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The early inspiral from stellar-mass binary black holes (sBBHs) can emit milli-Hertz gravitational
wave signals, making them detectable sources for space-borne gravitational wave missions like Tian-
Qin. However, the traditional matched filtering technique poses a significant challenge for analyzing
this kind of signals, as it requires an impractically high number of templates ranging from 1031 to
1040. We propose a search strategy that involves two main parts: initially, we reduce the dimension-
ality of the simulated signals using incremental principal component analysis (IPCA). Subsequently
we train the convolutional neural networks (CNNs) based on the compressed TianQin data ob-
tained from IPCA, aiming to develop both a detection model and a point parameter estimation
model. The compression efficiency for the trained IPCA model achieves a cumulative variance ratio
of 95.6% when applied to 106 simulated signals. To evaluate the performance of CNN we generate
the receiver operating characteristic curve for the detection model which is applied to the test data
with varying signal-to-noise ratios. At a false alarm probability of 5% the corresponding true alarm
probability for signals with a signal-to-noise ratio of 50 is 86.5%. Subsequently, we introduce the
point estimation model to evaluate the value of the chirp mass of corresponding sBBH signals with
an error. For signals with a signal-to-noise ratio of 50, the trained point estimation CNN model
can estimate the chirp mass of most test events, with a standard deviation error of 2.48 M⊙ and a
relative error precision of 0.12.

I. INTRODUCTION

Stellar-mass binary black hole is a typical kind of
multi-band observation sources of gravitational wave
(GW), with space-borne detectors observing the early
inspiral phase of the signal, and ground-based detectors
observing the late inspiral, merger, and ringdown phases.
Ground-based detectors have already detected these sig-
nals, opening up the era of gravitational wave astronomy
[1–3]. Future space-based detectors (e.g. TianQin [4],
LISA [5]) are likely to detect this type of source.

Due to the long duration ranging from months to years
expected for sBBH signals observed by space-borne de-
tectors, they offer the potential for high-precision esti-
mation of physical parameters, including characteristics
such as the spins of the binary and its localization[6,
7]. The information regarding the spins is particularly
valuable for unraveling the evolutionary history of bi-
nary systems, given the notable variations in the effec-
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tive spin predicted by various formation mechanisms[8–
10].Additionally, the localization of these signals can con-
tribute significantly to constraining the Hubble constant
[11–15]

Indeed, the detection of GWs signal from long-lived
sBBH poses a considerable challenge when employing
matched filtering, especially given the need for over 1031

templates[16] . Additionally, Owen[17] et al. proposed
an archival search algorithm that utilizes information
from ground-based detectors to narrow the parameter
space for the signal being searched in space-based de-
tector data, allowing for more efficient data analysis.
However, this method relies on the gravitational wave
signal being observed by both ground-based and space-
borne detectors [14]. Furthermore semi-coherent method
has been explored in zero-noise scenarios [18] with the
help of particle-swarm optimization, which has not pro-
vided sensitivity analysis yet. If a sBBH merger, occur-
ring over approximately one year, can be detected by
a space-borne detector, it holds the potential to offer a
pre-merger warning for ground-based detectors. This ne-
cessitates the development of a swift and cost-effective
pipeline for the search of sBBH signals in the mHz fre-
quency band. Such a pipeline would serve as a crucial link
between space-borne detectors and ground-based detec-
tors.

In recent years, machine learning and/or deep learning
algorithms have demonstrated significant potential for
application in gravitational wave data analysis.[19–35].
Machine learning algorithms excel in detecting nonlin-
ear structures within complex and long-duration signals,
including events like binary neutron star (BNS) merg-
ers (with durations ranging from minutes to hours)[36–
42], continuous waves (spanning from hours to years)[43],
and extreme mass-ratio inspirals (EMRI) (spanning from
a few months to years)[34]. As detector sensitivity im-
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proves in the future, the increasing number of events to
be analyzed and challenges such as signal overlap impose
distinct requirements on data analysis pipelines, such as
high computational cost. In these scenarios, machine
learning algorithms demonstrate significant advantages
in terms of processing efficiency and generalisation.

We propose to develope a search algorithm using
convolutional neural network (CNN) for the search of
GWs from sBBHs by TianQin. Moreover, once CNN and
other neural networks complete training, their computa-
tional efficiency is very high. If we can quickly analyze
the properties of a strong sBBH from a space-borne de-
tector, it can provide early warning to other detectors.
Of note, there are researches [7, 13] in which experts esti-
mate the source parameters of an sBBH from the actual
point, presuming the data will be ready from the search
phase. However, without any prior knowledge from the
source, the task becomes markedly difficult. Our assured
pipeline can offer useful input for Bayesian inference.

We initiated the training of CNN using time-series
data, data on the frequency domain, and data on
the time-frequency spectrum. However, the sheer vol-
ume of data points within a single signal from a
sBBH—spanning a duration of a few months—posed a
challenge for CNN training in terms of GPU memory
and computational time. Consequently, we employed
incremental principal component analysis (IPCA) to re-
duce the number of data points, facilitating the con-
struction of a search pipeline tailored for the detection
of sBBH signals.

We have tried three different data representations for
our signal: time domain, frequency domain, and time-
frequency spectrum. The experiments that we have per-
formed demonstrated that the frequency domain data
was the most suitable for our purposes. We decided to
work with the data compressed by IPCA model. For this
reason we tested different representations of frequency
domain data and we have found out that for the data
processed with TianQin response it works best with the
amplitude part of the data due to specific modulations
in this response. Subsequent to this, we employed the
trained IPCA model to compress the amplitude of detec-
tor data in the frequency domain. Upon projecting from
the IPCA model, we trained a detection CNN model as
well as a point parameter estimation CNN model. This
serves as a demonstration of the compression- plus-search
pipeline methodology for the long-lasting GW search of
sBBHs.

The structure of this paper is as follows: In Section II,
we introduce sBBH early inspiral GW and simulations of
observations of GWs from sBBHs by TianQin. In section
III, we explain the main techniques in data analysis that
we used, including the principle component analysis and
convolution neural network. In Section IV, we introduce
searching strategies for GW from sBBH, including de-
tection stage and point parameter estimation stage. In
Section V, we present the results. In Section VI we sum-
marize what we have achieved and discuss future work.

II. GW FROM STELLAR-MASS BINARY
BINARY BLACK HOLE INSPIRAL

A. Stellar-mass binary black early inspiral

The evolution of an sBBH system comprises three dis-
tinct stages: the inspiral, merger, and ringdown phases.
During each phase, the emitted gravitational waves can
be characterized by various theories, including the Post-
Newtonian (PN) approximation, which governs the be-
havior of gravitational waves at different levels of accu-
racy. Specifically, space borne detectors expect to cap-
ture gravitational waves radiated in the early inspiral
stage of sBBH evolution, for which the 2.5PN (post-
Newtonian) approximation can be accurate enough [44].

Despite that various formation channels, such as iso-
lated binary evolution, dynamic formation, and primor-
dial black holes, have attempted to explain the origin of
sBBHs, no conclusion has been reached so far[45]. These
models have made different predictions about the mass
ratio, spin, and orbital parameters of the binary black
holes. The validation of these predictions can be inferred
via gravitational wave observations. While ground-based
gravitational wave observations have completed three ef-
fective rounds of detection, more observational data are
still needed to determine the model that best fits real-
ity [46]. To mitigate the introduction of any preferred
systematic bias in physical parameters, we incorporate
a uniform distribution of sBBH populations throughout
the Universe in our simulation.

For more streamlined data analysis, we can employ
IMRPhenomD [47] to swiftly generate gravitational wave
polarizations, taking into account only the dominant
quadrupole moment. IMRPhenomD includes whole evo-
lution process of sBBH (considering 3.5 PN approxima-
tion) and can easily be used to build up our pipeline [12].
In the context of the inspiral phase of the sBBH signal,
this implies that the frequency of the system satisfies
f < fLSO, where fLSO represents the frequency of the
last stable orbit. Moreover, we use h22 by IMRPhenomD
to characterize the original signal, expressed as:

h̃22(f) = A(f) exp (−iΨ(f)), (1)

Here, f denotes the frequency evolution range, The rep-

resentation of the GW amplitude is A(f) = M5/6

π2/3DL
f−7/6,

whereM = η3/5M denotes the chirp mass. The symmet-
ric mass ratio here is η = m1m2

(m1+m2)2
and the total mass

is M = m1 +m2 . Additionally, Ψ(f) signifies the GW
phase, as elaborated on in a specific set of physical pa-
rameters. These parameters include the masses (m1,m2)
of the binary system and the spins (χ1, χ2) of each com-
ponent within the binary, as detailed in the paper [47].
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B. TianQin response

TianQin, a space-borne detector with sensitivity in the
frequency range of 10−4 to 1 Hz, enabling the observa-
tion of gravitational waves originating from early inspi-
rals of sBBHs. Through time delay interferometry (TDI)
technology[48–50], we can integrate the collected data
into three quasi-independent AET channels, thus effec-
tively suppressing laser phase noise. It is common to
choose these representation for TDI because the noise
correlation matrix of these three combinations is diago-
nal. The noise budget can be described by the following
power spectral density (PSD)[51]:

SA,E(f) =
2

L2
sin2 fc [(cos fc + 2)Sp(f)

+2(cos(2fc) + 2 cos fc + 3)
Sa(f)

(2πf)4

]
, (2)

ST (f) =32 sin2 fc sin
2 fc
2
(4 sin2 fcSa + Sp), (3)

fc =
2πfL

c
, (4)

Sp =
f2c
L2

(
10−4Hz

f

)
, (5)

Sa =

(
1 +

10−4

f

)
L2

f2c c
4
. (6)

Where L =
√
3× 108 m is the arm length

When the gravitational wave signal from a sBBH sys-
tem passes through TianQin the received signal will be
modulated,which can be expressed by the transfer func-
tion related to each laser links among three satellites [52]:

h̃(f) =
∑
l

∑
m

T A,E,T(f, tlm(f))h̃lm(f). (7)

The transfer function, denoted as (T A,E,T(f, tlm(f))),
is dependent on a set of parameters, including
(tref, ϕref, ι, ψ, λ, β).The reference time and phase are de-
noted by (tref, ϕref); the inclination and polarization angle
are indicated by (ι) and (ψ) respectively. Furthermore,
the ecliptic longitude and latitude in the solar-system
barycenter (SSB) are represented by (λ, β).
For each harmonic of the waveform, assuming it satis-

fies the stationary phase approximation and the shifted
uniform asymptotic, its time-frequency relationship [52]
can be expressed as

tlm(f) = tref −
1

2π

dΦlm(f)

df
. (8)

The aforementioned extrinsic parameters are defined
in the solar system barycentric coordinate system. By
combining each harmonic hlm(f) with its correspond-
ing transfer function T (f, tlm(f)), we can simulate the
received signal samples of each TDI channel. We use
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FIG. 1. In Subfigure (a), the ‘A’ channel signal from a
GW190521-like binary black hole system is depicted as a blue
curve, while the amplitude spectral density (ASD) of the ‘AE’
channel is shown in red. The data reflects an observation pe-
riod of three months at a sample rate of 0.25 Hz, with each
channel containing 972001 data points. The binary system
under observation comprises two black holes of approximately
85 M⊙ and 66 M⊙. This GW signal’s SNR is 50, and its sky
location is given by (λ = 5.6 Rad, β = −4.7 Rad). Subfig-
ure (b) presents the amplitude of the respective dimensionless
transfer function in the ‘A’ channel. The oscillation magni-
tude of the resultant signal is derived from this transfer func-
tion, which is governed by Equation Eq. (9).

IMRPhenomD to describe the original waveform (only con-
sidering the 22 mode, i.e., l = 2,m = 2 ), which is ex-
pressed as:

h̃A,E,T = T A,E,T (f, t22(f))h̃22(f). (9)

Using a GW190521-like sBBH system as an example,
as shown in Figure 1(a), this signal exhibits multiple cy-
cles within the sensitive band of TianQin. The prominent
oscillations are a result of detector modulations, primar-
ily influenced by the transfer function.
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At the same time, although we know that the detector
data is composed of three channels (A, E, T), as the
signal is effectively suppressed in the T channel, we only
use the data from the A and E channels in subsequent
analyses.

III. METHODS

A. Principle component analysis

Taking into account the duty cycle of TianQin (operat-
ing for three months, followed by another three months
off), the dimensionality of a single source in the time
domain for low-frequency sBBH signals is (3, 1944000).
Here, “3” refers to the three channels of data from the
TDI AEI channel, while “1944000” accounts for the num-
ber of data points obtained over a 3-month duration at a
sampling rate of 0.25 Hz. The use of a CNN for process-
ing such lengthy signals comes with its own challenges,
primarily due to the large size of the signals. This poses
difficulties in terms of GPU memory and training time.
To tackle these issues, attempts have been made to re-
duce the signal size by truncating signal in each channel
at the frequency domain, thus lowering the number of
data points.

In this context, we employ principal component anal-
ysis (PCA) to compress the data and extract initial fea-
tures. Using matrix decomposition, high-dimensional
data Mmn can be represented as a set of lower-
dimensional bases Umk and the values of each basis Vkn
[53], where m represents the number of data sample, n is
the initial data dimension, and k is the data dimension
obtained through matrix transformation, with n > k

Mmn ≈ UmkVkn (10)

As k approaches n, the product of the transformation
matrix and projection obtained by PCA is increasingly
close to the matrix formed by the original data. As the
new, lower-dimensional basis (ui ∈ Umk) is chosen by
selecting the eigenvalues of the covariance matrix of the
data in descending order, based on their associated vari-
ance, it showcases the importance of these eigenvalues
in the data representation. In order to minimize vari-
ance loss, a larger number of components may be re-
quired. This, in turn, results in building a larger lower-
dimensionality matrix Umk. Preserving more information
from the original data will reduce the variance loss, thus
enabling a more accurate representation.

This method establishes the conversion matrix and re-
alizes the dimension reduction of high-dimensional data
by finding the maximum variance direction of the data to
determine the first projection base, requiring the second
largest variance direction to be orthogonal to the pre-
vious one, and so on, to obtain the decomposition and
dimension reduction direction of the data.

Limited by the GPU memory, we cannot read a large
amount of simulated signals at once. Therefore, we use
IPCA [54] as an alternative to the actual PCA compu-
tation process. This IPCA method is also based on the
concept of low-rank approximation, seeking a projection
space similar to PCA, but only needing to read a batch
of data at a time, instead of loading all the data into
memory at once. We extracted the IPCA model based
on the third-party software cuML [55].

B. Convolutional neural network for searching GW
signals

CNNs are a type of deep learning algorithms that use
convolutional kernels to capture and learn data features
[56]. Convolutional kernels are capable of learning to
capture features at different abstraction levels. Conse-
quently, the combination of multiple kernels allows the
extraction of higher-level features, aiding the network in
learning more complex patterns. A typical CNN consists
of convolutional layers, pooling layers and/or or fully con-
nected layers. Currently, CNNs are extensively employed
in the field of Gravitational Wave astronomy. They are
utilized for various purposes, such as detecting GW sig-
nals [19, 20, 22, 57] and classifying glitches [58, 59]. The
convolution kernels of these networks play a crucial role
in characterizing the distinctive features of the signals
and glitches.

1. Signal detection

In the task of signal detection, detector data can be
modeled as the data that either contains a signal or
not. Using a CNN for signal detection means classifying
the detector dataset, which is essentially calculating the
probability that the data contains a signal. The specific
mathematical model can be represented as:

ypred = PDetection
CNN (x), (11)

x = g(df ).

df =

{
sf (θ) + nf

nf .

where x is the input to a CNN, which also can be a
suitable representation g of the detector output data d.
In our case, we take the compressed amplitude of the
simulated data df in the frequency domain as the input
to CNNs. ypred is the probability whether this input
contains a GW signal or not.

This detection task is equivalent to using a CNN for
classification. In this scenario, the data is categorized
into two classes with distinct labels. In our case the
detector data containing signals is assigned the label 1,
while the detector data with pure noise is labeled as 0.
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We can train the CNN based on cross-entropy. The for-
mula for binary cross-entropy is as follows:

Lossbce = − 1

N

i=N∑
i=1

[
yi · log(yipred)+

(1− yi) · logi(1− yipred)
]

(12)

where yi represents the input label and ypred is the cor-
responding output probability of the CNN.

2. Point estimation

Following our successful predictions regarding the pres-
ence of a signal in the data, we can proceed to evaluate
the parameters of the GW signal which is present in the
data. Consequently, we employ the similar CNN archi-
tecture that has proven effective in the detection task,
repurposing its structure to estimate the physical param-
eters of the signal — a task that is commonly referred to
as ‘regression’ in machine learning applications. This ap-
proach will yield point estimates of the physical parame-
ters The specific mathematical model can be represented
as:

θpred = PEstimation
CNN (x), (13)

x = g(df (θactual)).

df (θ) = sf (θ) + nf .

In this formula, df (θ) is a sample of signal plus noise
in the frequency domain, and xi is the representation of
the data sample. There is a certain function mapping
relationship between the input and physical parameters.
A well-trained CNN model can learn this mapping fCNN

.
We use the Mean Squared Error (MSE) to train the

difference between the input chirp mass value θactual and
the CNN output estimate θpred, thereby constructing a
one-to-one mapping relationship between the predicted
physical parameters and the corresponding input data.
The formula for the mean squared error is as follows:

Lossmse =
1

N

N∑
i=1

(θiactual − θipred) (14)

where N is the number of the used data, θactual is the
actual physical parameter set of the corresponding data
d(θ), and θpred is the point estimation of the physical
parameter set.

3. CNN Architecture

The final CNN structure used in signal detection is
shown in Table I. The final output layer of the CNN
is augmented with the softmax function to normalize

the output, enabling its interpretation as the probabil-
ity of whether the data contains a GW signal. The other
layers utilize the ‘ReLU’ activation function to achieve
non-linear mapping from the input to the output. The
‘ReLU’ function yields zero for any negative input while
returning positive values without any changes, thereby
introducing sparsity into the model and potentially im-
proving computational efficiency in the signal detection
task.

TABLE I. The architecture of the CNN. The number of train-
ing parameters is 497466. The stride for each layer is 1.

Layers Neutrons
number

Kernel size Output size

1 Input (2× 480) . . . . . .
2 Convolution 64 ( 1× 5 ) ( 64× 96 )
3 BatchNorm 64 . . . ( 64× 96 )
4 Convolution 128 ( 1× 5 ) ( 128× 92 )
5 Convolution 256 ( 1× 5 ) ( 256× 88 )
6 Convolution 64 ( 1× 3 ) ( 64× 86 )
7 Convolution 16 ( 1× 3 ) ( 16× 84 )
8 Convolution 8 ( 1× 3 ) ( 8× 82 )
9 Flatten . . . 656
10 Dense . . . 64
11 Dropout p = 0.5 . . .
12 Dense . . . 32
13 Output . . . 2

In the task of point estimation, we employ a CNN ar-
chitecture similar to that used for signal detection. How-
ever, all ‘ReLU’ activation functions are replaced with
the ‘Tanh’ function, and we remove any activation func-
tion from the output layer. This is done because for
point estimation we noticed that ‘ReLU’ function did
not yield sufficiently good results therefore we replaced
with a smooth function. The ‘Tanh’ function maps real-
valued numbers to a range between -1 and 1, essentially
compressing the inputs into a narrower range, which can
facilitate convergence during training in our case.

IV. IMPLEMENTATION

To obtain a well-trained machine learning model, the
representation of data and labels are crucial. Initially, the
data from each output channel is subjected to a whiten-
ing operation, where it is divided by its respective noise’s
PSD, as demonstrated in Equation Eq. (2) . Following
this process, the data is then fed into the CNN model.
However, facing the situation where sBBH has many indi-
vidual data points, this directly challenges the size of the
GPU memory and the training duration. Therefore, we
have employed the IPCA method to compress the data,
obtain a new representation of observation data, and then
use the newly compressed features to train a CNN to dif-
ferentiate whether the original observation data contains
a sBBH signals. In cases where signals are included, we
further train the similar CNN structure to estimate the
chirp mass of the candidate signal.
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A. Data simulation

We strive to explore technical possibilities within a
baseline distribution of sBBH populations. Specifically,
we consider simulating signals uniformly distributed in
the co-moving volume, shown in Table II. We have uti-
lized IMRPhenomD waveform to generate signals in the fre-
quency domain [47], with parameters range set as shown
in the Table II, and analyze them buried in Gaussian
noise, assuming the TianQin TDI AET PSD Eq. (2) [51]
.

Subsequently, we conduct pre-processing on the simu-
lated detector data, including whitening operations.
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FIG. 2. The variance ratio of each component is arranged
in descending order. The cumulative variance of k compo-
nents across the entire dataset amounts to 95.6%. The 100th
component has a variance ratio of 0.000248, which is less than
10−3.The cumulative variance ratio of the preceding 100 com-
ponents is 93.2%, indicating that the following components
contribute less to the feature representation.

B. Compression

We adopt IPCA to extract the principal components
from the signals, thereby reducing the dimensional-
ity. We tested on different data representations, in-
cluding time-domain signals, real and imaginary parts
of frequency-domain signals, amplitude and phase of
frequency-domain signals, etc. In our evaluations of var-
ious representations of responded signals, it has been
observed that IPCA encounters challenges in extracting
features from signals exhibiting substantial fluctuations.
Consequently, we have chosen to exclusively derive the
IPCA model from the amplitude of frequency-domain
signals. This yields the corresponding IPCAi, where ‘i’
notes the detector output channel, designated as either
A or E. We used the IPCA method from the cuML [55]
third-party package to load signals into GPU memory in
batches, thereby extracting the principal components of

signals from a single channel after applying the detec-
tor response. These principal components represent the
main characteristics of the signal amplitude.In the Figure
5, an example is depicted within the considered frequency
band. This illustration provides a comparison between
the original signal amplitude and the reconstructed sig-
nal amplitude, based on estimated IPCA components,
together with their residual. We can see that boundaries
at the signal’s cutoff frequencies have higher residuals
which means greater loss resulting from the compression
process. This probably happens due to the sharp edges
of the original signal.
Taking the extraction process of the amplitude IPCA

model from the TDI A channel signal as an example, the
size of the amplitude of a single signal in the A chan-
nel is (1,972001) obtained over a 3-month duration at a
sampling rate of 0.25 Hz. By sampling within the astro-
physical parameter range, we generate 4800000 simulated
signals and a set of amplitudes, with the dimensionality
is (4800000 x 1 x 972001). The variance ratio, denoted
as ri, signifies the variance σi of the i-th basis in relation
to the total variance Σ of all signals, given by

ri =
σi∑ . (15)

These ratios are arranged in descending order, reflect-
ing the efficacy of the extraction process. A lower index
indicates a greater variance direction for the basis. As
more basis components are considered, the cumulative
variance ratio increases, thereby minimally affecting the
compression loss.
In our case, fitting factor is a better measure to the

performance of the component extraction. We obtain the
projection value of a GW signal amplitude in a channel,
based on the corresponding IPCA principle components
or eigenvectors. By making use of the amplitude projec-
tion values (equivalent to the coefficients of the princi-
pal components), we can reconstruct its amplitude of the
original signal and then measure the similarity between
the reconstruction and the original signal amplitude by
calculating the fitting factor. The formula for calculating
the fitting factor is shown below.

FF =
⟨s(θ)|s′(θ)⟩√

⟨s(θ)|s(θ)⟩
√
⟨s′(θ)|s′(θ)⟩

. (16)

where s(θ) is the original responded signal, s′(θ) is the re-
construction of IPCA model, ⟨·⟩ is inner product between
two signals

⟨s(θ)|s′(θ)⟩ = 4

fmax∑
fmin

|s(θ)|√
Sn(f)

|s′(θ)|√
Sn(f)

df. (17)

where fmin = 0.02 Hz and fmax = 0.1 Hz.
As we analyze a multi-band GW event with a binary

coalescence time of approximately 1 year and a duration
of 3 months, the frequency range of most signals should
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TABLE II. Physical parameters and their meanings: When considering sBBH as observed by space-borne detectors, it’s worth
noting that during the early inspiral stage, which spans several months, the time to coalescence is approximately set at one
year, ranging from 9 months to 15 months.

Notation Meaning Distribution Units
m1 primary mass log uniform [5,100] M⊙
m2 secondary mass log uniform [5,m1] M⊙
χ1z dimensionless aligned-spin magnitude of component 1 uniform [-1,1) -
χ2z dimensionless aligned-spin magnitude of component 2 uniform [-1,1) -
λ the ecliptic longitude of the source uniform [0, 2π] Radian
βS the ecliptic latitude of the source sinβ = (uniform[−1, 1]) Radian
ι inclination cos ι = (uniform[−1, 1]) Radian
ψ polarization uniform [0, π] Radian
Φc merger phase uniform [0, 2π] Radian
tc merger time at the reference time t = 0 s uniform [23760000,39312000] Seconds

DL luminosity distance to source
re-scaled inversely by the SNR,

Mpc
the reference distance is 50 Mpc.

f0 initial frequency at the reference time t = 0 s calculated by Equation Eq. (18) Hz
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FIG. 3. Each eigenvector in the IPCA serves as a basis. The preceding few bases can effectively capture the primary signal
evolution, which can be described by the Post-Newtonian approximation 1, depending on the chirp mass. Higher-order bases
can capture multiple oscillation features, primarily originating from the response of the TianQin detector.

be within the band from 0.02 Hz to 0.1 Hz, as calcu-
lated by the instantaneous frequency formula at the time
t before the merger time tc :

f =

(
5

256

)3/8

M−5/8 (tc − t)
−3/8

. (18)

Here, M represents the chirp mass of the binary system.
Therefore, we truncated the amplitude of the frequency-
domain signal, reducing the size of each responded chan-
nel’s signal from 972001 to 622080.

Finally, we trained the IPCA model using 4800000
simulated signals, yielding a transformation matrix of
(622080, 480). The cumulative variance ratio of these
480 components amounts to 0.958, indicating that data

compressed through IPCA retains most of the variances
from the amplitude of GW signals, as shown in Figure
2. Each component is a basis vector visually represented
in Figure 3. From these 480 bases, it’s apparent that all
are focused on the high fluctuations in relatively lower
frequency band, rather than on the high frequency. Us-
ing these IPCA model, the simulated data from a single
detector (2 x 9720001) can be compressed into a matrix
of size (2,480). This process can also be referred to as
the data pre-processing module.

To demonstrate the compression loss, we examine the
fitting factor across various astrophysical parameters.
Lower fitting factors predominantly correlate with high
oscillations in the signal amplitude, derived from Tian-
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FIG. 4. A sky map showing the fitting factors for gravitational wave signals from sources distributed across the sky . In the map,
the red star symbolizes the position of the DWD system J0806, which aligns with the direction of the TianQin constellation.
The black solid curve delineates the orbit of TianQin. Darker blue points indicating smaller fitting factors, suggesting a lower
similarity between the reconstruction and the original signal. Additionally, the size of each point corresponds to the chirp mass
of the source. It’s worth noting that sources located on TianQin’s orbit tend to demonstrate lower fitting factors.
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FIG. 5. The original amplitude from a random signal in ‘A’
channel with SNR 50 and the reconstruction from IPCA.The
system in question has a chirp mass and symmetric mass
ratio of approximately 8.3 M⊙ and 0.18 respectively, and
coalesces in a time-span of 28,923,738 seconds. Additional
source parameters are referenced in Table II, including (
m1 = 18.05,m2 = 5.4 cos(ι) = 0.1, ψ = 2.74, ϕc = 2.64, χ1z =
−0.36, χ2z = 0.59, and sky position at λ = 2.07, β = −0.63.)

Qin’s response. This response is represented by transfer
functions that relies on 6-dimensional parameters, includ-
ing the sky location. In Figure 4, the sources in specific
locations (like the source localization in Figure 1(b) ), re-
lated to TianQin’s orbit, have a tendency to display high
oscillation. This behavior subsequently leads to a lower
fitting factor, exemplified by the dark blue points.

C. Input data preparation

For both signal detection and point parameter estima-
tion, the input data fed to the CNN comprises amplitude
projections from the IPCA. The data from channels A
and E undergo transformation using the respective IPCA
components to obtain the projection values for each sam-
ple. The neural network performs better when the input
data is normalized, shown in Figure 6. We normalized
the input samples by the mean and standard deviation
from the training samples. Visually identifying a gravita-
tional wave signal submerged in the detector noise using
the naked eye presents a significant challenge.
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FIG. 6. The projected values from two different types of
input samples in the ‘A’ channel have been normalized. The
SNR is set to 50. The associated masses of the bodies are
32.4M⊙ and 8.62M⊙, and they occupy a sky position marked
by λ = 0.17 Rad and β = −5.17 Rad. Their spins are quan-
tified as -0.65 and -0.36, while the coalescence time is set as
30020992 seconds. A similar scenario is observed with projec-
tion values from data on the ‘E’ channel.

For the signal detection task, the training data are
derived from the detector channel data and consist of
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two distinct types: signal-plus-noise samples and pure
noise samples. We utilize the amplitude projection values
as inputs to the CNN. Within these input samples, we
assign a label of 1 if a signal is present in the original
data; conversely, if the sample does not contain a signal,
it receives a label of 0.

In the point parameter estimation task, the input data
for the CNN consists of amplitude projections, but exclu-
sively from signal-plus-noise samples. These samples are
obtained from simulated detector data containing signals,
where the data is represented as d(θ) = s(θ) + n. To fa-
cilitate proper training, we employ normalized physical
parameters as labels, as defined by the following equa-
tion:

θnorm =
(θorigin − θmin)

(θmax − θmin)
(19)

Here, θorigin represents the original parameter value, and
θnorm serves as the normalized parameter value, which is
utilized as the input label for the point estimation CNN
model. During the training process for point parameter
estimation, we conducted experiments with multidimen-
sional parameter labels for the CNN. In comparison to us-
ing single labels for chirp mass, the utilization of multidi-
mensional labels offers a wealth of information for train-
ing, thereby enhancing the effectiveness of CNN training.
By experiments, we determined that 6-dimensional labels
(Mnorm, tc,norm, χ1z,norm, χ2z,norm, ηnorm and f0,norm)
are the most optimal choice.

D. Training

A concise overview of the training settings used in each
task is presented in Table III, and we will delve into a
more detailed explanation later. The training strategy
for both tasks is the same, therefore, let’s consider the
training process in task 1 (detection), as an example.
The trained network is aimed at distinguishing the ampli-
tude projections between ‘signal-plus-noise’ samples and
‘noise-only’ samples. It can then make judgments regard-
ing the presence of a signal based on the projection values
obtained from IPCA.

We start by training a CNN model with the train-
ing datasets of the fixed SNR of 50. We employed
batch input with a size of 1000 to feed training samples
into the network. Subsequently, we computed the bi-
nary cross-entropy loss using Equation 12 for each epoch.
The model’s hyperparameters were then updated using
the Adam optimization algorithm. This entire training
process spans multiple epochs. Following each training
epoch, we assess the model’s performance using a valida-
tion dataset to track the training progress and mitigate
overfitting issues through comparison of the validation
loss with the training loss, such as depicted in Figure 7.
In response to the validation outcomes, we fine-tune the
model’s hyperparameters, including adjusting the learn-
ing rate and modifying the CNN architecture, to enhance

its performance. Once the model has reached conver-
gence, we decrease the fixed SNR 50 for generating new
training samples. We decided to retain the working ar-
chitecture for SNR values between 30 and 50. We have
chosen 30 as the lower bound for the SNR because the
network did not perform well for the lower SNR values.
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FIG. 7. The binary cross-entropy loss was calculated using
fixed SNR 50 samples over 50 epochs. The best model is at
26th epoch.
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FIG. 8. The binary cross-entropy loss was calculated using
samples with a uniformly sampled SNR ranging from 30 to
50 over 30 epochs. The best model is at 63th epoch.

The fine-tuned architecture of the CNN is detailed
in Table I, consisting of a total of 6 convolution lay-
ers, 1 batch normalization layer, 2 fully connected lay-
ers and 1 dropout layer. We configured the Adam op-
timizer [60] with the following parameters: a learning
rate of γ = 10−4, momentum settings of β1 = 0.9 and
β2 = 0.999, along with a decay factor of ϵ = 10−8. Addi-
tional training settings are provided in Table III. In the
accompanying Figure 6, we observe that the difference
in projection values between a ‘signal-plus-noise’ sample
and a ‘noise-only’ sample is minimal, with the projec-
tion values exhibiting variations in different eigenvectors
across a broad range. The introduction of a batch nor-
malization layer after the first convolution layer plays
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TABLE III. The training configuration. The total dataset will be divided, with 10% allocated for validation data and the
remaining 90% used for training.

setting task 1 : signal detection task 2 : point estimation

data samples
two categories: signal-plus-noise samples
signal-plus-noise samples and noise-only samples

Ntotal 12000000 12000000
labels signals-plus-noise: 1, pure-noise : 0 θnorm

best epoch / maximum epoch number 63/100 86/100
batch size 1000 1000
learning rate γ = 0.0001
optimizer Adam
training time ∼ 50 hours ∼ 50 hours

output model
detection CNN model trained point estimation CNN model trained
with uniform SNR [30, 50] samples with the uniform SNR [30, 50] samples

a crucial role in data normalization, aiding the model
in achieving quicker convergence. Furthermore, we em-
ployed a learning rate reduction strategy, whereby we re-
duced the learning rate by a factor of 0.35 after 20 epochs
in the absence of a minimum 0.005 improvement in the
validation loss during that period.

In the final experiment, we utilize the top-performing
CNN with 10, 000, 000 SNR 50 training samples as the
pre-training model, employing 12, 000, 000 training sam-
ples with uniformly sampled SNR ranging from 30 to
50 to continue training the model in total 300 epochs.
This process yields the converged detection CNN model.
The loss curves for the uniformly sampled SNR data are
shown in Figure 8, The validation loss aligns closely with
the training loss and keeps stable.

In task 2 (point estimation of the physical parameter
), the training strategies employed are identical to those
utilized in task 1. This was decided to ensure the convo-
lution kernels in both tasks of signal detection and point
estimation would capture the same area of receptive field
pertinent to sBBH GW signals. However, a smoother
latent space was maintained in point estimation as com-
pared to signal detection, due to the different activation
functions in use.

V. RESULTS

A. Detection

We use the receiver operator characteristics (ROC) to
describe the performance of the trained CNN in detect-
ing sBBH signals. When we set a detection statistical
threshold ythreshold, if the statistic returned by the CNN
(i.e., the probability that the data when the GW sig-
nal is present) exceeds the threshold ythreshold, it can be
recognized as the data contains a signal; otherwise, it is
recognized as a noise sample. We computed both the
false alarm probability (FAP) and true alarm probabil-
ity (TAP) across various detection thresholds, construct-
ing the ROC curve. The FAP provides a measure of the
number of noise samples inaccurately identified as GW

TABLE IV. When FAP is set to 10% , the corresponding
TAP for each distinct SNR testing data set are individually
displayed refs to the Figure. 9

FAP = 10%
SNR

50 40 30 20
TAP 90.9% 61.8% 27.4% 14.7%

signals. Simultaneously, the TAP, offers a measure of
the number of signal-plus-noise samples correctly identi-
fied as GW signals.

To evaluate the performance of the detection CNN
model, we assemble test data with a fixed SNR by re-
scaling the luminosity distance. Meanwhile, other source
parameters remain consistent with the distribution found
in the training data, as indicated in Table II. Test sam-
ples are generated at fixed SNR of 20, 30, 40, and 50.
We choose a reference value for false alarm probability
to be 10% because given the long duration of the signals,
from several months to years, coupled with the data seg-
ment’s length of three months, it’s acceptable for the false
alarm probability to hit one false alarm per 100 tests. As
such, every test dataset includes 2500 pure noise sam-
ples alongside an equivalent number of signal-plus-noise
samples.

Figure 9 showcases the detection ability of the CNN
model, which has been trained with SNR uniformly dis-
tributed within the 30 to 50 range, to differentiate signals
based on their varying SNR. It is observed that an in-
crease in the SNR corresponds to an augmentation in the
TAP, with the specifics delineated in Table VA. The fi-
nal trained detection CNN model can effectively detect
sBBH sources with an SNR of 50 or higher, achieving
an area under the curve (AUC) of 0.961. Additionally, it
demonstrates that sources with fixed SNRs of 40, 30, and
20 achieved corresponding area under the curves (AUCs)
values of 0.847, 0.669, and 0.557, respectively.
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FIG. 9. The ROC curves are displayed using testing data at
different fixed SNR. Each curve is represented by a distinct
color corresponding to a specific SNR. The AUC quantifies the
volume beneath the ROC curve, with a higher AUC indicating
a higher detection probability. Additionally, we’ve indicated
the 1-σ confidence intervals with shaded regions.

B. Mass estimation

In order to estimate the value of the chirp mass by the
point parameter estimation CNN model trained with a
uniformly sampled SNR ranging from 30 to 50, we took
2000 test samples with a fixed SNR of 50 which had the
same parameter distribution as the training samples. As
shown in Figure 10, most of the chirp mass predictions
are tightly distributed along the diagonal, indicating that
there is consistency between the predicted values and ac-
tual values of the source’s chirp mass. In this test dataset,
90% of the samples have an absolute error of 2.48 M⊙
and a relative error of 0.12. This means that our model
can predict the chirp mass of SNR 50 signals in Tian-
Qin runs. Leaving aside those sources with larger errors,
the significant variance observed in most sources yield-
ing accurate predictions can largely be ascribed to added
detector noise.

We also studied the characteristics of signals with
larger prediction errors for chirp mass (absolute error ex-
ceeding 10 solar masses). We found that some signals
have a smaller fitting factor, indicating that more infor-
mation was lost after the IPCA projection. Signals char-
acterized by a larger symmetric mass ratio or larger ef-
fective spins will exhibit a reduced number of data points
in frequency domain within the same duration. This par-
ticular property introduces challenges for CNNs as they
strive to effectively learn these signal features and make
accurate predictions of the chirp mass. From the cur-
rent results, the point estimation CNN can still quickly
provide chirp mass predictions for most sBBH signals of
SNR 50 with a good accuracy.
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FIG. 10. The scatter plot illustrates the estimation of chirp
mass of the fixed SNR 50 test signals compared to the ac-
tual values. The horizontal axis represents the actual chirp
mass of the test samples, while the vertical axis displays the
predictions obtained from the point estimation CNN model
trained with uniformly sampled SNR samples. The error is
calculated by subtracting the predicted chirp mass from the
actual chirp mass: error = Mactual −Mpred.

VI. CONCLUSION AND DISCUSSION

In this study, we effectively compressed the data
through low rank matrix approximation, and extracted
the main features of the frequency signal amplitude,
thereby building the IPCA model. By projecting the
simulated detector data (including signal plus noise sam-
ples and pure noise samples) through IPCA, we classify
the compressed data into two categories by a trained
CNN and show the sensitivity via the ROC curve. Si-
multaneously, in terms of the point estimation of param-
eters, we utilized the CNN model to estimate chirp mass,
marginalising over all other parameters, for the detector
data containing sBBH signals with a SNR of 50, and es-
timated its measurement error (90% confidence interval)
to be 2.48 solar masses.

Regarding sBBH search performance, we have also rec-
ognized the potential for further enhancing our search
model’s sensitivity. Given the challenges of analyzing
prolonged GW signals and the information loss incurred
during the IPCA data compression process, the prior-
ity lies in improving the compression algorithm and fea-
ture extraction rather than further enhancing the ex-
isting neural network architecture. To be specific, the
current IPCA model demonstrates certain limitations in
reconstructing complex signals, there remains a need to
investigate the influence of wave source parameter dis-
tribution and sampling methods on IPCA performance.
Therefore, in future research, we plan to explore fea-
ture extraction methods aimed at minimizing informa-
tion loss while maintaining high compression efficiency.
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These may include using feedforward neural networks, as
proposed in [61].

Additionally, some might suggest utilizing a classic ar-
chitecture of CNN. We attempted to use the resnet-18
model (with approximately 107 hyperparameters), but it
exhibited susceptibility to overfitting and required a sig-
nificantly larger number of training samples and train-
ing time. Specifically, our resnet-18 experiment de-
manded around 107 training samples and approximately
300 hours for 100 training epochs, which was more than
three times the computational time of our current model.

Looking at the analysis of sBBH search results using
the TianQin detector, according to existing theoretical
analyses [16], confirming the presence of signals in data
from a single space-borne detector is a formidable chal-
lenge. The challenge arises primarily from the immense
number of templates required for a coherent search, ex-
ceeding 1031 [16], which makes confirming the presence
of signals within data from a single space-borne detec-
tor particularly difficult. Despite the absence of phase
information in our study and the information loss dur-
ing IPCA, the neural networks can still effectively de-
tect some sBBH signals at a 10% false alarm probability.
If a sBBH candidate is proximate to our observatory,
our detection CNN model is highly likely to identify it
with relatively little computational burden. For future
sBBH signal detection, we consider the joint observation
by multiple detectors, such as TianQin and LISA, with
the hope of lowering the SNR threshold, providing richer
information for the neural network, and effectively de-
tecting sBBH signals with lower SNR. Additionally, we
may explore the use of more complex neural network ar-
chitectures to enhance sensitivity.

In terms of point estimation of chirp mass, the current
CNN results demonstrate the ability of neural network al-

gorithms to capture the characteristics of sBBH signals,
although achieving accurate prediction for all physical
parameters has proved challenging in our experiments.
This is largely due to our reliance on amplitude in the fre-
quency domain. One possible improvement could involve
expanding the information input into the neural network,
including data and label representations. Furthermore,
optimizing the neural network architecture used, such as
considering the application of autoencoders, and normal-
izing flow, can contribute to more precise parameter es-
timation.

In conclusion, this strategy of combining data com-
pression and search presents a promising new approach
for the detection of long-lived sBBH signals. Intending
to refine this method further in the future, our search
for early inspiral phases of sBBH will directly contribute
to a better understanding of the formation channels of
sBBH.
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