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Driven by advances in scattering amplitudes and worldline-based methods, recent years have seen
significant progress in our ability to calculate gravitational two-body scattering observables. These
observables effectively encapsulate the gravitational two-body problem in the weak-field and high-velocity
regime [post-Minkowskian (PM)], with applications to the bound two-body problem and gravitational-
wave modeling. We leverage PM data to construct a complete inspiral-merger-ringdown waveform model
for nonprecessing spinning black holes within the effective-one-body (EOB) formalism SEOBNR-PM. This
model is closely based on the highly successful SEOBNRv5 model, used by the LIGO-Virgo-KAGRA
Collaboration, with its key new feature being an EOB Hamiltonian derived by matching the two-body
scattering angle in a perturbative PM expansion. The model performs remarkably well, showing a median
mismatch against 441 numerical-relativity (NR) simulations that is somewhat lower than a similarly
calibrated version of SEOBNRv5. Comparisons of the binding energy with NR also demonstrate better
agreement than SEOBNRv5, despite the latter containing additional calibration to NR simulations.
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Introduction—Since the initial detection of a gravita-
tional wave (GW) from a binary-black-hole (BBH) merger
[1], the LIGO-Virgo-KAGRA Collaboration [2–4] and
independent analyses have identified about 100 mergers
of compact binaries [5–10]. These observations have begun
to reveal the distributions of BH masses and spins [11],
improved constraints on the neutron-star equation of state
[12], obtained independent measurements of the Hubble-
Lemaître parameter [13,14], and validated general relativity
[15–17].
Enhancements in the sensitivity of current GW detectors,

coupled with the development of next-generation observa-
tories like the Einstein Telescope and Cosmic Explorer
[18–20], as well as future space-based detectors such as
LISA [21], TianQin [22], or Taiji [23], are poised to
dramatically increase the number of detectable GW
sources. These advancements will enable observations with
a signal-to-noise ratio up to 2 orders of magnitude higher
than what is currently achievable [24], necessitating a
commensurate improvement in the accuracy of waveform
models. Recent research [25] has demonstrated that even

state-of-the-art waveform models, designed for quasicir-
cular, spin-precessing BBHs, exhibit systematic biases
when applied to future LIGO-Virgo-KAGRA runs and
next-generation detectors. This bias becomes pronounced,
especially for high-spin rates and significant asymmetries
in spins and masses. Addressing the challenge of waveform
accuracy is essential to realizing the full scientific potential
of future runs and detectors [24,26–29] and avoiding false
claims of general relativity violations [30,31].
Waveform models for compact binaries are crafted by

synergistically combining analytical and numerical rela-
tivity (NR) results. NR tackles the formidable task of
solving Einstein’s equations on supercomputers [32–34], a
process notorious for its time-intensive nature. On the other
hand, perturbative methods are used to obtain approximate
solutions to Einstein’s equations, offering analytic formulas
that are swift to evaluate. Three primary perturbative
approaches have been developed: post-Newtonian (PN)
theory [35–50] applicable in the weak-field and small-
velocity limit, post-Minkowskian (PM) theory [51–60] in
the weak-field regime, and the gravitational self-force
(GSF) formalism [61–74] for the small mass-ratio limit.
These analytical results are then synthesized in the effec-
tive-one-body (EOB) approach [75–79], which efficiently
resums the perturbative calculations for the inspiral while
retaining known nonperturbative results for BHs, achieving
high accuracy for current observing runs via calibration to
NR [80–94].
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Thus far, the EOB waveform models utilized by the
LIGO-Virgo-KAGRA Collaboration [95] have primarily
relied on resummations of the PN expansion, with the
exception of Refs. [94,101], which included second-order
GSF results [73] for the gravitational modes and radiation-
reaction force. Given recent advancements in PM
[102–118] and GSF [73,74], there is now significant
interest in exploring and developing waveform models
that combine information from various perturbative meth-
ods in innovative ways. The aim is to address the wave-
form-accuracy challenge. In this regard, the PM approach is
particularly interesting since an (nþ 1) PM-order (Gnþ1)
Hamiltonian includes all information up to the nPN order
(wherein v2=c2 ∼GM=ðrc2Þ), and additional weak-field,
high-velocity information from infinitely higher PN orders,
making it suitable for systems with high velocities or large
eccentricities at fixed periastron distances [119]. Using
sophisticated quantum-field-theory-based methods, tre-
mendous progress has been made on the precision PM
frontier using both scattering amplitudes [120–122] and
worldlines [123–126]. This progress is largely due to a
blend of a clever and efficient organization of perturba-
tive calculations and formal mathematical developments
in understanding the properties of multiloop integrals
[127–133]. These developments were primarily driven over
the past several decades to address precision-collider physics.
Furthermore, several sophisticated techniques, such as gen-
eralized unitarity [134,135], double copy [136–139], super-
symmetry [116], and massive higher spins [140–147] have
also been used to further enhance these computations.
In this Letter, leveraging on Refs. [93,148,149], we

present the first PM-informed spinning EOB waveform
model, SEOBNR-PM, encompassing the inspiral, as well as
the merger and ringdown phases. This model incorporates
the most recent findings from PM theory into the EOB
Hamiltonian, and it is mildly calibrated to NR waveforms.
The SEOB-PM Hamiltonian (so named as it does not
include an NR calibration term) includes the nonspinning
(conservative) 4PM [121,123] and spinning 5PM terms
[125,142,150–155], alongside the known nonspinning 4PN
[41–45] contributions, which also corrects the tails from
unbound to bound orbits up to that order [156]. Our PM
counting is a physical one, with spin orders contributing in
addition to loop orders (see Table II in Ref. [149]). We
construct our SEOBNR-PM model within the PYSEOBNR

code [158], which was recently built to make the develop-
ment of SEOBNR models, including the calibration to NR
waveforms, highly efficient. As an example, we show in
Fig. 1 the agreement between the (mildly) calibrated
SEOBNR-PM and NR for a spinning BBH coalescence.
EOB framework for waveforms—We use geometric units

G ¼ 1 ¼ c, and set M ¼ m1 þm2 and ν ¼ m1m2=M2,
where m1 and m2 are the BH’s masses. In the EOB
formalism, the binary’s conservative dynamics is described
by the EOBHamiltonianHEOB ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðHeff=μ − 1Þp

,
where Heff is the Hamiltonian of an effective test body of
mass μ ¼ νM moving in the (deformed) Kerr spacetime,

with 0 ≤ ν ≤ 1=4 the deformation parameter. We also
introduce the mass ratio q ¼ m1=m2 > 1. We limit to
nonprecessing spins (i.e., aligned spins) and introduce the
spin lengths ai ¼ miχi, with a� ¼ Mχ� ¼ a1 � a2.
In the center-of-mass frame, the inspiral-plunge dynam-

ics, for aligned-spin BHs, is computed from the EOB
equations of motion [76,83]:

ṙ ¼ ∂HEOB

∂pr
; ṗr ¼ −

∂HEOB

∂r
þ pr

pϕ
Fϕ; ð1aÞ

ϕ̇ ¼ ∂HEOB

∂pϕ
; ṗϕ ¼ Fϕ; ð1bÞ

where (r,ϕ,pr,pϕ) are the canonical variables in polar
coordinates. (The construction of Heff will be described
in the next section.) Employing results from the SEOBNRv5
model [93,148], the radiation-reaction force (Fϕ) is com-
puted by summing over the PNGWmodes (augmentedwith
GSF information [101]) in a factorized form [82,93,159–
161], which are used to obtain the inspiral-plunge modes
after enhancing them by non-quasi-circular corrections
[86,87,93,162] during the plunge.
For the merger-ringdown part of the EOB waveform, we

use instead a phenomenological ansatz [87,93,163,164],
informed by NR and BH perturbation theory, as realized in
the SEOBNRv5 model [93]. The start of the merger-
ringdown waveform is enforced to be at the peak of the
(2,2)-mode amplitude. The gravitational polarizations can
be written as hþ − ih× ¼ P

l;m −2Ylmðφ; ιÞhlmðtÞ, where
−2Ylmðφ; ιÞ are the −2 spin-weighted spherical harmonics,
with φ and ι being the azimuthal and polar angles to the
observer, in the source frame. In the EOB approach, the
inspiral-merger-ringdown ðl; mÞ modes are given by

hlm ¼
(
hinsp-plungelm t < t22peak

hmerg-RD
lm t > t22peak;

ð2Þ

FIG. 1. An SEOBNR-PM inspiral-merger-ringdown waveform
generated using the PYSEOBNR code [158], compared against the
NR simulation SXS:BBH:1445, after a low-frequency align-
ment by a time and phase shift. The time t ¼ 0 corresponds to the
peak of the (2,2) mode of the NR waveform.
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where t22peak is the time at which the (2,2) mode has a peak,
generally associated to the merger time. Such a time is
suitably chosen to agree with the corresponding time in NR
waveforms (see below).
PM-informed EOB Hamiltonian—We employ an effec-

tive Hamiltonian similar to that recently introduced in the
SEOB-PM scattering model [149]:

Heff ¼
Mpϕðgaþaþ þ ga−δa−Þ

r3 þ a2þðrþ 2MÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

�
μ2 þ p2

ϕ

r2
þ ð1þ BKerr

np Þp2
r þ BKerr

npa

p2
ϕa

2þ
r2

�s
;

ð3Þ

where δ ¼ ðm1 −m2Þ=M, while BKerr
np ¼ χ2þu2 − 2u and

BKerr
npa ¼ −ð1þ 2uÞ=½r2 þ a2þð1þ 2uÞ�, where u ¼ M=r is

the dimensionless PM counting parameter. In the probe
limit ν → 0, Heff reduces to the Hamiltonian of a probe μ
moving under the influence of a Kerr BH with massM and
directed spin length aþ. This Hamiltonian is determined by
computing the scattering angle and matching it to estab-
lished PM results, but here we use only the conservative
part of the angle containing terms with even powers in the
center-of-mass momentum p∞ ¼ μ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
, where γ ¼

Eeff=μ > 1 for scattering trajectories.
Following Ref. [149], the ν corrections with respect to

the probe limit are built into the A potential and the gyro-
gravitomagnetic factors as A ¼ ð1 − 2uþ χ2þu2 þ ΔAÞ=
½1þ χ2þu2ð2uþ 1Þ� and ga� ¼ Δga�=u

2. These respec-
tively carry the even- and odd-in-spin corrections, and
are PM expanded up to a physical 5PM (u5) order (see
Table II in Ref. [149]):

ΔA¼
X5
n¼2

unΔAðnÞ þΔA4PN; Δga� ¼
X5
n¼2

unΔgðnÞa� : ð4Þ

The γ-dependent coefficients ΔAðnÞ and ΔgðnÞa� are series
expanded in even powers of the spins, up to a highest
quartic order at 5PM.We lack an analytic 5PM term only in
the nonspinning case, where the complete result is not
currently known (see Ref. [165] for the recently derived
1GSF conservative contribution). Technically, as
γ ¼ Eeff=μ≡Heff=μ, the Hamiltonian (3) is self-depen-
dent. To produce an expression depending only on the
canonical variables (r,pr,pϕ), we interpret γ ¼ HKerr=μ
within these deformations, plus whatever corrections are
required in order to ensure the full Hamiltonian HEOB is
correct up to the desired PM order. This procedure was used
previously in the nonspinning case [119,166,167], and is
fully described in the Supplemental Material [168].
An important subtlety within our Hamiltonian is the

presence of non-local-in-time contributions (tails). These

imply a dependence on the full past history of the binary, and
thus distinguish between elliptic and hyperbolic (scattering)
trajectories. In the scattering Hamiltonian presented in
Ref. [149], tails are signaled by factors of logðγ2 − 1Þ,
which develops an imaginary part when γ < 1 for bound
orbits. To produce a real Hamiltonian, we therefore re-
place logðγ2 − 1Þ → logðuÞ (see Supplemental Material for
details [168]). We also include the 4PN nonspinning bound-
orbit correction ΔA4PN in Eq. (4),

ΔA4PN ¼ u4ðγ2 − 1Þc1 þ u5ðc2 þ c3 log uÞ; ð5Þ

ensuring the correct bound-orbit dynamics at 4PN order in
the nonspinning case (the numerical coefficients ci are
provided in the Supplemental Material). We verify our
complete EOB Hamiltonian up to 4.5PN order [41,169–
172] by finding a suitable canonical transformation to its
PN-expanded counterpart. The nonspinning component is
determined only up to quadratic order in eccentricity (p2

r) in
the tail integral, as higher powers in eccentricity appear at
lower PMorders. Thus, we ensured that the 1PM–3PM (tail-
free) nonspinning dynamics are unmodified by the presence
of the 4PN correction (5) [173].
Finally, let us comment on the appearance of special

functions in Heff . Starting at 3PM order we encounter the
combination arccoshðγÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

p
. As arccoshðγÞ andffiffiffiffiffiffiffiffiffiffiffiffi

1 − γ2
p

are both imaginary valued when γ < 1, we find it
convenient to replace this combination by arccosðγÞ=ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
, which has the same small-velocity expansion for

scattering kinematics. At 4PM order we then encounter
logarithms, dilogarithms (Li2), and elliptic functions (K=E)
of the first and second kind, all evaluated as functions of γ. In
this case, we also find it convenient to introduce the inverse
tangent integral Ti2ðxÞ ≔

R
x
0 ðdt=tÞ arctan t, analogously to

what is done above. Fast numerical routines exist for
evaluating all of these functions in Cython [174], and
this leads to an efficient numerical evaluation within
PYSEOBNR [158].
Comparing SEOB-PM and NR binding energies during

the inspiral—In EOB models one has access to the binary’s
dynamics, which enables testing their accuracy by compar-
ing (gauge-invariant) dynamical quantities such as the
binding energy [119,175–178] and periastron advance
[179,180]. As SEOBNR-PM’s essential new feature is its
PM-informed SEOB-PM Hamiltonian, the binding energy
is a particularly relevant quantity to compare with NR data.
Previous comparisons in the nonspinning case [119,167]
have focused on the binding energy computed for circular
orbits (i.e., ignoring radiation-reaction effects), although
Ref. [167] investigated the effect of neglecting dissipation
(see Fig. 6 therein). We instead compute the (dimension-
less) binding energy by evaluating E ¼ ðHEOB −MÞ=μ
along the inspiraling dynamics, and compare with NR
binding-energy data from Ref. [175]. Figure 2 shows the
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EOB and NR nonspinning binding energies as a function of
the (quasicircular) velocity parameter v ¼ ðMϕ̇Þ1=3, for
SEOBNRv5 with a6 and SEOB-PM for circular orbits and
along an inspiral. We stress that for the former, a 5PN-
unknown parameter (a6) in the A potential has been
calibrated against 18 nonspinning simulations (see below).
Both models show excellent agreement with NR during
most of the inspiral, with errors within the NR uncertainty
(represented by the gray region) until around 1 GW cycle

before merger. The (uncalibrated) SEOB-PM maintains
agreement within NR error up to slightly higher velocities
for higher mass ratios, and it has much better agreement
than when computed on circular orbits [119,167].
We also extract different spin contributions to the bind-

ing energy by combining results from NR simulations for
various equal-mass spin combinations [175,181]: ESO ¼
− 1

6
Eð−0.6;0Þþ 8

3
Eð0.3;0Þ− 2Eð0;0Þ− 1

2
Eð0.6;0ÞþOðS3Þ

and ES2¼3
2
Eð−0.6;0Þ−2Eð0;0Þþ3

2
Eð0.6;0Þ−Eð0.6;−0.6Þþ

OðS3Þ, where Eðχ1; χ2Þ denotes the binding energy in a
simulation with dimensionless spins χi. In Fig. 3 we
illustrate the spin-orbit and spin-squared contributions
for an equal-mass BBH to the binding energy for the
(uncalibrated) SEOB-PM at different PM orders, as com-
pared with NR and with the (calibrated) SEOBNRv5 with
ða6; dSOÞ. Despite not being calibrated to NR, SEOB-PM
shows excellent agreement with the NR results, with a clear
convergence toward the NR prediction, as more PM
corrections are included. Its accuracy is somewhat better
than SEOBNRv5, despite the latter model using a
Hamiltonian calibrated in the nonspinning (a6) and spin-
orbit coupling (dSO) sector (see below).
Calibration to numerical-relativity waveforms—As dis-

cussed, the accuracy of EOB inspiral-merger-ringdown
waveforms can be enhanced through calibration to NR
simulations. For the inspiral-plunge stage, this is generally
achieved by introducing in the Hamiltonian high-order (still
unknown) PN terms, whose coefficients are tuned to NR,
and fitting the time of merger [i.e., the (2,2) mode’s peak
time] to NR. In the SEOBNRv5 model [93], which was
built integrating PN results in the Hamiltonian, three
calibration parameters were employed: ðΔtNR; a6; dSOÞ.

FIG. 2. Nonspinning binding energy as a function of the
(quasicircular) velocity v ¼ ðMϕ̇Þ2=3, for the (calibrated)
SEOBNRv5 with a6 and (uncalibrated) SEOB-PM Hamiltonians
(both along a circular orbit [119,167] and inspiral) across
different mass ratios q ¼ m1=m2. The shaded region is an
estimate of the NR uncertainty [175]. The lower panel shows
the fractional difference.

FIG. 3. Spin-orbit (left-hand panel) and spin-squared (right-hand panel) contributions to the binding energy, for an equal-mass BBH,
as a function of the (quasicircular) velocity v ¼ ðMϕ̇Þ2=3, for the (calibrated) SEOBNRv5 with (a6,dSO) and (uncalibrated) SEOB-PM
Hamiltonians at different PM orders. The vertical line represents the merger of the NR configuration (the one at the lowest velocity
among those used), with the number of GW cycles (top axis) referring to the same simulation. The shaded regions are estimates of the
NR uncertainty [175]. The lower panel shows the absolute value of the fractional difference. The feature in the lower right-hand panel
around v ∼ 0.4 is due to a zero crossing.
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The parameterΔtNR is defined by t22peak ¼ tISCO þ ΔtNR [see
also Eq. (2)], where tISCO is the time atwhich r ¼ rISCO, with
rISCO the radius of the Kerr innermost stable circular orbit
(ISCO) [182] with the mass and spin of the remnant BH, as
given byNR fitting formula [183,184]. The parametera6 is a
5PN correction to the A potential and dSO is a 4.5PN
correction in the gyrogravitomagnetic coefficients [185].
Here, for the SEOBNR-PMmodel, we do not calibrate high-
order PN terms in the nonspinning and spin sectors of the
Hamiltonian (3), but we calibrate only the merger’s time
through ΔtNR. In future work, we will explore NR calibra-
tions tailored to the particular structure of the PM terms.
Henceforth, we compare the PM-informed model with
several versions of the most recent PN-GSF-informed
SEOBNRv5, with and without calibration.
Waveform accuracy is often quantified in terms of the

mismatch M, defined as 1 minus the overlap between the
normalized waveforms, maximized over a relative time and
phase shift:

M ¼ 1 −max
ϕ0;t0

ðh1jh2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þðh2jh2Þ
p : ð6Þ

The overlap is a noise-weighted inner product [186,187]
ðh1jh2Þ≡ 4Re

R fh
fl

dfh̃1ðfÞh̃�2ðfÞ=SnðfÞ, where h̃ðfÞ is the
Fourier transform of the time-domain signal, the asterisk
superscript indicates complex conjugation, and SnðfÞ is the
power spectral density of the detector noise, which we
assume to be the design zero-detuned high-power noise
curve of Advanced LIGO [188].
To calibrate the SEOBNR-PM model, we closely follow

the procedure outlined in Refs. [87,93,158]. This procedure
essentially consists of determining values of the calibration
parameters that minimize a combination of the mismatch
and the difference in merger time [defined as the peak of the
(2,2)-mode amplitude] between EOB and NR waveforms
with the same physical parameters (q; χ1; χ2). This is
carried out in a Bayesian fashion using the Bilby
[189] package, and the PYSEOBNR code [158]. Finally,
we interpolate the best-fit values for each NR simulation
across the (q; χ1; χ2) parameter space. As said, in our
SEOBNR-PM model, we only calibrate the ΔtNR parameter
(see the Supplemental Material for its expression [168])
using 441 NR simulations of aligned-spin BBHs produced
with the pseudo-spectral Einstein code of the Simulating
eXtreme Spacetimes (SXS) Collaboration [87,99,190–
202], which were also employed in Ref. [93] for the
SEOBNRv5 model. They cover mass ratios q ¼ m1=m2

from 1 to 20 in the nonspinning limit, and dimensionless
spin values going from −0.998 ≤ χi ≤ 0.998 for q ¼ 1 to
−0.5 ≤ χ1 ≤ 0.5; χ2 ¼ 0 for q ¼ 15.
SEOBNR-PM waveform-model performance—To assess

the accuracy of the waveform model, we compute its
mismatch against the set of 441 SXS NR simulations,
and compare its performance to the SEOBNRv5

ðΔtNR; a6; dSOÞ model, as well as to a version of
SEOBNRv5 calibrated only via ΔtNR. Figure 4 illustrates
the cumulative maximum mismatch against the NR sim-
ulations over the binary’s total-mass range 10M⊙ ≤ M ≤
300M⊙, for the ðl; mÞ ¼ ð2; 2Þ mode. The overall mis-
match of SEOBNR-PM against NR falls roughly between
that of the two SEOBNRv5 variations, with a median value
Mmedian ∼ 6.1 × 10−4. This represents a remarkably good
agreement. When tuning only ΔtNR, we observe that the
accuracy of both SEOBNR-PM and SEOBNRv5 tends to
degrade for configurations with large positive spins. This
results in a tail of high-mismatch cases above ∼1%, more
pronounced for SEOBNRv5, which includes spin-orbit
(3.5PN), spin-square (4PN), and spin-cube (3.5PN) effects
at a lower PN order than SEOBNR-PM, which includes spin
terms up to 5PM order [203]. Resumming the PM-EOB
potentials and introducing calibration parameters could
greatly improve SEOBNR-PM’s accuracy for these cases,
similar to the calibrated SEOBNRv5. We leave this impor-
tant work to the future.
Conclusions—In this Letter, we took advantage of the

flexible and efficient PYSEOBNR code [158] and recent
prediction for the scattering angle in the EOB formalism
[149] to build the first inspiral-merger-ringdown EOB
waveform model (SEOBNR-PM) for aligned-spin BHs that
uses a PM-informed Hamiltonian (i.e., expanded in G, but
at all orders in the velocity). Importantly, we found that the
SEOB-PM nonspinning binding energy, computed along an
inspiraling trajectory, at 4PM, and its spin-orbit and spin-
spin contributions through 5PM, agree remarkably well
with the NR data up to 1 GW cycle before merger (see
Figs. 2 and 3). The agreement is comparable and in some
cases better than SEOBNRv5, which however was cali-
brated to NR results [93]. Furthermore, we calibrated
SEOBNR-PM to 441 NR simulations provided by the
SXS Collaboration [87,99,190–202] by tuning the (2,2)

FIG. 4. Cumulative maximum mismatch over the binary’s total-
mass range 10M⊙ ≤ M ≤ 300M⊙ for the (calibrated) SEOBNR-
PM and SEOBNRv5 models. The study uses 441 SXS NR
waveforms, and focuses on the ðl; mÞ ¼ ð2; 2Þ mode. The
vertical dashed lines indicate the medians of the mismatch
distributions.
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mode’s peak time (i.e., ΔtNR), and found a median
mismatch lower than SEOBNRv5, when the latter is
similarly calibrated to NR (see Fig. 4). For now, without
optimization, the SEOBNR-PM’s evaluation time is an order
of magnitude slower than SEOBNRv5.
Considering the recent attention to the two-body gravi-

tational-scattering problem in quantum-field theory, with a
slew of new results produced [120–126], we see the
development of the SEOBNR-PM model as a watershed
moment—the first true application of these methods to an
astrophysically relevant inspiral-merger-ringdown wave-
form model. Yet, this is only a first step. Given the relevant
progress at 5PM [165], we hope to incorporate the
complete 5PM scattering angle into our effective
Hamiltonian in the near future. Recent results separating
the local from nonlocal parts of the 4PM angle [157] will
likely be crucial for achieving good agreement with NR for
highly elliptic bound systems—ultimately, this may be the
SEOBNR-PM model’s reason for being. In light of the
progress in PM fluxes [204–215], PM corrections could
also be fed into the EOB radiation-reaction forces and
gravitational modes. The SEOB-PM Hamiltonian and
fluxes will also need to be extended to the astrophysically
relevant precessing-spin case. We leave these tantalizing
prospects for future work.
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merger-ringdown waveforms of spinning, precessing
black-hole binaries in the effective-one-body formalism,
Phys. Rev. D 89, 084006 (2014).

[86] Andrea Taracchini et al., Effective-one-body model for
black-hole binaries with generic mass ratios and spins,
Phys. Rev. D 89, 061502(R) (2014).
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