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Extreme Mass Ratio Inspirals (EMRIs) are key sources for the future space-based gravitational
wave detector LISA, and are considered promising probes of fundamental physics. Here, we present
the first complete Bayesian analysis of EMRI signals in theories with an additional massless scalar,
which could arise in an extension of General Relativity or of the Standard Model of Particle Physics.
We develop a waveform model accurate at adiabatic order for equatorial eccentric orbits around
spinning black holes. Using full Bayesian inference, we forecast LISA’s ability to probe the presence
of new fundamental fields with EMRI observations.

Introduction. In the last decade, gravitational wave
(GW) astronomy has revolutionized our ability to ob-
serve the Universe, offering unique opportunities to test
the nature of gravity and search for new fundamental
fields in previously unexplored regimes [1–3]. Observa-
tions with gravitational-wave detectors allow us to probe
the highly dynamic and strong-field regime of compact
binary coalescences.

Ground-based interferometers have paved the way for
searches for new physics beyond General Relativity (GR)
or the Standard Model (SM) [4]. The constraining power
of current facilities is limited to signal-to-noise ratio up
to 30 [5], comparable mass binaries, with the most asym-
metric system detected so far having a mass ratio of
q ∼ 1/10 with GW190814 [6–8]. The next generation of
ground-based detectors, such as the Einstein Telescope
[9] and Cosmic Explorer [10], along with space-based
missions like the Laser Interferometer Space Antenna
(LISA) [11], TianQin [12], and Lunar Gravitational Wave
Antenna [13], are expected to observe sources across a
broader mass range. Probing fundamental physics is
featured prominently in science cases for future detec-
tors [2, 3, 14–16].

LISA is expected to detect gravitational waves from
Extreme Mass Ratio Inspirals: binary systems composed
of stellar-mass compact objects (the secondary), inspi-
ralling into massive black holes at the center of galaxies
(the primary). Due to their small mass ratios q ≲ 10−4,
EMRIs perform tens of thousands of cycles on highly
relativistic trajectories with large inclination and orbital
eccentricities within the LISA sensitivity band. The orbit
complexity results in gravitational signals with multiple

harmonics. The rich harmonic content and the many cy-
cles of EMRI signals allow sub-percent parameter mea-
surement precision, rendering EMRIs natural laborato-
ries to test gravity and offering a unique opportunity to
probe fundamental physics in unprecedented regimes [2].
These same characteristics also make the modeling and
generation of EMRI waveforms particularly challenging.
A variety of studies have investigated the scientific po-

tential of such sources to test the nature of black holes
(BHs) [17–42], the propagation speed of gravity [43, 44],
and the existence of new fundamental fields [45–64].
While testing gravity with EMRIs is a key science goal
for LISA, calculations of waveform models beyond GR
are in their infancy. The majority of works carried out
so far have resorted to ad-hoc modifications of GR tem-
plates, adopting hybrid schemes based, for example, on
post-Newtonian (PN) expansions [65]. Moreover, such
studies have mainly focused on the potential of EMRI
observations to identify deviations from the spacetime of
the primary, forecasting — in some cases — constraints
on such parameters from LISA observations [17, 48].
Contrary to the standard lore, which has the EMRI

acting as a probe for the spacetime of the primary,
Ref. [51] demonstrated that changes from the Kerr metric
of the primary can be neglected at leading order in the
mass ratio for a large family of theories with scalar fields
non-minimally coupled to gravity. It is instead the scalar
charge of the much lighter secondary that can leave a
significant imprint on the GW emission. This is because
for massless scalars, the scalar charge, if any, is inversely
proportional to the square of the mass of the black hole
[66–70]. The framework developed in Ref. [51] allows the
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construction of waveforms that are correct at the lead-
ing adiabatic order (first order in the mass ratio) and
for which deviations from GR are uniquely determined
by the scalar charge of the secondary. This framework
has recently been framed into a consistent approach to
compute post-adiabatic (second order in the mass ratio)
waveform corrections to the GR baseline model [70].

This formalism has been exploited to study changes in
the GW fluxes for binaries on eccentric equatorial [53]
and circular inclined orbits [55, 71] for massless scalar
fields, and for circular equatorial inspirals in the case of
massive scalars [54]. Preliminary analyses have also as-
sessed LISA’s capability to infer the measurement preci-
sion of the scalar charge using Fisher information matrix
calculations [52, 54, 72–74].

Here, we provide the first implementation of adia-
batic waveforms for EMRIs with scalar fields, in eccen-
tric equatorial orbits around spinning BHs. We perform
a Bayesian analysis on all the waveform parameters to
assess LISA’s ability to detect the scalar charge, and,
therefore, probe deviations from General Relativity and
the Standard Model. Our analysis is state-of-the-art in
multiple ways: it uses the most accurate waveforms at
adiabatic order and includes eccentricity; the inference is
based on Markov Chain Monte Carlo (MCMC) sampling;
and it faithfully includes the effects of a new fundamental
field at adiabatic order.

Our results show that a single EMRI is able to con-
strain the scalar charge of the secondary, with precision of
10% in a theory-agnostic way, i.e., independent of the ori-
gin of the scalar field. This also determines LISA’s ability
to probe the nature of black holes and indirectly probes
the existence of additional GW polarizations. Moreover,
if one selects a specific theory, a constraint of the charge
can be converted into a bound on a coupling constant
of this theory, which controls deviations from GR. As
a characteristic example, we consider here the case of
linear-Gauss–Bonnet gravity.

EMRIs and fundamental fields. In this Section,
we briefly summarise the theoretical approach we use to
model EMRIs with scalar fields [51–53, 55]. We refer the
reader to [70] for a detailed description of the formalism
and its extension within a Self-Force (SF) scheme.

We consider theories with a single massless scalar field
ϕ, non-minimally coupled to the metric tensor g, de-
scribed by the following action∫

d4x

√−g
16π

[
R− 1

2
∂µϕ∂

µϕ

]
+αcSc [g, ϕ]+Sm [g, ϕ, Ψ ] ,

(1)
where R is the Ricci scalar and g is the metric determi-
nant. Sm describes the dynamics of the matter fields Ψ .
The action αcSc describes (each of) the scalar field inter-
actions, with the constant αc having dimensions (mass)n,
with n > 1. In physical units, this corresponds to interac-
tions that are suppressed by a characteristic energy scale

[69]. Varying with respect to the metric and the scalar
field, we obtain the equations for the fields

Gµν = 8πT scal
µν +αcT

c
µν +T

m
µν , 2ϕ = T c+Tm , (2)

where □ = ∇µ∇µ, T scal
µν = 1

16π

[
∂µϕ∂νϕ− 1

2gµν(∂ϕ)
2
]

and

T c,m
µν = − 16π√−g

δSc,m

δgµν
, T c,m = − 16π√−g

δSc,m

δϕ
. (3)

Since we are considering a massless scalar, we will as-
sume that Sc respects shift symmetry, ϕ→ ϕ+ constant.
However, our approach can be generalised to light scalars
[54]. We focus on EMRIs in which the primary is a BH of
massM , and assume that solutions in theories controlled
by (1) are continuously connected to GR solutions for
αc → 0. For shift-symmetric scalars, the scalar charge
for black holes, if any [75–80], is fixed in terms of their
mass, spin and the coupling constants of the theory [69].
Hence, M and αc are the only meaningful physical scales
of this problem. Their ratio can be expressed as

ζ =
αc
Mn

= qn
αc
µn

, (4)

where µ is the mass of the secondary, and q = µ/M . Ex-
isting bounds already require that αc/µ

n ≲ O(1) [81], so
ζ is order qn. One can then use q as a single bookkeeping
parameter, as for the SF approach in GR.
This introduces several simplifications in the descrip-

tion of EMRIs 1. Indeed, by expanding the metric and
the scalar field in powers of q,

gµν = g(0)µν + qh(1)µν + . . . , ϕ = ϕ(0) + qϕ(1) + . . . , (5)

it was recently shown how to derive a consistent SF for-
malism that includes post-adiabatic corrections to the
binary dynamics [70]. In this paper, we focus on the
leading EMRI dissipative contribution, which is fully de-

termined by the linear order perturbations h
(1)
µν and ϕ(1).

Equation (4) implies that: (i) the background spacetime
is suitably described by the Kerr metric, with beyond

GR deviations being O(q2n) corrections to g
(0)
µν , (ii) ϕ(0)

is constant due to the no-hair theorem [75–80] and can
be set to zero by a shift, (iii) at adiabatic order, metric
and scalar field perturbations induced by the secondary
decouple, leading to a separate set of equations:

Gαβ [h
(1)
αβ ] = 8πµ

∫
δ(4) (x− yp(λ))√−g

dyαp
dλ

dyβp
dλ

dλ , (6)

2ϕ(1) = −4πdµ

∫
δ(4) (x− yp(λ))√−g dλ , (7)

1 The approach extends to less asymmetric binaries, like Interme-
diate Mass Ratio Inspirals, so long as ζ remains a perturbative
parameter.
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where Gαβ is the Einstein tensor and dyµp /dλ is the four
velocity of the secondary, along its worldline.

Eqs. (6) are identical to GR, while Eq. (7) deter-
mines the scalar field evolution and depends on the scalar
charge of the secondary, d, which enters as the only extra

EMRI parameter. The solution for h
(1)
µν and ϕ(1) allows

the energy and angular momentum fluxes to be computed
for the gravitational (grav) sector, (Ėgrav, L̇grav), and the

scalar sector (scal) (Ėscal, L̇scal). Beyond GR modifica-
tions to the EMRI evolution are uniquely controlled by
the latter. At this order in mass ratio, the gravitational
waveform amplitudes are the same as in GR, whereas
the waveform phase is affected by the extra channel of
emission. In fact, if the charge is not zero, the secondary
plunges faster than in GR. In this work, we consider sys-
tems on equatorial eccentric orbits [53], such that Ė, L̇
depend on the semi-latus rectum p, on the eccentricity e,
and on the primary spin a.

For a given theory, there is a mapping between d and
the coupling constant(s) αc. This allows constraints on
d to be translated into bounds on such couplings. As
an example, we will consider here linear Gauss Bonnet
Gravity (GB) [66], for which

αcSc =
α

4

∫
d4x

√−g
16π

ϕG , (8)

where G = R2 − 4RµνR
µν + RαβµνR

αβµν is the Gauss
Bonnet invariant, Rαβµν , Rαβ are the Riemann and Ricci
tensors, and α has dimensions of mass squared (n = 2).
For this theory α ≃ 2dµ2 [82]. In Appendix A, we re-
view different normalizations of the action and obtain
the relation between the scalar charge d and the coupling
constant

√
α.

Waveform modelling and data analysis setup. We
develop a waveform model for EMRIs [83–98] that ac-
counts for the scalar emission and implement it within
the FastEMRIWaveform (FEW) package, which allows for
fast generation of EMRI templates on Graphics Process-
ing Units (GPUs). Since the FEW package has not yet
been extended to Kerr eccentric equatorial orbits in GR,
we provide the trajectory model for such orbits here for
the first time, before adding the scalar field contribution.

In the first order in the mass ratio, the orbital evolution
is obtained by solving the following system of ordinary
differential equations:

dJ

dt
= qfJ ,

dΦi
dt

=
Ωi
M

J = {p, e} , (9)

where Ωi=r,ϕ are the dimensionless fundamental frequen-
cies of the Kerr spacetime, that depend on the BH spin
a and on the orbital elements {p, e} [99, 100]. Equa-
tions (9) can be integrated given the initial conditions
for the semi-latus rectum p0, for the eccentricity e0, and
for the phases (Φϕ0, Φr0) (see Appendix E for a study
of the ordinary differential equations’ accuracy). The or-
dinary differential equation is integrated until we reach

the separatrix plus a threshold of 0.1M . We call these
plunging orbits.
The orbital-element fluxes, fp,e, are written in terms

of energy and angular momentum fluxes. For example,
for the semi-latus rectum, we have fp = (∂p/∂E)Ė +

(∂p/∂L)L̇, where

Ė = Ėgrav + d2 Ėscal , L̇ = L̇grav + d2 L̇scal , (10)

where both the gravitational and scalar fluxes are the
sum of the horizon and infinity fluxes and have been com-
puted2 using the code of [101, 102] and packages of the
Black Hole Perturbation Toolkit [103], using the mode
summation implemented in [104]. Angular momentum
and energy fluxes are computed on a 3d grid in (a, p, e),
and interpolated using Chebyshev polynomials [105] (see
Appendix B for details).
Once the trajectory is implemented, we can pass it

to the Augmented Analytical Kludge (AAK) [106] wave-
form amplitude model implemented3 in FEW [107–110].
The AAK waveform is GPU-accelerated and allows the
exploitation of the long-wavelength approximation of the
LISA response, providing a generic model for investigat-
ing tests of GR. The typical waveform generation speed
of this new time-domain model is of order 0.1 seconds.
Our trajectory is fully relativistic at adiabatic order,

and therefore the measurement precision of the intrin-
sic parameters Θi = (lnM, lnµ, a, p0, e0, Φϕ0, Φr0, d) is
not strongly affected by the choice of the AAK tem-
plate [110]. The inclusion of post-adiabatic corrections,
and the study of how such terms will affect the scalar
charge detectability will be considered in a followup work
[85, 111].
The AAK amplitudes and the LISA response may,

however, affect the accurate reconstruction of the extrin-
sic parameters Θe defined here by the luminosity distance
dL, the polar and azimuthal sky location angles, (θS , ϕS),
and the polar and azimuthal orientation angles (θK , ϕK)
that determine the orientation of the primary spin (both
set of angles are expressed with respect to the Solar Sys-
tem barycenter reference frame [110]). We have checked
using Fisher matrices and MCMC that our results are
unchanged when using the full LISA response, and an
early implementation of the relativistic amplitudes.
To forecast the constraints on the scalar charge with

EMRI observations we sample over all the intrinsic Θi
and extrinsic parameters Θe of a Kerr equatorial ec-
centric EMRI signal with scalar charge. We obtain the

2 Note that the scalar fluxes Ėscal and L̇scal derived from the Black
Hole Perturbation Toolkit and in [101] must be divided by a
factor 4, to account for a different normalization of the scalar
field used in the action (1).

3 In this study we did not use the relativistic version of FEW since
that version of the model is still under revision.
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FIG. 1. Histograms of posterior samples of the scalar charge
inferred by LISA observations of EMRIs with different orbital
configurations of central black hole mass M and spin a, com-
pact object mass µ, initial eccentricity e0 and time to plunge
T . The colored vertical dashed lines show the one-sided 95%
credible interval of the distribution. All EMRI systems are
characterized by an SNR of 50.

13-dimensional posterior distribution using the package
Eryn [112], which provides a Bayesian inference tool
based on Markov Chain Monte Carlo sampling. The tech-
nical details about the likelihood, priors, and sampling
techniques are extensively discussed in Appendix C. This
is the first appearance of a complete Bayesian parame-
ter inference of EMRI systems in these types of orbits.
Moreover, it is the first analysis to include beyond GR
corrections that are accurate at adiabatic order.
Results. We consider eight different orbital configura-
tions, specified by their component masses, the primary
spin, the initial eccentricity and semi-latus rectum. We
assume binaries evolve in the LISA band, plunging over
a period T . This fixes the initial semi-latus rectum p0.
For each system, the luminosity distance is fixed to give
SNR= 50.

We first focus on agnostic forecasts of new fundamen-
tal fields, assessing LISA’s ability to constrain the scalar
charge. To this aim, we study the case in which the in-
jected signal is modelled in GR, i.e., assuming d = 0,
while the recovery template includes the scalar charge.
This setup allows us to investigate the upper bound (or
constraint) on d, which we define as given by the upper
95% credible interval of the corresponding marginalized
posterior.

Fig. 1 shows histograms of the marginalized posteriors
of the scalar charge for the EMRIs we considered (see
Fig. 6 of Appendix C for the full posterior). Bounds
on d are tighter for large eccentricity and primary spin.
For fixed component masses and evolution time, doubling

the eccentricity from e0 = 0.2 to e0 = 0.4 yields a 10%
stronger bound on d (cf. systems 6 and 7 in Fig. 1). We
find the same level of improvement when increasing the
BH spin from a = 0.8 to a = 0.95 (systems 5 and 6).
However, the precision might vary differently for lower
eccentricity binaries, see for instance Fig. 9 of [73].

We also find that increasing the mass ratio provides
narrower posteriors. Assuming µ = 10M⊙, if we reduce
the primary mass by a factor of two, we obtain a bound
on d that is ∼ 50% tighter (systems 4 and 6). This
is primarily because a less asymmetric system plunges
faster. For a fixed evolution time, such binaries have
larger initial orbital separations, where the effect of scalar
emission is stronger. To illustrate this point, we analyze
a system with component masses M = 105M⊙ and µ =
5M⊙ (system 1). This system has the largest initial semi-
latus rectum p0 ≈ 16 and, although we consider only
the last half a year before the plunge for computational
reasons, it yields the best 95% upper bound on d, d95% =
0.015.

Fixing the intrinsic source parameters, the measure-
ment precision improves for EMRIs evolving over a longer
timescale. For a 106M⊙ + 10M⊙ system, doubling of T
improves the constraint on d by 60%, and increases the
number of cycles from 1.1 × 105 to 1.7 × 105, and the
semi-latus rectum from p0 = 8.34 to p0 = 10.

We now explore the case in which both the injected
and the recovery waveforms have a non-vanishing scalar
charge. We inject a signal with d = 0.025, consistent with
the upper bound from GW230529 (d ≈ 0.035), and study
constraints on the charge for a 105M⊙+5M⊙ EMRI, with
the same orbital parameters as system 1 in Fig. 1. This
binary provides a measurement of the charge accurate
to ∼ 10%, with median and 95% credible intervals of
d = 0.0244+0.006

−0.007. The marginalized posterior of d for
this system is shown in Fig. 2.

0.00 0.01 0.02 0.03
Scalar charge d

0

50

100
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ar
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Injected scalar charge

95% credible interval

FIG. 2. Marginalized posterior distribution of an EMRI sys-
tem with scalar charge d = 0.025 and source parameters
M = 105 M⊙, µ = 5M⊙, a = 0.95, e0 = 0.4, T = 2 yrs
and SNR=50. The estimated median and 95% credible inter-
val are 0.0244+0.006

−0.007.
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For the same system, we also explore the impact of
ignoring the scalar charge and fitting the data with a
GR template (see Appendix F for further details). We
find that the GR waveform recovers the injected signal
with 2−3σ biases in the source intrinsic parameters, i.e.,
its masses and spins. While such systematic errors are
large compared to the size of the posterior, they can be
considered small for astrophysically motivated studies.

To illustrate how a bound in d can be converted to
a constraint on a specific theory, we now consider GB
gravity defined by the action in Eq. (8). The forecasted
constraints on the coupling constant are shown in Fig. 3.
An interesting feature is that the strongest bound for√
α comes from system 2, while the strongest bound for d

came from system 1. This is because the relation between
d and α involves the mass of the secondary.

Selecting a specific theory also allows for a comparison
between bounds from EMRIs and bounds from other sys-
tems. The analysis of the event GW230529 [7, 113, 114]
yielded

√
α95% = 1.4 km, which is a few percent larger

than the EMRI constraint obtained with systems 1, 2,
and 3. Interestingly, the forecasted best constraint on√
α for LVK Voyager is larger (see extremal bound from

Figure 21 of [115]). The initial observational frequency
of GW230529 is 20 Hz, and the total system mass is
5.1M⊙ and its SNR=11.1 [7]. The dimensionless veloc-
ity of GW230529 is v = (πMtotf)

1/3 ≈ 0.117, whereas
the same initial velocity for the lowest total mass EMRI
system, 105M⊙ + 5M⊙, is v = (Ωϕ)

1/3 ≈ 0.23. This
means that GW230529 is in a weaker field compared to
the EMRI systems we considered. In fact, we expect
that if we were to consider non-plunging EMRIs with
initial dimensionless velocity v ≈ 0.1 and p0 ≈ 60, the
EMRI constraints would further improve. We expect
that intermediate-mass ratio inspirals with sufficiently
small secondaries can provide even tighter constraints on
fundamental fields since their observed inspiral can start
in much weaker field regions.

Discussion. In this work, we produced the first ready-
to-use fully relativistic EMRI waveforms in theories of
gravity that include a massless scalar field and perform
the first Bayesian analysis of EMRI signals in this con-
text. Our waveforms are correct at the adiabatic order
and include a single extra parameter, the scalar charge of
the EMRI secondary. This is the only parameter needed
to capture the effect of the scalar field at this order [51].

Our study provides Bayesian methods and gravi-
tational wave models to investigate the fundamental
physics potential of LISA observations of EMRIs. These
are two key objectives outlined in the LISA definition
study report [16] and the fundamental physics white pa-
per [3]. We also provide an approximate comparison of
EMRI constraints on agnostic PN deviations in the phase
in Appendix D, where we find that EMRIs provide three
orders of magnitude improvement compared to current
detectors. The methodologies and findings presented in

0 1 2 3 4
GB coupling constant

√
α[km]

1

2

3

4

5

6

7

8

GW230529 LVK Voyager

FIG. 3. Posterior distribution of the Gauss-Bonnet coupling
mapped from the scalar charge constraints (see Fig. 1). The
black dotted line in the right panel shows the bound [113] from
the observation of the gravitational wave event GW230529 [7],
while the black solid line shows the best forecasted bound for
LVK Voyager configuration obtained in [115]. We use a differ-
ent normalization with respect to [113, 115] (see Appendix A).

this paper will play a crucial role in guiding the gravita-
tional wave fundamental physics community.

The main result of our analysis is a forecast of LISA’s
ability to measure or place a bound on the scalar charge
of the secondary, d, in a theory-agnostic manner. This
can be interpreted in multiple ways: as a way to look for
new fundamental fields; as a way to probe the nature of
BHs, by probing the structure of the secondary; and as
an indirect test of additional gravitational wave polariza-
tions, as the effects we probe are related to the additional
scalar emission.

Bounds on d can be translated to bounds on the cou-
pling constant(s) or a particular theory. We have demon-
strated this for a specific example, that of linear-Gauss-
Bonnet gravity. Focusing on a specific theory allowed us
to compare our forecast with existing bounds and fore-
casts for the next generation of GW detectors for this
particular theory. One of the caveats of this compari-
son is that our exploration of the parameter space is not
exhaustive. As such, it is not clear if the EMRI param-
eters we have considered are the ones that would yield
the most stringent bounds for either d or for the coupling
constant of some particular theory. We plan to address
this question in future work.

Our waveform model can be extended in several direc-
tions. Realistic EMRIs are expected to follow generic,
inclined orbits [55]. Studies of EMRIs with new funda-
mental fields evolving on eccentric and inclined orbits are
underway [116]. Inclusion of post-adiabatic corrections,
along the lines of Ref. [70], is also essential to include
known GR effects that enter at post-adiabatic order, such
as the secondary spin [111], and to assess how new fun-
damental physics can affect the waveform at this order.
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Our approach can also be generalised to capture massive
scalars [54] and more general vector/tensor fields [64].
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Appendix A: Normalization of the action

We provide here details on the mapping between con-
straints on the Gauss-Bonnet coupling parameter in-
ferred in this paper and from current and future ground-
based detectors.
To compare bounds on the Gauss-Bonnet coupling α

we need to take into account the different normalizations
considered in the literature for the actions (1) and (8).
In particular, constraints derived from current GW ob-
servations [121] and by the network of future detectors
[115] are obtained by assuming the following action for
GB gravity:

S =

∫
d4x

√−g
[
R

κ
− 1

2
(∇ϕ̄)2 + ᾱGBϕ̄G

]
, (A1)

where κ = 16π. In this paper, we consider instead

S =

∫
d4x

√−g
κ

[
R− 1

2
(∇ϕ)2 + α

4
ϕG

]
, (A2)

If we scale ϕ̄ = ϕκ−1/2 the actions (A1) -(A2) coincide so
long as α = 4κ1/2ᾱGB. In our units the constraint avail-
able for GB gravity of [121],

√
ᾱGB ≃ 1.18 km, translates

to
√
α = 4π1/4

√
ᾱGB ≃ 6.3 km and the constraints from

GW230529
√
ᾱGB ≃ 0.260km → √

αGB ≃ 1.4km [113].
Similarly, for the projected bound by LIGO O8,

√
ᾱGB ≃

0.4km (see Fig. 21 of [115]), we obtain
√
α ≃ 2.1km.

The map between the scalar charge and the GB cou-
pling has been obtained in [82], using the action

SJ =

∫ √−g
κ

d4x
[
R− 2(∇ϕ̃)2 + α̃ϕ̃G

]
. (A3)

In this setup, at the leading order in α̃, the scalar charge
is given by d̃ = α̃/(2µ2). Passing to the units we use in
Eq. (A2), d̃ = d/2 and α̃ = α/2, which leaves the relation
d = d(α) unchanged.

Appendix B: Flux interpolation

Energy and angular momentum fluxes are interpo-
lated over a three-dimensional grid constructed using
13 Chebyshev-Gauss-Lobatto (CGL) nodes for the ec-
centricity e ∈ [0.0, 0.5] and the primary spin a ∈
[−0.99, 0.99]. Rather than using the semi-latus rectum,
we find it more convenient to introduce the variable

u = (1 + e)

 Ωϕ(a, p, e)

Ωϕ

(
a,

psep(a,e)
1+e , e

)
2/3

, (B1)

where psep(a, e) is the separatrix for Kerr spacetime, and
negative spins correspond to retrograde orbits. We com-
pute u on 17 CGL nodes within u ∈ [0.08, 0.97]. There-
fore, we calculate scalar and gravitational fluxes on a
total of 13× 13× 17 = 2873 grid points.

https://www.cell.com/pb/assets/raw/shared/guidelines/CRediT-taxonomy.pdf
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Before interpolation, we normalize the fluxes by their
leading order contribution in a post-Newtonian expan-
sion. We construct 4 Chebyshev interpolants for the
gravitational and scalar energy and angular momentum
fluxes. Assuming the fluxes are smooth functions of the
variables on our interpolation domain, the accuracy of
the Chebyshev interpolation should converge exponen-
tially with the number of grid points. Consequently, we
can estimate the interpolation “aliasing” error from the
magnitude of the coefficients of the highest order Cheby-
shev polynomials in each direction. The interpolated
quantities and the Chebyshev errors σ are shown in Ta-
ble I.

If we write the total energy flux as:

Ė =
32

5p5

(
5p5

32
Ėgrav +

5p5

32
d2Ėscal

)
, (B2)

we can estimate the size of the scalar charge that is com-
parable to the error in the gravitational fluxes

5p5

32
Ėscald

2 > σgrav → 0.12 d2 > σgrav , (B3)

where we inserted p4 Ėscal = 0.3 which is a typical value
accross the grid for p = 10. This gives a relation between
the scalar charge and the Chebyshev interpolation. For
values of d = 0.01, we obtain a constraint on the error of
the order 10−5, which is one order of magnitude smaller
than what we obtained with our interpolation scheme.
This does not invalidate our work, as we treat our in-
terpolated fluxes as the true fluxes and use them con-
sistently for injection and recovery. However, this does
highlight the need for denser flux grids and accurate in-
terpolation schemes. The production of dense self-force
grids with accurate interpolation methods is a current
major challenge for extending the FastEMRIWaveforms
package to fully generic orbits in Kerr spacetimes.

Using the Gremlin code for flux calculations eval-
uated at a = 0.95, p = 10.1930405906075M , e =
0.4081632653061225 we obtain a flux value for 5

32p
5Ėgrav

which differs from our interpolation by absolute and rel-
ative errors of 3.8 × 10−4, 3.6 × 10−4, respectively. This
is compatible within our estimated interpolation error.

TABLE I. Chebyshev interpolation of the energy and angular
momentum fluxes and the estimates of their absolute inter-
polation errors.

Interpolated expression Abs. error

5
32
p5Ėgrav 7.5× 10−4

5
32
p7/2L̇grav 7.1× 10−4

p4Ėscal 2.3× 10−4

p5/2L̇scal 2.2× 10−4

Having the fluxes in hand, we can obtain the right hand
side of the Eqns. (9) and then use the FEW package to

obtain the EMRI trajectory. As an example, we show
in Fig. 4 the trajectories in the p − e plane for binaries
with spin a = 0.95 in GR, i.e., setting the scalar charge
to zero, and different EMRI masses. For reference we
also show the Chebyshev grid points at the spin a =
0.9562665680261776.

2 4 6 8 10 12
p

0.0

0.2

0.4

0.6

e

Grid points

M =1.0×106M�, µ = 10 M�

M =1.0×106M�, µ = 10 M�

M =1.0×106M�, µ = 5 M�

M =0.5×106M�, µ = 10 M�

FIG. 4. Trajectory evolution of semi-latus rectum and eccen-
tricity for four EMRIs with different component masses and
a = 0.95. For reference, we show the location of the grid
points used for interpolation in the (p, e) plane for a constant
spin slice at a = 0.9562665680261776, where the largest value
of p reached for this spin is approximately p ≈ 30.

Appendix C: Data analysis setup

The posterior distributions presented in this work are
obtained using MCMC sampling with the package Eryn

[112, 122]. To run the MCMC, we need to specify the
priors p(Θ) and the likelihood function

ln p(s|Θ) =
1

2
⟨s− h(Θ)|s− h(Θ)⟩ , (C1)

where we defined the inner product between two GW
templates h1(t) and h2(t) [123]:

⟨h1(t)|h2(t)⟩ = 4Re

∫ ∞

0

h̃∗1(f)h̃2(f)
Sn(f)

df . (C2)

The noise spectral density Sn(f) of LISA is taken from
[124] and assumed to be known. The tilde denotes the
Fourier transform of the waveform and the symbol ∗

denotes complex conjugation. The Fourier transform
and likelihood evaluation are performed on GPUs us-
ing cupy [125]. Before passing to the frequency space,
we taper h(t) with a Tukey window. The parameter that
controls the magnitude of the sinusoidal lobes of the win-
dow has been fixed to alpha= 0.005 [126]. The sampling
interval was adjusted for different black hole masses M
to avoid aliasing.

https://github.com/BlackHolePerturbationToolkit/GremlinEq?tab=readme-ov-file
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The full parameter space of the AAK model is given in
Table II. The response of the detector to the signal is de-
scribed by the two data channels hI(t;Θ) and hII(t;Θ).
The full log-likelihood is given by the sum of the log-
likelihood for each channel. For reference, we show in
Figure 5 the spectrogram of hI for a system with parame-
ters M = 106M⊙, µ = 10M⊙, e0 = 0.4, d = 0.0025, p0 =
8.3M,T = 2yrs.

0 100 200 300 400 500 600 700

Time [days]

0.0

0.01

0.02

0.03

F
re

qu
en

cy
[H

z]

−30

−25

−20

lo
g 1

0
P

ow
er

FIG. 5. Spectrogram of the gravitational wave signal out-
put of the AAK waveform obtained from an EMRI system
with parameters M = 106 M⊙, µ = 10M⊙, e0 = 0.4, d =
0.0025, p0 = 8.3, T = 2yrs. The different color bands rep-
resent the different harmonics, and their color intensity rep-
resents their power.

We assume flat priors for all parameters apart from
the luminosity distance, which is assumed to follow
a power-law distribution with slope −2 in the range
[0.01, 10.0] Gpc. A summary of the priors we consider
is given in Table II. We restrict the prior in Φϕ0

to π
and not to 2π because there is an exact degeneracy ev-
ery π. The prior choice of power-law with slope −2 for
the luminosity distance is motivated by the fact that we
found some chains getting stuck at large unphysical val-
ues of dL. This was caused by chains getting stuck on
secondary modes of the likelihood. Our choices allow
for better sampling efficiency without affecting the re-
sults. For parameters that are typically constrained with
high precision, i.e., (M,µ, a, p0, e0), we center the priors
around the true injected values Θtrue. In all runs, we
find that the posterior support of all parameters is much
tighter than the assumed prior.

Since the deviation due to the scalar emission enters
the fluxes as d2, we sample in the parameter Λ = d2 with
a uniform prior U[−0.6,0.6], and then select the samples
with Λ > 0. Sampling in Λ, both positive and negative,
allows us to obtain near-Gaussian posteriors, which can
be sampled more efficiently with MCMC methods. We
verified that this approach does not change the poste-
riors. We use two proposals to efficiently sample: the
stretch move [122] and an adaptive metropolis move that
jumps along the eigen-directions of the covariance ma-

TABLE II. Prior distributions on the waveform parameters
used for MCMC posterior sampling.

Parameter Priors (δ = 0.01)

lnM/M⊙ Uniform [lnM∗(1− δ), lnM∗(1 + δ)]

lnµ/M⊙ Uniform [lnµ∗(1− δ), lnµ∗(1 + δ)]

a Uniform [a∗(1− δ), 0.98]

p0[M ] Uniform [p∗0(1− δ), p∗0(1 + δ)]

e0 Uniform [e∗0(1− δ), e∗0(1 + δ)]

dL [Gpc] Power Law [0.01, 10.0]

cos θS Uniform [−0.99999, 0.99999]

ϕS Uniform [0.0, 2π]

cos θK Uniform [−0.99999, 0.99999]

ϕK Uniform [0.0, 2π]

Φϕ0 Uniform [0.0, π]

Φr0 Uniform [0.0, 2π]

Λ Uniform [−0.6, 0.6]

trix. We sample the posteriors using 26 walkers, moni-
toring the integrated autocorrelation time τ as a function
of the iteration. We assume that the estimator for τ is
reliable when it plateaus below the line given by Nit/50
for Nit the number of iterations (see this link for further
details). We show in the upper corner plot of Figure 6
the full posterior distribution used for the constraints ob-
tained in Figures 1 and 3.
To obtain a bound on this specific theory from the

posteriors on Λ = d2 and lnµ, we use

√
α =

√
2µ

√
d =

√
2µΛ1/4 , (C3)

and the determinant of the Jacobian of such transforma-
tion

d
√
α =

∣∣∣∣∂√α∂Λ

∣∣∣∣dΛ ∝ µΛ−3/4dΛ . (C4)

Similarly, one can obtain the bound on the scalar charge
d. In the lower corner plot of Figure 6, we can see how the
posterior samples are mapped to the coupling

√
α. The

posteriors are non-Gaussian and have long tails. This
demonstrates the importance of sampling in Λ instead of√
α. Sampling in the latter requires longer iterations to

reach convergence and to resolve the tails of the “banana-
shaped” distributions.

Appendix D: Mapping to agnostic bounds

To compare the potential of EMRIs to constrain devi-
ations from General Relativity for agnostic parametriza-
tion, we provide a comparison in terms of the
parametrized post-Einsteinian (ppE) formalism or Flex-
ible Theory Independent formalism [13, 127–133]. We

https://emcee.readthedocs.io/en/stable/tutorials/autocorr/
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FIG. 6. Posterior distribution of EMRI injections with different orbital configurations. The posteriors are centered around the
injected parameters. Diagonal and off-diagonal plots provide marginalised and 2D-joint posteriors, respectively. Contour lines
in off-diagonal panels identify the 1,2,3−σ Gaussian credible contours of each distribution. The upper corner plot shows the
posterior distribution output of the MCMC analysis in the parameters of Table II. The lower corner shows how the list row of
the upper corner plot transforms when mapping to the coupling

√
α. In the legend, we provide the system parameters and the

number of orbital cycles performed Ncycles.
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consider the system with 106M⊙ + 10M⊙ solar masses,
initial eccentricity e0 = 0.4, and time to plunge T = 2
years and run a GR inspiral. We obtain the gravitational
energy fluxes Ėgrav from the samples obtained, evaluated
at the start of the inspiral. If we subtract the median
value from this set of samples, and divide by the median,
we obtain a set of samples representing the fractional de-
viation from the expected energy dissipation in GR, that
are consistent with the posterior. These can be related
to ppE deviations by writing

∆Ė/Ėgrav = Bv2n (D1)

where v = (π(M + µ)f)
1/3

with f frequency of the
(l, nϕ, nr) = (2, 2, 0) and n the post-Newtonian (PN) or-

der. For EMRIs we can approximate v = Ω
1/3
ϕ . The

quantity B can be mapped to an “agnostic” deviation
in the waveform phase δφ at different PN orders using
the formalism described in [132] (see Eqns. (9)-(11) and
(19)-(28) [132] for the mapping B → δφ). We provide
constraints on δφ obtained with this procedure as “GR
mapping” in Fig. 7. Constraints are 95% upper limits
obtained from the posterior on δφ.
We remark that this analysis is approximate for two

reasons. Firstly, post-Newtonian expansions do not pro-
vide a good description of the evolution of EMRIs. Sec-
ondly, this mapping only considers deviations in the
waveforms that can be described by changes in the GR
parameters. While any GR deviation causing such a
change would definitely not be detectable, larger devi-
ations could also be undetectable, since they are clearly
strongly correlated with changes in the EMRI parame-
ters. In that sense, this should be considered an opti-
mistic bound. We note that this method cannot assess
the detectability of components of the deviation that
change the waveforms in ways that are orthogonal to
the GR waveform space, but we expect these to be sub-
dominant.

For comparison, we also provide the mapping between
the agnostic approach and the scalar charge at the -1PN
order, which would correspond to the leading contribu-
tion of our full adiabatic scalar emission. In this case,
the parameter B is given by [136]:

B = d2Ω
2/3
ϕ Ėscal/Ėgrav . (D2)

In Fig. 7, we show the constraints obtained using the
GR mapping at different PN orders for the EMRI con-
figuration we considered (blue dots). The scalar charge
mapping shows degradation of one order of magnitude
(orange cross) at the -1PN order. This demonstrates the
importance of correlations that are not taken into ac-
count in the GR mapping.

The constraints obtained from the gravitational wave
events GW170817 [134], GW230529 [114], and using
the GW transient catalogs of the third observing run

-1 0 0.5 1 1.5 2

PN order

10−11

10−10
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10−6

10−5

10−4

10−3

10−2

10−1

100

101

|δϕ
|

EMRI GR mapping

EMRI scalar charge

GW170817

GW230529

GWTC-3

Forecast ET GW230529

Double pulsar J0737–3039

FIG. 7. Comparison of the constraints on the phase devia-
tion at different PN orders. The EMRI constraints are ob-
tained from mapping the posterior distribution of a system
with parameters M = 106 M⊙, µ = 10M⊙, a = 0.95, e0 =
0.4, T = 2yrs and SNR=50 into the phase deviation at differ-
ent PN orders (blue dots, EMRI GR mapping). For the case
of−1PN order we use the posterior distribution obtained from
an EMRI embedded in a scalar field (orange cross) as done
in Figure 1. We show the current constraints obtained from
the gravitational wave events GW170817 (down green trian-
gle) [134], GW230529 (up red triangle) [114], and using the
GW transient catalogs of the third observing run (GWTC-
3) (violet rombo) [4]. Brown pentagon markers correspond
to forecasts on δφ obtained for a GW230529-like binary ob-
served by ET (see main text). The double pulsar constraints
obtained from PSR J0737–3039 [135] are shown with pink star
markers.

(GWTC-3) [4] are also shown, and these are a few orders
of magnitude larger than the EMRI constraints. This is
expected since EMRIs complete 104 − 105 cycles during
the observation, which is two to three orders of magni-
tude than the number of cycles typically observed in a
merger seen by ground-based detectors, leading to cor-
respondingly higher measurement precision. However,
better phase constraints do not necessarily imply tighter
bounds on the coupling, as this map depends on the spe-
cific theory considered. This is the case for GB gravity
for which constraints improve for lighter objects, as in
the case of GW230529 (see vertical line Fig. 3).

For comparison, we compute bounds on δφ forecasted
for a third-generation ground-based detector like the Ein-
stein Telescope (ET). Constraints are derived through
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a Fisher matrix approach, analysing the inspiral phase
of a binary BH system with the same properties as
GW230529 (the source parameters are fixed to the me-
dian values reported in [137]). For the analysis, we con-
sider a TaylorF2 waveform model, integrated between
3Hz and the Schwarzschild ISCO4. The waveform de-
pends on 7 parameters, (M, η, tc, ϕc, χs, χa, δφ), where
M and η are the chirp mass and the symmetric mass
ratio, (tc, ϕc) the time and phase at the coalescence,
χs,a = (χ1 ± χ2)/2 combinations of the individual spin
components. The phase shift enters the the frequency-
domain template as h̃(f) = AeiφGR(f)eiψ(f), where

φGR = 2πftc − ϕc −
π

4

+
3

128
(πMf)−5/3

9∑
i=0

φi(πMf)i/3 , (D3)

is the GR phase (see Appendix A of [138] for the explicit
form of the PN coefficients φi) and

ψ =
3

128ηn/5
φnδφn(πMf)(n−5)/3 if φn ̸= 0 , (D4)

ψ =
3

128ηn/5
δφn(πMf)(n−5)/3 if φn = 0 . (D5)

For the Fisher analysis we average over the angles that
define the source position in the sky, and consider Gaus-
sian priors on χ1,2, centered around the injected values,
and with unit width. Finally we assume for ET a single
L-shaped detector with 15 km arm-length [139].

We also show in Fig. 7 the constraint on dipole emis-
sion, inferred from observations of the double pulsar
PSR J0737–3039 [135]. Such binaries evolve in a low-
dynamical regime with v ≈ 2 × 10−3, and provide the
tightest bound on the -1PN phase deviation δφ.

Appendix E: Accuracy of the trajectory integration

Gravitational wave observations constrain the fre-
quency evolution of the waveform with great precision.
Therefore, it is key to check that the phase evolution
is not affected by systematic errors, which could influ-
ence the parameter reconstruction. We study the accu-
racy of the numerical integration of the ordinary differ-
ential equations (ODEs) 9. These ODEs are solved using
[140] with adaptive step size gsl_odeiv2_step_rk8pd

provided by [141].
Firstly, we cross-checked the phase evolution of the

implementation against Mathematica on 4 test trajec-
tories. Then, we investigated the difference of the fi-
nal phase of an inspiral in GR with an ODE absolute

4 Constraints obtained using the maximum frequency at the Kerr
ISCO do not change significantly.
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FIG. 8. Difference in the final phase between an EMRI evolu-
tion obtained with a non-zero scalar charge and various ODE
errors (see legend), and an EMRI evolution in GR with an
ODE error of 10−11. For reference, we provide the number of
points N taken from the ODE integrator.

error of 10−14 with respect to the final phase of an in-
spiral with a given scalar charge d and various different
ODE absolute errors. We show the results in Figure 8
for a system with M = 106M⊙, µ = 10M⊙, a = 0.95,
p0 = 8.343242843079224M , e0 = 0.4 until its plunge. For
small scalar charges, d < 3 × 10−6, the phase difference
is determined by the ODE solver’s noise floor. On the
contrary, the value of the phase difference is independent
of the ODE error for large scalar charges d > 3 × 10−6

and it follows the d2 scaling expected by an expansion of
the phase difference for small d. This expansion is a good
approximation up to d ≈ 1. The ODE error adopted in
this work was 5× 10−10.

Appendix F: Systematic bias due to non-zero scalar
charge

In this appendix we provide further details on the sys-
tematic bias that could potentially affect EMRI analyses
due to the mismatch between a GR recovery template,
and a signal with a non-zero scalar charge. This is criti-
cal as the charge can influence the binary phase evolution
and bias parameter estimation. To investigate such bias
we inject an EMRI signal with d = 0.025 and source pa-
rameters M = 105M⊙, µ = 5M⊙, a = 0.95, e0 = 0.4,
T = 2 yrs. We analyse the data with two templates: (i)
a GR waveform, and (ii) a waveform model in which the
scalar charge is free to vary. The posterior distributions
on the EMRI parameters are shown in Fig. 9. We find
2/3 sigma systematic biases in the intrinsic parameters
recovered with the GR template. Extrinsic parameters
do not present biases larger than 1 sigma and are, there-
fore, less affected by the waveform mismodeling. The
best log-likelihood point obtained with the GR template
is ln p(s|Θ) ≈ −9.
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