

reflects the power of EEG responses synchronized with speech stimuli in both phase and time.

Xn(f) is the summation of complex-value Fourier coefficient of trials derived from the Discrete

Fourier Transform. EP is obtained from Xn(f) averaged over the total number of trials N. We

computed EP from 0.1 to 10 Hz in increments of 0.079 Hz. The 1/f noise in the power spec-

trum was normalized by dividing the value at the target frequency from the average of neigh-

boring values within ±0.5 Hz via the Eq (2) adopted from [56], where w represents the

neighboring frequency around the target frequency f. There are many ways to normalize

power (e.g. Irregular-resampling auto-spectral analysis (IRASA, [57]), fitting oscillations and

one over f (FOOOF, [58]). The approach for normalization applied here has been shown that

yield similar results by applying other normalization (see also [59]). ITPC reflects the phase

consistency across trials. ITPC (Eq (3)) is obtained by averaging over the total number of trials

N from the square root of summation of cosine and sine values of phase angles θn of each com-

plex-value Fourier coefficient. For statistical analysis, normalized EP and ITPC of target fre-

quencies (chunk and syllable rate) were compared with the neighboring 4 frequency bins

around the target frequencies.

EPðfÞ ¼
j
P

nXnðf Þj2

N
ð1Þ

EPnðfÞ ¼
Eðf Þ

P
wEðwÞ

; j w � f j< 0:5 Hz;w 6¼ f ð2Þ

ITPCðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
P

nðcosynÞÞ
2
þ ð
P

nðsinynÞÞ
2

q

N
ð3Þ

To examine whether the NAD across chunks is harder than the NAD within a chunk in the

test phase, we analyzed the magnitude of the second element that forms or violates dependency

in the event-related component (ERP) with time-locked to the syllable onset. A low-pass filter

at 25 Hz (IIR, two-pass filtering, and Hamming windowed, default in Fieldtrip) was applied to

the epoched data before group analysis. A non-parametric permutation test [60] was con-

ducted to correct multiple comparisons across all electrodes time-locked to the second ele-

ment, which forms a correct or incorrect dependency. For each condition, the permutation

test was conducted by following these steps: (i) Dependent samples T-statistics were conducted

at each time point and electrode, (ii) tests with p< 0.05 were clustered based on spatial-tempo-

ral adjacency and their T-statistics were summed by using weighted cluster mass, a method

that takes cluster size and intensity into account [61], (iii) Steps (i) and (ii) were repeated

10,000 times by randomly permuting the conditions for each subject, and (iv) clusters with

summed statistics that surpassed at least 95% from the permutation test were kept as “statisti-

cally significant”.
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Results

Chunks are learned from syllable streams

The overall accuracy of the comprehension questions is 64% correct in the learning phase,

indicating chunk learning. The accuracy for each condition is shown in Fig 5. The Paired t-test

testing the difference between the two conditions (mean of within-chunk: 60%; mean of

across-chunk = 68%) shows that the accuracy in the across-chunk condition is significantly

higher than the accuracy in the within-chunk condition (t(30) = -2.9, p = 0.007). The higher

accuracy of the across-chunk condition might be due to the fillers inserted in the within-

chunk condition. Since more novel syllables needed to be learned, hence increased noises and

lowered accuracy in the within-chunk condition. To assess neural synchrony, normalized EP

and ITPC were computed. Fig 6A shows the power spectrum during the learning phase. We

used lme4 [62] in R [63] to fit a linear mixed effect model (estimated using REML and nlopt-

wrap) to test normalized EP and ITPC of target frequencies and neighboring frequencies

Fig 5. Behavioral results in the learning phase. The overall accuracy is 64%. The gray dot indicates the score for each

participant. The green dot indicates the mean for each condition and the green line indicates the standard deviation.

https://doi.org/10.1371/journal.pone.0305333.g005
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(formula: EPn * type; ITPC * type). The models include Subject as a random effect

(formula: 1|Subject). For normalized EP, the model’s intercept, corresponding to neigh-

boring frequencies around the chunk rate, is at 0.05 (t(15122) = 1.78, p = 0.076). Within this

model, the peak of averaged neighboring frequencies around syllable rate is statistically non-

significant (beta = -0.004, t(15122) = -0.33, p = 0.74). The peak of chunk frequency is statisti-

cally significant (beta = 0.07, t(15122) = 5.56, p< .001). The peak of syllable frequency is also

statistically significant (beta = 1.05, t(15122) = 87.82, p< .001). The post-hoc tests using Ken-

ward-Roger methods in lmerTest [64] further confirm that there is a significant difference

between the normalized EP of the chunk rate and the normalized EP of the neighboring fre-

quencies around the chunk rate (t(15094) = -5.56, p< 001). There is also a significant differ-

ence between the normalized EP of the syllable rate and the normalized EP of the neighboring

frequencies around the syllable rate (t(15094) = -88.15, p< .001). There is no significant

Fig 6. Results of normalized EP and ITPC in the learning phase. (A) Results of normalized EP: Peak at the syllable and chunk rates are marked as red in

the power spectrum (left). Green lines indicate individual subjects. The black line indicates the average across subjects. The right bar graph shows the peak

values from the chunk and syllable rate (deep green) and the average from the neighboring two frequencies around the chunk and syllable rate (light green).

(B) Results of ITPC.

https://doi.org/10.1371/journal.pone.0305333.g006
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difference between the normalized EP of the neighboring frequencies around the chunk and

the syllable rate (t(15094) = 0.33, p = 0.74).

Fig 6B shows the results of ITPC. The model’s intercept, corresponding to frequencies

around the chunk rate, is at 0.10 (t(15122) = 17.33, p< .001). Within this model, we found

that the ITPC of the chunk rate is statistically significant (beta = 0.04, t(15122) = 17.98, p<
.001). The ITPC of the syllable rate is also statistically significant (beta = 0.25, t(15122) = 108.2,

p< .001). The ITPC of neighboring frequencies around the syllable rate is statistically signifi-

cant (beta = 0.01, t(15122) = 4.35, p< .001). The post-hoc tests show that there is a significant

difference between the ITPC of the chunk rate and the ITPC of the neighboring frequencies

around the chunk rate (t(15094) = -17.98, p< .001). A significant difference was also found in

the comparison between the ITPC of the syllable rate and the ITPC of the neighboring fre-

quencies around the syllable rate (t(15094) = -103.86, p< .001).

Results from both EP and ITPC have shown that the peaks at the chunk and the syllable

rate can be observed. The results suggest that participants’ brains identify and represent six syl-

lables. In line with previous work [43], this indicates that participants are able to learn chunks

based on transitional probabilities and additional short pauses.

Processing of within– but not across-chunk NADs

The overall accuracy of the behavioral responses is 68% correct in the test phase, indicating

continued memory of the learned chunks. The accuracy across different conditions (Within-

chunk vs. Across-chunk; NAD vs. Violation) is shown in Fig 7. We fitted a linear mixed model

(estimated using REML and nloptwrap optimizer) to test the accuracy with the two conditions

(within-chunk vs. across-chunk) and whether the dependency is correct (formula:

accuracy * within/across * dependency). The model included Subject as a ran-

dom effect (formula: *1 | Subject). The effect of within/across is statistically significant

(beta = -0.07, t(118) = -3.55, p< .001). The dependency effect is statistically significant (beta =

-0.04, t(118) = -2.04, p = 0.044). The two main effects have no significant interaction (beta =

-0.009, t(118) = -0.03, p = 0.976). Similar to the behavioral results in the learning phase, accu-

racy in the across-chunk condition is higher than the one in the within-chunk condition.

Within each condition, the accuracy of the correct dependency is significantly higher than the

accuracy of the violation (Post-hoc Within-NAD vs. Within-violation: t(90) = 2.08, p< .05;

Across-NAD vs. Across-violation: t(90) = 2.04, p< .05).

Event-related potentials (ERP) were computed to assess whether NADs across chunks are

harder to process. ERPs at the second elements that either complete an NAD (NAD) or violate

it (NNAD) were compared within each condition. Fig 8 illustrates the results. The difference

between NAD and NNAD syllables is significantly larger around 0-0.05 seconds in the within-

chunk condition (p = 0.0017) while there is no significant difference in the NAD and violation

in the across-chunk condition (p = 0.08). The difference found in the within-chunk condition

but not in the across-chunk condition suggests that NADs across chunks are indeed harder to

process.

Discussion

Our results dissociate and link the active segmentation of continuous speech into multi-word

memory chunks and the incremental construction of compositional meaning through NADs.

This may help to reconcile disparate aspects of human language comprehension: On the one

hand, in the face of memory limitations, the human brain needs to sample speech in short

chunks; on the other hand, our brains link words incrementally, often requiring the formation

of NADs. The findings in the current study serve as the initial electrophysiological evidence
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that NAD processing is restricted to the current memory chunk, which had been previously

only shown by computational modeling [30] and behavioral studies [20, 25]. Frequency-tag-

ging results converge on prior work that suggests that the brain actively segments continuous

speech into discrete chunks with the help of low-frequency activity [37–39]. ERP results indi-

cate that NADs are harder to process once the dependencies cross the chunk boundary. Criti-

cally, our results overcome ambiguities in prior research, which mostly defined chunk

boundaries by NADs themselves, making it difficult to dissociate the processing of segmenta-

tion and the formation of dependencies.

The current results further indicate that comprehension involves the sampling of chunks in

a shallow manner, in line with previous psycholinguistic work [65–67] and neuroscientific

studies [68]. In the background of building dependencies amongst incoming words incremen-

tally in real-time, speech is sampled superficially in coarse second-long chunks; here, subjects

were able to learn these based on both statistical and prosodic cues. Structure building, as oper-

ationalized here through the statistical co-occurrence of the first and second elements of

Fig 7. Behavioral results in the test phase. The overall accuracy is 68%. The gray dot indicates the score for each participant.

The green dot indicates the mean for each condition and the green line indicates the standard deviation.

https://doi.org/10.1371/journal.pone.0305333.g007
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NADs, seems incremental, yet constrained by the boundaries of memory units. This is consis-

tent with the chunk-and-pass model of language processing, which adopts an incremental

approach and requires people to integrate information as quickly as possible [40]. Our results

are aligned with earlier processing models such as the sausage machine [35] and provide a link

with incremental approaches [69].

The spectral peak observed in the learning phase provides supporting evidence that neural

activity in the delta band underlies chunking, consistent with recent findings [37–39]. This

might entail that the cognitive units of language comprehension are clusters held together by

local transitional probabilities. The current memory chunk may thereby allow for establishing

all dependencies required for understanding the current chunk. An exploratory analysis, using

the metric of mean dependency distance (MDD; see Eq (4)), following corpus simulations

from [70], suggests that this would indeed be an effective manner of processing. MDD quanti-

fies syntactic complexity by measuring the distance between each word and chunk. In the Eq

(4), n refers to the number of element/word and k refers to the number of chunks; cdd refers to

the distance within the ith chunk and ldd refers to the distance between chunks. Indeed, MDD

is higher for across-chunk dependencies, an example demonstrated in Fig 9. In line with the

rarity of crossing dependencies found in natural languages, our results show that syntactic

complexity may be reduced due to the proper local arrangement of units to be linked (in our

AG: syllables; in natural language: words/morphemes). This is consistent with the chunk-and-

pass model of language processing [40], evidence for dependency length minimization in the

world’s languages [27, 29], and the dualism of segmentation and parsing in classical psycholin-

guistic frameworks of sentence processing [35, 71]. Yet, our findings suggest that NAD length

Fig 8. ERP results in the test phase. ERPs for the second element of correct NAD and violation (NNAD) for each condition. There is a statistical

difference between the NAD and the NNAD in the within-chunk condition (the gray area), but not in the across-chunk condition. The black line indicates

the difference between the correct and incorrect elements. Topographies show the difference between the NAD and the NNAD between 0-50 ms for each

condition.

https://doi.org/10.1371/journal.pone.0305333.g008
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is not only limited by memory constraints and flexible otherwise— apparently, our cognitive

flexibility to form NADs is also constrained by the boundaries of the memory units segmented

from speech. The rarity of crossing dependencies may result from the duality of language [70].

The encoding of sound structure and the composition of meaningful words or morphemes

happen rapidly, incrementally, and concurrently; thus, information can be integrated locally

and the possibility of crossing dependencies may be reduced. Hence, our memory capacity

would not be overloaded due to this multi-level parallel processing and thus achieve successful

language comprehension and production. Beyond the corpus simulation results in [70], we

further show that the reduction of syntactic complexity may be observed on the neural level.

Future directions addressing how different boundaries (i.e., syntactic boundary vs. prosodic

boundary) may elicit similar interference and how different types of syntactic dependencies

(e.g. nested dependencies in German and crossed dependencies in Dutch, [72]) are disrupted

will be key to further disentangling how chunk boundaries interfere with the formation of

NADs.

MDD ¼
1

n � 1

Xk

n¼1

ðj cddi j þ j lddi jÞ ð4Þ

It must be debated whether our findings can be taken to fully generalize to natural language

processing. As criticized by previous research, most AGs lack syntactic word categories (parts

of speech) and the hierarchical rules that many researchers assume to be found in natural lan-

guage; both may limit the generalization to natural language processing [73]. However, previ-

ous studies have also shown that the transitional probabilities that define AGs capture at least

Fig 9. An example of MDDs in both conditions. The MDD is higher in the across-chunk condition than the MDD in the within-chunk condition.

https://doi.org/10.1371/journal.pone.0305333.g009
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some aspects of the cognitive form of linguistic knowledge. For instance, phonotactic statistical

knowledge of a language stored in our long-term memory can indeed influence how we recall

non-words [74–76]. That is, non-words are better recalled when the transitional probabilities

of non-words are consistent with the pattern in natural language (see [77] for further discus-

sion on memory). Therefore, we do suggest that the AG paradigm here captures the dualism of

chunking and NADs also found in natural language (processing) reasonably well. We should

also note that, for natural languages, we are still able to link words across chunks. Yet, it

remains to be tested whether the current experimental design, transposed to natural language,

will similarly show that this ability is less articulate than NAD processing within chunks. For

future research, as suggested by [73], a combination of an AG with pseudo-words could be

used. Results may be more comparable with natural language processing.

In addition to transitional probabilities, our experimental setup ensured the formation of

chunks through a short pause and the chunk boundary. Pauses certainly support chunking.

For instance, low-frequency periodicity was observed in speech sequences defined by intona-

tion units, defined, amongst other factors, by pauses [78, 79]. Neural responses track both

overt and covert prosodic boundaries [80] and chunk boundaries defined by intonation units

[81]. Neural activities in the delta band may be affected by both prosodic information and syn-

tactic structure simultaneously and the processes of these two kinds of information are over-

lapped strongly [82, 83]. Future research is required to see how prosody and syntax play a role

in defining an optimal memory chunk formed by local dependencies. In any case, the com-

bined marking of chunk boundaries by transitional probabilities and a short pause in the cur-

rent study leaves the NAD-blocking effect untouched.

Our ERP results during the test phase reveal an unexpectedly early effect, inconsistent with

the previous findings that would let us expect a modulation of the N100 component, indexing

form-based processing of words during the first 80-120 ms [84–86]. However, this early effect

is plausible for linguistic processing. For example, Herrmann and colleagues [87] found a

greater activation between 40-80 ms for the incorrect phrases during an MEG recording of an

auditory oddball paradigm for syntactic stimuli (see also [88]). Another study also shows an

early effect around 20-100 ms for the violation of grammatical categories during sentence lis-

tening [89]. As mentioned by Herrmann and colleagues [87], this earlier effect is possibly asso-

ciated with the P50 component, which has been associated with preferential attention to

sensory inputs and general auditory arousal [90], stimulus onset perception [91], and phone-

mic encoding [92]. In line with the assumption of the relationship between the P50 and the

early grammatical effect in [87], it seems plausible that the dependency processing can be mod-

ulated by preferential attention to sensory inputs in our finding. Critically, the current NADs

could be processed on their acoustic/auditory form alone (i.e., subjects needed to learn syllable

form), which overlaps in time with the current result [93–97]. Still, more future research is

needed to investigate how this early effect is associated with dependency processing and how

perception interacts with comprehension of higher-level information at the very early stages of

language comprehension.

Future work should also extend the current findings to language development. It has been

shown that infants store large chunks in early development [98, 99]. Infants are initially sensi-

tive to slow prosodic information, which marks phrase or clause boundaries—chunk bound-

aries. Slowness facilitates the neural tracking of prosody in infants [100, 101]. In addition,

infants 8 months of age track statistical regularities in speech and exploit transitional probabil-

ity to segment continuous speech [14]. The detection of NADs can also be observed at a very

young age. A study has shown that 3-month-old infants can detect the violation of AXB,

accompanied by their auditory processing capacities [102]. Other studies have also shown that

8-month-old infants can learn the NADs from an AG [103, 104]. At roughly 16 months,

PLOS ONE Chunk boundaries disrupt dependency processing

PLOS ONE | https://doi.org/10.1371/journal.pone.0305333 June 18, 2024 15 / 22

https://doi.org/10.1371/journal.pone.0305333


children learning English can recognize the grammatical dependency between auxiliary and

inflectional morphology [24] (e.g. Everybody is always baking bread.). Similar evidence was

also observed in children across different languages (German: [105], French: [25, 106], Dutch:

[107]). Remarkably, a study has shown that 17-month-old infants can track NADs even when

two elements are across different phonological units [25]. This indeed leaves us asking how

infants integrate phonological and syntactic information during oscillatory chunk sampling.

Infants start from sampling in larger chunks and then recognize the complex structures such

as NADs in real language late. How children deal with the coarse units and the NAD process-

ing remains unknown. If children sample in larger units and those units are able to include

NADs involving longer distances, would the distance of NAD show a reduced effect in chil-

dren, compared to adults? In addition, children’s strategies for segmentation may change

across development; that is, children may rely on acoustic information (e.g., stress) initially

and later adapt their strategy to statistical cues to segment continuous speech [17]. How this

dynamic adaption to different strategies for speech segmentation across development interacts

with the processing and learning of NADs remains a major puzzle for language acquisition

research. These possible directions would be fruitful for future research and could add a valu-

able dimension to early language development.

Conclusion

We show that learners segment continuous sequences into chunks, possibly with the help of

delta-band oscillations. Cognitive chunk boundaries then block NAD processing. Chunk-wise

sampling and NAD processing go hand in hand, with NAD processing operating within the

current memory chunk. Results link the segmentation of speech by our memory-limited brains

and the formation of NADs that are the combinatorial basis of human language. For further

application of the current research, this can be possibly applied to language teaching. For

example, students might acquire number/gender agreement or filler-gap dependency more

easily if they can identify the plausible multi-word chunks in a language. Teachers can start

teaching NADs within small plausible multi-word chunks when teaching a foreign language.

After students gain sensitivity to the NADs within a chunk, they can gradually extend the

chunk size and then form NADs across chunks. In future directions, it will be worth investigat-

ing how different types of chunk boundaries, also in natural language, (i.e., syntactic boundary

vs. prosodic boundary) may drive similar types of interference and whether different types of

NADs could be disrupted equally by chunk boundaries. Additionally, as children acquire

larger chunks in early language development, examining how different segmentation strategies

interact with the formation of NADs in language acquisition would be promising.
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