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On 29 May 2023, the LIGO Livingston observatory detected the gravitational-wave signal
GW230529 181500 from the merger of a neutron star with a lower mass-gap compact object. Its long
inspiral signal provides a unique opportunity to test General Relativity (GR) in a parameter space pre-
viously unexplored by strong-field tests. In this work, we performed parameterized inspiral tests of GR
with GW230529 181500. Specifically, we search for deviations in the frequency-domain GW phase by
allowing for agnostic corrections to the post-Newtonian coefficients. We performed tests with the Flexible
Theory Independent (FTI) and Test Infrastructure for General Relativity (TIGER) frameworks using several
quasi-circular waveform models that capture different physical effects (higher modes, spins, tides). We find that
the signal is consistent with GR for all deviation parameters. Assuming the primary object is a black hole, we
obtain particularly tight constraints on the dipole radiation at −1PN order of |δφ̂−2| ≲ 8×10−5, which is a factor
∼ 17 times more stringent than previous bounds from the neutron star–black hole merger GW200115 042309,
as well as on the 0.5PN and 1PN deviation parameters. We discuss some challenges that arise when analyzing
this signal, namely biases due to correlations with tidal effects and the degeneracy between the 0PN deviation
parameter and the chirp mass. To illustrate the importance of GW230529 181500 for tests of GR, we mapped
the agnostic −1PN results to a class of Einstein-scalar-Gauss-Bonnet (ESGB) theories of gravity. We also
conducted an analysis probing the specific phase deviation expected in ESGB theory and obtain an upper
bound on the Gauss-Bonnet coupling of ℓGB ≲ 0.51 M⊙ (

√
αGB ≲ 0.28 km), which is better than any previously

reported constraint.

I. INTRODUCTION

On 29 May 2023, at 18:15:00 UTC, a gravitational wave
(GW) signal emitted from the merger of two compact objects,
most likely a black hole (BH) and a neutron star (NS) [1],
was observed by the Advanced LIGO detector [2, 3]. This
event was named GW230529 181500 and will be referred to
as GW230529 for brevity. It was observed only by the LIGO
Livingston observatory, with a signal-to-noise ratio (SNR) of
11.6 and a false-alarm rate of less than 1 in 1000 years. As-
suming that General Relativity (GR) is the correct theory to
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describe the GW230529 signal, the follow-up analyses esti-
mated the source component masses to be 3.6+0.8

−1.1 M⊙ and
1.4+0.6
−0.2 M⊙ with a 90% credible interval. This puts the pri-

mary squarely in the lower mass gap of ∼ 2 – 5 M⊙, where
few compact objects were observed [4–8]. This event, with
the compact object within the hypothesized mass gap and with
a long inspiral signal, provides an opportunity to test GR in a
region of parameter space previously unexplored by strong-
field tests of GR.

GW230529 is not the first observation to find support for
compact objects in the lower mass gap. A number of recent
studies that have found evidence for compact objects in the
mass gap include observations of noninteracting binary sys-
tems [9, 10], radio pulsar surveys [11], and GWs from com-
pact binary coalescences [6, 8, 12, 13]. When a binary is
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observed with component masses measured in the mass-gap
range of ∼ 2 – 5 M⊙, the immediate challenge is to deter-
mine whether the component in the gap is a NS or a black
hole (BH). Such an identification would be remarkable be-
cause it would either increase the known maximum mass for
a NS [14, 15] or decrease the known minimum mass for a BH
from low-mass X-ray binary observations [16–18]. However,
it has not been conclusively proven whether these components
are BHs, NSs, or something else.

Recent theoretical research has suggested several poten-
tial exotic compact objects, such as gravastars [19], bo-
son stars [20], or Planck-scale modifications of BH hori-
zons [21, 22], which could also fall into this gap. Primor-
dial BHs formed from overdense regions in the early Universe
could also fill the lower mass gap [23]. Besides strophysical
and primordial BHs in GR and exotic compact objects, NSs in
alternative GR theories could also inhabit this gap. For exam-
ple, axionic scalar-tensor theory with viable phenomenologi-
cal equations-of-state (EOS) can produce NSs with maximum
masses larger than 2.5 M⊙, but below the 3 M⊙ threshold [24].
Therefore, the GW230529 signal provides an opportunity to
perform tests of GR to uncover new physics, as well as point-
ing to the existence of potential exotic compact objects.

General Relativity is the simplest and most successful the-
ory of gravity to date, and it has been rigorously validated
by various experimental tests in our Solar System [25], ob-
servations of binary pulsars [26, 27], cosmological data [28],
GWs [29–34], and massive BHs [35]. Recently, the evi-
dence of a stochastic GW background with pulsar timing ar-
rays [36, 37] has also led to some new gravitational tests. De-
spite its overall success, we do not know how to reconcile GR
with quantum mechanics and how (or if) to employ GR to
explain certain cosmological phenomena, such as dark mat-
ter and dark energy. These limitations have motivated the
development of alternative theories of gravity, such as the
Brans-Dicke [38], Horndeski scalar-tensor [39], Aether [40],
Einstein–Gauss-Bonnet [41, 42], Chern-Simons [43, 44] the-
ories, and the effective-field-theory extension of GR [45],
all of which have survived a wide range of experimental
tests [25, 46–49].

The observation of GW signals from coalescences of com-
pact binary systems has opened the avenue for studying the
two-body dynamics in strong gravitational fields with high ve-
locities approaching the speed of light. In contrast, other ob-
servations typically probe states of either weak gravitational
fields — where spacetime curvature is negligible — or where
velocities are well below the speed of light. However, in bi-
nary pulsars, the strongly gravitating bodies allow for strong-
field tests of gravity, albeit for low velocities. Developing an
accurate GW waveform model that captures the entire evolu-
tion of compact binaries is essential for determining source
characteristics, validating the predictions of GR, and explor-
ing potential alternative theories of gravity. However, the de-
velopment of waveforms within specific alternative theories
has not yet reached a level of maturity sufficient to perform
model comparisons with GR. While numerical-relativity sim-
ulations in beyond-GR theories are becoming more preva-
lent, either by solving the full equations of motions [50–

57] or through approximate treatments [58–60], there are not
yet sufficient simulations in one specific theory to calibrate a
semi-analytic inspiral-merger-ringdown model in that theory.
Therefore, semi-analytical inspiral-merger-ringdown models
in alternative theories of gravity that are compared to GW
data either leave the merger like GR [61, 62] or they intro-
duce agnostic parameters in the merger that are then marginal-
ized over during parameter estimation [63]. Another possibil-
ity is to directly compare numerical-relativity simulations in
beyond-GR theories with observational data [59], but those
tests are limited by the lengths of the numerical waveforms
and the region of parameter space where simulations are avail-
able. Nevertheless, there may be a more accurate alternative
theory that we are not aware of.

The alternative models often propose variances in the post-
Newtonian (PN) phase coefficients of the GW signal, which
are derived solving perturbatively the two-body dynamics and
gravitational radiation by a series expansion in the orbital
velocity, intertwined with the strength of the gravitational
field. This has led to the development of theory-agnostic ap-
proaches to parameterized tests of GR [64–68]. The same
framework can be used with search pipelines to detect non-GR
signals [69, 70]. In these parameterized tests, an additional
parameter is introduced into the PN coefficients to represent
generic deviations from GR and a series of Bayesian parame-
ter estimation analyses is performed for each of these parame-
ters. The resulting posterior distribution of a deviation param-
eter indicates whether generic features in the GW signal sug-
gest that GR is not the most probable theory of gravity. Impor-
tantly, claiming a GR-violation would require performing ex-
tensive tests that prove the GR deviation is not due to system-
atics due to waveforms’ inaccuracy, lack of physical effects,
environmental astrophysical effects, and gravitational lens-
ing [71]. The parameterized test in the Bayesian framework
has been extensively developed for the LIGO-Virgo-KAGRA
(LVK) collaboration to test GR as part of the GW transient
catalogs (GWTC) [32–34]. It has been performed using two
implementations: the Flexible Theory-Independent (FTI) ap-
proach [31, 72], which can be applied to any aligned-spin
frequency-domain waveform model, and the Test Infrastruc-
ture for General Relativity (TIGER) approach [73–76], which
is based on a (frequency-domain) phenomenological wave-
form family. In this study, we perform analyses of GW230529
using both approaches with the SEOBNRv4 [77–81] and IM-
RPhenomX [82–84] families, respectively.

Since alternative theories often predict the functional form
of the beyond-GR correction as a parametric variation of the
PN terms, the measurements of phenomenological deviation
parameters can be mapped onto specific alternative theories
of gravity [46, 85, 86]. By using the leading order correction
of an alternative gravity theory, we typically provide a theory-
agnostic bound on the beyond-GR parameters predicted by
that theory. In this work, we use this method to provide
bounds on the Gauss-Bonnet coupling in the class of Einstein-
scalar-Gauss-Bonnet (ESGB) theories of gravity with f ′(0) ,
0. We also perform a theory-specific test for ESGB by im-
plementing all known corrections to the PN terms [87–94].
This includes newly computed corrections at 1.5PN order, as
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given in Appendix C. The corrections to ESGB are larger
for smaller BH masses, so GW230529 provides an excellent
opportunity to probe relatively small values of the coupling.
Previous tests for ESGB have placed constraints on the cou-
pling of

√
αGB ≲ 1.18 km by combining bounds from multiple

events [47].
The rest of this paper is organized as follows. Section II ex-

plains the parameterized inspiral tests of GR used. Section III
describes the setup of the analyses performed. The results and
constraints on deviations from GR obtained for GW230529
are presented in Sec. IV. Finally, in Sec. V we map the agnos-
tic constraints to a specific modified gravity theory, namely
ESGB gravity. In Appendix A, we list the priors used in the
analyses. Appendix B discusses possible false violations of
GR when using too wide priors on the deviation parameters,
which can cause wrap-around in the waveform. Lastly, we list
in Appendix C the ESGB corrections up to 1.5PN order in the
GW phase. Throughout this paper we follow the convention
of G = c = 1.

II. PARAMETERIZED INSPIRAL TESTS OF GR

In GR, the GW signal from the early inspiral of a quasi-
circular compact binary can be approximated using the PN
formalism, which expands the waveform in powers of the ve-
locity v, where O(v2n) relative to the leading order term is
called the nPN order [95, 96]. The frequency domain phase of
a GW signal can then be obtained using the stationary phase
approximation [97]. In GR, it is given by

ΨGR
ℓm ( f ) =2π f tc−ϕc−

π

4

+
3

128ηv5

m
2

7∑
n=0

(
ψGR

n +ψ
GR
n(l) logv

)
vn

(1)

where tc,ϕc are the time and phase at coalescence, v =
(2π f M/m)1/3 with f the GW frequency, M = m1 +m2 is the
total mass, and η = m1m2/M2 is the symmetric mass ratio.
Here, ψGR

n and ψGR
n(l) represent the (n/2)PN coefficients in GR,

and they depend only on the intrinsic parameters of the bi-
nary. The subscript (l) indicates the logarithmic terms that
enter at 2.5PN and 3PN orders. It is also important to note
that the 0.5PN term is absent in GR. The subscript ℓm denotes
the (ℓ,m)-mode in the mode decomposition of the GW signal
into spherical harmonics (not to be confused with the subscript
(l) denoting the coefficients of the log terms). The dominant
mode is the (2,2)-mode, and other modes are referred to as
higher modes.

In beyond-GR theories, these PN coefficients can be differ-
ent from the ones in GR [46, 85, 86]. To test for deviations
from GR during the inspiral, we therefore add a correction to
the frequency domain phase of the form

δΨℓm( f ) =
3

128ηv5

m
2

 7∑
n=−2

δψnv
n+

6∑
n=5

δψn(l)v
n logv

 , (2)

where δψn and δψn(l) are the deviations in the (n/2)PN coeffi-
cients.

For parameterized inspiral tests, we introduce deviation pa-
rameters δφ̂n and δφ̂n(l) that are the fractional deviations of the
corresponding PN coefficients in GR. We thus have that

δψn = δφ̂nψ
GR
n , (3)

δψn(l) = δφ̂n(l)ψ
GR
n(l). (4)

When the (n/2)PN coefficient vanishes in GR (i.e., for n =
−2,1), we instead let δψn = δφ̂n so that it is an absolute devi-
ation normalized to the Newtonian coefficient. We do not test
for δφ̂5 since this would give a constant phase shift and there-
fore be degenerate with the phase at coalescence. We also do
not perform tests at −0.5PN. In this parameterization, GR is
recovered in the limit δφ̂n, δφ̂n(l)→ 0.

We employ two different frameworks that can perform this
type of test of GR: FTI [72] and TIGER [74, 75]. These
two frameworks differ in the GR waveform models used and
the exact implementation of the inspiral test. FTI uses the
SEOBNRv4 waveform family [77–81] and is only available
for aligned spins, while TIGER uses the IMRPhenomX wave-
form family [82–84] and can use precessing spin waveforms.
The main difference in the implementation occurs at the tran-
sition from a non-GR inspiral to the GR merger ringdown. In
FTI, the testing GR corrections are added to the GW phase
of an inspiral-merger-ringdown frequency-domain waveform
from GR. The corrections to the frequency-domain phase are
computed using Eq. (2), and then smoothly tapered off to zero
using a windowing function so that the merger-ringdown sig-
nal coincides with the GR one (for details on how this is done,
see Ref. [72]). This is done for every mode separately and the
corrections are then added together. In the TIGER framework,
the parameterized deviations are incorporated into the GR
phase coefficients of the IMRPhenomXAS model. This model
represents the primary spherical harmonic radiation mode for
the coalescence of nonprecessing binary black hole (BBH)
systems. The inspiral phase of higher-order modes in the time
domain is modeled as a scaling of the dominant quadrupole
mode, allowing any deviations in the inspiral phase to prop-
agate to the higher-order modes. In the phenomenological
model, the separate inspiral and merger-ringdown segments
are smoothly connected by ensuring C1 continuous condition
in both phase and amplitude. When we introduce the varia-
tions in the phase coefficients, we simultaneously adjust the
phase derivative to preserve the continuity. Deviations in the
inspiral phase coefficients do not affect the post-inspiral por-
tion of the waveform. Although TIGER also has the option to
introduce deviations in the post-inspiral part of the waveform,
we do not use that in this work.

III. ANALYSIS SETUP

As baseline GR models for the FTI framework, we use
the waveform models based on SEOBNRv4HM ROM [79],
which is the reduced order, frequency-domain version of
the time-domain model SEOBNRv4HM [77, 78]. It is
an effective-one-body (EOB) waveform model for BBHs,
that assumes quasi-circular orbits and aligned spins, and
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includes the modes: (2,2), (2,1), (3,3), (4,4), and
(5,5)1. Its neutron star–black hole (NSBH) version SEOB-
NRv4 ROM NRTidalv2 NSBH [80, 81] contains only the
dominant (2,2)-mode, and allows for tidal deformabil-
ity of the secondary object and tidal disruption. We
also use its binary neutron star (BNS) version SEOB-
NRv4 ROM NRTidalv2, which has tidal effects on both com-
ponents and contains the (2,2)-mode only. With the TIGER
framework, we use the models based on IMRPhenomX-
PHM [82, 83], which is a phenomenological waveform model
that allows for precessing spins and includes the higher
modes: (2,2), (2,1), (3,3), (3,2), and (4,4). Its BNS ver-
sion IMRPhenomXP NRTidalv2 [80, 84] allows for tides on
both component objects and is (2,2)-mode only. To investi-
gate the effect of waveform systematics due to the presence
of precession, higher harmonics, or difference in waveform
treatment, we also perform the parametrized test using SEOB-
NRv4 ROM, IMRPhenomXP, and IMRPhenomXHM models.
An overview of the models used and the physics they include
is given in Table I. The waveforms are generated using Bilby
TGR [98] and LALSimulation [99, 100].

For parameter estimation, we employ Bayesian inference
using Bilby [101–103]. We use the standard likelihood func-
tion assuming additive noise that is stationary and Gaussian.
The one dimensional posteriors for the deviation parameters
are obtained by marginalizing over all other parameters. The
sampling algorithm used is nested sampling with the Dynesty
sampler [104]. We only allow one deviation parameter to vary
at a time and repeat the analysis for each deviation parame-
ter. We use uniform priors for the deviation parameters. The
priors used are listed in Appendix A.

We analyze 128 seconds of data from the LIGO Livingston
Observatory with a sampling frequency of 4096 Hz. The anal-
ysis is done over the frequency range 20 Hz to 1792 Hz when
calculating the likelihood. The power spectral density used to
describe the noise was produced with BayesWave [105, 106].

IV. RESULTS

The posteriors for the different deviation parameters are
shown in Fig. 1. The blue violins on the left are obtained
with TIGER, while the orange violins on the right are results
from FTI. The filled violins do not have tidal effects, while the
unfilled violins with dash and continuous lines are for wave-
form models including tidal effects. Table II shows the val-
ues for the deviation parameters found for GW230529 and
the quantile corresponding to GR. We see that all results ob-
tained are consistent with GR, except for the 0PN results. We
will first discuss in Sec. IV A in more detail the results ob-
tained with BBH waveforms. Then, in Sec. IV B, we explain
the effects that tides in the NSBH and BNS models have on
the results. Finally, we will discuss the 0PN results in more
detail in Sec. IV C.

1 We do not include the (5,5)-mode in our FTI analyses, but do use all other
modes available.

A. Binary black hole waveforms

The results for the aligned-spin PhenomXHM, spin-
precessing (2,2)-mode PhenomXP, and aligned-spin (2,2)-
mode SEOB are not shown in the violin plot, but they are
similar to the spin-precessing PhenomXPHM and aligned-spin
SEOBHM results, respectively. It is not surprising that the re-
sults for spin-precessing PhenomXPHM and aligned-spin Phe-
nomXHM agree, since for GW230529 there was no evidence
found for spin-precession (the posteriors on the effective pre-
cessing spin were uninformative [1]). It was also expected
that the results for PhenomXPHM and PhenomXP agree well,
because for the SNR and source parameters of GW230529,
the higher modes are not expected to strongly contribute. The
posteriors for SEOB are slightly wider than for SEOBHM, but
otherwise agree well. The increase in width is most likely due
to a slight loss in SNR when not including the higher-order
modes.

Let us compare the FTI and TIGER results for BBH wave-
form models by comparing PhenomXPHM (blue filled) and
SEOBHM (orange filled) results with each other. Differences
between these results can come from waveform systemat-
ics, for example the details of how the waveforms are con-
structed and the approximations made therein, or from dif-
ferences in the implementation of the inspiral test of GR in
FTI and TIGER. This is a good consistency check to see that
both pipelines work as intended. Looking at the filled violins
in Fig. 1, we see that the results are consistent with each other
(except for δφ̂0). There are sometimes some minor differences
between the SEOBHM and PhenomXHM, e.g. one posterior
is slightly wider than the other, but there are no major differ-
ences.

B. Waveforms with tidal effects

When looking at the waveforms with tidal effects in Fig. 1,
we see that there are no major differences between Phe-
nomXPT (blue dashed line) and SEOBT (orange dashed line).
However, we notice that there are significant differences com-
pared to the waveforms without tidal effects (filled violins).
The posteriors for PhenomXPT and SEOBT, which have tides
on both compact objects, are shifted away from GR and are
wider compared to the results without tidal effects. This also
happens to a lesser amount for SEOBNSBH (red solid line),
which only has tides on the secondary object.

The NRTidalv2 models [80] modify the BBH waveforms
to account for differences in the waveform coming from tides
and other NS matter effects. Both the phase and amplitude
are modified due to tidal effects, which are modeled using the
tidal deformabilities Λi of the two objects. For BHs, the tidal
deformability is zero, so the NSBH model SEOBNSBH en-
forces Λ1 = 0. We do not expect changes in the amplitude
to significantly influence our results because, in the param-
eterized inspiral tests, we only modify the frequency domain
phase. We therefore only expect the change in phase evolution
to influence the posteriors on the deviation parameters for the
BNS and NSBH models.
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Waveform model Short name Color Higher modes Spin precession Tides
SEOBNRv4HM ROM [77–79] SEOBHM • ✓ - -
SEOBNRv4 ROM [77] SEOB - - -
SEOBNRv4 ROM NRTidalv2 NSBH [80, 81] SEOBNSBH • - - ✓(NSBH)
SEOBNRv4 ROM NRTidalv2 [79, 80] SEOBT • - - ✓(BNS)
IMRPhenomXPHM [82] PhenomXPHM • ✓ ✓ -
IMRPhenomXHM [83] PhenomXHM ✓ - -
IMRPhenomXP [82] PhenomXP - ✓ -
IMRPhenomXP NRTidalv2 [80, 84] PhenomXPT • - ✓ ✓(BNS)

Table I. An overview of the different waveform models that we use in this work and the physics they include (higher modes or (2,2)-mode
only, spin precession or aligned spins only, allowing for tidal effects). We will refer to them throughout this paper using the shortened name
and use the color indicated in the plots.

Figure 1. The posterior distributions for the different deviation parameters δφ̂n, δφ̂n(l) for GW230529. The blue histograms are obtained with
TIGER using the IMRPhenomX waveform family. The orange posteriors are results from FTI using the SEOBNRv4 waveform family. The
filled violins are for BBH waveforms models, while the dashed lines are BNS models which include tidal effects on both components, and the
red solid line is an NSBH model with tides only on the secondary. GR is recovered at δφ̂i = 0, which is indicated by the horizontal gray line.
All results are consistent with GR except for 0PN, which will be discussed in more detail in Sec. IV C.

The merger-ringdown is modeled differently for BNS and
NSBH models. The merger frequency of the PhenomXPT and
SEOBT models is calibrated to NR. Above this frequency,
the amplitude is smoothly tapered off to zero in an agnostic
way [80]. The reason for this is that the merger-ringdown
of BNSs is not modeled well enough, and, more importantly,
the merger frequency is typically high enough that the post-
merger signal is outside the sensitive frequency band of cur-
rent detectors, hence, no bias is expected during parameter
estimation [107]. When using these models for GW230529,
the merger frequency is lower and inside the frequency band
analyzed. To check that the amplitude tapering is not influ-
encing our results, we also did an analysis with a maximum
frequency of 400 Hz, which is below the merger frequency.
No differences were found between the posteriors, so the am-
plitude tapering is not causing the shift away form GR that we
observe when using PhenomXPT and SEOBT.

For SEOBNSBH, the merger-ringdown is modeled differ-
ently. For NSBHs, tidal disruption of the NS can happen

when the tidal disruption frequency is lower than the ring-
down frequency [81]. If this happens, then the amplitude
is smoothly tapered off above the tidal disruption frequency.
Otherwise, the merger-ringdown is modeled similarly to the
merger-ringdown of BBHs, with a slightly suppressed ampli-
tude. For GW230529, the NS most likely gets tidally dis-
rupted [1, 108]. However, the tidal disruption frequency is
above the maximum frequency used in our analysis [1, 81].
We therefore do not expect tidal disruption to influence our
results.

During inspiral, both the phase and amplitude are modified
due to tidal effects. Because the tidal deformability is always
positive (at least for NSs), the change in phase is always in the
same direction. The deviation parameters try to cancel this ef-
fect by changing the phase in the opposite way. This means
that a nonzero Λ will always lead to a specific δφ̂n to shift
towards either positive or negative values (depending on the
sign of the PN coefficient in GR), but not both. This explains
why the deviation parameters all shift away from zero for the
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Parameter SEOBHM SEOBNSBH PhenomXPHM PhenomXPT
δφ̂i QGR δφ̂n QGR δφ̂i QGR δφ̂i QGR

δφ̂−2 2.5+7.2
−6.1 ×10−5 23% 4.6+22

−6.8 ×10−5 14% 0.1+8.7
−6.8 ×10−5 49% 14+27

−12 ×10−5 3%
δφ̂0 4.2+0.6

−1.2 0% 1.6+1.7
−0.8 0% 2.0+1.2

−0.4 0% 3.4+1.1
−1.0 0%

δφ̂1 −0.04+0.11
−0.10 75% −0.12+0.15

−0.21 90% −0.04+0.15
−0.15 67% −0.25+0.17

−0.22 99%
δφ̂2 −0.06+0.11

−0.11 82% −0.14+0.16
−0.15 93% −0.04+0.15

−0.14 69% −0.23+0.13
−0.16 99%

δφ̂3 0.11+0.15
−0.16 13% 0.17+0.18

−0.21 9% 0.07+0.21
−0.23 30% 0.23+0.15

−0.17 2%
δφ̂4 −0.4+2.7

−2.3 61% 0.5+3.7
−2.6 40% −0.1+2.8

−2.9 51% 1.0+3.0
−3.0 32%

δφ̂5l 0.01+0.79
−0.60 49% −0.27+0.74

−0.68 73% −0.03+0.81
−0.68 54% −1.1+1.2

−1.7 94%
δφ̂6 0.0+1.6

−1.3 49% 0.7+1.8
−1.4 21% 0.1+1.4

−1.2 46% 2.4+2.9
−2.1 3%

δφ̂6l −0.9+8.1
−6.1 59% −3.0+7.3

−6.7 75% −0.2+4.5
−4.0 54% −7.0+7.2

−9.9 95%
δφ̂7 0.6+3.3

−4.3 40% −1.5+3.4
−4.7 77% −0.1+3.7

−4.7 52% −8.9+7.7
−10 97%

Table II. The values for the different deviation parameters δφ̂n, δφ̂n(l) obtained with GW230529. Displayed are the median values and 90%
confidence intervals inferred. We also display the quantile QGR corresponding to the GR value δφ̂i = 0.

BNS and NSBH models compared to the GR models. The
shift is less strong for the NSBH model since there is only one
tidal parameter that is nonzero so the tides have less of an ef-
fect. The extra tidal parameters also lead to broadening of the
posteriors, especially for low SNR signals where their values
are not well measured. Of course, this explanation is over-
simplified due to correlations between the tides and other GR
parameters as well as the deviation parameters, but nonethe-
less it explains why there is a shift away from GR and not just
a broadening of the posteriors.

To check that this reasoning is correct, we look at the Λi
– δφ̂n posteriors in Fig. 2. The top plot shows the posteriors
from an NSBH run for the 0.5PN deviation parameter (red).
We see in the 2D posterior that δφ̂1 shifts away from 0 for
larger values of Λ2. This can be seen in the histogram where
it has more support for negative values of δφ̂1 than is the case
for the corresponding BBH run (orange). If we restrict the
tidal deformability to Λ2 < 1000 (green shaded area), which is
a more realistic range based on the mass of the secondary and
current constraints on the NS EOS [109] and it is consistent
with what was found using an astrophysically-motivated prior
in Ref. [1], then the shift away from GR goes away and the
posterior (green histogram) becomes similar to the BBH one.

In the middle and bottom plots of Fig. 2 we look at BNS
runs (dark blue) for the −1PN deviation parameter (middle)
and 3.5PN deviation parameter (bottom). Here we see the
same effect where δφ̂−2 and δφ̂7 are correlated with Λ1 and
they shift away from GR for large values of Λ1. If we now
restrict the tides to small values of Λ1 < 3002 and the more
realistic values of Λ2 < 1000 (green shaded area) [1, 109],
we once again see that this leads to the posterior (green his-
togram) shifting to the BBH one (light blue). This behavior is
also seen for the other deviation parameters.

2 More realistically, using the EOS set of [109], the tidal deformability for
a NS with masses above 2.5M⊙ (if such masses are supported) would be
Λ ≲ 5. Restricting Λ1 to such low values would however leave us with too
few samples to say anything sensible. We therefore went with a larger cut
off value that is a balance between the number of samples left and keeping
the tides realistic.

We conclude that the shift away from GR of the posteriors
on the deviation parameters for the SEOBNSBH and espe-
cially the PhenomXPT and SEOBT waveform models is most
likely due to correlations between the deviation parameters
and the tidal deformability combined with the tidal deforma-
bility not being well constrained. Constraining the tidal de-
formability of the two objects to more realistic values based
on their masses removes this shift away from GR. Since the
NSBH and BNS results with the tides constrained to realistic
values are similar to the BBH results, we will use the BBH
results from now on (unless otherwise specified), even though
GW230529 is most likely a NSBH [1].

C. Degeneracy between 0PN-deviation parameter and chirp
mass

At low frequencies (i.e., during early inspiral), the phase of
a GR waveform is dominated by the 0PN term. In our testing
GR waveform model, the phase contribution from the 0PN
term is given by

Ψ0PN
ℓm ( f ) =

3
128ηv5

m
2

(1+δφ̂0)ψGR
0 =C0

1+δφ̂0

M
5/3
c

f −5/3, (5)

where C0 is a constant that does not depend on the intrinsic
parameters of the binary and Mc = η

3/5M is the chirp mass.
This means that in the frequency regime where the 0PN term
is dominant, the deviation parameter δφ̂0 is degenerate with
the chirp mass of the binary, so the two are strongly correlated
(see also Sec. IVC in Ref. [72]). Assuming that the binary
is consistent with GR and that the true chirp mass is equal to
MGR

c , this correlation is given by

δφ̂0 =

(
Mc

MGR
c

)5/3

−1. (6)

For low chirp-mass systems, the late-inspiral and merger-
ringdown are outside the frequency band observed by the GW
detectors. For such systems, this degeneracy at 0PN means
that, when doing inspiral tests of GR at 0PN, the chirp mass
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Figure 2. The 2D posteriors between the tidal deformability Λi and
deviation parameters δφ̂n (red and dark blue). The green shaded re-
gions are more realistic ranges for the tides, which, when restricting
the posterior to those regions, give the green histograms. The orange
and light blue histograms are the posterior obtained with the compa-
rable BBH models. The top plot is for an NSBH waveform, while
the other two are with a BNS waveform. We see that there is a corre-
lation between the tides and the deviation parameters, which leads to
a shift away from GR. When restricting the tides to more reasonable
values, this shift disappears.

Figure 3. The 2D posterior between the chirp massMc and the 0PN
deviation parameter δφ̂0 using the SEOBHM waveform model (or-
ange). The green dot indicates the maximum likelihood values ob-
tained with a GR run. The dark green line is the expected degeneracy
between Mc and δφ̂0 based on the GR maximum likelihood chirp
massMGR

c as per Eq. (6). We see that the posterior follows the ex-
pected correlation.

can take any value and δφ̂0 can be used to compensate with-
out significantly altering the waveform. For high enough chirp
mass, the late inspiral and merger-ringdown move into the fre-
quency band used for analysis. This eventually breaks the de-
generacy, and such high values of the chirp mass would then
be disfavored. This means that theMc – δφ̂0 posterior is more
or less free to move along the line of the degeneracy between
the two, until it reaches too high values of the chirp mass.

Figure 3 shows the 2D posterior of the chirp massMc and
0PN deviation parameter δφ̂0 for GW230529 obtained with
SEOBHM (orange). The maximum likelihood sample from
a GR run with SEOBHM is highlighted in green. This is
also the value used in Eq. (6) to compute the correlation (dark
green). We see that the posterior closely follows the correla-
tion that is expected from the 0PN degeneracy.

To check that this degeneracy should be present in
GW230529-like signals, we compute the mismatch between
the maximum likelihood GR waveform and non-GR wave-
forms using PhenomXPHM. We vary the chirp mass and 0PN
deviation coefficient, but keep all other parameters the same,
and the mismatch is minimized over time and phase. Figure 4
gives a map of these mismatches. We see that there is a line
along which the mismatch is small. This line corresponds to
the correlation in Eq. (6). We notice that the low mismatch re-
gion becomes wider for larger chirp mass (see also the insets).

As an extra check that this strong correlation should indeed
be present in a GR signal with similar source parameters as
GW230925, we inject the maximum likelihood GR waveform
using SEOBHM into a zero-noise realization of the LIGO Liv-
ingston detector with the same power spectral density as at
the time of GW230529. We then evaluate the likelihood for
random values of the chirp mass and 0PN deviation param-
eter, while keeping the other parameters the same as for the
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Figure 4. The mismatch between the maximum likelihood waveform
from a GR run using PhenomXPHM and non-GR waveforms as a
function of chirp mass Mc and the 0PN deviation parameter δφ̂0.
We clearly see the presence of the degeneracy from Eq. (6). The
insets show a zoom-in on two regions around the degeneracy line.
We notice that the low mismatch region becomes wider for larger
chirp mass.

Figure 5. The likelihood for non-GR waveforms as a function of
chirp massMc and the 0PN deviation parameter δφ̂0 when injecting
the maximum likelihood waveform from a GR run using SEOBHM.
The injected values are indicated by the red star, and the red line
is the expected degeneracy according to Eq. (6). We see that the
high likelihood region is sharply peaked and follows the expected
correlation.

injected waveform. This gives the likelihood map shown in
Fig. 5. The red star indicates the injected values, and the red
line shows the expected degeneracy in the waveform accord-
ing to Eq. (6). We see that the maximum likelihood region
(yellow colors) indeed follows this line. There is no visi-
ble gradient along the line, which confirms that the waveform
does not significantly change along the line (at least not within
this chirp mass range).

When looking at Fig. 3, we also notice that the posterior is
away from the GR value of δφ̂0 = 0. There could be multiple
causes for this shift away from GR, which we will explain
below. Most likely, a combination of them are playing a role
for GW230529.

Because the likelihood barely changes along the line of the
correlation, small changes in the likelihood due to, for exam-
ple, noise could push the posterior to certain values. Normally
when having multiple detectors observing a signal, the expec-
tation is that such fluctuations due to noise cancel each other
out between the detectors since the noise is mostly uncorre-
lated. For single-detector events, the correlation between de-
tectors cannot be used to prevent extra testing GR parameters
being fitted to noise features. Because this event is single de-
tector, the noise might indeed be playing a part in the shift of
the posterior towards higher chirp mass and δφ̂0.

It is known that noise effects such as non-stationarity, non-
gaussianity, and glitches can impact tests of GR [34, 71, 110,
111] and even parameter estimation in GR [112–115]. More
studies would be needed to see if biases like the shift away
from GR at 0PN can be produced by noise and to see if biases
in tests of GR due to noise effects are indeed enhanced for
single-detector events. There was no transient noise found
around GW230529 [1], so we do not expect the noise to be
majorly impacting our results.

The choice of prior could also significantly influence the
posterior when there is such a degeneracy. For testing GR
parameters that are strongly correlated with astrophysical pa-
rameters, this is a known issue, and it is therefore important
to choose the correct priors [116]. We used a prior for the
chirp mass that is uniform in the component masses, which
translates to a preference for higher chirp-mass values. Since
the waveform (and thus the likelihood) does not change much
along this degeneracy, the posterior is likely shifted towards
higher chirp mass and δφ̂0 because of this choice of prior.

Payne et al. [116] show that an astrophysically informed
prior can help mitigate biases in tests of GR. To check the ef-
fect the choice of prior has on the 0PN results for GW230529,
we also performed an analysis with a prior that resembles their
astrophysical prior for the primary mass and mass ratio (see
Eqs. (5) and (6) in Ref. [116]). Instead of inferring the powers
α and β, we fix their values to α = 3 and β = 3, which is con-
sistent with their results for the 0PN test. Note that we extend
their prior to lower masses, where the power law is no longer
representative of the astrophysical population, but does ex-
emplify a simple analytic prior that prefers lower masses and
more equal masses. We also performed an analysis where we
use a prior that is uniform in the chirp mass and mass ratio.
The results are shown in Fig. 6. We see that the low-mass-
inclined power law prior (blue) gives results that are consis-
tent with GR. The results also show more equal masses, which
is expected considering the prior prefers this, and a negative
effective spin. This shift towards more equal masses and neg-
ative effective spin also happens for GR when using certain
population-informed priors [1]. The results with the prior uni-
form in chirp mass and mass ratio (red) agree well with the
results using our default prior that is uniform in the compo-
nent masses (orange). This confirms that the apparent devia-
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Figure 6. The results for the 0PN analysis using different priors
for the masses obtained with SEOBHM. We see that the low-mass-
inclined power law prior (blue) gives results that are consistent with
GR as opposed to the default uniform in component masses prior
(orange) and the uniform in chirp mass and mass ratio prior (red).
We also show the posteriors for a GR run using the default prior and
SEOBHM.

tion from GR for δφ̂0 is prior dependent and most likely not a
true deviation.

Another effect that could be causing the shift of the poste-
rior towards higher chirp mass is some sampling issue. As can
be seen in Fig. 5, the likelihood is sharply peaked around the
correlation line (i.e., it is extremely narrow and elongated). It
is often difficult for the sampler to find such narrow features
in the likelihood. We see in Fig. 4 that the low mismatch re-
gion becomes wider for high chirp mass, which means that
the high-likelihood region also becomes wider for high chirp
mass. This makes it easier for the sampler to find that part
of the high-likelihood region. This could be part of the cause
for the shift of the posterior towards high chirp mass and δφ̂0.
Changing the parameterization and priors used could make it
easier for the sampler to find the high likelihood region in the
lower chirp mass regime.

Lastly, GW230529 being detected by only the LIGO Liv-
ingston detector might also lead to biases. For single-detector
events, the extrinsic parameters are not well measured. Cor-
relations between parameters could then mean that intrinsic
parameters are also less well measured than would be the
case when an event is detected by multiple detectors. The
chirp mass, luminosity distance, and inclination are correlated
through the amplitude of the signal. In GR, the chirp mass is
being well measured in the phase and the amplitude is not
needed to constrain it. Since the chirp mass is free to change
together with δφ̂0 in the phasing for low-mass systems, the
amplitude would help constrain the chirp mass. But for single-
detector events, the inclination and distance are not well mea-

sured (multiple detectors are needed for that). Indeed, we also
see that the luminosity distance is wider and shifted towards
larger values compared to the GR run. This increase in corre-
lations for single-detector events could be contributing to the
bias in chirp mass and δφ̂0. This could also explain why this
shift away from GR is not observed as strongly for the BNS
GW170817 [31] and the NSBH GW200115 042309 [34],
which were both observed in three detectors.

As a check to see that this shift away from GR is not a
true deviation from GR, we performed parameter estimation
on zero-noise injections of the maximum likelihood wave-
form from the corresponding GR run using SEOBHM and
PhenomXPHM. Figure 7 shows that the posteriors obtained
for the chirp mass and δφ̂0 (green) are again shifted towards
higher values away from GR and the true chirp mass (green
dashed lines), but they are different from the ones obtained
for GW230529 using the same waveform models (light or-
ange and light blue). The differences are of the same order
as the differences we get between different waveform models.
From this we can conclude that the noise is most likely not
the dominant factor in the shift away from GR, but we cannot
fully exclude that it might be playing a part.

We conclude that for GW230529 the results show a strong
correlation between the 0PN deviation parameter and the chirp
mass, and that this correlation matches the expected degener-
acy that would be there for a GR signal with such low masses.
Even though the posterior excludes the GR values, we do not
consider the 0PN results for GW230529 as evidence against
consistency with GR, because the shift away from zero is
along the line of this degeneracy. We also observe a similar
shift away from GR for a zero-noise injection with the max-
imum likelihood GR waveform, which further confirms that
the 0PN results for GW230529 are most likely not a true de-
viation from GR.

D. Comparison with previous events

Figure 8 shows the 90% upper bounds on the deviation co-
efficients found for GW230529 (green stars), as well as the
combined bounds from testing GR with GWTC-2 [33] (or-
ange triangles) and GWTC-3 [34] (red diamonds). The plot
also shows for comparison the bounds from GW170817 [31]
(blue circles) and other bounds from individual events (grey
stripes). Most noteworthy is the bound on the −1PN devi-
ation of |δφ̂−2| ≲ 8× 10−5. This is a factor ∼ 17 better than
previous bounds from the NSBH GW200115 042309. It is
also tighter than the combined constraint from GWTC-3 of
|δφ̂−2| ≲ 8× 10−4, which combined the results from all NS-
BHs and BBHs in GWTC-3 for which the LVK performed
tests of GR. The only previous −1PN bound that is tighter
than our constraints from GW230529, is the results for BNS
GW170817, from which a bound of |δφ̂−2| ≲ 2×10−5 was ob-
tained. The bounds found at 0.5PN and 1PN are also relatively
tight, with |δφ̂1| ≲ 0.2 even being similar to the previous com-
bined bounds.

We would expect the degeneracy at 0PN to also be there for
other low-mass events. This is indeed the case for the BNS
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Figure 7. The posteriors for the chirp mass Mc and 0PN deviation parameter δφ̂0 for zero-noise injections of the maximum likelihood
waveform from the corresponding GR run (green), compared to the posteriors obtained for GW230529 with the different waveform models.
Left shows the posteriors obtained with FTI and right shows the results from TIGER. We see that the results from the GR injections are biased
towards higherMc and positive δφ̂0 and are similar to the GW230529 results.

Figure 8. The bounds for the different deviation parameters δφ̂n, δφ̂n(l) obtained with GW230529 (green stars) compared to previously obtained
bounds. We show the results obtained with the BBH waveforms as a proxy for an NSBH with realistic tides, as discussed in Sec. IV B. The
orange triangles and red diamonds are bounds from GWTC-2 and GWTC-3 respectively, obtained by combining the posteriors for different
events together (using SEOBNRv4 ROM and IMRPhenomPv2). The blue circles are the bounds obtained with binary NS GW170817 (where
they used SEOBNRv4 ROM NRTidalv2 and IMRPhenomPv2 NRTidalv2). The grey stripes are bounds from individual events in GWTC-2
and GWTC-3. We see that GW230529 gives exceptionally tight bounds for the −1PN, 0.5PN, and 1PN deviation parameters. (Adapted from
Ref. [34].)
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GW170817 [31] and the NSBH GW200115 042309 [34].
Those two events also show the shift away from GR towards
positive δφ̂0, however, not as strong as for GW230529 and
they still have support for GR. This is most likely due to those
events being observed in three detectors, so there are less de-
generacies with extrinsic parameters.

V. TESTS OF ESGB GRAVITY

To illustrate the importance of the −1PN bounds from
GW230529 for constraints on specific alternative theories of
gravity, we have here a look at ESGB [41, 42]. ESGB is a
modified gravity theory where a scalar field is coupled to the
Gauss-Bonnet density. It is described by the action

S =
1

16π

∫
dx4 √−g

(
R−2(∂ϕ)2+ ℓ2

GB f (ϕ)G
)
. (7)

Here, g is the metric determinant, R is the Ricci scalar, ϕ is a
scalar field with kinetic term (∂ϕ)2 = gµν∂µϕ∂νϕ, and G is the
Gauss-Bonnet invariant

G = RµνρσRµνρσ−4RµνRµν+R2, (8)

where Rµνρσ is the Riemann tensor and Rµν the Ricci tensor.
The integral over a four-dimensional spacetime

∫
d4x
√
−gG

is a boundary term [117]. The function f (ϕ), thus defined
modulo a constant, specifies the theory. As for ℓGB, it is
the Gauss-Bonnet coupling strength with dimension of length.
We assume that matter fields are minimally coupled to gµν.

In this paper, we consider the class of theories such that
f ′(0) , 0. Without loss of generality, the function f (ϕ) can be
expanded as follows:

f (ϕ) = 2ϕ+O(ϕ2). (9)

At leading order in ϕ, the action (7) reduces to that of shift-
symmetric ESGB theories [89], which is invariant under the
shift ϕ→ ϕ+∆ϕ, where ∆ϕ is a constant. This is equivalent to
the small-ϕ approximation of Einstein-dilaton-Gauss-Bonnet
for which f (ϕ) = eγϕ with a constant γ (the value of γ can
be absorbed into the coupling constant). Here, we use the
convention of Refs. [89, 93, 94]. Another convention denotes
the Gauss-Bonnet coupling by αGB [47], which is related to
our ℓGB as α2

GB = ℓ
4
GB/(16π).

It is possible to find the ESGB corrections to the GW phase
during inspiral using the PN formalism. The leading-order
correction to the frequency domain phase in ESGB appears
at −1PN due to scalar dipole radiation. In the class of ESGB
theories (9) and at O

(
ℓ4

GB

)
, it reads [47]

δφ̂−2 = −5ℓ4
GB

(
m2

1s2−m2
2s1

)2

168m4
1m4

2

, (10)

where m1,2 are the masses of the compact objects, while s1,2
were introduced in Refs. [46, 47]. Here, s is defined as the
scalar monopole of a body at O(ℓ2

GB), divided by that of a
nonspinning BHs with the same mass [89]. The higher-order

corrections have been fully computed up to 1PN (2PN relative
order) for nonspinning binaries in the past [87–91, 93, 94].
These higher-order corrections are given in Appendix C. We
also provide the full 1.5PN correction in Eq. (C1e), which is
new to this paper.

In the class of ESGB theories (9), NSs cannot carry scalar
monopoles at O(ℓ2

GB) so s = 0 [47, 87, 118], and for nonspin-
ning BHs, s = 1 [89]. So for a binary consisting of a NS and a
nonspinning BH, Eq. (10) can be simplified to

δφ̂−2 =
−5ℓ4

GB

168m4
1

, (11)

where m1 is the mass of the BH. When computing the ESGB
corrections for GW230529, we assume the secondary to be
a NS independently of the waveform model used (remember
that we use the BBH results as a proxy for the NSBH results
with realistic tides).

A. Constraints on ESGB by mapping agnostic results

It is possible to get approximate constraints on the ESGB
coupling from theory-agnostic tests. This is done by mapping
the −1PN agnostic constraints to the ESGB coupling using the
leading order correction. Inverting Eq. (11) gives

ℓGB =

−168m4
1δφ̂−2

5

1/4

(12)

Note that we need to restrict ourselves to negative values of
δφ̂−2. When mapping posteriors, we also need to reweight the
samples to account for differing priors. To map from a prior
uniform in δφ̂−2 to a prior uniform in ℓGB, the new sample
weights w become

w =
∂ℓGB

∂(δφ̂−2)
=

ℓGB

4δφ̂−2
. (13)

The posteriors obtained by mapping the agnostic posteri-
ors for δφ̂−2 to ℓGB are shown in the top panel in Fig. 9. We
see that the posteriors for results obtained with SEOBHM (or-
ange), SEOBNSBH (red), and PhenomXPHM (blue) do not
significantly differ. The gap between ℓGB ∼ 0.1 and 0 is not
due to lack of support for GR. It is rather an effect of the
sampling and reweighting due to the ℓ4

GB dependence of δφ̂−2.
Values of ℓGB ≲ 0.1 in this case require δφ−2 ≲ 10−8, which is
four orders of magnitude smaller than the bound found. The
limited number of samples is therefore causing a gap for small
values. This is also the reason why the lower end of the pos-
terior looks so ragged; there is only a few samples that have
a relatively large weight. We would need many more samples
to close this gap and make the posterior smooth for small ℓGB.

The 90% upper bound on the ESGB coupling (indicated
with dashed lines in Fig. 9) is ℓGB ≲ 0.67 M⊙ or

√
αGB ≲

0.37 km (for SEOBHM and SEOBNSBH, for PhenomXPHM
the bound is ℓGB ≲ 0.72 M⊙ or

√
αGB ≲ 0.40 km). This

bound can be improved by including higher PN order effects
in ESGB. In the next section, we include these effects in a
theory-specific inspiral test for ESGB.
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Figure 9. Top: Posteriors for the ESGB coupling ℓGB obtained by
reweighting the δφ̂−2 posterior. Bottom: Posteriors for the Einstine-
scalar-Gauss Bonnet coupling ℓGB from the theory-specific test. The
top axes show a slightly different definition of the ESGB coupling
√
αGB = ℓGB/(2π1/4) that is also commonly used.

B. Theory-specific test for ESGB

Due to the flexibility of the FTI framework, we can not only
use it to do theory-agnostic inspiral test, but also for theory-
specific inspiral tests [72]. This is done by explicitly using
the corrections to the frequency-domain phase from a specific
theory. This means that we can not only use the leading-
order corrections, but also the higher-order corrections. For
ESGB, we can thus use all corrections up to 1.5PN, as given in
Appendix C. We only add corrections to the dominant (2,2)-
mode. We can then do Bayesian inference sampling over the
ESGB coupling ℓGB, where we use a prior uniform in ℓGB.
A posteriori, we check that the requirement (ℓGB/m1)4 ≪ 1
holds, which comes from the small coupling approximation
that is made in the derivation of the coefficients.

The results from the theory-specific ESGB test are shown in
the bottom panel of Fig. 9. Note that for this case the posterior
looks much smoother for small ℓGB than was the case for the

mapping and there is no gap close to zero. That is because we
are now sampling directly on ℓGB so there is no problems with
under-sampling low values of the coupling.

The constraint on the ESGB coupling found using
SEOBHM (orange) is ℓGB ≲ 0.51 M⊙ or

√
αGB ≲ 0.28 km,

and using SEOBNSBH gives slightly worse constraints of
ℓGB ≲ 0.62 M⊙ or

√
αGB ≲ 0.35 km (red). We notice that the

bounds obtained with the theory-specific test are better than
the bounds found from mapping the agnostic −1PN results.
We note that in this work, the higher-order corrections to the
phase for testing ESGB theory is incorporated only in the FTI
framework and not in the waveforms for TIGER. This is be-
cause the implementation with FTI is more flexible, and we do
not expect the results to change, as the −1PN mapping-based
results are consistent.

These constraints on the ESGB coupling are better than
any previously obtained constraints using GWs. From NS-
BHs, the best constraint so far was

√
αGB ≲ 1.33 km for

GW200115 042309 [47]. The best overall constraint was ob-
tained with GW190814 and was

√
αGB ≲ 0.37 km (assuming

it is a BBH; its secondary lies in the lower mass gap) [47].
These bounds are also better than constraints obtained using
low-mass x-ray binaries of

√
αGB ≲ 1.9 km [119] and NS EOS

of
√
αGB ≲ 1.29 km [120]. Laboratory tests for ESGB in the

weak field limit provide bounds that are at least 12 orders of
magnitude weaker than strong-field tests [121].

VI. CONCLUSION

In this work we have performed inspiral tests of GR with
GW230529, the merger of two compact objects with masses
3.6+0.8
−1.1M⊙ and 1.4+0.6

−0.2M⊙. The tests used are parameterized
inspiral tests that modify the phase in the frequency domain
by allowing generic modifications of the PN coefficients.

We used two different versions of the parameterized in-
spiral test that employ different waveform approximants:
FTI [31, 72] using the SEOBNRv4 waveform family [77–81]
and TIGER [74, 75] using the IMRPhenomX waveform fam-
ily [82–84]. We compared the results of both tests. The vari-
ous BBH waveform approximants gave consistent results, all
of which are also consistent with GR, except for the 0PN de-
viation coefficient. The results are shown in Fig. 1.

At 0PN, there is a degeneracy between the chirp mass and
the deviation parameter. This means that the chirp mass and
the 0PN deviation parameter are free to move along the cor-
relation given by Eq. (6) without significantly changing the
waveform. For higher mass systems, this degeneracy is bro-
ken by higher PN contributions in the late inspiral and by
the merger-ringdown. For GW230529, however, the merger-
ringdown is outside the analyzed frequency band, so there is
a strong correlation between Mc and δφ̂0 in the results, as
can be seen in Fig. 3. We notice that the posterior is shifted
away from GR and towards higher chirp mass. Since this is
also observed in a zero-noise GR injection, it is very likely a
false deviation from GR. The cause of this shift is probably a
combination of the choice of priors, sampling issues due to a
sharply peaked likelihood, the event being single detector, and
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noise features.
Since the source of GW230529 is most likely an NSBH, we

also performed analyses with waveforms that include tidal ef-
fects. The deviation-parameter posteriors obtained with these
waveforms are broader and shifted away from GR compared
to their BBH counterparts. This is due to correlations be-
tween the tidal deformability and the deviation parameters.
For GW230529, the tidal deformabilities are not well con-
strained and even allow unrealistically high values [1], leading
to the broad and shifted posteriors of the δφ̂i. By constrain-
ing the tides to more realistic values, the shift and broadening
(mostly) disappear (see Fig. 2). We therefore use the results
from the BBH waveform models when quoting bounds below.

The bounds obtained on the low-PN deviation parameters
(except for 0PN) are some of the best to date. The bound ob-
tained on dipole radiation (−1PN deviation) for GW230529
of |δφ̂−2| ≲ 8× 10−5 is an order of magnitude tighter than the
combined bounds from GWTC-2 [33] and GWTC-3 [34]. The
only tighter bound obtained with GWs is for the binary NS
GW170817 [31]. The bounds obtained at 0.5PN and 1PN are
also relatively tight compared to previous constraints. Fig-
ure 8 compares the bounds for GW230529 with previous con-
straints from GWs.

The bounds on −1PN deviations allow us to constrain
scalar-tensor theories that have their leading-order modifica-
tion at −1PN. In particular, we have mapped the posteriors
obtained for δφ̂−2 to the ESGB coupling ℓGB using Eq. (10).
This gives us an upper bound on the ESGB coupling of
ℓGB ≲ 0.67 M⊙. We have also performed a theory-specific
test for ESGB gravity by implementing all corrections up to
1.5PN in the FTI framework. This allows us to sample di-
rectly over the ESGB coupling ℓGB and obtain a slightly bet-
ter bound of ℓGB ≲ 0.51 M⊙. Figure 9 shows the posteriors
obtained from both the mapping and the theory-specific test.
These constraints on the ESGB coupling are the best obtained
from GW signals to date.

In this work, we found no evidence for deviations from GR
for GW230529. We obtained particularly tight constraints
on deviations from GR at low-PN orders (with the excep-
tion of 0PN), demonstrating the importance of signals sim-
ilar to GW230529 for tests of GR. We also discussed some
challenges that arise when analyzing signals from low-mass
systems such as GW230529, namely tidal effects and the de-
generacy between the chirp mass and the 0PN deviation pa-
rameter. Future, more detailed studies of these effects will
hopefully lead to ways to better account for, and perhaps even
mitigate, their systematic biases.

When completing this paper, we became aware of an inde-
pendent study [122] which obtained constraints on Einstein-
dilaton-Gauss-Bonnet gravity using GW230529. They obtain
a bound of

√
αGB ≲ 0.260 km when including higher-order

corrections and using IMRPhenomXPHM, which is similar to
our bound of

√
αGB ≲ 0.28 km using the theory-specific test

for ESGB with SEOBNRv4HM ROM.
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Appendix A: Priors used

The priors used in the analyses of GW230529 are given in the tables below. The names of the priors refer to the names in the
Bilby package [101]. The numbers indicate the range used. The priors are chosen to be agnostic, which means most of them are
uniform in the parameter sampled or uniform in volume (e.g. for angles). The priors used for the deviation parameters and chirp
masses are listed in Table III. The increase in width of the chirp-mass priors for low-PN deviations is because the chirp-mass
posterior becomes broader due to correlations with the deviation parameters at low-PN order. The priors used for the spins are
listed in Table IV and differ between different waveform approximants. This is due to differing spin descriptions (aligned spins
versus precessing spins) and due to limitations in the validity of the models. Lastly, all other priors are listed in Table V.

https://www.gwosc.org
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Deviation parameter Prior Chirp mass prior
φ−2 Uniform(−0.1,0.1) UniformInComponentsChirpMass(1.9,2.2)
φ0 Uniform(−5,5)a UniformInComponentsChirpMass(1.8,6.0)
φ1 Uniform(−2,2) UniformInComponentsChirpMass(1.9,2.2)
φ2 Uniform(−2,2) UniformInComponentsChirpMass(2.00,2.05)
φ3 Uniform(−2,2) UniformInComponentsChirpMass(2.00,2.05)
φ4 Uniform(−20,20) UniformInComponentsChirpMass(2.00,2.05)
φ5l Uniform(−20,20) UniformInComponentsChirpMass(2.00,2.05)
φ6 Uniform(−20,20) UniformInComponentsChirpMass(2.00,2.05)
φ6l Uniform(−30,30) UniformInComponentsChirpMass(2.00,2.05)
φ7 Uniform(−30,30) UniformInComponentsChirpMass(2.00,2.05)

a The prior was limited to Uniform(−0.5,5) for PhenomXPT due to problems with waveform wrap-around like described in Appendix B.

Table III. The priors used for the deviation parameter and the chirp mass for the different runs. The priors on the deviation parameter are
uniform between the indicated range. The priors on the chirp mass are uniform in the component masses and between the indicated range.

Waveform approximant Parameter Prior

SEOBHM, SEOB, PhenomXHM χ1 AlignedSpin(0,0.99)
χ2 AlignedSpin(0,0.99)

SEOBNSBH χ1 AlignedSpin(0,0.9)
χ2 AlignedSpin(0,0.05)

PhenomXPHM

a1 Uniform(0,0.99)
a2 Uniform(0,0.99)
θ1 Sine(0,π)
θ2 Sine(0,π)
ϕ12 Uniform(0,2π)
ϕ jl Uniform(0,2π)

PhenomXP, PhenomXPT

a1 Uniform(0,0.99)
a2 Uniform(0,0.05)
θ1 Sine(0,π)
θ2 Sine(0,π)
ϕ12 Uniform(0,2π)
ϕ jl Uniform(0,2π)

Table IV. The priors on the spin parameters used for the different waveform approximants. The AlignedSpin prior gives the prior distribution
of the aligned spin component based on the generic spin priors.

Appendix B: False violations of GR when using too wide priors

Large values of the deviation parameters can lead to significant changes in the length of the waveform. For more extreme
cases, this can lead to the waveform wrapping around due to the choice of segment length of the data analyzed. In the case of
GW230529, this problem can arise for, e.g., the 0.5PN deviation coefficient, where, for extreme negative values of δφ̂1, the post-
trigger duration becomes more than the 2 seconds used in the analysis. When using wider priors on the deviation parameters,

Parameter Prior
q UniformInComponentsMassRatio(0.125,1)
dL UniformSourceFrame(1,1000)
δ Cosine(−π/2,π/2)
α Uniform(0,2π)
θ jn Sine(0,π)
ψ Uniform(0,π)
ϕref Uniform(0,2π)
tc Uniform(1369419318.6460938,1369419318.8460937)
Λ1,2 Uniform(0,5000)

Table V. The priors used for the other GR parameters for all runs and waveforms. The prior on the mass ratio is such that it is uniform in the
component masses. The prior on the geocentric time is a window of 0.2 seconds around the merger time. The tidal deformabilities are set to
zero for BBH waveforms, and Λ1 = 0 for SEOBNSBH.
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this can lead to false deviations of GR. For example, the posteriors for the 0.5PN deviation parameter would be peaking around
δφ̂1 ∼−9. Normally, these unphysical waveforms that lead to wraparound would be penalized enough by having a low likelihood
so as not to get any support in the posterior. Because GW230529 is a single-detector event, we suspect it instead picked up on
some noise feature or artifact at the edge of the data segment analyzed, which lead to a high likelihood. When increasing the
post-trigger duration to include a longer segment of data after the signal ends, this false violation of GR disappears. For the
results presented in this work, we instead restricted the priors on the deviation parameters to avoid the unphysical waveforms
that lead to wraparound.

Appendix C: Higher-order ESGB corrections in the GW phase

The corrections to the frequency-domain phase in ESGB can be computed using the PN formalism. The leading order
corrections appear at −1PN (compared to GR), and the phase corrections have been fully computed up to 1PN (2PN relative
order) for nonspinning binaries [47, 88–91, 93]. We calculated as well the complete 1.5PN corrections (C1e), which are new to
this paper, using the recent fluxes at relative 2.5PN order of Ref. [92]. In the formalism described in Sec. II, the corrections are
given by

δφ̂−2 = −5ℓ4
GB

(
m2

1s2−m2
2s1

)2

168m4
1m4

2

, (C1a)

δφ̂0 = −5ℓ4
GB

659m4
1s2

2+1370m2
1m2

2s1s2+659m4
2s2

1+728η
(
m2

1s2−m2
2s1

)2

16128m4
1m4

2

, (C1b)

δφ̂1 = 25πℓ4
GB

(
m2

1s2−m2
2s1

)2

56m4
1m4

2

, (C1c)

δφ̂2 = ℓ
4
GB

5m4
1s2

2
[
−13792267+5588352δ−17640η(743+594η)

]
290304m4

1m4
2(743+924η)

−
5m4

2s2
1
[
13792267+5588352δ+17640η(743+594η)

]
290304m4

1m4
2(743+924η)

+
2m2

1m2
2s1s2

[
56018615+3528η(12239+14850η)

]
290304m4

1m4
2(743+924η)

 ,
(C1d)

δφ̂3 = ℓ
4
GB

m4
1s2

2(−14363+1792δ−4564η)+2m2
1m2

2s1s2(−3557+4564η)−m4
2s2

1(14363+1792δ+4564η)

43008m4
1m4

2

. (C1e)

Here, ℓGB is the ESGB coupling, m1,m2 are the masses of the two objects which also appear in the combinations η=m1m2/(m1+

m2)2 and δ = (m1−m2)/(m1+m2). For NSs, s = 0 [47] and for nonspinning BHs, s = 1 [89, 93].
The ESGB corrections to the phase above are complete up to 1.5PN for nonspinning binaries. By contrast, Ref. [122] uses the

corrections presented in Ref. [47], which are complete up to 1PN only. Indeed, at 1.5PN, the corrections of Ref. [47] depend on
the free parameter f GB

3 to represent the contributions from the fluxes at relative 2.5PN order, which were unknown at the time.
Similarly, the 2PN corrections of Ref. [47] depend on f GB

4 to represent contributions from the binding energy at 3PN, and from
the (still unknown) fluxes at relative 3PN order. Note that in practice, both parameters are set to zero in Ref. [47].
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