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We apply a recently proposed computational protocol for a neural-network-supported configura-
tion interaction (NN CI) calculation to the paradigmatic N2 molecule. By comparison of correlation
energy, binding energy, and the full dissociation curve to experimental and full CI benchmarks, we
demonstrate the applicability and robustness of our approach for the first time in the context of
molecular systems, and offer thereby a new complementary tool in the family of machine-learning-
based computation methods. The main advantage of the method lies in the efficiency of the neural-
network-selected many-body basis set. Specifically, we approximate full CI results obtained on bases
of ≈ 1010 Slater Determinants with only ≈ 105 determinants with good accuracy. The high effi-
ciency of the NN CI approach underlines its potential for broader applications such as structural
optimizations and even computation of spectroscopic observables in systems for which computational
resources are a limiting factor.

I. INTRODUCTION

The accurate determination of the electronic ground
state of molecular systems presents a critical challenge
in quantum chemistry, primarily due to the exponential
growth of the Hilbert space with the number of electrons
and orbitals involved. For diatomic molecules such as,
e.g., nitrogen N2, obtaining precise ground state energies
is particularly crucial for understanding bonding charac-
teristics, molecular behavior under different conditions,
and potential reaction pathways. Full Configuration in-
teraction (fCI) methods belong to the most direct ap-
proaches to solve the electronic Schrödinger equation. In
fCI the electronic wave function is expressed as a linear
combination of basis vectors (e.g. Slater Determinants
(SDets)). Determining the eigenvectors of the many-
body Hamiltonian on such a basis allows, in principle, for
arbitrarily exact treatment of electronic correlations[1].

However, practical application of fCI is limited by
the ”exponential wall”, i.e. the combinatorial explo-
sion of basis SDets with increasing system size. For
N2, even modest basis sets can yield an intractably large
number of determinants, pushing traditional computa-
tional approaches to their limits [2]. One strategy to
circumvent the basis set explosion is the so-called em-
bedding technique. Here, the large system is subdivided
into a smaller strongly correlated part (quantum clus-
ter) which is treated with fCI accuracy, and the rest
treated at a more approximate, mean-field level using
Hartree–Fock[1] or Kohn–Sham density functional the-
ory [3, 4]. Examples in quantum chemistry are embed-
ded correlated wave function schemes and embedding po-
tential schemes [5, 6]. While traditional and newly de-
veloped embedding techniques show great potential, the
size of the embedded quantum cluster can still be the pro-
hibiting factor for capturing essential quantum mechan-
ical correlations. To this end, based on the observation
that only a small subset of the configurations contributes

significantly to the description of the eigenfunctions [7], a
large variety of selected CI methods have been developed,
see for example Refs. [8–11] and references therein.

The advent of machine learning (ML) algorithms has
given a new twist to these efforts. ML techniques have
been applied in the context of selective CI computa-
tions and already shown great potential [12–16]. These
works included calculations of explicit expansion coeffi-
cients with the help of a regression neural network (NN)
[12, 17] and schemes which leverage a NN classifier to
distinguish ”important” from ”unimportant” configura-
tions without actually predicting their coefficients [13].
Related approaches have been developed recently also for
the structure and dynamics of light nuclei [18], for accu-
rate atomic structure calculations [19], and most recently
in the context of effective models in strongly correlated
solids [20].

In the present work, we employ the last, most recently
proposed scheme of Bilous et al. [20], to the nitrogen
molecule N2 and the computation of its ground state.
Our classifier consists of a convolutional neural network
which performs the selection of cadidate SDets in an it-
erative extension procedure of the many-body Hilbert
space. Our results on the correlation energy, binding
energy, and the fully computed dissociation curve of N2

show that the approach indeed works very well also for
molecular structures with much more complex interac-
tions than in the single site impurity model considered
in Ref. [20].

II. METHODS

For the computation of the many-body wave function
of a molecule we can cast the problem into a Hamiltonian
form and write

H = H0 +H int −MF
[
H int

]
(1)
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with

H0 =
∑
i,j,σ

tijc
†
i,σcj,σ (2)

H int =
∑
i,j,k,l
σ,σ′

Uijkl c†i,σcj,σc
†
k,σ′cl,σ′ (3)

(4)

where c†i,σ and ci,σ are fermionic (creation/annihilation)
field operators with orbital and spin indices i and σ, re-
spectively. tij and Uijkl are the single- and two particle
integrals

tij ≡
∫

drφ∗
i (r)

(
−1

2
∇2 + V eff(r)

)
φj(r) (5)

Uijkl ≡
∫

dr dr′φ∗
i (r)φ

∗
j (r)

1

|r− r′|
φk(r

′)φl(r
′) (6)

where Veff(r) is the self-consistent mean-field potential,
and the integrals are evaluated on the Hartree-Fock
eigenbasis φi(r). The term MF

[
H int

]
in Eq. (1) , is the

mean-field decoupled interaction operator. Since its con-
tributions are implicitly included in the Hartree-Fock sin-
gle particle integrals tij we need to substract it to avoid
double counting.

We calculate the ground state of H in two steps. In
the first step we calculate the integrals tij and Uijkl. In
the second step we find the ground state of H on a se-
lected many-body basis using our NN-based algorithm.
All calculations in this work are performed retaining spin
symmetry.

A. Hartree-Fock

The single- and two-particle integrals, tij and Uijkl

are calculated using the canonical orbitals obtained in
Hartree-Fock calculations. In these calculations, the pro-
jector augmented wave (PAW) method [21, 22] is used to
treat the electrons near the nuclei, and core electrons for
each atom are frozen to the result of a reference scalar rel-
ativistic calculation of the isolated atom. Smooth pseudo
wave functions for the valence electrons are described us-
ing a plane-wave basis set. Since virtual orbitals do not
impact the Hartree-Fock energy, they are not explicitly
optimized but taken from an auxiliary set of numerical
atomic orbitals centered at the positions of the nuclei
[23]. This set contains four sets of valence atomic or-
bitals and two sets of polarization functions, amounting
to a total of four numerical s and two sets of numerical p
orbitals for the hydrogen atom, and four numerical s, four
sets of numerical p, and two sets of numerical d orbitals
for the nitrogen atom. For the latter, the 1s orbital is
frozen and the total number of molecular orbitals is 52.
Smaller numbers of orbitals are generated by omitting
the highest-energy molecular orbitals. The Hartree-Fock
calculations are carried out using a direct minimization

approach [24, 25] employing the L-BFGS algorithm. The
calculations are considered converged when the squared
residual of the Hartree-Fock equations is below 10−11 eV2

per valence electron for the optimal orbitals that min-
imize the Hartree-Fock energy. All Hartree-Fock cal-
culations are performed using the GPAW software [26]
with a grid spacing of 0.18 Åand the plane wave en-
ergy 1000 eV. The sizes of the simulation cells for the

H2 benchmark and N2 molecules are 25 × 25 × 28.34 Å
3

and 25 × 25 × 28 Å
3
, respectively. Further details on

the Hartree-Fock calculations are provided in appendices
VIA1 and VIA2.

B. NN-suppoted CI

For the machine learning (ML) part of our calcula-
tion, we follow the recently proposed computation proto-
col [20] that employs the active learning (AL) technique.
ML approaches are typically categorized into supervised,
unsupervised, and reinforcement learning paradigms [27].
AL, however, does not strictly fall into any of these cat-
egories: While our NN classifier is trained in a super-
vised manner, the data for the training is not predeter-
mined (as in the standard supervised learning paradigm)
but dynamically generated during interactions with the
“environment”. This process involves making decisions
based on the outcomes of prior training iterations, a
strategy shared with reinforcement learning, though AL
lacks an explicit reward system. Instead, we focus on
monitoring an observable — specifically, the ground state
energy. Other observables could be also used as a con-
vergence criterion for the iterations of the NN-supported
CI algorithm.
In the CI framework, the exact solution

H |Ψex
gs⟩ = Eex

gs |Ψex
gs⟩ (7)

for the system Hamiltonian (1) is expanded in SDets |ϕ⟩
which form an orthonormal basis of the full Hilbert space
Hfull = span ({ϕ}). The expansion reads

|Ψex
gs⟩ =

N∑
α

cα |ϕα⟩ , (8)

with N ≡ dim
(
Hfull

)
. We aim to approximate the exact

ground state |Ψgs⟩ by searching for the most relevant
subspace of Hs ⊂ Hfull with dim (Hs) = Ns ≪ N for the
calculation of the ground state |Ψgs⟩ and its energy Egs.
The approximate wave function can be written as

|Ψex
gs⟩ ≈ |Ψgs⟩ =

Ns≪N∑
α

cα |ϕα⟩ . (9)

The iterative procedure that converges to the approxi-
mation (9) starts from an initial basis {ϕinit}. The ba-
sis is iteratively extended using an extension operator
Ô. In each iteration, the eigenproblem for (1) is solved
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FIG. 1. Architecture of the convolutional NN used in this
work. A candidate SDet is given as input (A) and eventually
classified as important or unimportant (F). See text for fur-
ther explanations.

yielding the approximative wave function and the ground
state energy. Since the basis quickly becomes large and
computationally infeasible, the NN-supported algorithm
described in detail in Ref. [20] selects only the most im-
portant SDets prior to the eigenproblem solution in each
iteration. For the calculations presented in this paper we
set {ϕinit} = {|ϕHF

gs ⟩} to the (single SDet) Hartree Fock
ground state expanded with the full Hamiltonian (1), i.e.

Ô = H including the full (high dimensional) Uijkl tensor.
We followed Refs. [19, 20] and employed a NN classifier of
the convolutional type [28] shown schematically in Fig. 1.
The parts of the convolutional block (A)—(D) and the
dense block (E)—(F), as well as other NN-related and
implementation details are presented in Appendix VIB.

III. RESULTS

a. Computation of energies For the application of
our NN CI scheme to the ground state of N2 we compute
Hartree-Fock-, total-, and correlation energies, which we
evaluate based on Hamiltonian (1) as

EHF
gs ≡ ⟨ϕHF

gs |H|ϕHF
gs ⟩ (10)

Egs ≡ ⟨Ψgs|H|Ψgs⟩ (11)

Ecorr ≡ Egs − EHF
gs . (12)

Here, |ϕHF
gs ⟩ is the (single SDet) Hartree-Fock ground

state and |Ψgs⟩ is the approximated many-body ground
state 9. Moreover, we perform computations for vari-
ous fixed distances a of the two nitrogen atoms up to
a = 3.0 Å. The resulting dissociation curve Egs(a) allows
for the calculation of the binding energy

Ebind ≡ Egs(a → ∞)−Min [Egs(a)] (13)

with the assumption that Egs(∞) ≈ Egs(a = 3.0 Å).

b. H2 benchmark Before applying our NN CI
method to the N2 case, we first validate our com-
putational protocol using the dissociation curve of

0.5 1.0 1.5 2.0 2.5 3.0 3.5
a [Å]

0.00

0.05

0.10

0.15

0.20

E t
ot

 [E
h]

HF
2 MOs
6 MOs
10 MOs
TBE

FIG. 2. Full CI result for the H2 dissociation curve for dif-
ferent number of Hartree-Fock orbitals, minima aligned at
E = 0. We show the results for different numbers of the un-
derlying single particle MOs as well as the theoretical best
estimate (TBE) published in Ref. [29].

the hydrogen molecule as a benchmark. Here, where
the smaller Hilbert space allows for fCI calculations
without NN assistance. In Fig. 2 we plot the computed
dissociation curve of H2. In the plot we compare our
computations to the published theoretical best estimate
[29]. Specifically, we show the dependency of the fCI
computation w.r.t. the size of the underlying Hartree-
Fock (single-particle) basis. Increasing the number of
these molecular orbitals (MO) up to ten (corresponding
to a many-body Hilbert space spanned by

(
2·10
2

)
= 190

SDets) is sufficient to converge to the exact curve and
proves the feasibility of our general procedure. After
this initial benchmark step we now turn to the case of N2.

c. Binding energy As a first result we present
the N2 binding energy (13), which we computed by
approximating Egs(a → ∞) ≈ Egs(a = 3 Å). In Fig. 3
(a) we plot the convergence of the NN CI result for
three different sizes of the underlying MO basis. The
black dashed line is the experimental value [30] of
Ebind = 0.3638Eh. Each plotted data point presents a
NN selective extension step in our algorithm which in-
creases the dimension of the Hilbert space for the ground
state calculation. While we see monotonous convergence
towards the experimental value upon increasing the size
of the MO basis, the evolution with the NN extension
steps shows quite different behaviour. For smaller basis
sizes the binding energy is overestimated and converges
with increased Hilbert space dimension to a slightly
underestimated value. The reason for this behavior
is the difference in convergence of the total energy at
the equilibrium distance amin and at the dissociation
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FIG. 3. (a) NN CI calculated binding energy for N2 for three different MO basis sets as a function of the dimension of the
selected many-body Hilbert space. (b) dissociation curve computed with NN CI for three different sets of MOs, the Hartree-
Fock reference curve, and experimental data [30]. The curves have been aligned at the minimum energy Min [Egs(a)] ≡ 0. The
inset shows a zoom around the curve minimum .

limit a → ∞.

d. Dissociation curve We now turn to the result for
the full dissociation curve Egs(a) of N2 and compare to
the experimental reference data [30] which was used to
obtain a fit to a modified Morse+Lennard-Jones poten-
tial function which captures the measured frequencies of
the 0-19th vibrational state (the 19th vibrational state
is roughly in the middle w. r. t the depth of the well).
In Fig. 3 (b) we show data up to a = 3.0 Å including
results for three different MO basis sizes as well as the
Hartree-Fock curve. Overall we good agreement with the
experimental curve and a monotonous convergence of
the whole curve to the experimental data with increasing
number of MOs (as previously also seen for Ebind).
While Ebind is known to converge quicker than the full
Egs(a) curve due to error cancellation, our result in Fig. 3
(b) shows a good agreement of the entire curve including
the dissociation limit a → ∞ as well as in the region of
the equilibrium distance. The inset in Fig. 3 (b) is a
zoom around amin and shows that all NN CI calculations
(within our finite a grid) improve the HF value con-
siderably towards the exact value of amin = 1.098 Å [30].

e. Correlation energy Finally, as a last result, we
turn to the computed correlation energy Ecorr (see (10))
at the equilibrium distance of ≈ 1.1 Å. In Fig. 4 we show
NN CI data for the three different MO bases and the
convergence of Ecorr as a function of the Hilbert space
dimension. In order to benchmark our results, we com-
pare to the result of fCI calculations [2] which were ob-
tained on a basis of approx. 1010 SDets with 34 MOs.
The comparison allows for intriguing conclusions: Firstly,
all presented NN CI calculations converge on basis sets
of dimensionalities which are four to five orders of mag-

nitude smaller than for the reference data. Specifically,
for with 52 MOs our distance to the benchmark is less
than ≈ 0.004 Eh on only ≲ 2 · 105 SDets. This result un-
derlines the general feasibility of the selective scheme and
the great potential for finding highly efficient many-body
bases with the help of a NN classifier. Another, equally
remarkable observation is that the size of the underlying
MO basis can be decisive for optimal efficiency. I.e., with
52 MOs we reach the fCI benchmark significantly quicker
than for 46 or 34 MOs. Indeed this observation under-
lines a well known dependence of CI performance on the
choice of the single-particle basis and strongly motivates
MO optimization, such as the correlation optimized vir-
tual orbitals (COVO) [31], for future NN CI studies.

IV. SUMMARY AND CONCLUSION

In summary, we integrated Hartree-Fock calculations
with the formulation of a cluster Hamiltonian to per-
form selective CI calculations for the paradigmatic N2

molecule. Our method follows a very recently proposed
scheme by Bilous et al. [20] and leverages active learning
of a NN classifier for selectively optimizing the many-
body basis. Despite the much more complex interaction
tensor for the N2 model compared to the cluster consid-
ered in [20], our calculations yielded accurate results and
good agreement with experimental data as well as fCI
benchmarks. Specifically we presented results for binding
energies, the dissociation curve, and correlation energies.
Notably, the NN CI approach successfully reproduced fCI
results on significantly smaller (by four to five orders of
magnitude) highly efficient bases. Besides demonstrating
the potential of neural-network-supported optimization
of the many-body basis, our results highlight the dra-
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104 105

dim( )

0.34

0.32

0.30

0.28

0.26
E c

or
r [

E h
]
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46 MOs
52 MOs
fCI, 34 MOs

FIG. 4. N2 correlation energy computed with NN CI for three
different sets of MOs. The benchmark (black dashed line) is
the full CI calculation in [2] using 34 MOs which corresponds
to approx. 1010 (symmetry adapted) basis SDets. All calcu-
lations were done for 2.1 a0 ≈ 1.111 Å.

matic effect of the choice of the underlying single-particle
MO basis. The number of MOs taken into account has
substantial impact on the efficiency and accuracy of the
CI results, suggesting that further improvements could
be achieved through refined MO selection.

The computational efficiency of the neural-network-
supported CI approach demonstrated here for the N2

molecule enables highly accurate calculations across a
much broader range of systems than currently possible,
pushing the boundaries of CI limitations due to the expo-
nential scaling. Future applications of the NN CI scheme
include geometry optimization of atomic structures and
calculations of the energy and intensity of optical transi-
tions, where recently developed state-specific mean-field
methods [32] can provide a basis of orbitals optimized for
excited electronic states.
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VI. APPENDIX

A. Calculation of single- and two-particle integrals
in the projector augmented wave approach

In PAW we write the so called “all-electron” states
(which contain cusps at atomic centers) as

φi,σ(r) = T̂ φ̃i,σ(r) (14)

where φ̃i,σ are “pseudo-electron” spin states, which are

smooth everywhere. T̂ is a linear transformation opera-
tor which corrects for the smooth description of electronic
states near atomic centers

T̂ = 1 +
∑
a

(|ϕ⟩aα − |ϕ̃a
α⟩) ⟨p̃aα| (15)

ϕa
i and ϕ̃a

i are auxiliary partial waves describing the all-
electron and pseudo-electron states in a region of radius
rac around each atomic nuclei (T̂ ensures they are zero ev-
erywhere else). pai are smooth projection functions which
satisfy

⟨paα|φ̃i,σ⟩ =P a
αi,σ (16)

⟨paα|ϕ̃a
β⟩ =δαβ , for | r−Ra |≤ rac (17)

resulting in

φ̃a
i,σ =

∑
i

P a
αi,σϕ̃

a
α (18)

φa
i,σ =T̂ φ̃a

i,σ =
∑
i

P a
αi,σϕ

a
α (19)

i.e. the linear expansion coefficients are the same for all-
and pseudo-electron states. This is general for any linear
projection operator applied to PAW transformed states.
It is convenient to define here an atomic density matrix,
which for a given state is

Da
αβi,σ = P a∗

αi,σP
a
βi,σ (20)

or similarly for any pair of states

Da
αβij,σ = P a∗

αi,σP
a
βj,σ (21)

For clarity the spin index is suppressed in the following
sections.

1. Single particle integrals in PAW

The single-particle integrals in the PAW formalism are

tij = ⟨φ̃i(r) | −
1

2
∇2 | φ̃j(r)⟩

+

∫
ñij(r)

(
ṼCoul(r) + ṼXX(r) +

∑
a

v̄a(r)

)
dr

+

(
∂∆Ea

∂Da
γδij

+

∫
ṼCoul(r)

∂ρ̃(r)

∂Da
γδ

dr

)
Da

αβij , (22)
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where ṼCoul, ṼXX, and v̄a are the Coulomb and exchange
potentials formed by the pseudo electronic wave func-
tions and atomic zero potentials, respectively, and ∆Ea

are atomic corrections, as defined in Ref. 26, 33 The in-
dexation ij is carried out over the spatial electronic wave
functions.

2. Two particle integrals in PAW

The elements of the Coulomb tensor are

Uijkl =

∫
dr

∫
dr′

φ∗
i (r)φj(r)φ

∗
k(r

′)φl(r
′)

| r− r′ |
(23)

=

∫
dr

∫
dr′

nij(r)nkl(r
′)

| r− r′ |
,

where, for instance, Uiijj and Uijij are the Coulomb and
the exchange terms, respectively, and the indexation is
carried out over the spatial electronic wave functions.
Pair valence orbital densities are given by

nij(r) = ⟨φi|r⟩ ⟨r|φj⟩ (24)

= ñij(r) +
∑
a

(na
ij(r

l)− ña
ij(r

l)) . (25)

All atomic centered PAWs and densities are represented
on a radial grid rl. The pseudo pair densities and atomic
pseudo pair densities are modified by adding and sub-
tracting atomic-centered compensation charges

nij(r) = ñij(r) +
∑
a

Z̃a
ij(r)

+
∑
a

((na
ij(r

l)− ña
ij(r

l)− Z̃a
ij(r

l)) (26)

to decouple corrections within different PAW regions (aa′

cross terms). These compensation charges are expanded
in terms of the real-space solid harmonics as

Z̃a
ij(r) =

∑
L

∆a
LαβD

a
αβij g̃

a
L(r) , (27)

ensuring that the atomic regions are electrostatically de-
coupled up to and including the quadrupole moment.
The angular moment atomic expansion coefficients ∆a

Lαβ
are pre-calculated and stored. This means that any cor-
rections to the electrostatic potential are confined to the
augmentation region |r−Ra| ≤ rac and can similarly be
pre-calculated and stored. Expanding Eq. (23) in terms
of Eq. (26) gives

Uijkl =

∫
dr

∫
dr′

(ñij(r) + Z̃a
ij(r))(ñkl(r

′) + Z̃a
kl(r

′))

|r− r′|

+
∑
a

∫
dr

∫
dr′

∆ρaij(r
l)∆ρakl(r

l′)

|rl − rl′ |
(28)

where ∆ρa = na− ña− Z̃a. The term conveniently splits
up in to a pseudo and an atomic correction part

Uijkl = Ũijkl +
∑
a

∆Ua
ijkl (29)

It can be shown [33] that

∆Ua
ijkl = 2

∑
αβγδ

Da
αβijC

a
αβγδD

a
γδkl (30)

where the atomic Coulomb kernel Ca
αβγδ is similarly pre-

calculated and stored.
For the pseudo part, we define the pseudo pair-density

potential

Φ̃ij(r) =

∫
dr′

ñij(r
′) + Z̃a

ij(r
′)

|r− r′|
, (31)

which is solved for using standard Poisson solvers. The
pseudo term is

Ũijkl =

∫
drΦ̃ij(r)

(
ñkl(r) + Z̃a

kl(r)
)

(32)

For real-valued functions the indexes ijkl are invariant
according to the following symmetry operations i ↔
j, k ↔ l, ij ↔ kl, and any combination thereof.
Note that ñii contain a net monopole (

∫
ñiidV ̸= 0).

In the case of a plane-wave basis set a charge neutral-
izing background is added to the simulation cell (with
constant value 1

V

∫
ñiidV ) and the charge neutral elec-

trostatic potential solved for. For all terms involving the
symmetry i = j ∧ k = l the shift in energy due to the
charge neutralization is corrected afterwards.

B. NN-supported CI: Architecture and
implementation

For the basis state selection procedure we employ a NN
classifier of the convolutional type [28], see Fig. 1. The
NN receives candidate SDets |ϕα⟩ in occupation num-
ber representation, i.e. strings of 0s and 1s, as an input
(A). The input is split into two spin channels and then
passes through a filter kernel of size 2 (B), generating
64 feature maps (C). These maps are subsequently pro-
cessed by a kernel of size 1, resulting in 4 output channels
(D). The output is flattened and forwarded to a dense
block (E) which ends with an output layer consisting of
two neurons (F). These neurons classify the input SDet
as “important” or “unimportant” by applying a softmax
activation function. The latter ensures that the outputs
lie between 0 and 1 and sum up to 1, and are therefore
interpretable as the corresponding probabilities.
In all hidden NN layers the rectified linear unit (ReLU)

is employed as the activation function, and the network’s
performance is evaluated using categorical cross-entropy.
The Adam algorithm [34] is used for training, which ter-
minates after no improvement is observed over three con-
secutive epochs, a method known as “early stopping with
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patience”. This architecture has been previously demon-
strated to be efficient for solving the configuration inter-
action (CI) problem [19, 20]. For further comprehensive
details of the iterative algorithm and computational pro-
tocol, we refer to [20].

The NN implementation was carried out using the
Python libraries JAX [35] and FLAX [36]. We inte-
grated this NN block in a common pipeline with our CI
solver. The latter was implemented using the JAX [35],
NumPy [37], Pandas [38] and SciPy [39] libraries.
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