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By leveraging neural networks, we address the inverse problem of constructing a quantitative 2+1-
flavor holographic QCD model based on state-of-the-art lattice QCD data. Our model demonstrates
quantitative agreement with the latest lattice QCD results. We construct the full phase diagram
at finite magnetic field B, baryon chemical potential µB and temperature T . We uncover rich
phase structure with a first-order phase transition surface and a critical endpoint line within the
3-dimensional phase diagram. The critical endpoint at vanishing chemical potential aligns with
current speculations in the lattice QCD literature. In particular, for large magnetic field, we find
two critical endpoints in the T -µB plane. The critical exponents of the critical endpoints adhere
to scaling relations and depend on the background magnetic field. Moreover, they are exhibit
deviations from mean-field theory, highlighting the distinctive features of our holographic approach.

Introduction—Quantum Chromodynamics (QCD),
the theory governing strong interactions, presents sub-
stantial theoretical and experimental challenges [1–3],
particularly in the strongly coupled regime. The QCD
phase diagram delineates various states of QCD matter
under extreme conditions. It is critical for understanding
phenomena ranging from heavy-ion collisions and astro-
physics to cosmology. After decades of hard work and
unremitting efforts, it has arrived at a sketchy phase dia-
gram on QCD matter at finite temperature T and baryon
chemical potential µB . At low chemical potentials, QCD
undergoes a thermal crossover from a deconfined, chi-
rally symmetric high-temperature phase to a hadronic
phase of color-neutral bound states at low temperatures.
This transition has been well-understood theoretically in
particular from lattice QCD and confirmed experimen-
tally. At large µB , effective field theories suggest that
the crossover would end in a critical endpoint (CEP) be-
yond which these two phases are separated by a first-
order transition.

The magnetic field B occurs naturally in non-central
heavy-ion collisions, magnetars, and the early universe,
thus becoming an indispensable part of understanding
the properties of QCD matter [4]. The magnetic shift in
the QCD phase diagram is crucial for studying strong in-
teractions, particularly in intense magnetic environments
and should impact the critical temperature for phase
transitions, providing valuable insights into high-energy
physics experiments and theoretical studies. At zero µB ,
a speculative phase diagram in a background magnetic
field predicts the appearance of a critical line with CEP

above a critical magnetic field, similar to the T -µB phase
structure at B = 0. Thus far, little is known about the
phase diagram at both finite µB and B which is common
in heavy-ion collisions and magnetars. The first principle
lattice QCD fails at finite µB due to the notorious sign
problem, and no significant evidence for the CEP has
been obtained in the experimentally accessible region.

Locating the CEP and understanding its properties
plays a key role in unveiling the mysteries of the QCD
phase diagram. This has spurred research into the
hot QCD at finite µB and B using effective field the-
ories. Nevertheless, effective field theory methods like
the Nambu-Jona-Lasinio models, quark models, Dyson-
Schwinger equations, and Functional Renormalization
Group have limitations when applied to study magnetic
field effects. These methods often lack gauge invari-
ance, require significant computational resources, and
face challenges in capturing the complex dynamics in-
troduced by magnetic fields [5]. To avoid such diffi-
culties, a novel approach to model the properties of
QCD is gauge/gravity duality which provides a powerful
non-perturbative approach for solving strongly coupled
non-Abelian gauge theories in terms of classical grav-
ity degrees of freedom and their dynamics. Remarkable
progress has been made in applying this holographic ap-
proach to the hot and dense QCD [6–8]. In the spirit
of effective field theory, all free parameters in the gravity
models are fixed by fitting to available data from both lat-
tice simulations and experiments. In holographic studies,
the construction of the QCD phase diagram in the T−µB

plane began with [9–11], using the Einstein-Maxwell-
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Dilaton (EMD) theory. Since then, various attempts
have been made to refine the phase diagram [6, 12–19].
Few studies [8, 12, 20] tried to incorporate magnetic fields
to align with lattice QCD-based equations of state. To
develop a quantitative and effective holographic model
that captures magnetic aspects of realistic QCD, one
must apply available lattice QCD data to constrain mag-
netic coupling—an unsolved inverse problem.

In this work, we construct the first quantitative 2+1-
flavor holographic QCD model to describe the magnetic
effects on the hot and dense QCD, where all parameters
are fixed using state-of-the-art lattice QCD data both at
vanishing chemical potential µB = 0 [21] and vanishing
magnetic field B = 0 [22]. Fixing the gravity models
is an enormous challenge for which we introduce a sys-
tematic algorithm involving neural networks. All ther-
modynamic quantities are computed directly from the
holographic renormalization and the so-called thermody-
namic consistency relations [23]. Our prediction for the
thermodynamic observables at finite B is in quantitative
agreement with the latest lattice results. Remarkably, we
then manage to make precise predictions for the QCD
phase diagram at strong coupling at finite B, T , and µB .
We confirm the speculative phase structures in the T -µB

plane at B = 0 and T -B plane at µB = 0, for which a
first-order transition line ends in a CEP. Surprisingly, for
sufficiently large B, we find that the phase diagram in
the T -µB plane develops two CEPs, far above expecta-
tions. In addition to the phase diagram, we study the
critical behavior near the CEPs. The critical exponents
satisfy the scaling relation but their values depend on the
location of the CEPs.

Holographic model –To incorporate the essential
QCD dynamics at finite magnetic field, temperature, and
baryon chemical potential using the holographic descrip-
tion, the five-dimensional Einstein-Maxwell-Dilaton the-
ory with a minimal field set reads

S =
1

2κ2
N

∫
d5x

√
−g
[
R− 1

2
∇µϕ∇µϕ

−Z(ϕ)

4
FµνF

µν − Ẑ(ϕ)

4
F̂µν F̂

µν − V (ϕ)
]
, (1)

where κ2
N is the effective Newton constant. The metric

gµν characterizes the spacetime geometry, and the real
scalar field ϕ encodes the breaking of conformal sym-
metry. The Maxwell field Aµ provides the finite baryon
number density, while the magnetic field B is given by an-
other Maxwell field Âµ. The three functions Z(ϕ), Ẑ(ϕ),
and V (ϕ) are crucial for describing real QCD and will
be systematically fixed by matching to the lattice QCD
data.

The bulk hairy black hole solutions are given as:

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2 + g(r)dz2) ,

ϕ = ϕ(r), A = A(r)dt, Â =
B

2
(xdy − ydx) ,

(2)
where r is the holographic radial coordinate, the asymp-
totic anti-de Sitter boundary is at r → ∞, and the
event horizon is located at finite r = rh. Note that the
constant magnetic field in the z-direction breaks the
isotropy. After solving the bulk equations of motion,
we can read off all relevant quantities by the standard
holographic dictionary, including the free energy density
Ω, energy density ϵ, entropy density s, baryon number
density nB and magnetization M , see Appendix A for
more details. In this sense, the gravity dual provides a
first-principle description of QCD dynamics.

Machine learning—Since there is no first principle
for fixing the couplings in our bottom-up model, con-
structing a quantitative effective holographic model re-
quires the application of available lattice QCD data to
constrain the coupling functions, a problem known as
the inverse problem. As the increasing of lattice QCD
data for both finite B and µB , it is almost impossible to
manually re-tune the control parameters. To address this
challenge, we propose a systematic algorithm involving a
neural network taking advantage of its inverse propaga-
tion process.

For definiteness and without loss of generality, we il-
lustrate the main idea for determining the magnetic cou-
pling Ẑ(ϕ) using the neural network approach with other
parameters fixed by matching to the lattice data at µB =
B = 0 [21]. The neural network is integrated into the
Einstein equations derived from the action (1). Apply-
ing standard holographic duality, appropriate boundary
conditions are set at both the ultraviolet (UV) bound-
ary and event horizon. Numerical solutions are obtained
with the given initial Ẑ(ϕ), leading to a trial equation
of state derived through the standard holographic renor-
malization. This trial equation of state is then compared
with lattice QCD data to measure the deviation between
the two. This deviation is quantified through a loss func-
tion and we apply an optimization algorithm to minimize
the loss function to find the optimal magnetic coupling.
The detailed steps of this algorithm and its core tech-
niques are outlined in Appendix B, providing a system-
atic approach to solving the inverse problem. Using this
method, we constructed a holographic QCD model that
aligns closely with lattice QCD results [22] at finite B
but vanishing chemical potential. We shall set e = 1 in
our present work.

Similar approach is used to obtain Z(ϕ) and V (ϕ) by
matching the lattice data [21, 28] at B = 0. Surprisingly,
the resulting profiles can be fitted very well by the one
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FIG. 1. Comparison of thermodynamic quantities obtained from our holographic QCD model with lattice QCD data [22]. It
involves the magnetic susceptibility (upper left), magnetization (upper right), entropy density (lower left), and energy density
(lower right) as functions of temperature for different magnetic field strengths (B = 0.0, 0.2, 0.4, 0.6 GeV2). Symbols with error
bars indicate the lattice data, and the shaded regions represent the continuum estimates. Solid lines depict our model’s results.
We work in units with e = 1.

we found in recent work [29].

V (ϕ) = −12 cosh[c1ϕ] + (6c21 −
3

2
)ϕ2 + c2ϕ

6 ,

Z(ϕ) =
1

1 + c3
sech[c4ϕ

3] +
c3

1 + c3
e−c5ϕ ,

(3)

with c1 = 0.7100, c2 = 0.0037, c3 = 1.935, c4 =
0.085, c5 = 30. It have passed through strict benchmark
tests by directly comparing results on the equation of
state with those from lattice QCD simulations [29] and
exhibited consistency with experimental data from heavy
ion collisions regarding baryon number fluctuations along
chemical freeze-out [30]. For simplicity, we shall use the
explicit form of V (ϕ) and Z(ϕ) of (3) in the present work.
Fig. 1 illustrates our holographic predictions for

four independent quantities—magnetic susceptibility χB ,
magnetization M , entropy density s, and energy density
∆ϵ—in comparison with lattice QCD data [22]. One finds
a quantitative agreement with the lattice results for avail-
able magnetic fields, which strongly supports our holo-
graphic QCD model. As far as we know, this is the first
holographic model that can quantitatively fit lattice data
in a magnetic field up to B = 0.6GeV2. In appendix B,
we further check the corresponding trace anomaly and

the renormalized longitudinal pressure predicted by the
holographic model align with the lattice QCD [22].

QCD phase diagram—With the model fully estab-
lished, we are ready to construct the QCD phase dia-
gram at finite B, T , and µB . More precisely, we com-
pute the free energy density Ω as a function of B, T , and
µB . One can check straightforwardly that the gravita-
tional solutions satisfy the first law of thermodynamics
dΩ = −sdT − nBdµB −MdB. A first-order phase tran-
sition can be identified uniquely by the swallowtail be-
havior for Ω versus T . The phase diagram at B = 0 was
presented in Fig. 3 of [29] and the first-order phase tran-
sition line terminates at (TC = 105MeV, µC = 555Mev).
The phase structure in the T -B plane at vanishing chem-
ical potential is presented in Fig. 2. There is a line of
first-order phase transitions terminating at the CEP lo-
cated at (TC = 89.6MeV, B = 1.6GeV2), which aligns
with current speculations in the lattice QCD literature
[31].

The full phase diagram is depicted in Fig. 3. The pink
area denotes the first-order phase transition surface, di-
viding the quadrant into two parts: the high-temperature
region corresponds to the quark-gluon plasma, while the
low-temperature region corresponds to the hadron gas
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FIG. 2. The phase diagram on the B − T plane at vanishing
µB . The red dot denotes the CEP and the red line corre-
sponds to the first order line.

phase. The red line in the diagram marks the location
of CEP for various magnetic fields, where the first-order
phase transition terminates and transitions into a smooth
crossover at small chemical potentials.

Fig. 3 highlights three key observations:

1. As the magnetic field B increases up to B =
1.618GeV2, the critical chemical potential µC at
the CEP decreases, indicating that stronger mag-
netic fields shift the CEP to lower chemical poten-
tials.

2. The critical temperature TC at the CEP initially
decreases with increasing B, reaching a minimum
before increasing again. This turning point occurs
around T = 80MeV, B = 1.6 ∼ 1.7GeV2, and
µB = 0.2 ∼ 0.28GeV. This behavior suggests com-
plicated effects in the presence of background mag-
netic field. It could related to the inverse magnetic
catalysis and magnetic catalysis reported in the lit-
erature.

3. At sufficiently strong magnetic field, multiple CEPs
develop in the T -µB plane, as shown e.g. in Fig. 4.
A first-order phase transition is observed for 0 <
µB < µC1 and µB > µC2, while a crossover oc-
curs for µC1 < µB < µC2. As B increases, µC1

and µC2 converge to a single point. This reveals
a rich phase structure in strong magnetic field and
warrants further experimental verification.

Critical exponents—In addition to the phase di-
agram we study the critical behavior near the CEPs.
Critical exponents characterize critical points in physical
systems, for which thermodynamic properties typically
exhibit power-law scaling with respect to temperature,
chemical potential, or magnetic field. They are at the
heart of the study of critical phenomena and provide in-
sights into the critical behavior of QCD natter.

FIG. 3. The QCD phase diagram at finite magnetic field,
temperature and baryon chemical potential using the holo-
graphic QCD model. The pink area is the first-order phase
transition surface, and the red line is the CEP line.

μC1=115.9,T=87.3

μC2=244.0,T=78.9
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FIG. 4. QCD phase diagram in the T -µB plane for B =
1.618GeV2. As µB increases, the first order line (red curve)
terminates at µC1 = 115.9MeV and transitions to a smooth
crossover. The second CEP appears beyond a critical chemi-
cal potential µC2 = 224.0MeV.

There are four critical exponents that can be directly
extracted from the phase diagram of Fig. 3.

• Specific Heat Critical Exponent α: The expo-
nent α quantifies the power-law behavior of specific
heat near a CEP along the axis defined as approach-
ing the CEP approached along the tangent of the
first-order line, ı.e.the first-order axis. There are
two ways extracting α:

Cn = T

(
∂s

∂T

)
nB

∼ |T − TCEP|−α.

CM = T

(
∂s

∂T

)
M

∼ |T − TCEP|−α.
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• Entropy Density Critical Exponent β: It char-
acterizes the discontinuity of entropy density s
across the first-order line:

∆s = s> − s< ∼ (TCEP − T )β ,

where s> and s< represent the entropy densities in
the high- and low-temperature phases, respectively.

• Baryon Susceptibility Critical Exponent γ:
It represents the power-law behavior of baryon
susceptibility with the temperature near the CEP
along the first-order axis:

χB
2 =

1

T 2

(
∂nB

∂µB

)
T

∼ |T − TCEP|−γ .

χM
2 =

1

T 2

(
∂M

∂B

)
T

∼ |T − TCEP|−γ .

• Critical Exponent δ along critical isotherm:
The definition of δ relies on the power-law relation-
ship between entropy and chemical potential with
T = TCEP at the critical isotherm:

s− sCEP ∼ |µB − µBCEP|1/δ,

s− sCEP ∼ |B −BCEP|1/δ,

where sCEP is the entropy density at the CEP.

Table I presents the set of critical exponents for CEP
at three different magnetic fields, denoted by hQCD (I,
II, III). The resulting critical exponents aligning with the
scaling relations α+2β+ γ = 2, α+β(1+ δ) = 2, pro-
viding a self-consistency check of our results. Although
these critical exponents are closed to the one from mean-
field theory, their values do depend on the location of
CEP. The derivation becomes remarkable as B is in-
creased. We highlight that the critical behavior cannot
be attributed to large-N effects typically in conventional
holographic duality. The later yields the critical behavior
of mean field theory. Our holographic QCD model is con-
structed from 2+1-flavor lattice QCD data with Nc = 3.
A notable example is the one in the holographic 2-flavor
model [32], which coincides with the critical exponents
of the quantum 3D Ising model, highlighting the unique
characteristics of our holographic approach compared to
conventional large-N QCD models.

Discussion—We start by outlining the pathway from
observational data to deriving a holographic effective ac-
tion, introducing a systematic approach that leverages
neural networks to address the inverse problem. By em-
ploying this framework, we have developed a holographic
model that incorporates magnetic effects to examine the
phase diagram in (2+1)-flavor QCD.

α β γ δ
Experiment 0.110-0.116 0.316-0.327 1.23-1.25 4.6-4.9
3D Ising 0.110(5) 0.325±0.0015 1.2405±0.0015 4.82(4)
Mean field 0 1/2 1 3
DGR model 0 0.482 0.942 3.035
hQCD(I) 0.0046233 0.532779 0.91629 3.00825
hQCD(II) 0.0233477 0.481381 1.05119487 3.238166
hQCD(III) 0.019778 0.46259 1.03499 3.48613

TABLE I. Critical exponents from experiments in non-QCD
fluids, the full quantum 3D Ising model, mean-field (van
der Waals) theory, the DGR model [10], and our 2+1-flavor
hQCD model. The hQCD (I, II, III) correspond to the crit-
ical exponents for µB = 554.66 MeV, B = 0 (hQCD I),
µB = 501.4 MeV, B = 0.3 GeV2 (hQCD II), and µB = 0, B =
1.6 GeV2 (hQCD III), respectively.

Our model accurately reproduces key thermodynamic
behaviors, showing quantitative alignment with recent
lattice QCD simulations at finite magnetic fields. It ef-
fectively captures critical elements of QCD transitions,
such as a reliable first-order transition surface and the
CEP line within the three-dimensional QCD phase dia-
gram at finite µB and B. We find that the CEP temper-
ature exhibits non-monotonic behavior, initially decreas-
ing and then increasing with increasing magnetic field,
which is reminiscent of the (inverse) magnetic catalysis.
Surprisingly, for large B, in the T -µB plane, there exist
two CEPs that converge to a single point as the magnetic
field increases. Moreover, the first-order phase transition
can happen at very small µB and thus could provide a
potential source for a stochastic background of gravita-
tional waves from the first-order QCD transition in the
early universe, no worry about the sharp constrain on the
baryon asymmetry through cosmological observations.

The phase diagram on the T -B plane is also pro-
vided. The CEP on the T -B plane at vanishing chemi-
cal potential aligns with current speculations in the lat-
tice QCD literature. Close to the CEP, our model al-
lows for the precise determination of various critical ex-
ponents, demonstrating adherence to scaling law rela-
tions. Interestingly, these critical exponents slightly de-
viate from conventional mean-field theory predictions, in-
dicating unique behavior within the holographic context.
Furthermore, our equation of state at finite density and
magnetic field offers valuable insights to support exper-
imental studies in QCD matter. In particular, we ob-
serve rich phase structure at relatively low values of µB

with strong magnetic fields, for which the sign problem
is probably surmountable and experiment facilities can
cover easily. Therefore we expect that it will be possible
to check our results either on the lattice simulations or
from heavy-ion collisions.

Future research should focus on developing holographic
models that incorporate asymptotic freedom and ac-
curately capture QCD properties across energy scales.
Additionally, we should improve the current model to
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incorporate the associated thermodynamic and trans-
port properties of the confining hadron resonance gas
phase. Addressing these limitations can bridge the gap
between theoretical predictions and experimental obser-
vations in heavy-ion collisions and astrophysical phenom-
ena. Moreover, adopting a multidimensional approach
that includes factors like isospin and rotation could offer
deeper insights into underlying physics while investigat-
ing real-time dynamics in non-equilibrium scenarios may
reveal novel phenomena and enhance our understanding
of QCD matter dynamics.
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Appendix A: Equations of motion

The form of V (ϕ) and Z(ϕ) is taken from [29].

V (ϕ) = −12 cosh[c1ϕ] + (6c21 −
3

2
)ϕ2 + c2ϕ

6 ,

Z(ϕ) =
1

1 + c3
sech[c4ϕ

3] +
c3

1 + c3
e−c5ϕ .

(4)

By varying the action, the field equations can be ob-
tained:

∇µ∇µϕ− ∂ϕZ

4
FµνF

µν − ∂ϕẐ

4
F̂µν F̂

µν − ∂ϕV = 0

∇ν(ZFνµ) = 0

∇ν(ẐF̂νµ) = 0

Rµν − 1

2
Rgµν =

1

2
∇µϕ∇νϕ+

Z

2
FµρF

ρ
ν +

Ẑ

2
F̂µρF̂

ρ
ν

+
1

2

(
−1

2
∇µϕ∇µϕ− Z

4
FµνF

µν − Ẑ

4
F̂µν F̂

µν − V

)
gµν .

Expansion at the UV boundary r → ∞ yields

ϕ(r) =
ϕs

r
+

(ϕv +
1
6 (−1 + 6c41)ϕ

3
s ln[r])

r3
+

B2Ẑ ′(0)

6r4
+ · · · ,

g(r) =1 +
g4 − 1

4B
2 ln[r]Ẑ(0)

r4
+

B2ϕsẐ
′(0)

5r5
+ · · · ,

η(r) =1 +
ϕ2
s

6r2
+

g4
r4

+

1
144

(
(1− 6c41)ϕ

4
s + 72ϕsϕv + 12B2Ẑ(0)

)
r4

+
1

12

ln[r]
(
−((1− 6c41)ϕ

4
s)− 3B2Ẑ(0)

)
r4

+
16B2ϕsẐ

′(0)

45r5
+ · · · ,

A(r) =µB − 2κ2
NnB

2r2
+

2κ2
NnBϕsZ

′(0)

3r3Z(0)

+
2κ2

NnBϕ
2
s

(
Z(0)2 − 12Z ′(0)2 + 6Z(0)Z ′′(0)

)
48r4Z(0)2

+ · · · ,

(5)
where we have taken the normalization of the spacetime
coordinates at the boundary such that η(r → ∞) = 0
and g(r → ∞) = 1.

Expansion at the event horizon r = rh gives

f =fh(r − rh) + · · · ,
η =ηh + η1(r − rh) + · · · ,
A =Ah(r − rh) + · · · ,
ϕ =ϕh + ϕ1(r − rh) + · · · ,
g =gh + g1(r − rh) + · · · .

(6)

After substituting (6) into the equations of motion, one
finds five independent coefficients (rh, Ah, ηh, ϕh, gh).

The relationship between the free energy Ω and the
on-shell action S is:

−ΩV = T (S + S∂)on−shell , (7)

where V is the spatial volume of the boundary system.
The boundary term is given by

S∂ =
1

2κ2
N

∫
r→∞

d4x
√
−h

[
2K − 6− 1

2
ϕ(r)2

−
(
6c41 − 1

12

)
ϕ(r)4 ln[r]− bϕ(r)4

+
1

4
(FµνF

µν + Ẑ(0)F̂µν F̂
µν) ln[r]

]
.

(8)

Here hµν is the induced metric at the UV boundary with
Kµν the extrinsic curvature defined by the outward point-
ing normal vector to the boundary.
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The boundary energy-momentum tensor reads

Tµν = lim
r→∞

2r2√
−h

δ(S + S∂)

δhµν

=
1

2κ2
N

lim
r→∞

r2
[
2(Khµν −Kµν − 3hµν)− (

1

2
ϕ2

+
6c41 − 1

12
ϕ4 ln[r] + bϕ4)hµν

− (FµρF
ρ
ν − 1

4
hµνFρλF

ρλ) ln[r]

− Ẑ(0)(F̂µρF̂
ρ
ν − 1

4
hµν F̂ρλF̂

ρλ) ln[r]
]

(9)

Substituting the expansion on the boundary gives:

ϵ =Ttt

=
(1 + 48b)ϕ4

s

96κ2
N

+
ϕsϕv

2κ2
N

+
−144fv + 192g4 + 12B2Ẑ[0]

96κ2
N

(10)

px =py = Txx = Tyy

=
(3− 48b− 8c41)ϕ

4
s

96κ2
N

+
ϕsϕv

2κ2
N

+
−48fv − 8B2Ẑ[0]

96κ2
N

(11)

−Ω =pz = Tzz =
(3− 48b− 8c41)ϕ

4
s

96κ2
N

+
ϕsϕv

2κ2
N

+
−48fv + 4(48g4 +B2Ẑ[0])

96κ2
N

.

(12)

Note that in the thermodynamic limit V → ∞, Ω =
−pz. From the equations of motion, we can get a radially
conserved charge:

Q =e
η(r)
2

√
g(r)r3

(
r2
(
e−

η(r)
2

f(r)

r2

)′

− Z(ϕ)A(r)A′(r)

)

−B2

∫ r

rh

e−
η(rs)

2

√
g(rs)Ẑ[ϕ(rs)]

rs
drs ,

(13)
which connects data from the horizon to the UV bound-
ary. Evaluating it at both horizon and the boundary
yields and it is at the horizon:

Q = Ts = ϵ− Ω− µBnB = ϵtotal − Ω− µBnB −BM ,
(14)

where ϵtotal = ϵ+ ϵfield is the total energy including the
external field ϵfield = BM with M the magnetization.
This is the the expected thermodynamic relation. More
precisely, M can be computed by the partial derivative
of the free energy with respect to B.

M =− ∂Ω

∂B
= −

∫ ∞

rh

B
√
e−η(r)g(r)Ẑ[ϕ(r)]

r
dr

+ lim
r→∞

B
√

e−η(r)f(r)g(r) ln[r]Ẑ[0]

r

(15)

. It can be checked straightforwardly that the the first
law of thermodynamics

dΩ = −sdT − nBdµB −MdB (16)

is satisfied.
Following [29], we choose c1 = 0.7100, c2 =

0.0037, c3 = 1.935, c4 = 0.085, c5 = 30 of (4). More-
over, we take κ2

N = 2π(1.68), ϕs = 1085MeV and b =
−0.27341.

Appendix B: Calculation method and neural ODEs

begin

Ẑ(ϕ)

Ah, ϕh, BF

EOM

∂L
∂bk,l

T, µB , BT

M, s, χB , ϵ

If : T, µB , BT

True False

If : M, s, χB , ϵ

False

True

Adjustment

end

FIG. 5. Algorithm process: Given a trial functional Ẑ(ϕ) and
a set of Ah, ϕh, BF , solve the equations of motion to obtain
the thermodynamic quantities T, µB , BT ,M, S, χB , ϵ. Verify
whether these T, µB , BT cover the range of lattice QCD data.
If not, adjust Ah, ϕh, BF . If they do, compare this set with
the corresponding lattice data for M,S, χB , ϵ. If consistent,
terminate the process. If not, adjust Ẑ(ϕ) and repeat the

process. Adjustments to Ẑ(ϕ) are made through gradient de-
scent, where L represents the loss function and bk,l are the

network parameters used to mimic Ẑ(ϕ). ∂L
∂bk,l

indicates the

direction of descent for the loss function. When the loss func-
tion reaches its minimum, it signifies the optimal solution for
the Ẑ(ϕ) function.

The neural network and neural ODEs have been ap-
plied in the holographic literature e.g. [33–36]. In our
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current situation, We extend the neural ODEs to numer-
ically solve the magnetic coupling Ẑ[ϕ(z)], which can be
constrained by lattice QCD data in a high precision. In
this section, we present the necessary details to make the
results fully reproducible.

Our computational approach is illustrated in Fig. 5.
To address the inverse problem of translating lattice
QCD data into a holographic model, we initialize a ran-
domly selected trial function Ẑ(ϕ). This function is used
to obtain a gravitational solution to the equations of
motion, adhering to asymptotic AdS boundary condi-
tions and regular boundary conditions at the horizon.
Once the solution is obtained, we extract the boundary
field theory observables, compare them with lattice QCD
data, and subsequently refine the trial function Ẑ(ϕ).

Thanks to the scaling symmetries, there are three in-
dependent IR data points, namely Ah, ϕh, and BF ,
which represent the values of the fields A and ϕ at the
event horizon, and the pre-scale-transformed magnetic
field BF . These three degrees of freedom correspond to
the UV data: temperature (T ), chemical potential (µB),
and the magnetic field (BT ) of the boundary field the-
ory, where BT denotes the physical magnetic field after
scale transformation due to scaling symmetry. By apply-
ing a neural network to mimic the trial function Ẑ(ϕ),
we solve the equations of motion and subsequently ob-
tain the thermodynamic quantities of the boundary field
theory, including T , µB , BT , M , s, χB , and ϵ.

Since the lattice data [22] covers only a small region
at zero chemical potential, the values of T , µB , and BT

computed with an arbitrary set of Ah, ϕh, and BF cannot
adequately cover this region. Therefore, as shown in Fig.
5, it is necessary to adjust Ah, ϕh, and BF to obtain a set
that effectively covers the relevant lattice QCD region.
The values of the remaining thermodynamic quantities
M , S, χB , and ϵ depend on the choice of the trial function
Ẑ(ϕ).
To optimize Ẑ(ϕ), we define a loss function L =

L(M, s, χB , ϵ). We can obtain the optimal Ẑ(ϕ) by it-
eratively applying gradient descent to minimize the loss
function. Since our model’s high precision requirements,
we have to employ a neural network ODE model [37] to
solve for Ẑ(ϕ) throughout the entire process. This model
effectively transforms the conventional neural network
into a continuous form, facilitating differential equations’
rapid and accurate solutions.

For later convenience, one can rephrase the equations
of motion eq.(2) as the following form:

dΘ

dz
= Ξ(z,Θ, Θ̇(z), Ẑ(Φ), BF ),Θ(z) =


Φ(z)
F (z)
η(z)
A(z)
g(z)

 (17)

Where the Θ̇(z) is to take the derivative with respect
to the argument and z = 1/r, zΦ(z) = ϕ( 1z ), F (z) =

z2f( 1z ), A(z) = At(
1
z ). One can refer to the precise defi-

nitions of these functions in eq.(2). Ξ is a five-component
vector. Θ contains scalar field ϕ, metric components f , g,
η, and Maxwell field At. These equations of motion (17)
can be rewritten as a discrete difference equation which
can be realized by the neural network as shown in Fig. 6:

Θi+1 = Θi + Ξ(zi,Θi, Θ̇(z), Ẑ(Φi), BF )dz, (18)

where we discretize the holographic direction z with a
step size dz. The index i corresponds to the i−th layer.
The equation gives the recursive relationship between the
i-th layer and the i+ 1-th layer. Θi is correspond to the
field value at the i−th layer. Here, i = 1 represents
the event horizon, and i = N corresponds to the UV
boundary. In our setup, we choose 6×N neural network
to replace the difference equations.

Here, we selected four thermodynamically independent
data sets S that contain quantities S = {M, s, χB , ϵ}
for an accurate comparison between the holographic
model and Lattice QCD data, performing a global fit-
ting. Through this global fitting, we obtained the nu-
merical solution Ẑ(ϕ) that minimizes the loss function.
The comparison results between the holographic model
and Lattice QCD data are presented in the main text,
with all detailed comparison plots provided in the ap-
pendix. We choose loss function L = L(M, s, χB , ϵ) as
mean-square error (MSE).

The problem is to minimize the loss function by opti-
mizing the functional Ẑ(ϕ). To determine the optimizing
direction of Ẑ(ϕ), one needs backpropagation of the neu-
ral network to extract the data associated with ∂L

∂bi,j
. The

precise form of loss function L is

L =
∑
I∈S

pI(ILQCD − IHQCD)
2 (19)

where ILQCD, IHQCD correspond to the thermal dynam-
ical quantities S of lattice QCD data and are predicted
by holographic QCD respectively. pI is the artifactual
weight number to keep the amplitude of pI(ILQCD −
IHQCD)

2 to be the same order.

To minimize the loss function, we have to input ∂L
∂bk,l

and bk,l into Adam(α = 0.0002, β1 = 0.9, β2 = 0.999)
[38]. The key issue is to collect the data ∂L

∂bk,l
for Adam.

For the i−th layer, we have the following chain rule:

∂L

∂bk,l
=

∂L

∂Θi+1

∂Θi+1

∂bk,l
, (20)

Here one has to note that the neural bk,l in each layer
are the same. Due to eq.(18) at the each layer, it can be
expressed by

∂L

∂bk,l
=

∂L

∂Θi+1

∂Ξ(zi,Θi, Z(Φi), BF )

∂bk,l
dz (21)
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Finally, for the whole network, the key ingredient ∂L
∂bk,l

is:

∂L

∂bk,l
=

∫
∂L

∂Θ

∂Ξ

∂bk,l
dz (22)

To obtain the first factor of the integrant in the eq.(22),
we can make use of the following chain rule for the two
neighborhood layers:

∂L

∂Θi
=

∂L

∂Θi+1

∂Θi+1

∂Θi
(23)

where ∂L
∂Θi

represents the derivative of each component
in Θ at the i-th layer, with the component index omitted
for clarity. Here, ∂Θi+1

∂Θi
is a 5× 5 matrix. From Eq. (18),

we obtain:

∂L

∂Θi
=

∂L

∂Θi+1

∂Θi+1

∂Θi

=
∂L

∂Θi+1
(1 +

∂Ξ(zi,Θi, Θ̇i(z), Ẑ(Φi), BF )

∂Θi
dz)

(24)

For convenience, let yi denote ∂L
∂Θi

. Then, Eq. (24) can
be written as:

yi = yi+1

(
1 +

∂Ξ(zi,Θi, Θ̇i(z), Ẑ(Φi), BF )

∂Θi
dz

)
(25)

The above difference equation corresponds to the follow-
ing differential form:

y′(z) = −y(z)
∂Ξ(z,Θ, Θ̇i(z), Ẑ(Φ), BF )

∂Θ
(26)

To simplify our notations, we note that this set of equa-
tions involves five unknown functions as shown in the
eq.(17), and ∂Ξ

∂Θ is a 5× 5 matrix.
Finally, we combine all the elements in Eq. (22) and

input them into the Adam optimizer to achieve the func-
tional Ẑ(ϕ), which is a crucial point of this work. Once
we obtain the numerical data for Ẑ(ϕ), its approximate
analytical form is:

Ẑ(ϕ) = b0 exp[−b1(ϕ− b2)
2]

+ b3 exp[−b4(ϕ− b5)
2 − b6(ϕ− b7)

4]

+ b8sech[−b9(ϕ− b10)
2]

+ b11 exp[−b12(ϕ− b13)
6] + b14,

(27)

where the parameters are given by:

b0 =
49677

100000
, b1 =

8583

25000
, b2 =

202953

100000
,

b3 =
15371

50000
, b4 =

6297

50000
, b5 =

39131

20000
,

b6 =
411

50000
, b7 =

413981

100000
, b8 =

97

4000
,

b9 =
34873

100000
, b10 =

29503

50000
, b11 = − 287

50000
,

b12 =
24319

12500
, b13 =

2637

2500
, b14 = − 691

50000
.

(28)

To illustrate the efficacy of the algorithm, we present
a comparison of four thermodynamically independent
quantities, S = {M, s, χB , ϵ}, between the holographic
predictions and the lattice QCD simulations, as shown in
Fig. 1. Additionally, we confirm that the corresponding
trace anomaly I, the renormalized longitudinal pressure
∆Pz, and the renormalized anomaly ∆I predicted by the
holographic model align with the lattice QCD data [22],
as presented in Fig. 8. This work represents the first
quantitative realization of state-of-the-art lattice QCD
data [22] within a holographic model.
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FIG. 6. Neural network representation of the recursive relationship between layers in solving the equations of motion eq.(17).
The initial conditions are set at the event horizon (i = 1), and the layers extend to the UV boundary (i = N). Each layer i
corresponds to the field values at that layer, with Θi representing the collective set of fields. The neural network approximates
the continuous holographic direction z with discrete steps dz, optimizing the trial function Ẑ(ϕ) through gradient descent to
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where Φ is the scalar field on the holographic direction, c1,1, c1,2, . . . are the parameters of the neural network, for simplicity,
only two layers of the network are drawn with six parameters, and the actual parameters reach hundreds. The neural network
is a three-layer fully connected layer. Changing the parameters c1,1, c1,2, . . . can change the function form of Ẑ(Φ). Since a

two-layer neural network with enough parameters can fit any function, we do not need to discuss the specific form of Ẑ(Φ).
Take any initial values of c1,1, c1,2, . . . and iterate to solve.
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FIG. 8. The renormalized trace anomaly ∆I (left), the renormalized longitudinal pressure ∆Pz(middle) and the trace anomaly
I(right). Our holographic computations (solid curves) are compared with the latest lattice QCD results from [22]. The Nt
corresponds to three lattice spacings and B denotes the magnetic field strength. The shaded areas correspond to lattice
continuum estimates.
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