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Abstract

We analyse the proposal of defining the Weyl anomaly for classically non-conformal theories
as gmn⟨Tmn⟩ − ⟨gmnTmn⟩, originally put forward by M. Duff, in the case of a scalar field
with quartic self-interaction in 4d. We work in the context of dimensional regularization
in curved background to two-loops (first order in the coupling). We review the original
regularized but not renormalized prescription and its ambiguities; we argue that it cannot
be extended to the interacting theory as it fails to provide a finite result. We then propose
an alternative prescription via renormalized expectation values. At one-loop our candidate
reproduces the local heat kernel result, while its extension to interacting theories contains
non-local contributions.
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1 Introduction

Since their discovery by Capper and Duff in [1–3], Weyl anomalies have been a central topic in
quantum field theory, see [4–7] for a number of references and general reviews. These anoma-
lies parametrize the trace of the energy momentum tensor induced by quantum corrections for
classically Weyl invariant theories, and provide strong constraints as well as powerful order-
ing principles in the space of quantum field theories, such as the celebrated c-theorem in two
dimensions [8] and the a-theorem in four [9].

The Weyl anomaly shares many similarities with the chiral anomaly, but also important
differences. The latter manifests itself in a nonzero divergence for the axial current (thereby
spoiling its conservation), it is topological and one-loop exact. Importantly for the scope of the
present paper, when the axial symmetry is explicitly broken by the addition of a mass term, the
divergence of the current is simply the sum of an explicit breaking contribution (proportional
to the mass) and of the anomalous term. The Weyl anomaly comes in two types [10]: one
topological and one built from the Weyl tensor. This second type of contributions is in general
coupling-dependent, although explicitly studying this effect is difficult, since in perturbation
theory the underlying Weyl symmetry is generically broken by beta functions.1

Furthermore, the quantum trace of the stress tensor for a generic QFT, when the Weyl sym-
metry is explicitly broken is much less understood than the CFT case. A better understanding
of quantum contributions to the stress tensor has potential applications to QFT in the presence
of gravity and in the context of cosmology. The anomalous trace of the stress tensor is also im-
portant in the study of the RG, since conformal symmetry is broken along the flow. Ambitiously,
an interpolating function for the anomaly coefficients can be found and provide insights for the

1An explicit example, albeit somewhat exotic, of a langrangian model with type-B anomaly coefficients with
explicit coupling dependence is given by the 6d four-derivative vector discussed in [11].

2



strong a theorem in four dimensions or its attempted generalisation in six [12]. Furthermore, a
cancellation of some would-be anomaly coefficients has been observed in [13, 14] in the case of
certain Poincaré supergravities. This cancellation has not yet been explained, and is somewhat
mysterious since the graviton and the gravitino do not possess two-derivative classically Weyl
invariant actions.2

In [5, 7] Duff proposed, following the structure of chiral anomalies, to identify the quantum
breaking of the Weyl symmetry as

A = g(4) mn ⟨Tmn⟩reg − ⟨gmnTmn⟩reg , (1)

where the expectation values are taken in the regularized but not renormalized theory. The
reason behind this definition [5,7] is that the anomaly should be a physical (measurable) quantity
and therefore independent of the renormalization prescription. It should capture the purely
quantum contribution to the stress tensor trace, and for this reason (1) is usually referred to
as Weyl anomaly, although its interpretation is less clear. Notice that for standard classically
Weyl-invariant theories the second term in (1) vanishes and the definition reduces to the one
used in the original works [1–3] in the context of dimensional regularization. In this work we
will refer to A and its alternative prescriptions as anomalies, even when it is understood that
the Weyl symmetry is already broken at the classical level.

An efficient way of computing the anomaly proper is via the heat kernel (HK) expansion,
which retains manifest covariance with respect to the geometry. In this case the anomaly is
identified with the HK coefficient of the kinetic operator ∆, so that for a conformal scalar3

gmn ⟨Tmn⟩ = a4(∆) . (2)

The identification of (1) with the heat kernel coefficient is often assumed also to the case in
which there is explicit breaking of Weyl symmetry, see e.g. [5, 6, 13,14],

Ahk = a4(∆) . (3)

It is however a priori not clear which diagrammatic expression it corresponds to and how it ex-
tends beyond quadratic (free) level. For a free scalar with generic (non-Weyl invariant) curvature
coupling ∆ = −□ + ξR, the heat kernel prescription gives [6, 19]

Ahk = a4(−□ + ξR) = 1
180(4π)2

[
−1

2E4 + 6 (1 − 5ξ)□R + 3
2Weyl2 + 5

2(6ξ − 1)2R2
]

, (4)

which features the appearance of an R2 term, absent in the anomaly proper and showing that
this quantity cannot be obtained from functional differentiation.

The definition (1) was studied in dimensional regularization in [20]. It was explicitly discussed
that the definition is finite and local but presents an ambiguity on the nature of the subtraction
term that can be represented by writing explicitly

A(D)
reg = g(4) mn ⟨Tmn⟩ε − ⟨g(D) mnTmn⟩ε (ε → 0) . (5)

Indeed, one can subtract the trace in D = 4 or D = 4 − 2ε dimensions. In particular, [20]
focussed on the case of a free scalar field with generic curvature coupling was analysed. We
added the subscript ‘reg’ to emphasize that it is built of regularized quantities. After that, [21]

2Classically Weyl invariant theories of gravity and supergravity typically involve higher derivative fields. For
those, Weyl anomalies are well-defined, at least at one loop, see [15–18] and references therein.

3The generalisation to the case of multiple fields or different spin is immediate, see e.g. [6].
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proposed an all-loop modification of A based on dimensional regularization, which effectively
extends the prescription A(4−2ε) to the interacting case.4

In this paper we focus on the prototypical example of a QFT that breaks Weyl symmetry
explicitly, namely a scalar in four dimensions with quartic self-interaction. The breaking of Weyl
symmetry is achieved via the non-conformal quadratic coupling with the curvature as well as by
nonzero beta functions. We argue that Areg as in (1) (or rather the concrete prescriptions A(D)

reg
(5)) does not extend beyond free level. We thus modify the prescription (1) by promoting the
expectation values to renormalized (finite) ones, and consider

Aren = gmn ⟨[Tmn]⟩ − ⟨[Θ]⟩ , Θ = gmnTmn , (6)

where Θ is the four-dimensional trace of the classical energy-momentum tensor and the square
brackets in the expectation values denote the renormalized composite operators. We construct
these renormalized operators in dimensional regularization following the well-established tradi-
tion of [23–26] and references therein. In particular, we work in perturbation theory to first
order in the coupling with a formal expansion around a flat background gmn = δmn + hmn and
focus on the contributions to Aren of first and second order in h. We evaluate the former fully,
while the latter suffer from the complication of three-propagator subdiagrams which need to be
expanded to a nontrivial order in ε. We show that, at free (one-loop) level, (6) provides a local
result that reproduces the heat kernel prescription (4). To circumvent the technical difficulties in
evaluating (6) to the first order in the coupling at order h2, we consider the spacetime integral of
Aren. This is the generally covariantized analogue of setting the momentum of the stress tensor
to zero, thereby reducing the integrals to two-propagator diagrams. At two loops we obtain a
result that is non-local, and we argue that this is indeed expected in the general case.

In our calculations all the nonlocalities and departures from the anomaly proper disappear
at the conformal value of the curvature coupling ξ = 1

6 , thus the construction might look in this
case artificial. However, this value is not stable under quantum corrections, which induce an
RG flow for this parameter away from the conformal point [27, 28]. Despite these effects being
relevant at a higher order than the ones considered in this paper, our setting is therefore generic.

The paper is organized as follows. In Section 2 we give a general review of the formal setting:
action, regularization and renormalization in curved background in perturbation theory. In Sec-
tion 3 we review the regularized calculations of [20]. In Section 4 we construct the renormalized
anomaly (6), commenting on its non-local structure and the two-loop result to first order in the
interaction. Section 5 concludes with a summary, a comparison with recent literature, and out-
look. Appendix A summarizes notation and conventions; Appendix B reports lengthy formulae
for Feynman vertices; Appendix C discusses some aspects of the renormalization of the action
in curved spacetime that are relevant for our discussion.

2 Setting and notational remarks

We consider the scalar action in D dimensions5 with a quartic self-interaction and to a geomet-
rical background given by

Sφ =
∫

dDx
√

g

[1
2
(
∇mφ∇mφ + ξRφ2

)
+ λ

4!φ
4
]

, (7)

4Another perspective on Weyl anomalies for non-conformal theories is given in [22].
5We use lowercase d to denote the dimensionally regularized value d = 4 − 2ε. We introduce an auxiliary

dimension D to be able to distinguish the two different cases D = 4 and D = d more explicitly.
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where ξ is the dimensionless curvature coupling and λ is classically dimensionless only in D = 4.
Weyl invariance of the kinetic term is achieved for ξ = ξD := 1

4
D−2
D−1 .

We note the equation-of-motion operator

Eφ = φ
δ

δφ
S = φ(−□ + ξR)φ + λ

3!φ
4 , (8)

and the stress-tensor and its D-dimensional trace are

T φ
mn = ∇mφ ∇nφ − 1

2gmn ∇aφ ∇aφ − gmn
λ

4!φ
4

+ ξ φ2
(

Rmn − 1
2gmnR

)
− ξ

(
∇m∇nφ2 − gmn□φ2

)
,

Θ(D) = g(D)mnT φ
mn = (D − 1)(ξ − ξD)□φ2 − D − 2

2 E[φ] + (D − 4)
4! λφ4.

(9)

The latter indeed shows that the stress tensor is classically traceless on shell for ξ = ξD at D = 4
or when λ = 0. In particular we note the value of the classical trace in D = 4 dimensions,

Θ ≡ Θ(4) = 3
(

ξ − 1
6

)
□φ2 − Eφ. (10)

As we are going to review in the next subsection, the equation of motion operator has van-
ishing expectation value in dimensional regularization, both in the bare and in the renormalized
theory. Since we will be only considering such one-point functions, we will often drop it.

2.1 Regularization

We adopt the framework of dimensional regularization with d = 4−2ε, which is standard in both
flat and curved spacetime [6,23–26,29]. For simplicity and ease of exposition we understand the
energy scale µ and reinstate it only in final expressions.

We are interested in regularized and then renormalized expectation values of T φ
mn and Θ(D)

which we compute via the path integral

⟨T φ
mn⟩ε =

∫
Dφ e−ST φ

mn , ⟨Θ(D)⟩ε =
∫

Dφ e−SΘ(D) ,

∫
Dφ e−S = 1 , (11)

where the subscript ε indicates the use of bare dimensionally-regularized correlators. Funda-
mental in our discussion is the observation that

⟨Θ(d)⟩ε = ⟨g(d) mnT φ
mn⟩ε = g(d) mn ⟨T φ

mn⟩ε , (12)

namely when considering the expectation value of the D = d dimensional trace Θ(D=d), the
contraction with the metric can be equivalently taken before or after path integration (or equiv-
alently before and after expanding in ε). This is possible because for regularized correlators the
rule g(d) mng

(d)
mn = d = 4 − 2ε is valid inside and outside the path integral symbol. We stress that

this holds true only for ⟨Θ(D=d)⟩ε. For ⟨Θ(D=4)⟩ε it is not the case.
Another important feature of dimensional regularization is that ⟨E[φ]⟩ = 0, since

⟨E[φ]⟩ =
∫

Dφ e−Sφ(x) δ

δφ(x)S = −
∫

Dφ
δ

δφ(x)
(
φ(x)e−S

)
= 0 , (13)

which vanishes as a functional boundary term.6

6In (13) we used the standard value δ
δφ(x) φ(x) = δ[x − x] = 0 of dimensional regularization [24–26,29].
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We wish to evaluate the correlators in (11) in perturbation theory in λ. To be able to use the
well-developed diagrammatic technology, we perform a formal expansion on a flat background
gmn = δmn + hmn and work order by order in hmn. In particular, we will need

Sφ = S
(0)
φ2 + S

(1)
φ2 + S

(2)
φ2 + . . . + S

(0)
φ4 + S

(1)
φ4 + . . . ,

T φ
mn = T φ2(0)

mn + T φ2(1)
mn + . . . + T φ4(0)

mn + T φ4(1)
mn + . . . , Θ = Θφ2(0) + Θφ2(1) + . . . ,

(14)

where the superscript (n) indicates the power of h, and φ2, φ4 distinguish the free vs. interaction
contributions. In particular, S

(0)
φ2 + S

(0)
φ4 is the flat-space scalar action,7

S
(0)
φ2 = 1

2

∫
ddx ∂mφ ∂mφ , S

(0)
φ4 = λ

4!

∫
ddx φ4 (15)

and we adopt the following notation for the interactions with the background metric

S
(1)
φ2 =

∫
dp dq dℓ (2π)dδ[p + q + ℓ] φ(p)φ(q)hmn(ℓ) V φ2(1)

mn (p, q, ℓ) ,

S
(2)
φ2 =

∫
dp dq dk dℓ (2π)dδ[p + q + k + ℓ] φ(p)φ(q)hmn(ℓ)hrs(k) V φ2(2)

mnrs (p, q, ℓ, k) ,
(16)

and so on analogously for all terms S
(n)
φm . Similarly, for the stress tensor we write8

T φ2(0)
mn =

∫
dp dq ei(p+q)xφ(p)φ(q) W φ2(0)

mn (p, q) ,

T φ2(1)
mn =

∫
dp dq dℓ ei(p+q+ℓ)xφ(p)φ(q)hac(ℓ) W φ2(1)

mnac (p, q, ℓ),
(17)

and so on.9 Explicit expressions for the relevant vertices are reported in Appendix B.

2.2 Renormalization

Renormalizing the theory on curved geometry requires the familiar infinite rescaling of the
parameters in the action (7) as well as additional terms to cancel purely gravitational infinities.
One therefore considers the total action

S = Sφ + Sgrav , Sgrav =
∫

ddx
√

g
[
−αE4 + γWeyl2 + ρR2

]
. (18)

The gravitational contribution is quadratic in the curvature and contains the Euler density, the
square of the Weyl tensor and the square of the Ricci scalar (explicit expressions in Appendix A).
We have an expansion in hmn analogous to (14),

Sgrav = S(2) + S(3) + . . . , S(2) =
∫

dp hmn(p)hrs(−p) V (2)
mn,rs(p) ,

S(3) =
∫

dp dq dk (2π)d δ[p + q + k] hmn(p) hrs(q) hac(k) V (3)
mnrsac(p, q, k) .

(19)

A finite theory is then obtained by setting

λ → λ +
∑
i≥1

λ(i)

εi
, ξ → ξ +

∑
i≥1

ξ(i)

εi
, φ →

1 +
∑
i≥1

z(i)

εi

φ ,

α →
∑
i≥1

α(i)

εi
, γ →

∑
i≥1

γ(i)

εi
, ρ →

∑
i≥1

ρ(i)

εi
,

(20)

7We write all indices lowered to emphasize the contraction with the flat metric.
8The vertex functions for Tmn and Θ(D) do not involve a momentum-conserving delta function, as they are

external vertices injecting momentum in the graph.
9In general one needs to introduce Feynman rules also for Θ, but in this particular example it is not necessary.
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We work in minimal subtraction scheme so that so that the Weyl tensor is intended as the
four-dimensional one and α, γ, ρ are only poles. The values of the counterterms in (20) have
been computed in the literature long ago and we will quote the relevant ones momentarily. In
Appendix C we comment on some aspects of their calculation in the spirit of the present work.

We will need the renormalized stress tensor [Tmn] and the renormalized stress tensor trace
[Θ]. The square brackets denote renormalized composite operators. Constructing renormalized
composite operators in dimensional regularization is standard also in the curved background
context, see [23–26,29]. Here we summarize the relevant results.

A finite (renormalized) stress-tensor operator is obtained by differentiation of the renormal-
ized full action (18) with the renormalized values (20), so that10

[Tmn] = − 2
√

g

δ

δgmn
[S] = − 2

√
g

δ

δgmn
[Sφ + Sgrav] = [T φ

mn + T grav
mn ] , T grav

mn = − 2
√

g

δ

δgmn
Sgrav .

(21)
The expansion (14) is therefore complemented by

T grav
mn = T 0(1)

mn + T 0(2)
mn + . . . , T 0(1)

mn =
∫

dℓ eiℓxhac(ℓ) W 0(1)
mnac(ℓ) ,

T 0(2)
mn =

∫
dℓ dk ei(ℓ+k)xhac(ℓ)hrs(k) W 0(1)

mnacrs(ℓ, k)
(22)

Following (18) and (20), these terms are pure poles and are responsible for the anomaly proper.
To construct11 a finite operator associated to the four dimensional stress-tensor trace Θ, we

start with the renormalized operator [φ2(x)], which is given by

[φ2] = Z2φ2
0 + ZgR , Z2 = 1 +

∑
i≥1

z
(i)
2
εi

, Zg =
∑
i≥1

z
(i)
g

εi
. (23)

We then define the renormalized operator associated to (10) as12

[Θ] = 3
(

ξ − 1
6

)
□[φ2] − Eφ , (24)

where ξ is the renormalized (finite) value.
The couterterms (20) have been computed in the literature with a combination of diagram-

matic and heat kernel methods. To the relevant order the counterterms are [23,24,28]

ξ(1) = 6ξ − 1
12(4π)2 λ , ξ(2) = 0 , α(1) = 1

720(4π)2 , α(2) = 0 ,

γ(1) = 1
240(4π)2 , γ(2) = 0 , ρ(1) = (6ξ − 1)2

144(4π)4 , ρ(2) = −(6ξ − 1)2

288(4π)2 λ ,

λ(1) = 0 , z(1) = 0 , z
(1)
2 = λ

2(4π)2 , z(1)
g = 6ξ − 1

6(4π)2 .

(25)

In particular, at the order in which we are working there is no renormalization of the coupling
λ nor there is wavefunction renormalization.

10An operator is renormalized by requiring that its insertion produces finite correlators. Given any finite
correlator, an additional stress-tensor insertion is realized by differentiation with respect to the metric thus
without introducing any additional divergence.

11Insertions of Θ(d) in arbitrary correlators are produced by differentiation with respect to the conformal factor
of the metric, so Θ(d) does not require additional subtractions, consistently with (12). In contract, no shortcut is
available for Θ(4).

12The equation of motion operator does not require any additional subtraction [23,24,26] and it has vanishing
expectation value.
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3 The regularized expression

3.1 Ambiguity and one loop (free theory) results

In this subsection we review the one-loop calculation of [20] (cf. also [30]) and we extend some
of the results and discussions.

In the context of dimensional regularization we can interpret (1) in different ways, i.e. there
is an intrinsic ambiguity.

A(D)
reg = g(4) mn ⟨Tmn⟩ε − ⟨Θ(D)⟩ε (ε → 0) , (26)

with D = 4 or D = d = 4 − 2ε. The origin of this ambiguity can be appreciated by looking at
the explict expression (9): the difference between Θ(4) and Θ4−2ε is of order ε and thus they
produce different terms when combined with the poles of loop integrals.

The case D = d has a computational advantage: one can compute A(d)
reg with the knowledge

of the divergent part of ⟨Tmn⟩ only, without the need to consider the more complicated finite
pieces. Indeed, as a consequence of (12) we can write (26) for D = d as

A(d)
reg = (g(4) mn − g(d) mn) ⟨Tmn⟩ε (ε → 0) . (27)

This expression shows two important features. First, only terms in ⟨Tmn⟩ε proportional to the
metric gmn contribute: everything else cancels in the difference, as e.g. g(D) mnRmn = R for any
D. Second, only the pole of ⟨Tmn⟩ε contributes, as can be seen by writing

⟨Tmn⟩ε = 1
ε

(Pmn + gmnQmn) + Fmn + O(ε) , (28)

where Pmn denotes tensor structures that are not proportional to gmn. From (27) we thus have

A(d)
reg = lim

ε→0

[4
ε

Qm
m − 4 − 2ε

ε
Qm

m

]
= 2Qm

m , (29)

where Pmn and Fmn have dropped since g(4) mnPmn = g(d) mnPmn and g(4) mnFmn = g(d) mnFmn+
O(ε). We notice that this argument does not rely on perturbative expansion in h: if the full
covariant expression for the (local) pole of ⟨Tmn⟩ε is known (as is e.g. using the heat kernel
expansion), this immediately gives the covariant result.

Figure 1: Diagrammatic representation of ⟨⟨Tmn(x)⟩⟩ε O(h1) + ⟨⟨Tmn(x)⟩⟩ε O(h2) in (30). Black dots denote inter-
action vertices V , white dots denote stress-energy tensor vertices W . Solid lines represent scalar propagators and
wavy lines the metric perturbation h.

To perform this calculation diagrammatically we expand in gmn = δmn + hmn. Using the
definitions of section 2.2 we have to consider the following terms13

⟨Tmn(x)⟩ε = − ⟨⟨T (0)
mnS

(1)
φ2 ⟩⟩

ε
− ⟨⟨T (0)

mnS
(2)
φ2 ⟩⟩

ε
+ 1

2 ⟨⟨T (0)
mnS

(1)
φ2 S

(1)
φ2 ⟩⟩

ε
− ⟨⟨T (1)

mnS
(1)
φ2 ⟩⟩

ε
+ O(h3) , (30)

whose diagrammatic representation is pictured in figure 1. The associated integrals are listed
in Appendix B. They can be expanded in ε and the anomaly can be obtained A(d) by direct

13We denote by ⟨⟨...⟩⟩ε the expectation value taken with respect to the flat-space free theory.
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application of (27) (i.e. (29)). Owing to locality, the full g dependence can be reconstructed by
demanding general covariance. We refer to [20,30] for details and we simply state the result,

A(d)
reg = 1

180(4π)2

[
−1

2E4 + 6
(
1 − 10(6ξ − 1)2

)
□R + 3

2Weyl2 + 5
2(6ξ − 1)2R2

]
. (31)

The prescription A(4)
reg was only briefly described in [20, 30] and here we provide some more

detail. At first sight, this case seems to require the full evaluation of the finite parts of the
correlators. However we notice the seemingly trivial rewriting

A(4)
reg = g(4) mn ⟨Tmn⟩ε − ⟨Θ(d)⟩ε + ⟨Θ(d)⟩ε − ⟨Θ(4)⟩ε (ε → 0)

= A(d)
reg + ⟨∆⟩ ,

(32)

where we defined
⟨∆⟩ := ⟨Θ(d)⟩ε − ⟨Θ(4)⟩ε (ε → 0). (33)

It is clear that the splitting in the second line (32) is meaningful, namely that the two terms
A(d)

reg and ⟨∆⟩ are separately finite: the former is discussed above, the latter follows from

∆ := Θ(d) − Θ(4) = ε · 4ξ − 1
2 □φ2 + εEφ. (34)

Thus, computing ⟨∆⟩ε the second term vanishes (cf. (10)) and the first one gives a finite and
local result, which is proportional to □R on dimensional and covariance grounds. Indeed we
find ⟨∆⟩ = −15(4ξ − 1)(6ξ − 1)□R and as a result

A(4)
reg = 1

180(4π)2

[
−1

2E4 + 6 (1 − 5ξ)□R + 3
2Weyl2 + 5

2(6ξ − 1)2R2
]

. (35)

We can see that a generic value of ξ features the appearance of R2 in the anomaly with
either prescription. Since this is not compatible with the Wess-Zumino consistency conditions,
it follows that the quantity A(D)

reg is not a functional derivative of an effective action as already
noticed in the original paper [5]. This observation was anticipated in the free-scalar calculation
of [20,30] and is also discussed in [21], where the authors introduce an all-loop definition for the
conformal anomaly in dimensional regularization which effectively extends the prescription A

(d)
reg.

As a consequence, all four coefficients in (35) are physical and the difference between the two
possible choices, A(4)

reg and A(d)
reg, cannot be reabsorbed by the introduction of counterterms in

the action.14 In fact, finite counterterms cancel between the two terms in (26). The ambiguity
D = 4 vs. D = d in the subtraction A(D)

reg is not discussed in [5] where the quantity Areg was
first introduced, and to our knowledge it is not discussed anywhere else besides the references
above. Finally, we observe that the heat-kernel identification (4) coincides with the prescription
A(4)

reg. This is a nontrivial result that, to our knowledge, was so far discussed only in [20,30].
This concludes our review of the calculation of [20], which hopefully clarifies some incorrect

comments reported elsewhere.15 In the next section we verify our claim that A(D)
reg is divergent

in the limit where the regulator is removed in an interacting theory.
14This point is overlooked in [20] and corrected in [30].
15In the conclusions of both arxiv v1, v2 and of the journal version, reference [22] comments that A

(d)
reg as in

(31) is “obtained using dimensional regularization and a perturbative expansion around flat space, together with
a dose of intuition to use the right amount of on-shellness” to simplify the stress-tensor trace. Similar statements
appear in the introduction. It should be clear from the discussion above that this remark is incorrect in two ways:
i) operatively the result (31) does not directly depend on Θ(d) but relies on the epsilon expansion of the ⟨Tmn⟩ε

only; ii) computing ⟨Θ(d)⟩ε directly neglecting the e.o.m. operator E, as done for ⟨Θ⟩ε in A(4)
reg is not a problem

because ⟨E⟩ = 0 in dimensional regularization as in (13). Unfortunately the authors of [22] did not share their
impression with those of [20] prior to publication. For completeness, we note that A(4)

reg is not discussed in [22].
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3.2 Failure at two loops (first order in the coupling)

We will now argue that the definition (26) does not provide a finite quantity at higher loop order
by showing an explicit two-loop divergence proportional to □R. As discussed at the end of the
previous subsection, it is an un-ambiguous quantity, in contrast to the anomaly proper.

It is enough to consider the term of order O(h1). The relevant contribution is

⟨Tmn(x)⟩ε |O(h1,λ1) = ⟨⟨T (0)
mn(x) S

(1)
φ2 S

(0)
φ4 ⟩⟩

ε

= λ

∫
ddx

∫
dq eiqx hrs(x)

∫
dp

1
p2(q − p)2 W φ2(1)

mn (p, q − p, −q) V φ2(1)
rs (−p, p − q, q)

= −λ
(6ξ − 1)2

(4π)4ε2

∫
ddx

∫
dq eiqx hrs(x)(δmnq2 − qmqn)(δrsq2 − qrqs)

72 + O(ε−1)

(36)

A direct calculation on the lines of (29) immediately shows that the presence of a double pole
proportional to the metric renders the anomaly A(d)

reg divergent, hence the definition (27) is
insufficient to accommodate for interactions.

For ease of exposition we do not discuss the analogous calculation for A(4)
reg, as the idea is

essentially the same and its divergent nature is implicit in the results of the next sections.

4 Renormalized construction

Having established the insufficiency of the regularized prescription, we turn to the definition (6)
based on renormalized correlators,

Aren = gmn ⟨[Tmn]⟩ − ⟨[Θ]⟩ , (37)

which by construction works to arbitrary loop order and does not have any ambiguity once a
renormalization scheme is chosen. We work in minimal subtraction.

Let us see the consequences of this definition in practice. Here we focus on the O(h1, λ0) +
O(h1, λ1) contribution to parallel the discussion of the previous section. As we shall see, we do
not need the more complex O(h2, λ0) term to fully obtain Aren in the free case. The contribution
O(h2, λ1) is even more complicated and will be considered in a simplified setting in a later section.

The first term of (37) can be computed from the renormalized effective action on a curved
background. Here we work in series of h, so

Γ[g] =
∫

d4p d4q hmn(p)hrs(q) (2π)4 δ[p + q] Γmnrs(p, q) + . . . , (38)

⟨T mn(x)⟩ = − 2√
g(x)

δ

δgmn(x)Γ[g] =
∫

dk eikx
[
−4hrs(k) Γmnrs(−k, k) + . . .

]
(39)

from which the trace can be readily computed and expanded in h, gmn ⟨Tmn⟩ = gmn ⟨T mn⟩ =
(δmn +hmn) ⟨T mn⟩. The second term of (37) is essentially given by the diagrammatic evaluation
of ⟨[φ2]⟩ following the definition (34).

In particular, to the lowest order in the metric perturbation, we obtain

gmn ⟨[Tmn]⟩O(h1) =
∫

dp eipxhmn(p) · (pmpn − δmnp2)p2· (40)

·
[11 − 60ξ + 15(6ξ − 1)2 log p2

µ̄2

180(4π)2 − λ

[
3(6ξ − 1) log p2

µ̄2 − 1
]2

216(4π)4

]
+ O(λ2) ,

⟨[Θ]⟩O(h1) =
∫

dp eipxhmn(p) · (pmpn − δmnp2)p2· (41)

· (6ξ − 1)

[
2(4π)2 + λ log p2

µ̄2

] [
3(6ξ − 1) log p2

µ̄2 − 1
]

72(4π)4 + O(λ2) ,
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where µ̄2 := µ2eγE/4π. As a result we can recognize the convariant structure

Aren = 5ξ − 1
30(4π)2□R + λ

[
3(6ξ − 1) log □

µ̄2 − 1
] [

6(6ξ − 1) log □
µ̄2 − 1

]
216(4π)4 □R + O(h2, λ2) . (42)

In (40) and (41) there are nonlocal terms both in the free and in the interacting contributions.
We notice that when λ = 0 these exactly cancel, while they survive in the interacting case. The
free contribution agrees with the regularized value A(4)

reg in (35) (and thus with the heat kernel
prescription Ahk). In fact, as we shall see in the next section, this agreement can be argued
on general grounds at least in the massless case and we do not need an explicit calculation to
obtain in general result

Aren = A(4)
reg (free theories). (43)

Effectively, this means that the renormalized definition extends the HK prescription to arbitrary
loop number.

4.1 Some properties of the renormalized anomaly

In this section we make some general consideration on the renormalized Aren, comparing it
between free and interacting theory. We focus on massless theories for simplicity.

We begin with the renormalized anomaly of the free theory. Interestingly, it reproduces the
result of the regularized prescription A(4)

reg. In particular, it is local: the nonlocal contributions
cancel in the difference. We can indeed see this result on general grounds. Denoting by (0) bare
quantities, there are only one-loop simple-pole geometrical counterterms and

S = S(0) + Sct1 , [Tmn] = T (0)
mn − 2

√
g

δSct1
δgmn

, T (0)
mn = − 2

√
g

δS(0)

δgmn
, Θ = g(4) mn T (0)

mn ,

[Θ] = {g(4) mn T (0)
mn} + θct g , θct g = Z□R□R + ZR2R2 + ZW 2Weyl2 + ZE4E4 .

(44)
The brackets {...} denote the renormalized composite operator without the contribution pro-
portional to the identity operator, which is θct g and contains only poles. We dropped irrelevant
e.o.m. terms. In the case of the massless scalar, only Z□R ̸= 0 in minimal subtraction, cf. (24).
The crucial point, as we are going to see, is that {g(4) mn T

(0)
mn} = g(4) mn T

(0)
mn for free theories,

but typically not when interactions are present, cf. (24),(25).
We now consider

Aren = g(4) mn ⟨[Tmn]⟩ − ⟨[Θ]⟩ . (45)

The indication of the dimension g(4) mn in Aren is naturally redundant, as the expressions in
the right hand side are finite and renormalized, so they are in 4 dimensions, but we keep it for
clarity. Explicitly Aren becomes

Aren = g(4) mn ⟨T (0)
mn⟩ε − ⟨g(4) mn T (0)

mn⟩ε − 2
√

g
g(4) mn δSct1

δgmn
− θct g (ε → 0)

= A(4)
reg − lim

ε→0

(
2

√
g

g(4) mn δSct1
δgmn

+ θct g

) (46)

We have used that the difference of the first two terms in the first line is of order ε, therefore
it produces a finite and local result in the ε → 0 limit which is exactly A(4)

reg. The fact that we

11



are still taking the trace in 4 dimensions16 implies that, from the counterterms in Sct1, we only
have a divergent contribution proportional to

g(4) mn δSct1
δgmn

∼ 1
ε

g(4) mn δ

δgmn

∫ √
gR2 ∝ 1

ε
□R . (47)

The other contributions vanish when taking the 4 dimensional trace. By definition, θct g contains
only poles. By construction Aren is finite, so the divergent pieces must cancel.

This argument relies on the fact that {g(4) mn T
(0)
mn} = g(4) mn T

(0)
mn, which is true at free level.

Including interactions produces additional ‘wavefunction’ renormalization factors that induce
new terms in perturbation theory cf. (23),(24). In contrast, [Tmn] does not require additional
subtractions beyond the standard action renormalization of the action (which involves only non-
composite operators), so that a cancellation of the nonlocalities in Aren seems unlikely on general
grounds. Our calculation in the scalar model supports this, cf. (42) and the following section.

4.2 Integrated anomaly

Computing Aren to two loops and third order in the metric perturbation h requires considering
the ε expansion to high order of integrals of formidable complexity. To simplify the problem we
consider the integrated quantity

A =
∫

d4x
√

g(x) Aren(x) =
∫

d4x
√

g(x) g(4) mn(x) ⟨[Tmn](x)⟩ , (48)

which remarkably, in the present example, does not depend on ⟨[Θ]⟩ since that is a total deriva-
tive. The correlator is the finite, renormalized one, and we emphasized that the trace is taken
in D = 4 for additional clarity.

We focus here on the O(h2) contribution to (48)

(A)O(h2) = δmn

∫
d4x ⟨[Tmn]⟩O(h2) +

(
1
2δrsδmn − δr(mδn)s

) ∫
d4x hrs ⟨[Tmn]⟩O(h1) . (49)

As the expectation values are computed in dimensional regularization, they have the structure

⟨Tmn⟩O(hn) = lim
ε→0

[
⟨T (0)

mn⟩O(hn) + ⟨T ct
mn⟩O(hn)

]
, (50)

where the second term indicates countertem contributions. We find it convenient to extend
the dimensionality of the integrals and of all the delta symbols in (49) from 4 to d = 4 − 2ε

dimensions. This is consistent because the correlators are already finite, so this choice does not
influence the limit ε → 0. We can thus rewrite (49) as

(A)O(h2) = lim
ε→0

∫
ddx δmn

[
⟨T (0)

mn⟩O(h2) + ⟨T ct
mn⟩O(h2)

]
+ lim

ε→0

∫
ddx hrs(x)

(
1
2δrsδmn − δr(mδn)s

) [
⟨T (0)

mn⟩O(h1) + ⟨T ct
mn⟩O(h1)

]
.

= lim
ε→0

δmn

∫
dk hrs(k)hac(−k) T i

mnrsac(k)

+ lim
ε→0

(
1
2δrsδmn − δr(mδn)s

) ∫
dk hrs(k)hac(−k) T ii

mnac(k)

(51)

Proceeding in this way has the advantage of setting to zero external momenta before expanding in
ε, thus reducing the diagrams to manageable two-propagator integrals and avoiding IR divergent

16We could have extended the trace to d = 4 − 2ε dimensions. In this case g(4) mn ⟨T (0)
mn⟩ is replaced by

g(d) mn ⟨T (0)
mn⟩ = ⟨g(d) mnT

(0)
mn⟩ = ⟨Θ(d)⟩ and g(d) mn δSct1

δgmn contains in addition to (47) a finite piece, which gives
rise to the anomaly. The conclusion is the same.
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logs. In the second step we wrote the integrands in momentum space and indeed implemented the
momentum conservation arising from the integration over x. The diagrammatic representation
is in figure 2 and we refer to Appendix B for the expressions of the corresponding integrals.

Figure 2: Diagrammatic representation of the bare Feynman integrals in (51). Black dots are vertices V from
the action, the white dot is a vertex W from the stress tensor. Wavy lines are metric perturbations h. Metric
perturbations with a dashed line represent the external hrs that does not come from the correlator.

The values in (25) of the counterterms make these expressions finite, providing a consistency
check. As a result we obtain the integrated anomaly A

(A)O(h2) = 1
180(4π)2

∫
d4k

(2π)4 hrs(k) hac(−k) ×
{3

4δarδcsk4 − 3
2δark2kskc

+
(

90ξ2 − 30ξ + 9
4 − 5

6
λ

(4π)2 (6ξ − 1)
(

1 − 3(6ξ − 1) log k2

µ

))
(δrsδack

4 − 2δrskakck
2)

+
(

90ξ2 − 30ξ + 3 − 5
6

λ

(4π)2 (6ξ − 1)
(

1 − 3(6ξ − 1) log k2

µ

))
kakckrks

}
.

(52)
We recognize the covariant structure

A = 1
180(4π)2

∫
d4x

√
g
{3

2Weyl2 + (6ξ − 1)
(5

2(6ξ − 1) − 5λ

6(4π)2

)
R2

+ 5λ(1 − 6ξ)2

2(4π)2 R log □
µ̄2 R

}
+ O(h3, λ2).

(53)

The Euler term E4 is a total derivative in four dimensions, hence it disappears after integra-
tion, as well as the manifest total derivative □R. Interestingly, the c coefficient is in any case
undeformed by λ at first order.17

We see from (52) and (53) that the departure from conformality brings nonlocalities in Aren
together with an explicit dependence on the energy scale µ besides the implicit one induced by
the renormalization of the parameters.

5 Concluding remarks

In this paper we have explored the characterisation of the quantum contributions to nonconfor-
mal theories A (1) proposed by M. Duff in [5, 7]. We studied in dimensional regularization the
explicit example of a scalar field with a generic curvature coupling and a quartic self-interaction.

The free case was studied in [20, 30] using regularized but not renormalized correlators. In
particular, an ambiguity in the definition of A(D)

reg in (26) was pointed out, corresponding to
the dimensionality of the subtraction term, D = 4 vs. D = 4 − 2ε. We have reviewed and
completed the calculation, spelling out some aspects that were misunderstood in the previous
literature [20, 22]. We explicitly showed that the prescription A(4)

reg reproduces the result of the
17This carries resemblance with the analysis of [31, 32] based on the analysis of stress-tensor correlators.
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heat-kernel identification Ahk = a4, which is advocated in [5, 7] to be preferred. On the other
hand, the prescription A(4−2ε) is singled out in the analysis of [21]. There, in the context of
dimensional regularization, a different notion of A valid to all-loop order is introduced, which is
by construction finite local and reduces to A(4−2ε) for free theories. It is naturally of interest to
understand which prescription is more appropriate to capture the sought effects.

In either case, A of the form (1) produces a quantity that contains R2, thus violating the
WZ consistency conditions. This implies that it cannot be obtained as functional derivative
of an effective action and it is not subject to the same counterterm ambiguity of the anomaly
proper: a finite counterterm would cancel in the difference between the two terms in A. As an
additional consequence, also the coefficient of □R is physical. Similar comments appear also
in [21,30].

We have then extended the analysis of [20, 30] to include interaction at lowest order in the
coupling. We have shown that the regularized prescription is insufficient, as it gives a divergent
result once the regulator is removed. We thus considered the definition Aren built of renormalized
correlators. We have argued that it is a good candidate to extend the identification of A with the
heat kernel coefficient in the presence of interactions, at least for generic massless theories. This
identification is nontrivial, in that it suggest a firmer diagrammatic understanding of the HK
prescription (6) in a way that can be extended to higher loops, and deserves to be investigated
in greater generality.

This definition, however, displays nonlocalities at higher loops. We have shown this explicitly
in (42) and (53). We explained the appearance of the nonlocalities as a consequence of the
fact that, in constructing finite composite operators, the stress-tensor does not require any
additional renormalization, while the operator associated to its trace does. It is this imbalance
that produces uncancelled nonlocal terms from two-loops on.

Given this discussion, it seems that the situation regarding the characterisation of quantum
violation of Weyl invariance, when the classical symmetry is absent, is far from clear. As
Weyl (conformal) invariance is absent along the RG flow, this has the potential application
of shedding light on the space of QFTs and providing insights in the local version of the a

theorem. Similarly, Einstein gravity and supersymmetric generalisation thereof lack classical
Weyl invariance, therefore the significance of the cancellation of the c-anomalies in the total
heat kernel coefficients in N > 4 supergravities is unclear [13,14].

On a practical level, it would be interesting to extend our calculation to higher loop to see
the appearance of the beta functions as well as including mass terms. Other field theory models
would provide additional concrete examples and would e.g. allow one to test the identification
of A with the heat kernel coefficient more thoroughly. To make a clearer connection with
the a-theorem [9], it would be interesting to compute Aren without the spacetime integration
considered in section 4.2 that hides the contribution from E4; more advanced diagrammatic
techniques are needed in order to overcome the computational complexity. With this in mind, it
would also be of interest understanding how to connect the notions of anomaly discussed above
with [33–35].
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A Notation and conventions

We work in euclidean signature. Dimensional regularization is considered in d = 4 − 2ε di-
mensions. The metric is expanded in a perturbation around a flat background as gmn(x) =
δmn + hmn(x).

Flat-space Fourier transforms and integrals follow the convention

f(x) =
∫

dp eipxf(p) ,

∫
dp eipx = δ(x) , dp = ddp

(2π)d
. (54)

The four dimensional Euler density and Weyl curvature tensor are given respectively by

E4 = Riem2 − 4Ric2 + R2 , Weyl2 = Riem2 − 2Ric2 + 1
3R2 . (55)

Quantum expectation values are denoted as:
⟨...⟩: renormalized (finite) expectation values;
⟨...⟩O(hn): renormalized (finite) expectation values of order n in the metric perturbation;
⟨...⟩reg: regularized but not renormalized correlators (only used in general discussion);
⟨...⟩ε: regularized correlators in dimensional regularization;
⟨⟨...⟩⟩ε: bare correlators taken in the free theory, in flat space, in dimensional regularization.

B Feynman rules and diagram integrals

The propagator for the field φ in momentum space reads

G(p, q) = ⟨⟨φ(p)φ(q)⟩⟩ε = (2π)d δ(d)[p + q]
p2 (56)

The action vertices as defined in (14) and following, are:

V (2)
mn,rs(p) = γ

2 p4δm(rδs)n − γp2p(mδn)(rps) + pmpnprps

(
ρ + γ

3

)
+
(
p2prpsδmn + p2pmpnδrs

)(γ

6 − ρ

)
− p4δmnδrs

(
γ

6 − ρ

)

V φ2(1)
mn (p, q, ℓ) = 1

2p(mqn) − 1
4δmn pq + ξ

2
(
δmnℓ2 − ℓmℓn

)
V φ2(2)

mn,rs(p, q, ℓ, k) = − 1
16δmnδrspq + 1

8pqδm(rδs)n − 1
4p(mδn)(rqs) − 1

4q(mδn)(rps) + 1
8δmnq(rps) + 1

8δrsq(mpn)

+ ξ
[1
8δmnδrs(k2 + kℓ + ℓ2) − 1

8δm(rδs)n(2k2 − 3kℓ + 2ℓ2) − 1
8δrs(ℓmℓn + 2kmkn)

− 1
8δmn(krks + 2ℓrℓs) − 1

4δmnk(rℓs) − 1
4δrsk(mℓn) + 1

2k(mδn)(rks) + 1
2ℓ(mδn)(rℓs)

+ 1
2ℓ(mδn)(rks) + 1

4k(mδn)(rℓs)
]

V φ4(1)
mn = λ

2 · 4!δmn

We also use V
(3)

mnrsac, but its expression is lengthy and uninformative so we do not report it.
The stress tensor vertices as defined in (17) and following are

W φ2(1)
mn (p, q) = −2V φ2(1)

mn (p, q, −p − q) , W φ4(0)
mn = − λ

4!δmn , W φ4(1)
mnac − λ

4!δa(mδn)c , (57)
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The integrals corresponding to the diagrams of figure 1 referring to equation (30) are

− ⟨⟨T φ2(0)
mn S

(1)
φ2 ⟩⟩

ε
= −2

∫
dq eiqxhrs(q)

∫
dp

1
p2(p − q)2 W φ2(0)

mn (p, q − p) V φ(1)
rs (−p, p − q, q)

1
2 ⟨⟨T φ2(0)

mn S
(1)
φ2 S

(1)
φ2 ⟩⟩

ε
= 4

∫
dk dℓ ei(k+ℓ)xhac(ℓ)hrs(k)

∫
dp

1
p2(p − ℓ)2(p + k)2 ·

· W φ2(0)
mn (ℓ − p, p + k) V φ(1)

rs (p, −p − k, k) V φ(1)
ac (p − ℓ, −p, ℓ)

− ⟨⟨T φ2(0)
mn S

(2)
φ2 ⟩⟩

ε
= −2

∫
dk dℓ ei(k+ℓ)xhac(ℓ)hrs(k)

∫
dp

1
p2(p − k − ℓ)2 (58)

· W φ2(0)
mn (p, k + ℓ − p)V φ2(2)

acrs (−p, p − k − ℓ, ℓ, k)

− ⟨⟨T φ2(1)
mn S

(1)
φ2 ⟩⟩

ε
= −2

∫
dk dℓ ei(k+ℓ)xhac(ℓ)hrs(k)

∫
dp

1
p2(p − k)2

· W φ2(1)
mnac (p, k − p, ℓ)V φ2(1)

rs (−p, p − k, k)

The bare integrals corresponding to the diagrams of figure 2 referring to equation (51) are

T i bare
mnrsac(k) = −2

∫
dp

W
φ2(1)
mnrs (−p, −k + p, k)V φ2(1)

ac (p, k − p, −k)
p2(p − k)2 (59)

− 8
∫

dp
W

φ2(1)
mn (−p, p, 0)V φ2(1)

rs (−p, p − k, k)V φ2(1)
ac (p, k − p, −k)

p4(p − k)2

+ 12
∫

dp
V

φ2(1)
rs (−p, p − k, k)

p2(p − k)2

∫
dq

V
φ2(1)

ac (q, −q + k, k)
q2(q − k)2 W mn(p, −q, −p + k, −k + q)

+ λ

∫
dp

W
φ2(1)
mnrs (−p, p − k, k)

p2(p − k)2

∫
dq

V
φ2(1)

ac (q, −q + k, −k)
q2(q − k)2

− 2λ

∫
dp

V
φ2(1)

rs (−p, p − k, k)
p2(p − k)2

∫
dq

V
φ2(1)

ac (q, −q + k, −k)W φ2(0)
mn (−q, q)

q4(q − k)2

T ii bare
mnac (k) = 4

∫
dp

V
φ2(1)

mn (−p, p − k, k) V
φ2(1)

mn (p, k − p, −k)
p2(p − k)2 (60)

− 2λ

∫
dp

V
φ2(1)

mn (−p, −k + p, k)
p2(p − k)2

∫
dq

V
φ2(1)

ac (k − q, q, −k)
q2(q − k)2 ,

where we have only given the bare integrals corresponding to the diagrams displayed; the coun-
terterm contributions can be easily derived.

C Remarks on action renormalization on curved background

In the notation explained in Section 3, the bare theory induces purely gravitational infinities
that need to be cancelled by counterterms in Sgrav as in (18) with (20) and (25). To determine
the counterterms it is enough to compute the effective action to second and third order in the
h expansion.

For the two-point function we have

ΓO(h2) =
∫

dq hmn(−q)hrs(q)
{∫

dp
1

p2(q − p)2 V φ2(1)
mn (p, q − p, −q) V φ2(1)

rs (−p, p − q, q)

− λ

2

∫
dp

1
p2(q − p)2 V φ2(1)

mn (p, q − p, −q)
∫

dk
1

k2(k − p)2 V φ2(1)
rs (−k, k − q, q)

}
.

(61)
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Performing the calculation to two loop (first order in λ) fixes ξ(1), ξ(2) through subdiagrams,
and the resulting divergences give the counterterms γ(1), γ(2), ρ(1) and ρ(2). In contrast, α is
not captured because E4 does not have a quadratic term in the expansion on a flat background
in general dimension.

The bare three point function is

ΓO(h3) =
∫

dp dq hmn(−p)hrs(q)hac(p − q)
{4

3

∫
dℓ

1
ℓ2(ℓ − p)2(ℓ − q)2 ×

× V φ2(1)
mn (ℓ, p − ℓ, p)V φ2(1)

rs (−ℓ, ℓ − q, q)V φ2(1)
ac (ℓ − p, q − ℓ, p − q)

− 2
∫

dℓ
1

ℓ2(ℓ − p)2 V φ2(1)
mn (ℓ, p − ℓ, −p) V φ2(2)

rsac (−ℓ, ℓ − p, q, p − q)
}

.

(62)

As observed in [36], the three point function does capture the coefficient of E4. Despite the fact
that it is a total derivative in D = 4 and vanishes in D < 4, in the spirit of analytically continuing
for generic (complex) D, it is indeed relevant in the ε expansion. In fact, the contribution
disappears only by using identities that are not valid for D > 4.
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