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In this work, we test an effective-one-body radiation-reaction force for eccentric planar orbits of a
test mass in a Kerr background, which contains third-order post-Newtonian (PN) non-spinning and
second-order PN spin contributions. We compare the analytical fluxes connected to two different
resummations of this force, truncated at different PN orders in the eccentric sector, with the nu-
merical fluxes computed through the use of frequency- and time-domain Teukolsky-equation codes.
We find that the different PN truncations of the radiation-reaction force show the expected scaling
in the weak gravitational-field regime, and we observe a fractional difference with the numerical
fluxes that is < 5%, for orbits characterized by eccentricity 0 ≤ e ≤ 0.7, central–black-hole spin
−0.99M ≤ a ≤ 0.99M and fixed orbital-averaged quantity x = ⟨MΩ⟩2/3 = 0.06, corresponding to
the mildly strong-field regime with semilatera recta 9M < p < 17M . Our analysis provides useful
information for the development of spin-aligned eccentric models in the comparable-mass case.

I. INTRODUCTION

The observation of gravitational waves (GWs) with the
LIGO-Virgo [1–3] and LIGO-Virgo-KAGRA (LVK) [4]
collaborations marked a new era in gravitational physics,
uncovering unique properties of stellar-mass black holes
(BHs) and neutron stars. As future data acquisition be-
comes characterized by increased sensitivity, it is nec-
essary to improve the precision and accuracy of wave-
form models used for matched-filtering and parameter-
estimation pipelines. In particular, modeling waveforms
from eccentric and precessing-spin binaries will become
increasingly important. This is further motivated by
the fact that upcoming observational runs [5] and fu-
ture detectors, like the Einstein Telescope [6], Cosmic
Explorer [7] and LISA [8], will increase the number of
detections by a factor ∼ 103 and be able to probe bi-
nary’s subpopulations, in lower frequency bands and for
smaller mass ratios, which can exhibit larger eccentrici-
ties [9–12].

While eccentricity decreases toward merger due to the
energy and angular momentum loss caused by the emis-
sion of GWs [13, 14], the residual eccentricity can help
constrain different binary-formation scenarios and thus
the origin of GW sources [15–18]. Indeed, the eccen-
tricity is indicative of binaries formed through dynami-
cal formation channels, which could occur in dense stel-
lar environments, like globular clusters, where the three-
body Kozai-Lidov mechanism [19, 20] or dynamic cap-
ture [18, 21–24] play a role. Efforts are currently un-
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derway to detect signs of orbital eccentricity in the GW
signals observed by the LVK detectors [25–35].

Among the different methods to solve the two-body
problem in general relativity, the effective-one-body
(EOB) approach [36, 37] is a framework that provides
accurate and fast waveforms for quasi-circular (QC) bi-
naries [38–49], due to a strong synergy between analytical
approximation methods and numerical relativity (NR)
results.

In recent years, generalizations of EOB models to ec-
centric inspirals have been developed [50–61]. In partic-
ular, Ref. [60] derived the second-order post-Newtonian
(PN) expressions for the radiation-reaction (RR) force
and gravitational-waveform modes for eccentric inspi-
rals. They include tail effects, in addition to spin-orbit
(SO) and spin-spin (SS) couplings. Reference [61] intro-
duced the SEOBNRv4EHM model: an extension of the QC
SEOBNRv4HM model [44] to eccentric orbits, where the au-
thors showed an EOB/NR unfaithfulness less than 1%
when comparing with the 28 eccentric NR simulations
that were publicly available at the time from the Simu-
lating eXtreme Spacetimes (SXS) collaboration [62, 63].
However, in the work of Ref. [61], the dynamics of the
binary is modeled through the use of the QC RR force
from the SEOBNRv4HM model, and the eccentric correc-
tions are considered only when computing the eccentric
waveforms modes introduced in Ref. [60]. By contrast,
the more recent waveform model SEOBNRv5EHM employs
a RR force with eccentric corrections [64].

Among the other examples of eccentric EOB mod-
els, we mention TEOBResumS [48, 65], which has been
extended to eccentric orbits, after investigating several
prescriptions for incorporating eccentricity effects, in
Refs. [56–59, 66–72]. The latest version of their model,
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known as TEOBResumS-Dalı̀, includes eccentric 2PN in-
formation, and is characterized by factorizing the leading
PN order of the waveform modes and azimuthal com-
ponent of the RR force, which include high-order time
derivatives of the radial separation and orbital frequency.
The eccentric 2PN radial component of the RR force is
adapted from Ref. [50] and is Padé resummed. The model
shows unfaithfulness ≲ 1% when compared with the 28
SXS publicly-available eccentric NR waveforms, making
its accuracy comparable to the SEOBNRv4EHM model.

Several studies [38, 58, 67, 70, 73–77] showed the im-
portance of augmenting EOB waveform models for the
plunge-merger and ringdown with insights from BH-
perturbation theory. The common approach is to con-
sider a test mass (TM) orbiting or scattering off a Kerr
BH and use this system as a laboratory to test and pro-
vide benchmarks to the models in the comparable-mass
case. Among these works, Refs. [58, 67] assessed differ-
ent EOB eccentric RR force prescriptions. In particu-
lar, Ref. [67] also provides an analysis for a proxy to the
SEOBNRv4HM QC RR force and of a resummed version
of the 2PN eccentric RR force introduced in Ref. [60].
(We will discuss some comparisons with their results in
Sec. III A.)

Here, we aim to extend past analyses in different
ways. We consider the TM limit of a 3PN-eccentric RR
force, recently computed by some of the authors of this
work, and which will appear in a forthcoming work [64].
This force is computed employing the same procedure
of Ref. [60], but it considers a different gauge choice
for the leading-order of the RR force, which avoids a
2.5PN modification (relative to the leading-order) of the
QC orbital phase when transforming between harmonic
and EOB coordinates. The force that we consider con-
tains the full non-spinning contributions up to 3PN or-
der, and spin contributions only up to 2PN order. For
the spin contributions, we employ the 1.5PN spin-orbit
(SO) and 2PN spin-spin (SS) parts to the RR force as
in Ref. [60], but taking into account the leading-order
gauge choice of Ref. [64]. We resum the RR force in two
ways: by extracting the QC RR force of SEOBNRv5HM [49]
as a multiplicative and an additive term. In the TM
limit, we remark that this QC RR force differs from the
SEOBNRv4HM one by new higher-order PN contributions
in the waveform modes used for the flux computation,
as explained in Ref. [49]. We study the effects of the
individual PN eccentric contributions to the RR force
in different gravitational-field regimes of the parameter
space. The analysis is performed by comparing the an-
alytical fluxes, computed from the eccentric RR force
in the TM limit, against numerical fluxes that are com-
puted by solving the Teukolsky equation [79] through the
use of a frequency-domain (FD) [80] and a time-domain
(TD) [81–83] code. Both fluxes are computed on equa-
torial geodesics of the Kerr metric. By comparing the
fluxes, we test the two resummations of the eccentric RR
force, as we explain in detail in Sec. II. In our study, we
focus on equatorial bound orbits of Kerr in the weak and

strong gravitational-field regimes, and also explore the
RR force for hyperbolic encounters, by comparing the
fluxes for some Schwarzschild hyperbolic geodesics with
fixed energy.
The article is structured as follows. In Sec. II, we in-

troduce the methodology of our analysis. In particular,
Sec. II A describes the EOB model we use in the TM
limit and how we compute eccentric-planar geodesics in
the Kerr metric. In Sec. II B, we describe how to com-
pute the numerical fluxes by solving the Teukolsky equa-
tion numerically, while Sec. II C shows how the analytical
fluxes are computed from the RR force through the use
of the balance equations. In Sec. III, we provide the main
results of our analysis. In particular, Sec. III A gives an
overview of the fluxes comparison, and Secs. III B, III C
show the results for bound orbits in the Schwarzschild
and Kerr spacetime, respectively. Section IIID focuses
on hyperbolic encounters in Schwarzschild spacetime. Fi-
nally, Sec. IV summarizes the results, and points out fu-
ture steps. In the appendices, we provide supplemental
information. Notably, in Appendix A we summarize how
the non-spinning 3PN terms of the eccentric RR force
are derived and we provide the full TM expressions of
the eccentric corrections to the QC RR force, together
with the expressions of the Schott terms, which are nec-
essary to compute the instantaneous fluxes. Appendix B
provides details on how the instantaneous fluxes are com-
puted from the FD Teukolsky-equation code.

Notations

We adopt natural units G = c = 1 and consider a non-
spinning TM of mass µ = νM orbiting a Kerr BH of mass
M with dimensionless spin a = J/M2. The Kerr metric
is expressed in Boyer-Lindquist coordinates {T,R, θ, φ}
and we restrict our analysis to the equatorial plane, θ =
π/2. The dynamics of the TM is described by canonical
coordinates {R,φ, PR, Pφ}. Throughout this article, we
consider scaled dimensionless variables

t =
T

M
, r =

R

M
, pr =

PR

µ
, pφ =

Pφ

Mµ
. (1)

The Hamiltonian H, and RR force F = (Fr,Fφ) are
scaled by the TM µ.

II. METHODOLOGY

In this work, we assess the analytical EOB eccentric
RR force of Ref. [60], extended to 3PN in the non-
spinning part in Ref. [64], by comparing it with numer-
ical results. In particular, as we explain in Sec. II C, we
compare numerical fluxes obtained by solving the Teukol-
sky equation against the analytical fluxes that are con-
nected to the RR force through the energy and angular-
momentum balance equations. These fluxes are com-
puted on Kerr equatorial geodesics of a TM. In the fol-
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lowing two sections, we describe how the orbits are com-
puted and the methodology used to derive the numerical
and analytical fluxes.

A. EOB model in the TM limit

To describe the dynamics of a TM orbiting a Kerr
BH in the equatorial plane, we work within the EOB
framework [36, 37] and consider the Kerr Hamiltonian
restricted to equatorial orbits (θ = π/2, pθ = 0):

H = Λ−1

(
2apφ +

√
∆p2φr

2 +∆2Λ
p2r
r

+∆Λr

)
, (2)

with quantities Λ and ∆ being

Λ = r3 + 2a2 + a2r , (3a)

∆ = a2 − 2r + r2 . (3b)

Instead of the radial momentum pr we consider pr∗ ,
which is the momentum conjugate to the tortoise radial
coordinate r∗. The tortoise coordinate is related to the
Boyer-Lindquist coordinate r by:

dr∗ =
r2 + a2

∆
dr =

1

ξ(r)
dr , (4a)

pr∗ = ξ(r)pr . (4b)

This is a general practice that is done to improve the
numerical stability of the dynamical evolution [74, 84],
since pr diverges at the horizon while pr∗ does not. The
evolution of the dynamics is provided by the Hamilton
equations:

ṙ = ξ
∂H

∂pr∗
(r, pr∗ , pφ) , (5a)

φ̇ = Ω =
∂H

∂pφ
(r, pr∗ , pφ) , (5b)

ṗr∗ = −ξ ∂H
∂r

(r, pr∗ , pφ) + Fr , (5c)

ṗφ = Fφ , (5d)

where the dot symbol represents a total derivative with
respect to the scaled coordinate time in Eq. (1), Ω is
the orbital frequency, scaled by the total mass, and F =
(Fr,Fφ) corresponds to the RR force connected to the
emission of GWs for generic equatorial orbits.

The RR force components we consider, Fr and Fφ, are
two resummed versions of the RR force originally com-
puted in Ref. [60] and here extended to 3PN order in the
non-spinning eccentric sector [64]. These two resumma-
tions are given by:

Fmult
r = FQC

r Fecc,mult
r , Fmult

φ = FQC
φ Fecc,mult

φ (6a)

Fadd
r = FQC

r + Fecc,add
r , Fadd

φ = FQC
φ + Fecc,add

φ ,

(6b)

where FQC
r and FQC

φ are the radial and azimuthal com-
ponents of the RR force using the QC prescription, while
Fecc,mult

r,φ and Fecc,add
r,φ are the eccentric corrections. We

refer to the two resummations as the multiplicative im-
plementation, given in Eq. (6a) and the additive imple-
mentation, given in Eq. (6b). The complete expressions
in the TM limit of the eccentric corrections are in Ap-
pendix A.
The QC RR force FQC = (FQC

r ,FQC
φ ) is calcu-

lated using the prescription and PN information of the
SEOBNRv5HM waveform model [49], defined by the expres-
sions

FQC
φ = − Ω

8π

8∑
ℓ=2

ℓ∑
m=1

m2|dLhFℓm|2 , (7a)

FQC
r =

pr∗
pφ

FQC
φ , (7b)

where dL is the luminosity distance of the binary to
the observer and hFℓm are the GW modes in factorized
form [38, 39, 74, 85], given by:

hFℓm = h
(N,ϵ)
ℓm Ŝ

(ϵ)
eff Tℓmfℓme

iδℓm . (8)

Here, ϵ is the parity of the multipolar waveform mode,
such that ϵ = 0 for even ℓ+m, and ϵ = 1 for odd ℓ+m.

The leading term in Eq. (8), h
(N,ϵ)
ℓm is the Newtonian

contribution

h
(N,ϵ)
ℓm =

ν

dL
n
(ϵ)
ℓmcℓ+ϵ(ν)v

ℓ
ΩY

ℓ−ϵ,−m
(π
2
, ϕ
)
, (9)

where Y ℓ−ϵ,−m(θ, ϕ) are the scalar spherical harmonics,

n
(ϵ)
ℓm and cℓ+ϵ(ν) are functions given in Eqs. (28) and (29)

of Ref. [49], and vΩ is given by

vΩ = Ω1/3. (10)

Note that the SEOBNRv5HM model uses vφ instead of vΩ
in Eq. (9), which is given in the TM limit by vφ = ΩrΩ =

Ω[r3/2 + a]2/3. However, in this work, we use vΩ since,
while computing the eccentric 3PN RR force in Eqs. (5c)-
(5d), we realized that the vφ prescription does not ad-
mit a straightforward generalization for eccentric orbits.
More details on this choice can be found in Ref. [64].

The function Ŝ
(ϵ)
eff is the effective source term which is

given by

Ŝ
(ϵ)
eff =

{
H(r, pr∗ , pφ), ϵ = 0

pφvΩ, ϵ = 1 .
(11)

The factor Tℓm resums the leading order logarithms of
tail effects and corresponds to

Tℓm =
Γ(ℓ+ 1− 2ik̂)

Γ(ℓ+ 1)
eπk̂e2ik̂ ln 2mΩr0 , (12)

where Γ is the Euler gamma function, k̂ = mΩ in the TM
limit and r0 = 2/

√
e. The remaining part of the factor-

ized modes (8) is expressed as an amplitude fℓm and a
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phase δℓm, which are computed such that the expansion
of hℓm agrees with the PN expanded modes. We point
the reader to Appendix B of Ref. [49] for the explicit
expressions of the different fℓm and δℓm terms.
The TM limit of Eqs. (7) and (8) is obtained by setting

the mass ratio ν to zero in the expressions, except for the
leading ν in the Newtonian prefactor (9).

In our analysis, we consider equatorial planar geodesics
of the Kerr background; hence, we consider Fr = Fφ =
0 in Eqs. (5c) and (5d), when evolving the dynamics.
We characterize the planar orbits through the parameters
{p, e, a}, which correspond to the semilatus rectum, the
eccentricity and the spin of the Kerr BH, respectively.
We adopt the Keplerian parametrization, where for the
definitions of p and e we have:

p =
2rarp
ra + rp

, e =
ra − rp
rp + ra

, (13)

where ra and rp are the radial separation at the apocenter
and at the pericenter, respectively.

As we show in Sec. II C, after evolving Eqs. (5) without
RR forces (i.e., for geodesics), we compute the analyti-
cal fluxes by evaluating the RR force in Eqs. (6) on the
geodesics. Hence, to avoid any possible confusion to the
reader we stress that whenever the QC expressions in
Eqs. (7) and (8) are employed, they are evaluated on the
geodesic although they are quantities constructed assum-
ing QC trajectories.

B. Numerical fluxes

The core of our analysis relies on the computation of
the energy flux ΦE and angular-momentum flux ΦJ ra-
diated by the TM to future null infinity. These fluxes
are computed numerically by solving the Teukolsky mas-
ter equation [79], which in Boyer-Lindquist coordinates
reads

−
[
(r2 + a2)2

∆
− a2 sin θ2

]
∂ttΨ− 4ar

∆
∂tφΨ

− 2s

[
r − (r2 − a2)

∆
+ ia cos θ

]
∂tΨ+∆−s∂r(∆

s+1∂rΨ)

+
1

sin θ
∂θ(sin θ∂θΨ) +

[
1

sin θ2
− a2

∆

]
∂φφΨ

+ 2s

[
a(r − 1)

∆
+
i cos θ

sin θ2

]
∂φΨ− (s2 cot θ2 − s)Ψ

= −4π(r2 + a2 cos θ2)T .
(14)

This equation describes the evolution of scalar, vector,
and tensor perturbations of a Kerr BH. The function ∆,
the spin parameter a and the coordinates correspond to
the same quantities defined in the previous sections. The
parameter s is the spin weight of the field. In particular,
when s = ±2 the equation describes degrees of freedom
of gravity that radiate, and for s = −2 it is Ψ = (r −

ia cos θ)4ψ4, where ψ4 is the Weyl curvature scalar that
describes outgoing GWs.
A system composed of a TM orbiting a Kerr BH can be

interpreted as a perturbed Kerr metric, and within this
interpretation the source term T in the right-hand side
of Eq. (14) describes a TM moving in the Kerr space-
time. The details on how the source term T of the TM
is constructed and how Eq. (14) is numerically solved are
beyond the scope of this section. We mention the fact
that the source term T of a TM orbiting a Kerr BH is
constructed from Dirac-delta functions of the variables r
and θ, as well as first and second derivatives of the delta
functions in these variables. These terms are sourced at
the location of the TM, hence the source T depends on
the trajectory that the TM follows in the Kerr spacetime.
The details can be found in Refs. [80, 82, 83]. In this anal-
ysis, the trajectories used to source the term T are the
geodesics introduced at the end of Sec. II A, constructed
evolving Eqs. (5).
To solve Eq. (14), we make use of two different codes:

when considering bound orbits we adopt the FD code
of Ref. [80], while when considering unbound orbits we
employ the TD code developed in Ref. [81–83]. At future
null infinity, the Weyl scalar ψ4 and the waveform strain
h = h+ − ih× are related by the expression

ψ4 =
1

2

∂2h

∂t2
=

1

2

(
∂2h+
∂t2

− i
∂2h×
∂t2

)
, (15)

and following standard practices, the waveform is decom-
posed in spin-weighted spherical harmonics

h =
∑
ℓ,m

−2Yℓm(θ, φ)hℓm . (16)

The fluxes ΦE and ΦJ are computed from the modes
through the expressions

ΦE =
1

16π

∑
ℓm

|ḣℓm|2 , (17a)

ΦJ =
1

16π

∑
ℓm

mℑ(ḣℓmh∗ℓm) . (17b)

In Appendix B, we give closed form expressions for con-
structing the instantaneous fluxes from FD Teukolsky so-
lutions. In this work, we truncate the summation over
the modes at ℓ = 8. More details on the numerical er-
rors of the FD and TD Teukolsky codes employed in our
analysis can be found in Refs. [75, 80–83].

C. Analytical fluxes

In order to assess the EOB eccentric RR force of
Eqs. (6) by comparing with numerical results, it is nec-
essary to compute the analytical fluxes. The connection
between the RR force and the fluxes is given by the bal-
ance equations

Ėsystem +ΦE + ĖSchott = 0 , (18a)



5

J̇system +ΦJ + J̇Schott = 0 . (18b)

These equations relate the time-dependent fluxes at fu-
ture null infinity, ΦE and ΦJ , to the change in the en-
ergy and angular momentum of the system, Ėsystem and

J̇system, together with two other terms that appear as to-

tal time derivatives, ĖSchott and J̇Schott, known as Schott
terms. These two terms take into account the contri-
butions to the fluxes due to the interaction of the sys-
tem with the radiation field, as originally pointed out
in the context of electromagnetism in Ref. [86] and they
were introduced in the context of the EOB framework in
Ref. [50].

The connection between the fluxes ΦE/J , the RR force
F and the Schott terms is made explicit by first consid-
ering the Hamilton equations (5), which lead to

Ėsystem =
dH

dt
= ṙFr + φ̇Fφ , (19a)

J̇system = ṗφ = Fφ , (19b)

where the fact that the Hamiltonian in Eq. (2) does not
depend on the azimuthal angle φ is exploited. By plug-
ging these expressions in Eqs. (18), one gets:

ΦE = −ṙFr − φ̇Fφ − ĖSchott , (20a)

ΦJ = −Fφ − J̇Schott . (20b)

From these equations we are able to compute the fluxes
from the RR force in Eqs. (6), providing a way to test
its prescriptions. This is done by first computing Kerr
geodesics as explained in Sec. II A and then evaluating all
the quantities involved in the right-hand side of Eqs. (20)
on the geodesics. We point the reader to Appendix A for
the expressions of the PN time derivatives of the Schott
terms, ĖSchott and J̇Schott, as functions of the EOB dy-
namical variables, as used in this work.

Note that in the above, we have not included any ef-
fects due to the central Kerr BH absorbing GWs, chang-
ing its mass and spin. If included, these effects would
alter the relationship between the RR forces Fr/φ and
fluxes ΦE/J in Eqs. (20). In practice, the effects of ab-
sorption are typically several orders of magnitude smaller
than the fluxes to infinity see e.g. [87] (but can become
order 10% for extreme orbits close to the horizon of a
nearly extremal BH [76, 88, 89]). As such, the absorption
fluxes are mostly relevant when their effects can accumu-
late over a large number of orbits in an inspiral. For the
single orbit comparisons in this work, their impact would
be minimal. Nonetheless, to ensure an apples-to-apples
comparison, we also include only the fluxes to infinity in
the numerical Teukolsky fluxes.

III. COMPARISON OF THE ANALYTICAL
AND NUMERICAL FLUXES

In the following, we present the comparison between
the analytical and numerical fluxes computed as ex-

plained in Sec. II. In particular, we focus on studying
the different PN contributions in the eccentric part of
the analytical fluxes. Throughout this section, we label
the fluxes that include PN corrections due to eccentricity
at 1PN, 2PN and 3PN order (including SO and SS cor-
rections up to 2PN order), as “ECC1PN”, “ECC2PN”
and “ECC3PN”, while the fluxes that simply use the QC
prescription of the fluxes evaluated on an eccentric tra-
jectory are labeled “QC”. Note that the fluxes labeled
“ECCnPN” still contain all available PN orders in the
QC part of the flux.

A. Instantaneous fluxes

We start by comparing the numerical and analytical in-
stantaneous fluxes. Before doing so, we emphasize that
the Schott terms in Eqs. (20), are known only as PN ex-
pansions up to 3PN order, while the RR force terms have
been resummed in the EOB formalism. Consequently,
there is a limit to what can be learned when compar-
ing the instantaneous fluxes to the numerical-Teukolsky
fluxes in the strong-field regime, as it is unclear whether
any particular disagreement is due to an inaccuracy of
the RR forces or a breakdown of the PN approxima-
tion in the Schott terms. This ambiguity is not present
when considering orbit-averaged fluxes, as we mention
in Sec. III B. Nonetheless, we believe it is instructive to
look at the comparison of the instantaneous fluxes as this
helps build an intuitive picture of our analysis.
The comparison of the numerical and analytical fluxes

is illustrated in Fig. 1. We consider an orbit with semi-
latus rectum p = 13, eccentricity e = 0.5 and spin a = 0.
The analytical and numerical fluxes are plotted over a
radial period on the bound geodesic. In the left panel,
the orbit is shown, while in the top panels the instan-
taneous fluxes between two consecutive apocenters are
plotted. The black curves correspond to the numerical
fluxes obtained from the FD Teukolsky code, while the
colored lines are the analytical fluxes. We show the QC
fluxes (blue curves), which are computed with the QC RR
force in Eqs. (7), and the eccentric fluxes ECC1PN (red
curves), ECC2PN (orange curves) and ECC3PN (green
curves). Finally, the bottom panels of Fig. 1 show the
fractional difference between the analytic and Teukolsky
fluxes. The analytical fluxes are computed considering
the multiplicative implementation (6a). The additive
corrections provide similar results to Fig. 1, and are not
shown here.
For the geodesic considered in Fig. 1, we do not find

a clear improvement of the fluxes at different PN or-
ders along the orbit. Around the apocenter passage
(for t ≈ 600 and t ≈ 1100 where r ≈ 25) we observe
that the ECC1PN fluxes better approximate the numer-
ical ones, whereas the ECC2PN and ECC3PN fluxes are
close, but do not improve the approximation. By remov-
ing the eccentric PN tail terms, we find that the 1.5PN
tail contribution is degrading the accuracy of the instan-
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FIG. 1. Fluxes for an eccentric geodesic with p = 13, e = 0.5 and a = 0. On the left panel, the planar orbit is shown,
highlighting in blue the trajectory over one radial period. The top panels show the angular momentum ΦJ and energy ΦE

fluxes at infinity: black curves are the Teukolsky fluxes, while colored curves are the analytical fluxes. “QC” refer to the QC
fluxes while “ECCnPN” refer to fluxes computed considering eccentric corrections at nPN order. The bottom panels show the
relative difference with respect to the Teukolsky fluxes.

taneous results. However, in Sec. III B, we will discuss
that these terms are essential to recover the correct scal-
ing in the weak-gravitational field regime when consid-
ering the orbit-averaged fluxes. This confirms what we
anticipated at the beginning of this section: one PN order
may be worse for the instantaneous fluxes, but better for
the averaged fluxes, and thus, we cannot conclude from
those results if the RR force is accurate since we cannot
disentangle it from the effect of the PN-expanded Schott
terms.

Near the pericenter passage (for t ≈ 850 where r ≈ 9)
we find that the ECC3PN energy flux improves the other
PN orders, while for the angular-momentum flux it is
the QC curve that best approximates the numerical flux.
This close agreement of the QC fluxes near the pericen-
ter passage was already pointed out in Ref. [67] for some
orbital configurations, and explained as a numerical co-
incidence. This will become more apparent in Sec. III B,
as we show the behavior of this agreement as a function
of the orbital separation.

The bottom panels of Fig. 1 show an asymmetry of the
relative differences with respect to the pericenter passage.
After convincing ourselves that this behavior is not due
to any numerical artifact, we find that it comes from an
asymmetry of the Teukolsky fluxes with respect to the
pericenter. We conclude that this asymmetry arises from
contributions that are not modeled by the EOB fluxes,
but that are present in the numerical fluxes. By inspect-
ing different orbits and observing the same pattern, es-
pecially for orbits that lay in the weak-field regime, we
suggest that this asymmetry comes from delayed contri-
butions coming from higher-order-PN tail terms that are
not present in the analytical fluxes.

We notice that there are qualitative differences be-

tween our results and Fig. 1 of Ref. [67], despite the
two figures ostensibly plotting the same quantities for
the same orbit with both the QC and ECC2PN (labeled
“QC2PN” in Ref. [67]) much closer to the numerical val-
ues in our version. The discrepancy between the QC
flux may arise due to the proxy for the QC flux used
in Ref. [67] not faithfully reproducing the QC flux of
SEOBNRv4HM (and notably the QC flux of SEOBNRv5HM,
which is used in this paper). The discrepancy between
the ECC2PN fluxes, on the other hand, is due to the
fact that in Ref. [67], the authors use the Schott terms of
Ref. [50] when computing the fluxes through Eqs. (20).
However, this is not compatible with the gauge of the
eccentric RR force of Ref. [60], which is used to compute
the ECC2PN (QC2PN) fluxes. There is no freedom in
using Schott terms in a different gauge, and the ones of
Ref. [60] must be considered when computing the instan-
taneous ECC2PN fluxes.

B. Averaged fluxes: bound orbits in Schwarzschild

Figure 1 indicated that the 1PN eccentric corrections
of the multiplicative implementation of the RR force (6a)
better approximate the numerical flux than the higher
order eccentric PN corrections near the pericenter of the
orbit. The additive implementation (6b) (not plotted in
Fig. 1) shows similar behavior. This motivates a further
investigation, because, in principle, one would expect the
higher order PN corrections to improve the approxima-
tion, at least in the weak-field regime.

To better assess this, we start by restricting to the
Schwarzschild case and we analyze what happens when
considering the eccentric force in the weak-field scenario.
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FIG. 2. Absolute value of the fractional differences defined in Eq. (22) of the averaged fluxes computed for orbits in the

weak-field regime. The x-axis corresponds to the gauge-invariant variable x = ⟨φ̇⟩2/3. The orbits are characterized by the
parameters e = 0.5, a = 0 and p = {960, 480, 240, 120, 60, 30, 15}. Dotted lines correspond to the additive implementation
(add) while solid ones correspond to the multiplicative (mult). Empty circle dots represent negative values of the fractional
differences, highlighting zero crossing in the log-log plots.

For the study, we consider the averaged fluxes over one
radial period Tr, given by:

⟨ΦE,J⟩ =
1

Tr

∫ t0+Tr

t0

dt ΦE,J . (21)

The averaging eliminates the ambiguity due to the Schott
terms contribution in the instantaneous-fluxes expres-
sions (20), as the Schott terms appear as total time
derivatives.

We consider a set of bound orbits defined by eccentric-
ity e = 0.5, spin a = 0 and decreasing semilatera recta
p = {960, 480, 240, 120, 60, 30, 15}. This choice allows us
to explore the weak-field regime in order to check whether
the flux residuals, obtained by subtracting the eccentric
corrections (6a) and (6b) from the numerical fluxes, have
the expected PN scaling.

In Fig. 2, we show the fractional difference of the av-
eraged numerical fluxes with respect to the averaged an-
alytical fluxes

δ⟨ΦE,J⟩ =
⟨Φnumerical

E,J ⟩ − ⟨Φanalytical
E,J ⟩

⟨Φnumerical
E,J ⟩ (22)

computed on these orbits for different values of the gauge-
invariant quantity x defined by

x = ⟨φ̇⟩2/3 . (23)

For the different PN corrections, we follow the same
nomenclature used in Fig. 1, and we consider both imple-
mentations: solid lines correspond to the multiplicative
RR force from Eq. (6a) while dotted lines correspond to
the additive RR force from Eq. (6b).

We observe that the eccentric corrections to the RR
force provide a consistent improvement over the QC
force. For orbits that are in the weakest regimes, x ≈
8 × 10−4, including the ECC3PN corrections improves
the agreement with the numerical flux by a factor 108

over the QC flux. We also find that the curves follow the
general expected scaling at low x. The fractional differ-
ence between the QC analytical and the Teukolsky flux
approaches a constant in the weak field regime, indicat-
ing that the QC prescription already needs corrections at
the leading “Newtonian” order. The slopes of fractional
residuals, after subtracting the ECCnPN corrections in
the log-log plot of Fig. 2, are compatible with the ex-
pected x−(n+1/2) behavior of a residual that starts at
(n+ 1/2)PN order.

Since for the instantaneous flux comparison in
Sec. III A the inclusion of the PN tail corrections did
not lead to an unequivocal improvement of the flux, we
also considered the effects of omitting the PN tail terms
on the orbit-averaged flux. Without providing an explicit
plot, we report that the inclusion of these terms is essen-
tial in order to recover the expected PN scaling of Fig. 2,
corroborating the hypothesis that degradations of higher-
order terms in the instantaneous fluxes may come from
the Schott terms and disappear when orbit averaging.

When moving into the stronger-field regimes (i.e. for
higher values of x), the discrepancy between analytical
and numerical averaged fluxes increases, as expected due
to the PN nature of the analytical fluxes.

In order to assess the RR force over a wider region
of the parameter space, we consider more orbits with
different eccentricities spanning the milder and stronger
field regimes. Figure 3 shows the fractional differences of
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FIG. 3. Absolute value of the fractional differences of the averaged fluxes computed on orbits in mild/strong-field regimes. The
orbits with highest x (last points on the right) are characterized by a semilatus rectum p = pLSO + 0.025. The nomenclature
is the same as in Fig. 2.

the fluxes evaluated at geodesics with eccentricities e =
{0.1, 0.3, 0.5, 0.7}, spin a = 0 and semilatera recta p =
{pLSO+0.025, pLSO+0.05, pLSO+0.1, 7, 8, 9, 10, 13, 15} 1,
where pLSO corresponds to the semilatus rectum of the
last stable orbit (LSO) with the corresponding e. For
Schwarzschild geodesics this is given by

pLSO = 6 + 2e . (24)

The strong-field residuals in Fig. 3 show a much less orga-
nized picture than their weak-field counterparts in Fig. 2.
There is not always a clear order-by-order improvement
from adding higher PN eccentric corrections. This signi-
fies (the start of) the breakdown of the convergence of the
PN series in this regime. Notably, the QC and ECC1PN
fluxes seemingly outperform the higher-order corrections
for larger x. In fact—contrary to naive expectation—
the residuals from the QC and ECC1PN fluxes actually
decrease, for both the angular-momentum and energy
fluxes, up to certain values of x. This behavior is evi-
dent starting from values of x ≈ 0.06 for the orbits with
e = {0.1, 0.3, 0.5} and of x ≈ 0.04 for the ones with
e = 0.7. This decreasing trend is interrupted at larger
values of x, where the QC and ECC1PN residuals of the
fluxes start to monotonically increase up to the closest

1 For the orbits with e = {0.5, 0.7}, we consider the set p =
{pLSO + 0.025, pLSO + 0.05, pLSO + 0.1, 8, 9, 10, 13, 15}, since
pLSO ≥ 7 for these orbits.

orbits to the LSO with p = pLSO + 0.025. We find that
this is connected to a change in sign of the fractional dif-
ferences between the analytical/numerical fluxes. Since
the absolute fractional differences are plotted in Fig. 3,
here we represent this change of sign by using different
dots: filled dots for positive values of the relative differ-
ence (22), empty dots for negative values. This change of
sign signifies that in the weak field the average QC fluxes
overestimate the average numerical flux, while they un-
derestimate it in the strong field. Consequently, there are
some “goldilocks” configurations for which the QC (and
ECC1PN) fluxes are “just right”, and by coincidence pro-
duce the correct flux.
We do not observe a significant difference between the

multiplicative and additive implementations in the non-
spinning case. However, in Sec. III C we show that this
changes when considering spin.
We also find that larger eccentricity values impact the

accuracy of the analytical averaged fluxes. More specifi-
cally, we observe that for similar values of the x parame-
ter, the relative differences are more prominent for higher
eccentricities. This trend is due to the fact that the peri-
center of the orbits—where most radiation is generated—
is pushed more and more in the strong-field regime, where
in turn, the PN expressions are less reliable.
Figure 3 allows us to gauge the overall performance

of the flux approximations: in the worst case scenario
(i.e. for orbits with e = 0.7 and close to the LSO),
we observe a difference of ≈ 5%, when considering the
ECC3PN fluxes.
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numerical one. They are computed on orbits that span the parameter space (e, a) with fixed value x = 0.06. The upper
panels show the multiplicative implementation while the lower ones show the additive implementation. The multiplicative
implementation shows a worst case scenario of 5% relative difference for higher eccentric spinning prograde orbits.

C. Averaged fluxes: bound orbits in Kerr

So far, we have shown a comparison between analyti-
cal and numerical fluxes for eccentric (bound) orbits of
a TM moving on geodesics around a Schwarzschild BH.
In this section, we provide results that assess the RR
force corrections in Eqs. (6) when we allow the central
BH to have a spin aligned or antialigned (henceforth,
for simplicity aligned) with the orbital angular momen-
tum (i.e., we consider eccentric-equatorial orbits around
a Kerr BH).

To test the spinning case, we consider orbits with
a fixed value of the x parameter defined in Eq.
(23). This choice allows us to identify in a gauge-
invariant manner different gravitational-field regimes.
The orbits we analyze have eccentricity values e =
{0.0, 0.1, 0.3, 0.5, 0.7} and spins of the central BH a =
{−0.99,−0.9,−0.7,−0.5, 0, 0.5, 0.7, 0.9, 0.99}.

In Fig. 4, we show contour plots of the fractional differ-
ence of the averaged fluxes (21) with respect to the eccen-
tricity and the spin values for orbits with fixed x = 0.06.
We choose this value for x since it allows computing sta-
ble geodesics all over the subset of the parameter space
{e, a} we want to investigate. We consider the 3PN order
in the eccentric sector, ECC3PN, for both implementa-
tions (6a) and (6b).

We observe that, regardless of the spin values, for small
eccentricities (e ≤ 0.3), the fractional difference is less
than 0.5% for both resummations. When considering
higher values of e, the differences increase. This trend
corroborates what we mentioned at the end of Sec. III B,
notably, for fixed values of x, larger eccentricities degrade
the accuracy of the analytical-averaged fluxes, because
the pericenter of the orbit is pushed more in the strong-
field regime. This degradation increases when consid-
ering prograde orbits with high-spin values, for which
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the pericenter is even closer to the central BH. For these
orbits, we find that the multiplicative implementation
provides a mismatch of the fluxes less than 5%, for the
considered portion of parameter space. In comparison,
the additive implementation provides relative differences
that are less than 15%. In particular, we find that for
more extreme orbits (i.e., for the ones with high eccen-
tricity and spin), the multiplicative implementation im-
proves over the additive one by a 10% difference.

As a final remark, we mention an overall general im-
provement of the multiplicative ECC3PN factorization
with respect to the additive ECC3PN factorization for
regimes with x ≤ 0.06 over the parameter space (e, a)
for both the energy and angular-momentum fluxes. This
can be seen in Fig. 7 in Appendix A4 where we show the
behavior of the fluxes at different PN orders, for both
factorizations, from weak-field regimes up to strong-field
regimes with x = 0.06. The considered orbits use the
particular configuration of eccentricity and spin of Fig. 4,
e = 0.5 and prograde spin a = 0.9, with semilatera recta
p = {960, 480, 240, 120, 60, 30, 15}. Figure 7 also high-
lights (as in Fig. 2) the convergence of the different PN
truncations of the eccentric fluxes pointing out the cor-
rectness of the procedure (and of the expressions) used to
derive the EOB eccentric RR force in Eq. (6) in the gen-
eral spinning scenario. We performed this same test for
other eccentricity and spin configurations (e, a) of Fig. 4,
finding similar results.

D. Scattering orbits in Schwarzschild

Finally, we push the comparison of the eccentric ana-
lytical and numerical fluxes to even higher eccentricities
to the e > 1 regime (i.e., hyperbolic-scattering orbits).
In this section, we restrict our attention to non-spinning
Schwarzschild BHs.

We consider hyperbolic orbits with fixed energy E0 =
1.005, and we vary the angular momentum J0. Fig-
ure 5 shows the five different orbits we consider. To
produce them, we examine different values of the an-
gular momenta by first computing the critical value Jc
through Eq. (6) of Ref. [90]. This critical angular mo-
mentum represents the smallest value a TM with fixed
energy must have to still scatter back to infinity with-
out plunging into the central BH. For the chosen value
of E0, it is Jc = 4.0397. We consider different values
for J0 = {Jc + 2, Jc + 0.7, Jc + 0.2, Jc + 0.07, Jc + 0.02},
which provide orbits with increasing scattering angle and
decreasing pericenter distance. As in the bound case, we
compute the analytical and numerical fluxes on these or-
bits. The numerical fluxes are obtained through the TD
Teukolsky code of Refs. [81–83] as mentioned in Sec. II B,
while the analytical fluxes are computed similarly to the
bound-orbits case (i.e., by evaluating Eqs. (20) on the
hyperbolic geodesics). In the following, we consider only
the multiplicative implementation (6a), since in Fig. 4 we
observe it improves over the additive one.
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FIG. 5. The hyperbolic orbits of a TM around a Schwarzschild
BH considered in our analysis. They all have energy E0 =
1.005 and critical angular momentum Jc = 4.0397. We con-
sider five orbits which have total angular momenta J0 =
{Jc + 0.02, Jc + 0.07, Jc + 0.2, Jc + 0.7, Jc + 2}.

In Table I, we compare the analytical/numerical to-
tal energy and angular momentum emitted by the TM
on the examined orbits. These quantities are evaluated
by integrating the fluxes on each orbit and truncating
at different PN orders. As in the case of the averaged
fluxes for bound orbits (see Sec. III B), we also find that
the eccentric corrections improve the agreement with the
numerical fluxes with respect to the QC case. We ob-
serve an improvement of the PN series in the eccentric
sector, especially for orbits with smaller J0. In almost all
the examined cases, the 3PN corrections provide the best
approximation of the total radiated energy and angular
momentum with respect to the numerical flux. How-
ever, we find that the fractional differences for the or-
bits with smaller J0 (J0 = 4.0597 and J0 = 4.1097) are
greater than 10%. This is expected, because these or-
bits have angular momentum close to the critical one Jc
and are characterized by strong-field regimes, where the
PN expansions start to breakdown. For the orbits with
larger angular momentum, characterized by weaker-field
regimes, the residuals are smaller (≤ 8%) but we do not
observe a large improvement of the PN series when in-
creasing the order in general. Moreover, for the trajec-
tory with higher angular momentum (J0 = 6.0397), we
observe a slight deterioration of the PN series, with the
eccentric 1PN corrections providing the best approxima-
tion. We believe this is because even in the far weak field
these orbits still have high (relativistic) velocities.
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TABLE I. Comparison of the analytical/numerical total emitted energy and angular momentum for the different hyperbolic
orbits shown in Fig. 5. The analytical fluxes are computed with the multiplicative implementation (6a). For each orbit with
energy E0 and angular momentum J0, we show the values of the pericenter distance rp, the numerical total emitted energy
ETeuk and angular-momentum JTeuk, and the fractional differences between the analytical emitted energy/angular-momentum,
truncated at different PN orders in the eccentric sector, and the total numerical fluxes.

E0 J0 rp ETeuk δEQC δE1PN δE2PN δE3PN JTeuk δJQC δJ1PN δJ2PN δJ3PN

1.005 4.0597 4.39 2.605× 10−1 0.3304 0.2095 0.2122 0.1330 2.805 0.2121 0.1948 0.1637 0.0998

1.005 4.1097 4.83 1.450× 10−1 0.3316 0.1571 0.1650 0.0964 1.818 0.1701 0.1433 0.1135 0.0593

1.005 4.2397 5.64 6.680× 10−2 0.3523 0.1056 0.1204 0.0807 1.062 0.1318 0.0927 0.0711 0.0412

1.005 4.7397 8.14 1.381× 10−2 0.4282 0.0473 0.0673 0.0631 3.836× 10−1 0.0964 0.0394 0.0357 0.0370

1.005 6.0397 14.67 1.477× 10−3 0.5225 0.0065 0.0093 0.0103 9.761× 10−2 0.0911 0.0159 0.0224 0.0280
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FIG. 6. Instantaneous fluxes for hyperbolic orbits with E0 = 1.005 and J0 = {4.0597, 6.0397}. Black curves are the numerical
fluxes, blue-dotted ones represent QC fluxes, red curves are the fluxes containing 1PN eccentric corrections while orange and
green curves are the eccentric 2PN and 3PN corrected fluxes. The portion of orbit we consider is highlighted in light-blue in
the orbit-plot and it is for r < 30.

To provide an intuitive picture of this last point we con-
sider again the instantaneous fluxes. Figure 6 shows the
time-dependent fluxes for the hyperbolic encounters with
the highest (J0 = 4.0597) and smallest (J0 = 6.0397)

scattering angle. From the plots, we observe that for the
orbit with the highest scattering angle, in the mild/weak-
field regime part of the orbits (when r > 20), the analyti-
cal fluxes differ by > 80% from the numerical ones. This
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is particularly evident for the ECC2PN and ECC3PN
fluxes, for which the fractional difference is > 100%. We
observe a similar pattern for the orbit with the small-
est scattering angle (J0 = 6.0397) (i.e., in the weak-field
regime), a large mismatch between the numerical and the
analytical curves arises. This large fractional difference
we observe for r > 20 is caused by the fact that, for hy-
perbolic orbits, considering the weak-gravitational-field
regime does not necessarily correspond to considering
small velocities (v ≪ 1) of the TM. This large-velocity
regime deteriorates the convergence of the PN expansion,
as shown in the last line of Table I.

IV. CONCLUSIONS

In this work, we tested an EOB eccentric RR force
computed with the same procedure as Ref. [60] with a
different gauge choice for the leading PN order. The non-
spinning 3PN part of this RR force is derived in Ref. [64]
while the SO and SS contributions, at 1.5PN and 2PN
respectively, are similar to the ones of Ref. [60] but com-
puted taking into account the different gauge choice of
the leading order. We considered two possible resum-
mations of this force: a multiplicative (6a) and an ad-
ditive (6b) one. The assessment of the resummations is
performed by considering a TM orbiting the equatorial
plane of a Kerr BH. We computed the analytical energy
and angular-momentum fluxes, which are linked to the
RR force through the balance equations (20), on eccen-
tric geodesics of the Kerr metric, and we compared them
with the numerical fluxes computed through the use of a
FD [80] and a TD [81–83] Teukolsky codes. We focused
our analysis on the orbit-averaged fluxes for bound or-
bits and on the emitted energy and angular momentum
for hyperbolic orbits. This is because when integrating
the fluxes over an orbit, we are sure that any degradation
coming from the PN-expanded Schott terms is integrated
out and we can test the RR force resummations.

When considering bound orbits in the weak-field limit,
we recovered the expected scaling of the different PN
truncations of the fractional difference of the averaged
fluxes, indicating that the procedure used to compute
the RR force and its resummed expressions are both cor-
rect. We also showed that the eccentric corrections to
the RR force are necessary to improve the QC fluxes in
this regime. This improvement over the QC fluxes is of
the order of 108 when considering the ECC3PN fluxes
for orbits with x ≈ 10−3. For non-spinning bound or-
bits in stronger-field regimes, computed up to the LSO,
we found that the fractional differences of the averaged
fluxes are < 5% for eccentricity up to e = 0.7. This result
holds for both the multiplicative and additive resumma-
tions.

For the more general case of bound equatorial geodesics
of a Kerr BH, characterized by x ≤ 0.06, e = [0, 0.7] and
a = [−0.99, 0.99], we found that for e < 0.3 the fluxes dis-
crepancies are < 0.5% for both resummations. For larger

eccentricities up to e = 0.7, we showed that the multi-
plicative implementation provides discrepancies with the
numerical fluxes that are < 5%, while for the additive im-
plementation, we found larger fractional differences, up
to ≈ 15% values. This indicates that, in the considered
part of the parameter space, the multiplicative resum-
mation (6a) is a better approximation of the fluxes up to
regimes with x = 0.06. This is especially true for highly-
eccentric (e = 0.7) and prograde orbits with large Kerr
spin (a = 0.99).
Finally, we concluded our analysis by considering

geodesic hyperbolic orbits with fixed energy E = 1.005
and different angular momenta. We found that the 3PN
eccentric corrections of the multiplicative resummation
improve the total emitted energy and angular momentum
for hyperbolic encounters with angular momenta closer
to the critical one. However, for these orbits, the relative
differences at 3PN are larger than 8%, due to the strong-
field regimes characterizing them. For the unbound or-
bits in weaker-field regimes, we found smaller values of
the fractional differences (< 7%) of the emitted energy
and angular momentum. However, we observed a deterio-
ration of the convergence of the PN series, with the 3PN
corrections providing higher discrepancies. We pointed
out this may be due to the fact that for unbound orbits
the weak–gravitational-field regime does not necessarily
imply small velocities, impacting the convergence of the
eccentric PN orders.
The results we found for the unbound case indicate

that the RR force should be further improved for large
eccentricities and high velocities. There are possible dif-
ferent strategies to tackle this last point: one possibility is
to determine whether different parametrizations improve
the results we find. Another strategy could be to perform
a further resummation of the eccentric corrections to the
RR force F ecc

r/φ in Eqs. (6). A different approach would be

to numerically inform the eccentric corrections by intro-
ducing terms that fit the numerical fluxes in the param-
eter space. We believe all these strategies are promising
for improving the EOB eccentric fluxes we studied in this
work, and we leave them to future works.
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Appendix A: Eccentricity corrections to the RR
force

In this Appendix, we summarize the process employed
to compute the 3PN eccentric corrections to the QC RR
force (7) and the expressions for the Schott energy and
angular momentum, in the TM limit. A more detailed
procedure and the expressions valid for generic mass ra-
tios will be published in a separate work [64]. However,
the main ideas of the calculations are already presented
in Refs. [50, 60]. Here, we just outline the basic steps
necessary to derive the expressions used in this work.

We start by writing Eqs. (18) and (19) in the form

ṙFr = −ΦE + φ̇ΦJ − ĖSchott + φ̇J̇Schott, (A1a)

Fφ = −ΦJ − J̇Schott. (A1b)

Given expressions for the fluxes ΦE and ΦJ , ansatzes for
the Schott terms ESchott and JSchott, and the equations
of motion (5), we employ Eqs. (A1) to determine PN
expressions for the radial and azimuthal components of
the RR force.

More specifically, we employ the complete 3PN expres-
sions of the EOB fluxes presented in Ref. [64]. Then, the
free unknown coefficients (gauge constants) appearing in
the ansatzes for the Schott terms are determined by im-
posing the regularity of the radial component of the RR
force in the QC limit (this means no 1/pr terms in Fr),
and by choosing a specific gauge. Following Refs. [60, 64]
we employ a gauge that satisfies

Fφ = −ΦJ +O(p2r), (A2a)

Fr

pr
=

Fφ

pφ
+O(p2r). (A2b)

With this choice, the QC limit of the resulting RR force

satisfies the gauge used in SEOBNRv5HM, which is given by
Eqs. (7).

At leading PN order, the components of the RR force,
in a generic gauge, are given by

FLO
r =

8νpr
15 r3

[
(−3α+ 9β + 3) p2 + (9α− 15β + 9) p2r

+
9α− 9β + 17

r

]
, (A3a)

FLO
φ =

8νpφ
15 r3

[
9(α+ 1) p2r − 3(2 + α) p2 +

3(α− 2)

r

]
,

(A3b)

where p2 = p2r + p2φ/r
2, and {α, β} are gauge con-

stants, representing the gauge freedom in defining the
RR force [92, 93]. In particular, the gauge in Eq. (A2)
fixes the value of α to be −16/3, but leaves β unspeci-
fied. As shown in Ref. [64], β needs to equal −13/2 to
avoid a 2.5PN modification (relative to the leading or-
der) of the QC orbital phase when transforming between
harmonic and EOB coordinates. For the expressions of
this work, we use the aforementioned values of α and β,
to be consistent with Ref. [64]. As a consequence of this,
the expressions used here do not follow the RR gauge
employed in Ref. [60].

The next step consists in factorizing the RR force in
terms of a QC part and an eccentric correction. In this
way, given the PN expressions of Fφ and Fr, and the
QC part given by Eqs. (7), we determine the different
PN expressions for Fecc

φ and Fecc
r which are specified in

Eqs. (6). The results valid for the TM limit are explicitly
shown in Sections A 1 and A2. Additionally, the expres-
sions for the time derivatives of the Schott terms in the
TM limit are shown in Sec. A 3.

In the following subsections, we write the expressions
in terms of the variables {r, pr∗ , v0}, where r is the radial
separation, pr∗ is the radial momentum conjugate to the
tortoise coordinate r∗, and v0 is given by

v0 =
(1 + ṗr∗r

2)1/6√
r

. (A4)

1. Multiplicative corrections

The expressions of the eccentric corrections for the multiplicative implementation (6a) are given by

Fecc,mult
r = F0PN

r + F1PN
r + F1.5PN,Tail

r + F1.5PN,SO
r + F2PN

r + F2PN,SS
r + F2.5PN,Tail

r + F3PN
r + F3PN,Tail

r , (A5)

where the expressions of the different PN orders are

F0PN
r = − 19p2r∗

12rv40
− 55

24r2v40
+

79rv20
24

, (A6a)

F1PN
r =− 19p4r∗

36r4v100
− 88p4r∗

63rv40
− 131p2r∗

72r5v100
+

19

432
p2r∗r

3v60 −
6851p2r∗
224r2v40

− 617p2r∗rv
2
0

1008
− 52459p2r∗

12096rv20
− 55

36r6v100
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− 79

864
r5v120 +

823r3v80
504

− 52897

2016r3v40
+

55r2v60
864

− 151855

24192r2v20
+

218119rv40
24192

+
47219v20
2016

, (A6b)

F1.5PN,Tail
r = π

[
5p4r∗
576v0

+
461p2r∗
72rv0

+
79

6r2v0
− 79

6
rv50

]
, (A6c)

F1.5PN,SO
r = a

[
19p2r∗
18r4v70

− 19

144
p2r∗r

3v70 −
29p2r∗
9rv0

+
79

288
r5v130 +

55

36r5v70
− 55

288
r2v70 −

775

72r2v0
+

659

72
rv50

]
, (A6d)

F2PN
r =− 95p6r∗

432r7v160
− 211p6r∗

3024r4v100
+

1013p6r∗
864rv40

− 115p4r∗
96r8v160

− 1055p4r∗
96r5v100

− 52459p4r∗
72576r4v80

+
13p4r∗r

3v60
6048

+
605p4r∗
84r2v40

+
1129

672
p4r∗rv

2
0

− 1576531p4r∗
508032rv20

− 19p4r∗
864

− 155p2r∗
72r9v160

− 19p2r∗r
7v160

15552
− 60605p2r∗

2016r6v100
+

19

336
p2r∗r

5v120 − 361691p2r∗
145152r5v80

− 86141p2r∗r
3v80

217728

− 2683325p2r∗
12096r3v40

+
9343p2r∗r

2v60
8064

− 58524917p2r∗
677376r2v20

− 311993p2r∗rv
4
0

127008
− 11628649p2r∗

451584r
+

155599p2r∗v
2
0

4032
− 275

216r10v160

+
79r9v220
31104

+
373r7v180
12096

− 54101

3024r7v100
− 55r6v160

31104
− 151855

72576r6v80
+

543029r5v140
435456

− 1163r4v120
896

+
3017773r3v100

1016064

− 380027

2268r4v40
− 158533859

2032128r3v20
+

9287503r2v80
435456

− 100860815

2709504r2
+

148133911rv60
2709504

+
626551v20
4032r

+
141658627v40
2032128

,

(A6e)

F2PN,SS
r = a2

[
− 19p4r∗

18r5v100
− 55p2r∗

36r6v100
+

19

192
p2r∗r

3v80 +
131p2r∗
72r3v40

+
19p2r∗
6r

− 79

384
r5v140 +

145

96r4v40
+

55

384
r2v80

+
55

12r2
− 79

12
rv60 +

53v20
96r

]
, (A6f)

F2.5PN,Tail
r =π

[
5p6r∗

6912r3v70
− 413p6r∗

34560v0
− 5p4r∗r

4v90
20736

+
1849p4r∗
3456r4v70

− 413p4r∗r
2v50

34560
+

1090127p4r∗
241920rv0

+
13805p4r∗v0

580608
+

935p2r∗
432r5v70

− 689p2r∗r
3v90

2592
+

261253p2r∗
2688r2v0

+
25385p2r∗rv

5
0

6048
+

198055p2r∗v0

9072r
+

79

36r6v70
+

79

144
r5v150 − 1633

504
r3v110

+
201715

2016r3v0
− 71

144
r2v90 +

227293v0
5376r2

− 725615rv70
16128

− 48563v50
504

]
, (A6g)

F3PN
r =− 79r13v320

1119744
− 971r11v280

326592
+

19p2r∗r
11v260

559872
+

55r10v260
1119744

− 262097r9v240
10450944

− 3487p2r∗r
9v220

1306368
+

141187r8v220
2612736

+
2667851r7v200
12573792

− 278995p2r∗r
7v180

5225472
+

4362881r6v180
10450944

+
313p4r∗r

7v160
326592

− 1315p2r∗r
6v160

32256
+

8201430199r5v160
4389396480

− 290025695p2r∗r
5v140

201180672
− 383131475r4v140

36578304
− 263p4r∗r

5v120
2304

− 18791p2r∗r
4v120

20736
− 318507491r3v120

85349376
+

19p4r∗r
4v100

11664

− 398293579p2r∗r
3v100

2194698240
+

39377759509r2v100
877879296

+
63462257p4r∗r

3v80
50295168

+
3081350551p2r∗r

2v80
134120448

+
343837498725233rv80

1351934115840

− 2033

70
rv80 ln r −

33812

315
rv80 ln v0 −

16906 ln 2

315
rv80 −

71p6r∗r
3v60

2268
− 47429p4r∗r

2v60
48384

− 2094514621p2r∗rv
6
0

341397504

+
940303127443v60
2048385024

+
996721p2r∗v

4
0

9216
+

24034505p4r∗rv
4
0

4064256
+

15293179v40
31752r

− 68397359p4r∗v
2
0

6531840
− 911609p6r∗rv

2
0

598752

+
1712p2r∗v

2
0 ln r

35r
+

2354v20 ln r

45r2
+

16264p2r∗v
2
0 ln v0

315r
+

4708v20 ln v0
63r2

− 551068833699073p2r∗v
2
0

3379835289600r



15

+
2181004862746547v20
6759670579200r2

+
8132p2r∗v

2
0 ln 2

315r
+

2354v20 ln 2

63r2
+

373p6r∗
24192

− 15435593p4r∗
1053696r

− 13372807411p2r∗
25288704r2

− 37892126591

75866112r3
+

1305953p6r∗
381024rv20

+
136832399p4r∗
4064256r2v20

− 1988331389p2r∗
3048192r3v20

− 2744503025

5225472r4v20
+

856p4r∗ ln r

35r3v40

− 23861p2r∗ ln r

630r4v40
− 24931 ln r

630r5v40
− 135077p8r∗

149688rv40
+

32911p6r∗
18711r2v40

− 1193113967p4r∗
13305600r3v40

− 19358154601p2r∗
29937600r4v40

− 112700503

316800r5v40
+

151855p6r∗
6096384r4v80

− 731665p4r∗
48384r5v80

− 173012543p2r∗
4064256r6v80

− 158804437

6096384r7v80
+

3721p8r∗
9072r4v100

+
264151p6r∗
24192r5v100

− 868811p4r∗
12096r6v100

− 3011119p2r∗
13608r7v100

− 804565

6804r8v100
− 52459p6r∗

217728r7v140
− 63503p4r∗

48384r8v140
− 85591p2r∗

36288r9v140
− 151855

108864r10v140

+
2465p8r∗

18144r7v160
− 930955p6r∗

217728r8v160
− 1604525p4r∗

72576r9v160
− 102055p2r∗

3024r10v160
− 840635

54432r11v160
− 95p8r∗

972r10v220
− 1415p6r∗

1944r11v220

− 655p4r∗
324r12v220

− 1205p2r∗
486r13v220

− 275

243r14v220
, (A6h)

F3PN,Tail
r =

5593639p4r∗
3150r3v40

− 1044921875p4r∗ ln 5

12096r3v40
− 1061386821p4r∗ ln 3

11200r3v40
+

548384416p4r∗ ln 2

1575r3v40
− 5

144
π2p4r∗v

2
0

− 1870681p4r∗v
2
0

4200
+

208984375p4r∗v
2
0 ln 5

6048
+

34399323

800
p4r∗v

2
0 ln 3−

698109088p4r∗v
2
0 ln 2

4725
+

703π2p2r∗
18r4v40

− 75221γp2r∗
630r4v40

+
100258619p2r∗
117600r4v40

+
75221p2r∗ ln r

420r4v40
+

1794069p2r∗ ln 3

112r4v40
− 51789391p2r∗ ln 2

1890r4v40
− 103π2p2r∗v

2
0

6r

− 8132γp2r∗v
2
0

315r
− 5498951p2r∗v

2
0

11025r
− 8132p2r∗v

2
0 ln v0

105r
− 234009p2r∗v

2
0 ln 3

28r
+

4368596p2r∗v
2
0 ln 2

315r
+

413π2

18r5v40

− 6313γ

90r5v40
− 109379

50400r5v40
+

6313 ln r

60r5v40
− 234009 ln 3

560r5v40
+

176657 ln 2

630r5v40
− 1045π2v20

18r2
+

10379γv20
630r2

− 9846541v20
117600r2

− 33919v20 ln r

420r2
− 2354v20 ln v0

21r2
+

234009v20 ln 3

560r2
− 267821v20 ln 2

630r2
+

316

9
π2rv80

+
16906

315
γrv80 +

6857279rv80
88200

+
16906

105
rv80 ln v0 +

16906 ln 2

105
rv80 , (A6i)

where γ ≈ 0.577 is the Euler-gamma constant.
While for the azimuthal component of the RR force we have

Fecc,mult
φ = F0PN

φ + F1PN
φ + F1.5PN,Tail

φ + F1.5PN,SO
φ + F2PN

φ + F2PN,SS
φ + F2.5PN,Tail

φ + F3PN
φ + F3PN,Tail

φ , (A7)

with

F0PN
φ =

29p2r∗
12rv40

+
11

6r2v40
− 5rv20

6
, (A8a)

F1PN
φ =

29p4r∗
36r4v100

− 58p4r∗
63rv40

+
20p2r∗
9r5v100

− 29

432
p2r∗r

3v60 −
1977p2r∗
224r2v40

− 613

504
p2r∗rv

2
0 +

80069p2r∗
12096rv20

+
11

9r6v100
+

5r5v120
216

+
557r3v80
1008

− 10687

2016r3v40
− 11r2v60

216
+

30371

6048r2v20
− 13805rv40

6048
+

1643v20
2016

, (A8b)

F1.5PN,Tail
φ = π

[
− 49p6r∗
1440r2v70

+
171p2r∗
16r4v70

− 29p2r∗
3rv0

+
167

48r5v70
− 109

16r2v0
+

10

3
rv50

]
, (A8c)

F1.5PN,SO
φ = a

[
29

144
p2r∗r

3v70 −
5p4r∗
2r3v70

− 73p2r∗
9r4v70

+
89p2r∗
18rv0

− 5

72
r5v130 − 11

9r5v70
+

11

72
r2v70 +

215

72r2v0
− 133

72
rv50

]
, (A8d)
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F2PN
φ =

145p6r∗
432r7v160

− 2755p6r∗
3024r4v100

+
37p6r∗
108rv40

+
115p4r∗
72r8v160

− 6515p4r∗
2016r5v100

+
80069p4r∗
72576r4v80

+
493p4r∗r

3v60
6048

+
101p4r∗
504r2v40

+
505

252
p4r∗rv

2
0 −

1841587p4r∗
508032rv20

+
29p4r∗
864

+
85p2r∗
36r9v160

+
29p2r∗r

7v160
15552

− 12755p2r∗
2016r6v100

+
71p2r∗r

5v120
1008

+
13805p2r∗
4536r5v80

− 261869p2r∗r
3v80

217728
− 797813p2r∗

12096r3v40
− 1355p2r∗r

2v60
8064

− 14442791p2r∗
677376r2v20

− 1029853p2r∗rv
4
0

254016
+

17738551p2r∗
451584r

+
5311p2r∗v

2
0

576
+

55

54r10v160
− 5r9v220

7776
− 419r7v180

12096
− 9119

3024r7v100
+

11r6v160
7776

+
30371

18144r6v80
+

23543r5v140
108864

+
1373r4v120

8064
− 235303

18144r4v40
+

1924417r3v100
1016064

− 22858319

2032128r3v20
− 13733r2v80

27216
+

20172163

677376r2
− 9304097rv60

677376

+
26207v20
4032r

+
516307v40
2032128

, (A8e)

F2PN,SS
φ = a2

[
29p4r∗
18r5v100

+
11p2r∗
9r6v100

− 29

192
p2r∗r

3v80 +
755p2r∗
72r3v40

− 29p2r∗
6r

+
5

96
r5v140 +

409

96r4v40
− 11

96
r2v80 (A8f)

− 11

3r2
+

5

3
rv60 −

211v20
96r

]
, (A8g)

F2.5PN,Tail
φ =π

[
49p8r∗

3456r2v70
− 343p8r∗

17280r5v130
− 343p6r∗

8640r6v130
− 15361p6r∗

30240r3v70
− 19327p6r∗

207360r2v50
+

49p6r∗r
2v30

51840
+

49p6r∗
3456v0

+
399p4r∗
64r7v130

+
60827p4r∗
5376r4v70

+
1537p4r∗
252rv0

+
8351p2r∗
576r8v130

+
184447p2r∗
4032r5v70

+
52459p2r∗
1792r4v50

+
29

72
p2r∗r

3v90 −
19

64
p2r∗v

3
0

+
12683p2r∗
504r2v0

+
1625

252
p2r∗rv

5
0 −

266365p2r∗v0

8064r
+

1169

288r9v130
+

1615

336r6v70
− 5

36
πr5v150 +

461087

48384r5v50

− 767

252
r3v110 − 16217

4032r3v0
+

503r2v90
1728

− 1143395v0
48384r2

+
45925rv70
4032

− 167v30
1728r

+
1151v50
1344

]
, (A8h)

F3PN
φ =

5r13v320
279936

+
1957r11v280
1306368

− 29p2r∗r
11v260

559872
− 11r10v260

279936
+

36403r9v240
2612736

− 1943p2r∗r
9v220

653184
− 26357r8v220

2612736

− 45275695r7v200
201180672

+
17195p2r∗r

7v180
746496

− 707257r6v180
2612736

− 1247p4r∗r
7v160

326592
+

4687p2r∗r
6v160

290304
+

17132501r5v160
31352832

+
74723225p2r∗r

5v140
100590336

+
915435407r4v140

402361344
− 35

216
p4r∗r

5v120 +
23329p2r∗r

4v120
145152

+
4837213015r3v120

341397504
− 29p4r∗r

4v100
11664

− 8345573611p2r∗r
3v100

2194698240
+

171479r2v100
22394880

+
86644739p4r∗r

3v80
50295168

− 1129077875p2r∗r
2v80

134120448
+

118884442364929rv80
1689917644800

− 214

35
rv80 ln r +

1712

63
rv80 ln v0 +

856 ln 2

63
rv80 −

5959p6r∗r
3v60

72576
+

13715p4r∗r
2v60

48384
− 4589832917p2r∗rv

6
0

170698752

− 21850038725v60
2048385024

+
32151845p2r∗v

4
0

1354752
+

295427p4r∗rv
4
0

42336
+

20710261v40
1354752r

− 193847585p4r∗v
2
0

14370048
− 3322987p6r∗rv

2
0

1197504

+
2889p2r∗v

2
0 ln r

70r
− 535v20 ln r

126r2
− 24824p2r∗v

2
0 ln v0

315r
− 18832v20 ln v0

315r2
− 252830224115069p2r∗v

2
0

675967057920r
− 9416v20 ln 2

315r2

+
41138929379561v20
1689917644800r2

− 12412p2r∗v
2
0 ln 2

315r
− 1595p6r∗

24192
− 29482781p4r∗

1053696r
− 2756994649p2r∗

25288704r2
− 3565629869

75866112r3

+
12206381p6r∗
6096384rv20

+
527351p4r∗
193536r2v20

− 560474717p2r∗
3048192r3v20

− 1390812335

36578304r4v20
− 214p4r∗ ln r

35r3v40
− 7276p2r∗ ln r

315r4v40
− 107 ln r

18r5v40

+
223p8r∗

37422rv40
+

23518547p6r∗
5987520r2v40

+
471959591p4r∗
4435200r3v40

− 92174527p2r∗
1871100r4v40

− 1837807

190080r5v40
− 8727521p6r∗

6096384r4v80
− 17678683p4r∗

4064256r5v80

− 29650379p2r∗
4064256r6v80

− 19302151

6096384r7v80
+

15383p8r∗
18144r4v100

+
18511p6r∗
24192r5v100

− 145343p4r∗
6048r6v100

− 2801305p2r∗
54432r7v100

− 133409

13608r8v100
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+
80069p6r∗

217728r7v140
+

63503p4r∗
36288r8v140

+
46937p2r∗
18144r9v140

+
30371

27216r10v140
− 11455p8r∗

18144r7v160
− 537295p6r∗

217728r8v160
− 324335p4r∗

72576r9v160

− 970p2r∗
189r10v160

− 110465

54432r11v160
+

145p8r∗
972r10v220

+
245p6r∗

243r11v220
+

200p4r∗
81r12v220

+
620p2r∗

243r13v220
+

220

243r14v220
, (A8i)

F3PN, Tail
φ =

49π2p6r∗
360r2v40

+
1870681p6r∗
4200r2v40

− 208984375p6r∗ ln 5

6048r2v40
− 34399323p6r∗ ln 3

800r2v40
+

698109088p6r∗ ln 2

4725r2v40
+

193777p4r∗
420r3v40

+
234009p4r∗ ln 3

28r3v40
− 4392992p4r∗ ln 2

315r3v40
− 1681π2p2r∗

36r4v40
+

7597γp2r∗
630r4v40

+
29951111p2r∗
352800r4v40

− 7597p2r∗ ln r

420r4v40

+
78003p2r∗ ln 3

560r4v40
− 69443p2r∗ ln 2

630r4v40
+

232π2p2r∗v
2
0

9r
+

12412γp2r∗v
2
0

315r
+

2517229p2r∗v
2
0

44100r
+

12412p2r∗v
2
0 ln v0

105r

+
12412p2r∗v

2
0 ln 2

105r
− 503π2

36r5v40
+

107γ

630r5v40
− 8511719

352800r5v40
− 107 ln r

420r5v40
+

78003 ln 3

560r5v40
− 17441 ln 2

126r5v40
+

823π2v20
36r2

+
8453γv20
630r2

+
4193213v20
117600r2

+
10379v20 ln r

420r2
+

9416v20 ln v0
105r2

− 78003v20 ln 3

560r2
+

123157v20 ln 2

630r2
− 80

9
π2rv80

− 856

63
γrv80 −

86801rv80
4410

− 856

21
rv80 ln v0 −

856 ln 2

21
rv80 . (A8j)

2. Additive RR force eccentric corrections

Here we provide the additive implementation (6b) expressions. For the radial component we have

Fecc,add
r = F0PN

r + F1PN
r + F1.5PN,Tail

r + F1.5PN,SO
r + F2PN

r + F2PN,SS
r + F2.5PN,Tail

r + F3PN
r + F3PN,Tail

r , (A9)

where the different terms are

F0PN
r =

152p3r∗
15r3

+
44pr∗
3r4

+
32pr∗v

4
0

5r2
− 316pr∗v

6
0

15r
, (A10a)

F1PN
r =

372p5r∗
35r3

− 32p3r∗
15r5v20

+
21547p3r∗
105r4

+
16p3r∗v

4
0

15r2
+

44p3r∗v
6
0

21r
− 64pr∗

15r6v20
+

6369pr∗
35r5

+
8

45
pr∗r

2v140

− 51971pr∗v
6
0

315r2
− 1466

105
pr∗rv

12
0 +

16pr∗v
10
0

15
, (A10b)

F1.5PN,Tail
r = π

[
−p

5
r∗v

3
0

18r2
− 4p3r∗v

3
0

9r3
− 128pr∗v

3
0

5r4
+

128pr∗v
7
0

5r2

]
, (A10c)

F1.5PN,SO
r = a

[
−32p3r∗v

3
0

5r3
+

64pr∗v0
15r5

+
236pr∗v

3
0

15r4
− 8

15
pr∗r

2v150 − 256pr∗v
7
0

15r2
− 12pr∗v

9
0

5r

]
, (A10d)

F2PN
r =− 2116p7r∗

315r3
− 8p5r∗

45r8v80
+

56p5r∗
45r5v20

− 1468p5r∗
105r4

− 4p5r∗v
4
0

9r2
− 1619p5r∗v

6
0

210r
− 32p3r∗

45r9v80
− 128p3r∗

45r6v20
+

1440472p3r∗
945r5

+
152p3r∗v

4
0

45r3
− 16

135
p3r∗r

2v140 − 151853p3r∗v
6
0

630r2
+

137

35
p3r∗rv

12
0 − 28p3r∗v

8
0

135r
− 16p3r∗v

10
0

45
− 32pr∗

45r10v80
− 32pr∗

15r7v20

+
3403531pr∗
2835r6

− 16

135
pr∗r

4v200 +
8pr∗v

4
0

9r4
− 7829

630
pr∗r

3v180 − 908602pr∗v
6
0

945r3
− 16

105
pr∗r

2v160 − 159268pr∗v
8
0

2835r2

+
52

45
pr∗rv

14
0 +

64pr∗v
10
0

15r
− 109397pr∗v

12
0

630
, (A10e)
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F2PN,SS
r = a2

[
− 64p3r∗
15r6v20

− 116p3r∗
15r5

− 73pr∗
3r6

− 32pr∗v
4
0

5r4
+

263pr∗v
6
0

15r3
+

2

5
pr∗r

2v160 +
64pr∗v

8
0

5r2

]
, (A10f)

F2.5PN,Tail
r =π

[
p7r∗

72r5v30
+

121p7r∗v
3
0

1800r2
+

5p5r∗
36r6v30

− 41429p5r∗v
3
0

12600r3
+

121p5r∗v
9
0

1800
+

298p3r∗
45r7v30

− 224p3r∗v0

15r5
+

81259p3r∗v
3
0

420r4
− p3r∗v

9
0

3r

− 32p3r∗v
7
0

15r2
+

64pr∗
5r8v30

− 448pr∗v0
15r6

+
2467pr∗v

3
0

21r5
+

96pr∗v
7
0

5r3
+

16

45
pr∗r

2v170 − 37117pr∗v
9
0

315r2
− 32

15
pr∗v

13
0

]
,

(A10g)

F3PN
r =

15017p9r∗
3465r3

− 16p7r∗
405r11v140

+
32p7r∗

135r8v80
− 124p7r∗

135r5v20
− 666419p7r∗

27720r4
+

22p7r∗v
4
0

81r2
+

37519p7r∗v
6
0

6930r
− 32p5r∗

135r12v140
+

8p5r∗
135r9v80

+
52p5r∗
15r6v20

+
503253523p5r∗
519750r5

− 27392p5r∗ ln r

175r5
+

28p5r∗v
2
0

405r4
− 70p5r∗v

4
0

27r3
+

8

81
p5r∗r

2v140 +
19473p5r∗v

6
0

700r2
− 22301p5r∗rv

12
0

2310

+
119p5r∗v

8
0

405r
+

32p5r∗v
10
0

135
− 64p3r∗

135r13v140
− 32p3r∗

27r10v80
− 904p3r∗

135r7v20
+

3971393821p3r∗
779625r6

+
381776p3r∗ ln r

1575r6
+

318536p3r∗v
2
0

8505r5

+
56

405
p3r∗r

4v200 +
1412p3r∗v

4
0

135r4
+

29455p3r∗r
3v180

2772
+

1662031157p3r∗v
6
0

1039500r3
− 54784p3r∗v

6
0 ln r

175r3
+

68168p3r∗v
8
0

8505r2

+
8

63
p3r∗r

2v160 − 496p3r∗v
10
0

315r
− 244

405
p3r∗rv

14
0 − 4446151p3r∗v

12
0

27720
− 128pr∗

405r14v140
− 32pr∗

45r11v80
− 448pr∗

135r8v20
+

16

405
pr∗r

6v260

+
2392124741pr∗

779625r7
+

398896pr∗ ln r

1575r7
+

126944pr∗v
2
0

1701r6
− 1871

990
pr∗r

5v240 +
458pr∗r

4v220
2835

− 1686962227pr∗v
6
0

1559250r4

− 75328pr∗v
6
0 ln r

225r4
− 17

15
pr∗r

3v200 − 166324pr∗v
8
0

2835r3
− 41657pr∗r

2v180
8100

+
560238598pr∗v

10
0

779625r2
+

109568pr∗v
10
0 ln v0

525r2

+
54784pr∗v

10
0 ln 2

525r2
− 38

45
pr∗rv

16
0 − 320493581pr∗v

12
0

115500r
+

32528pr∗v
12
0 ln r

175r
+

25276pr∗v
14
0

1701
, (A10h)

F3PN, Tail
r =− 89498224p5r∗

7875r5
+

208984375p5r∗ ln 5

378r5
+

1061386821p5r∗ ln 3

1750r5
− 17548301312p5r∗ ln 2

7875r5
+

7482724p5r∗v
6
0

2625r2

− 41796875p5r∗v
6
0 ln 5

189r2
− 34399323p5r∗v

6
0 ln 3

125r2
+

22339490816p5r∗v
6
0 ln 2

23625r2
− 11248π2p3r∗

45r6
+

1203536γp3r∗
1575r6

− 100258619p3r∗
18375r6

− 601768p3r∗ ln r

525r6
− 3588138p3r∗ ln 3

35r6
+

828630256p3r∗ ln 2

4725r6
+

1550216p3r∗v
6
0

525r3
− 6608π2pr∗

45r7

+
1872072p3r∗v

6
0 ln 3

35r3
− 140575744p3r∗v

6
0 ln 2

1575r3
+

101008γpr∗
225r7

+
109379pr∗
7875r7

− 50504pr∗ ln r

75r7
+

468018pr∗ ln 3

175r7

− 2826512pr∗ ln 2

1575r7
+

5072π2pr∗v
6
0

45r4
− 542704γpr∗v

6
0

1575r4
+

10443403pr∗v
6
0

55125r4
+

271352pr∗v
6
0 ln r

525r4
+

512π2pr∗v
10
0

15r2

− 468018pr∗v
6
0 ln 3

175r4
+

3155216pr∗v
6
0 ln 2

1575r4
− 54784γpr∗v

10
0

525r2
− 2777632pr∗v

10
0

18375r2
− 54784pr∗v

10
0 ln v0

175r2

− 54784pr∗v
10
0 ln 2

175r2
. (A10i)

The azimuthal component is

Fecc,add
φ = F0PN

φ + F1PN
φ + F1.5PN,Tail

φ + F1.5PN,SO
φ + F2PN

φ + F2PN,SS
φ + F2.5PN,Tail

φ + F3PN
φ + F3PN,Tail

φ , (A11)

while all the different PN orders are given by

F0PN
φ = −232p2r∗v

3
0

15r
− 176v30

15r2
+

16rv90
3

+
32v70
5

, (A12a)

F1PN
φ =

58p4r∗
15r4v30

− 58p4r∗v
3
0

105r
+

32p2r∗
3r5v30

− 56p2r∗v0

15r3
+

5497p2r∗v
3
0

105r2
+

374

105
p2r∗rv

9
0 +

8p2r∗v
7
0

3
+

88

15r6v30
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+
8r4v170
45

− 112v0
15r4

− 46r3v150
35

+
3217v30
105r3

+
8r2v130

3
− 8v70

5r
− 1825v90

63
, (A12b)

F1.5PN,Tail
φ = π

[
49p6r∗
225r2

− 342p2r∗
5r4

− 334

15r5
− 10v60

3r2
+

128v100
5

]
, (A12c)

F1.5PN,SO
φ = a

[
16p4r∗
r3

+
88p2r∗
r4

+
48p2r∗v

6
0

5r
+

176

5r5
− 8

15
r4v180 − 224v40

15r3
− 4v60

15r2
− 12

5
rv120 − 256v100

15

]
, (A12d)

F2PN
φ =

29p6r∗
60r7v90

− 58p6r∗
21r4v30

+
2699p6r∗v

3
0

1260r
+

23p4r∗
10r8v90

+
7p4r∗

45r6v50
− 4891p4r∗

420r5v30
+

56p4r∗v0

45r3
+

453p4r∗v
3
0

140r2
− 152

21
p4r∗rv

9
0

− 7p4r∗v
7
0

9
+

17p2r∗
5r9v90

+
28p2r∗
45r7v50

− 813p2r∗
28r6v30

− 2

27
p2r∗r

4v170 − 266p2r∗v0

45r4
+

2591

420
p2r∗r

3v150 +
78314p2r∗v

3
0

189r3

− 2

9
p2r∗r

2v130 − 34

135
p2r∗rv

11
0 +

248p2r∗v
7
0

45r
− 2104p2r∗v

9
0

35
+

22

15r10v90
+

28

45r8v50
− 1007

70r7v30
− 2

27
r6v230

− 562r5v210
315

− 28v0
15r5

+
11r4v190

35
+

1209829v30
11340r4

+
10r3v170

9
+

4027r2v150
1260

− 113v70
45r2

+
48rv130

5
− 12449v90

270r

− 31904v110
567

, (A12e)

F2PN,SS
φ = a2

[
116p4r∗
15r5v30

+
88p2r∗
15r6v30

− 112p2r∗v0

15r4
− 220p2r∗v

3
0

3r3
+

2

5
r4v190 − 409v30

15r4
+

211v90
15r

+
64v110
5

]
, (A12f)

F2.5PN,Tail
φ =π

[
12083p6r∗
3780r3

− 267293p4r∗
2520r4

− 10403p2r∗
35r5

− 64p2r∗v
4
0

3r3
− 5p2r∗v

6
0

r2
+

64

15
p2r∗v

10
0 − 2039

70r6
+

16

45
r4v200

− 128v40
3r4

+
22499v60
210r3

+
64

15
r2v160 +

64v100
5r

− 16621v120
315

]
, (A12g)

F3PN
φ =

5r8v290
324

− 1433r7v270
6160

+
173r6v250
1620

+
11

162
p2r∗r

6v230 − 89r5v230
135

+
1009p2r∗r

5v210
18480

− 65599427r4v210
4989600

− 11

60
p2r∗r

4v190 +
3583r3v190

1260
+

17

324
p4r∗r

4v170 − 88

405
p2r∗r

3v170 +
18203r2v170

34020
− 30493p4r∗r

3v150
3080

+
209245p2r∗r

2v150
7392

− 306672181rv150
1188000

+
6848

175
rv150 ln r +

13

108
p4r∗r

2v130 +
269p2r∗rv

13
0

1260
+

109568

525
v130 ln v0

+
54784 ln 2

525
v130 +

2290065817v130
3118500

− 21307p2r∗v
11
0

3402
+

119

405
p4r∗rv

11
0 − 42736v110

945r
+

236999p4r∗v
9
0

3168

+
27463p6r∗rv

9
0

2640
− 46224p2r∗v

9
0 ln r

175r
+

1712v90 ln r

63r2
+

45309763p2r∗v
9
0

23625r
− 49307783v90

79200r2
+

133p6r∗v
7
0

324

− 1451p4r∗v
7
0

540r
+

7427p2r∗v
7
0

540r2
− 2269v70

180r3
+

187p4r∗v
5
0

1620r2
+

87736p2r∗v
5
0

1701r3
+

873433v50
8505r4

+
6848p4r∗v

3
0 ln r

175r3

+
232832p2r∗v

3
0 ln r

1575r4
+

1712v30 ln r

45r5
− 49153p8r∗v

3
0

18480r
− 1878557p6r∗v

3
0

184800r2
− 3763348417p4r∗v

3
0

8316000r3

+
2982393643p2r∗v

3
0

8316000r4
+

189547637v30
1663200r5

− 77p6r∗v0

108r3
+

539p4r∗v0

180r4
− 7861p2r∗v0

540r5
− 175v0

54r6
+

8959p8r∗
5040r4v30

+
1169p6r∗
720r5v30

− 480959p4r∗
4320r6v30

− 10877563p2r∗
45360r7v30

− 279001

5670r8v30
− 91p6r∗

540r6v50
+

7p4r∗
108r7v50

+
28p2r∗
27r8v50

+
7

15r9v50

− 1189p8r∗
1680r7v90

− 9017p6r∗
3360r8v90

− 6047p4r∗
1120r9v90

− 3041p2r∗
420r10v90

− 509

168r11v90
+

7p6r∗
324r9v110

+
7p4r∗

54r10v110
+

7p2r∗
27r11v110
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+
14

81r12v110
+

29p8r∗
240r10v150

+
49p6r∗

60r11v150
+

2p4r∗
r12v150

+
31p2r∗

15r13v150
+

11

15r14v150
, (A12h)

F3PN,Tail
φ =− 7482724p6r∗v

3
0

2625r2
+

41796875p6r∗v
3
0 ln 5

189r2
+

34399323p6r∗v
3
0 ln 3

125r2
− 22339490816p6r∗v

3
0 ln 2

23625r2
− 1550216p4r∗v

3
0

525r3

− 1872072p4r∗v
3
0 ln 3

35r3
+

140575744p4r∗v
3
0 ln 2

1575r3
+

1136π2p2r∗v
3
0

45r4
− 121552γp2r∗v

3
0

1575r4
− 29951111p2r∗v

3
0

55125r4
+

16π2v30
45r5

+
60776p2r∗v

3
0 ln r

525r4
− 156006p2r∗v

3
0 ln 3

175r4
+

1111088p2r∗v
3
0 ln 2

1575r4
− 1712γv30

1575r5
+

8511719v30
55125r5

+
856v30 ln r

525r5

− 156006v30 ln 3

175r5
+

279056v30 ln 2

315r5
− 1552π2v90

45r2
+

166064γv90
1575r2

+
2697337v90
55125r2

− 83032v90 ln r

525r2
+

156006v90 ln 3

175r2

− 152368v90 ln 2

225r2
+

512π2v130
15

− 54784γv130
525

− 2777632v130
18375

− 54784

175
v130 ln v0 −

54784 ln 2

175
v130 , (A12i)

3. Schott terms

Here we provide the expressions of the total time derivative of the Schott terms introduced in equations (18a) and
(18b). They are expressed as functions of the variables {r, pr∗ , v0}. For the Schott term contribution to the energy
balance equation we have

ĖSchott = Ė0PN
Sch + Ė1PN

Sch + Ė1.5PN,Tail
Sch + Ė1.5PN,SO

Sch + Ė2PN
Sch + Ė2PN,SS

Sch + Ė2.5PN,Tail
Sch + Ė3PN

Sch + Ė3PN,Tail
Sch , (A13)

where

Ė0PN
Sch = −152p4r∗

15r3
− 76p2r∗

5r4
+

548p2r∗v
6
0

15r
+

16v60
3r2

− 16rv120
3

, (A14a)

Ė1PN
Sch = −584p6r∗

105r3
− 20213p4r∗

105r4
− 1142p4r∗v

6
0

105r
− 4003p2r∗

21r5
+

12794p2r∗v
6
0

105r2
− 8

3
p2r∗rv

12
0 − 592

105r6
+

278r3v180
105

+
215v60
21r3

− 761v120
105

,

(A14b)

Ė1.5PN,Tail
Sch = −50πp2r∗v

3
0

3r4
− 10πv30

3r5
+

10πv90
3r2

, (A14c)

Ė1.5PN,SO
Sch = a

[
−48p4r∗v

3
0

5r3
− 1708p2r∗v

3
0

15r4
− 36p2r∗v

9
0

5r
− 416v30

15r5
+

76v90
3r2

+
12

5
rv150

]
, (A14d)

Ė2PN
Sch =

2593p8r∗
315r3

+
5633p6r∗
45r4

+
5368p6r∗v

6
0

315r
− 224522p4r∗

189r5
+

70018p4r∗v
6
0

315r2
+

199

21
p4r∗rv

12
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Ė3PN, Tail
Sch =− 1552π2p4r∗

9r6
+

166064γp4r∗
315r6

+
4441009p4r∗
11025r6

− 83032p4r∗ ln r

105r6
+

156006p4r∗ ln 3

35r6
− 152368p4r∗ ln 2

45r6

− 4624π2p2r∗
15r7

+
494768γp2r∗

525r7
+

27991609p2r∗
18375r7

− 247384p2r∗ ln r

175r7
+

468018p2r∗ ln 3

175r7
− 409168p2r∗ ln 2

525r7

− 6208π2p2r∗v
6
0

45r4
+

664256γp2r∗v
6
0

1575r4
+

19507708p2r∗v
6
0

55125r4
− 332128p2r∗v

6
0 ln r

525r4
+

624024p2r∗v
6
0 ln 3

175r4

− 609472p2r∗v
6
0 ln 2

225r4
− 512π2

15r8
+

54784γ

525r8
+

3736352

18375r8
− 27392 ln r

175r8
+

109568 ln 2

525r8
− 16π2v60

45r5
+

1712γv60
1575r5

− 8511719v60
55125r5

− 856v60 ln r

525r5
+

156006v60 ln 3

175r5
− 279056v60 ln 2

315r5
+

1552π2v120
45r2

− 166064γv120
1575r2

− 2697337v120
55125r2

+
83032v120 ln r

525r2
− 156006v120 ln 3

175r2
+

152368v120 ln 2

225r2
, (A14i)

while for the Schott terms related to the angular momentum flux we have
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FIG. 7. Absolute value of the fractional differences defined in Eq. (22) of the averaged fluxes computed on orbits in a weak-field

regime. The x-axis corresponds to the gauge-invariant variable x = ⟨φ̇⟩2/3. The orbits are characterized by the parameters
e = 0.5, a = 0.9 and p = {960, 480, 240, 120, 60, 30, 15, 12.797}. Dotted lines correspond to the additive implementation (add)
while solid lines correspond to the multiplicative (mult) implementation. Empty circle dots represent negative values of the
fractional differences, highlighting zero crossing in the log-log plots. We highlight with a dashed vertical gray line the orbit
with x = 0.06, which is also shown in the contour plot of Fig. 4.
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We remark that these total time derivatives of the Schott terms have to be computed on the geodesics and plugged
in the balance equations.

4. PN scaling assessment for spinning orbits

In Fig. 7, we show a similar plot to the one in Fig. 2
for eccentric orbits with e = 0.5 around a Kerr BH with
spin a = 0.9. We test the weak-field regime scaling of
the different PN order of the eccentric corrections to the
RR force in Eq. (6) by studying the fractional differences
of the orbit-averaged analytical and numerical fluxes. As
in the non-spinning case, we recover the correct scaling
of the different PN truncations, which is expected to be

x−(n+1/2), with n being the PN order at which we per-
form the truncation. However, in the spinning case, our
analysis has an important caveat: the analytical fluxes we
consider contain SO and SS spin corrections at 2PN. This
means that the ECC3PN fluxes do not contain the spin
contributions at 2.5PN and 3PN. As a consequence the
ECC3PN lines in Fig. 7 exhibit the same scaling (slope)
as the ECC2PN, but they still improve the ECC2PN
lines exhibiting a shift down. In the plot we highlight
with a vertical gray curve the orbit with x = 0.06 which
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is present in the contour plot of Fig. 4. This plot ex-
tends to regimes x ≤ 0.06 what we found in Fig. 4: the
multiplicative ECC3PN corrections in Eq. (6a) perform
better than the additive ECC3PN in Eq. (6a), especially
for eccentric orbits with prograde spin.

Appendix B: Instantaneous fluxes from frequency
domain Teukolsky solutions

The frequency domain solutions to the Teukolsky equa-
tion at future null infinity for a particle traveling on an
eccentric geodesic take the form

ψ4 =
∑
lmn

Zlmn−2Slmωmn
(cos θ)eimϕe−iωmnt, (B1)

where the −2Slmωmn
spin-weighted spheroidal harmon-

ics of weight -2, and the mode frequencies are ωmn =
mΩϕ + nΩr with Ωϕ and Ωr the azimuthal and ra-
dial frequencies. To build the instantaneous fluxes us-
ing Eqs. (17) we first project the spheroidal harmonics

−2Slmωmn onto spherical harmonics −2Ylm using,

−2Slmωmn
(cos θ)eimϕ =

∑
ℓ

(−2bmn)
ℓ
l −2Yℓm(θ, ϕ), (B2)

where the coefficients (−2bmn)
ℓ
l are obtained using the

algorithm of Ref. [94]. This allows us to define the spin-
weighted spherical harmonic coefficients of ψ4,

Zℓmn =
∑
l

Zlmn(−2bmn)
ℓ
l . (B3)

Combining the above expressions with Eqs. (17), and ap-
plying the orthogonality relations for products of spin-
weighted harmonics when integrated over the sphere, we
obtain the following closed-form expressions for the in-
stantaneous flux,
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Inspiral-merger-ringdown waveforms of spinning, pre-
cessing black-hole binaries in the effective-one-body for-
malism, Phys. Rev. D 89, 084006 (2014), arXiv:1307.6232
[gr-qc].

[41] A. Taracchini et al., Effective-one-body model for black-
hole binaries with generic mass ratios and spins, Phys.
Rev. D 89, 061502 (2014), arXiv:1311.2544 [gr-qc].
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