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Einstein–Cartan gravity is a close historical sibling of general relativity that allows for spacetime
torsion. As a result, angular momentum couples to spacetime geometry in a similar way to en-
ergy. While consequences of this are well studied on cosmological scales, their role in neutron star
physics is largely under-explored. We study the effects that torsion, sourced by either microphys-
ical spin or macroscopic angular momentum, has on neutron stars. For this, we use a simplified
polytropic model to quantify the microphysical coupling to torsion. We also derive expressions to
model rotation-induced torsion effects and estimate the consequences for rotating neutron stars with
different rotation rates. We find that the presence of torsion in general leads to neutron stars with
smaller radii and masses, but higher central densities. Realistic models for microphysical spin lead
to torsion effects that have no relevant influence on the neutron star structure. Rotation-induced
torsion effects however, can decrease the radius by up to 900m, which is comparable to the increase
due to centrifugal forces. Depending on which effect dominates, this leads to a torsion-induced
spin-up or spin-down of the neutron star. We conclude that torsion effects due to rotation can not
be neglected and are large enough to be tested using current or near-future technology.

I. INTRODUCTION

General relativity (GR) stands as one of the
most successful physical theories to date and has
withstood a multitude of experimental tests see
[1, 2]. As a result, it is widely accepted as the
predominant theory of gravity. It does however
leave several open questions about the nature of
cosmological evolution and dark energy as well as
the failure to derive a quantized theory of gravity.
GR also has unreconciled singularities in the centre
of black holes and at the big bang. A vast amount
of modifications to general relativity have been
put forward to patch these shortcomings (see [3]
for a review). Historically one of the first ones is
Einstein–Cartan (EC) gravity1, which is the subject
of this work (for a review see [5]).

In the leading paradigm to describe gravity, cur-
vature is used to describe how matter and spacetime
interact. However, curvature is only one of three
possible geometric properties of spacetime, which
are determined by the spacetime connection. Given
a metric g, a connection ∇ has three purely geomet-
ric properties: Curvature, torsion and non-metricity.

∗ cedric.jockel@aei.mpg.de
† leonmenger@nd.edu
1 For an interesting historic recount of letters between Cartan
and Einstein, see [4]

Curvature describes the failure of the associated
parallel transport to commute, i.e. ∇µ∇ν ̸= ∇ν∇µ.
Torsion describes the failure of parallel transport
parallelograms to close. Non-metricity corresponds
to the failure of the covariant derivative of the
metric to vanish, i.e. ∇g ̸= 0. It is related to the
(invariance of the) measured length under parallel
transport.
The Levi–Civita connection ∇LC is the unique
connection such that there is no torsion and ∇g = 0.
The connection coefficients of ∇LC , the Christoffel
symbols, are symmetric in their lower two indices,
i.e. Γσ

µν = Γσ
νµ. The torsion of a connection can

be expressed as the antisymmetric part of the
connection coefficients. Even if we assume metric-
compatibility – which we do throughout this work –
a general connection can have both curvature and
torsion.

In general relativity, the Levi–Civita connection
is assumed a priori. This leads to spacetime being
described only by its curvature. There is however
no inherent physical reason, why curvature is
chosen to describe spacetime. In fact, there exist
entirely equivalent formulations of general relativity
which only use torsion [6, section III] [7, section 4]
(this is commonly called the teleparallel equivalent
to general relativity) or only non-metricity [8]
as dynamical fields (also see [9] for a review on
this topic). A more general way of formulating
these choices is metric-affine gravity. There, the
connection is chosen as an independent degree of
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freedom alongside the metric. EC gravity can also
be considered as a special case of metric affine
gravity.
The preference of using only curvature to describe
gravity has thus mainly historical reasons. It is
important to stress that the a priori exclusion of tor-
sion has no inherent physical or observational reason.

In this paper we consider the case where gravity
is described by both curvature and torsion. The
simplest such theory is Einstein–Cartan (EC) grav-
ity. It was historically derived as a way to include
the effects of spin angular momentum into gravity
[5, 10, 11]. Later, it was found that Einstein–Cartan
theory is also obtained when considering gravity
as the most general gauge theory of the Poincaré
group (up to topological terms) [12]. Here the
translational part of the gauge group leads to a
conservation of energy-momentum. It couples to
spacetime via curvature. Conversely, the rotational
part of the group corresponds to a conservation of
spin angular momentum. It couples to spacetime via
torsion (also see [5] for a review). General relativity
also emerges as the zero-torsion limit of this theory,
see [13].

Einstein–Cartan gravity in total has two geomet-
ric degrees of freedom: Curvature and torsion. It
therefore also features two sets of field equations,
which describe the dynamics of these spacetime
properties.
One of the most prominent consequences of allowing
torsion is singularity-avoidance. It was shown that,
in big-bang and black hole formation scenarios,
torsion leads to a rapidly decaying but extremely
strong repelling force which corresponds to the
conservation of half-integer spin [14]. This force
prohibits the formation of physical singularities. In
the case of cosmology, this leads to so-called “big
bounce” solutions to the big bang where the point
singularity is replaced by either a single or a peri-
odically returning bounce [15, 16]. The expansion
behaviour of the universe, and thus cosmological
evolution, is also modified [17, 18].
As an interesting aside, it was found that the field
equations of EC gravity allow for close analogies to
electrodynamics (see e.g. [19–21]) and the θ-term
from Yang–Mills theory [22, 23].
Allowing non-zero torsion leads to additional an-
tisymmetric terms in the connection coefficients
and the field equations of EC gravity [5, 24, 25].
The antisymmetric terms in the energy-momentum
tensor correspond to torsion effects. This is also
found when taking the weak-field limit of EC theory
[26]. The historical review [5] and the contemporary
review [25] argue that this allows for the intrinsic

spin of fermionic particles to couple to torsion. This
would lead to a theory of gravity that distinguishes
between bosonic and fermionic matter. The cou-
pling of fermions and bosons to gravity via torsion
(and non-metricity) was also studied in the more
general case for metric-affine gravity by [27, 28].
The last important feature of EC gravity relevant to
this work is that torsion vanishes outside of matter
sources. The field equations then dictate that
torsion does not propagate through vacuum. As a
result, EC gravity coincides completely with general
relativity in the absence of matter that couples
to torsion. Tests of GR in vacuum therefore can-
not distinguish between GR and Einstein–Cartan
gravity. When considering EC gravity in matter
distributions with angular momentum however,
there are several stark differences.

Note however that torsion-induced effects are still
considered non-standard and even speculative by
some. While it should be clear that the formulation
of EC theory requires less assumptions on the
connection, working with general affine connections
is more complicated than working with the Levi–
Civita connection. Resulting effects like big bounce
solutions and the adapted cosmological evolution
are not mainstream.
The main caveat about torsion effects is the length
scale they are expected to occur on: If such effects
arise from the intrinsic spin of particles, their typical
scale is around ∼ 10−26cm [29, 30]. Historically, the
small scale prompted scientists to discard the idea
of torsion effects, even before the concept of intrinsic
spin was established. As a result, the understanding
of torsion effects in theories of gravity is limited
and leaves many areas for both investigation and
speculation. It is therefore of utmost importance to
identify possible areas where torsion might play a
significant role and to devise experimental tests to
verify or dispute its existence.

To this date, Einstein–Cartan gravity has been
studied in a variety of scenarios. Most studies con-
sider the cosmological evolution [31–34] or inflation
scenarios [17, 18, 35–39]. Lately, there has been a
growing interest to consider the effect of EC gravity
on the gravitational wave signals of binary compact
objects [40–44].
Some authors also proposed possible experimental
tests of EC gravity. One study [45] proposes to
study beams of neutrons in the laboratory and
measure the torsion-induced change in their spin
polarisation angle. Another study [46] considered
the effects of spin-induced torsion on neutrino
oscillation. The authors of [47] proposed to use a
satellite in Earth orbit to search for torsion effects,
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although this specific proposal was debated (see
e.g. [48]). These proposals open interesting ways of
studying torsion experimentally through its effects
on known physical phenomena.
One under-explored option to probe EC gravity
are neutron stars. They have only been considered
by a small number of studies [49–51] to date.
This is despite of neutron stars being intensively
researched in the wider astrophysical community
to probe general relativity [2, 52], modified the-
ories of gravity [53, 54] and even dark matter [55–61].

Neutron stars (NSs) are dense and compact
remnants of heavy stars. Their high densities make
them excellent laboratories for probing gravitation
and nuclear physics under extreme conditions.
NSs are characterized using the nuclear matter
equation of state (EOS). The EOS describes the
relation between pressure and energy density of the
matter found inside NSs. The total mass, radius
and density distribution of neutron stars can be
computed from the Tolman-Oppenheimer-Volkoff
(TOV) equations [62, 63]. The TOV equations
depend on the underlying theory of gravity and
on the chosen EOS. Different models of EOS are
able to support neutron stars with different radii
and total masses. A significant constraint on the
EOS is the ability to produce NSs with masses
larger than two solar masses, 2M⊙. The most
massive NS known to date is PSR J0952−0607
with a mass of M = 2.35+0.17

−0.17 M⊙ [64]. Such large
NS masses require stiff EOS, where the nuclear
matter is difficult to compress and the energy
density rises sharply with increasing pressure.
Other constraints include the measurements of the
pulsars PSR J0030+0451 (M = 1.34+0.15

−0.16 M⊙,

R = 12.71+1.14
−1.19 km) [65] and J0740+6620

(M = 2.072+0.067
−0.066 M⊙, R = 12.39+1.30

−0.98 km) [66]
by the NICER and XMM-Newton telescopes. They
also favor a stiff EOS. In contrast, the gravitational
wave event GW170817 [67, 68] favors soft EOS
which produce smaller NSs that are more compact
and more difficult to tidally disrupt.

In this paper, we study neutron stars in Einstein–
Cartan gravity. Our aim is to investigate the general
effects that the presence of torsion has on NSs and
the order of magnitude that torsion effects can have
on the NS properties. We discuss the derivation
of the adapted TOV equations and the impact
and interpretation of the newly arising torsion
terms. As possible sources for torsion, we consider
mirophysical spin and macroscopic angular momen-
tum. To model the microphysical contributions,
we consider possible models of interaction between
matter and torsion using spin-fluids. We then derive

different relations to model torsion effects induced
by macroscopic rotation. We provide some order of
magnitude estimations on the expected impact of
torsion on various astronomical objects, including
neutron stars.
We find that the presence of torsion tends to
increase the NS density and decrease the radius
and gravitational mass. We also find a critical
density, above which no stable configuration can
exist. Realistic models for microphysical spin lead
to torsion effects that have no relevant influence
on the neutron star structure. Rotation-induced
torsion effects however, can decrease the radius by
up to 900m, which is comparable to the increase
due to centrifugal forces. Depending on which effect
dominates, this leads to a torsion-induced spin-up
or spin-down of the neutron star.

The paper is structured as follows. In section II,
we briefly highlight the main ideas of EC theory and
introduce common concepts and notation. In section
III, we adapt the TOV equations for static neutron
stars to the new setting with torsion terms and spin
fluids. We also estimate the expected contribution
of torsion effects induced by microphysical spin to
the NS structure. In section IV, we derive equations
to estimate the contributions of torsion effects due
to macroscopic rotation. In section V, we investi-
gate the change in neutron star structure with and
without rotation-induced torsion. We also discuss
possible scenarios where torsion might lead to un-
stable neutron stars.
If not specified otherwise, we use units where c =
G = M⊙ = 1 throughout this work.

II. EINSTEIN-CARTAN THEORY

A. Introducing Torsion into Gravity

Einstein–Cartan gravity is a theory of gravity that
allows for two geometric properties of affine connec-
tions to be non-vanishing: Curvature and torsion.
Lifting the constraint of vanishing torsion, which
is standard in literature, allows for a more general
class of connections and thus different spacetime-
dynamics. Torsion is usually discarded from Ein-
stein gravity a priori by imposing the symmetry of
the connection coefficients (Christoffel symbols) Γα

µν

in the lower two indices. EC gravity does not im-
pose this condition and thus we define the torsion
tensor as the antisymmetric part of the connection
coefficients:

τ α
µν := Γα

[µν] =
1

2
(Γα

µν − Γα
νµ) . (1)
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In general the connection coefficients Γα
µν define

an affine connection. We can split them as

Γα
µν := Γ̊α

µν −K α
µν , (2)

where Γ̊α
µν are the connection coefficients of the

unique metric-compatible connection with vanishing
torsion, the Levi–Civita connection. K α

µν denote
the components of the contorsion tensor

K α
µν := −τ α

µν + τ α
ν µ − ταµν . (3)

The contorsion tensor is a measure of the failure
of the connection to be torsion-free. The covariant
derivative ∇µ is now defined relative to the affine
connection (2), and thus theRiemann tensor takes
the familiar form of (also see [69] for more details)

R β
µνα := ∂µΓ

β
να − ∂νΓ

β
µα + Γβ

µλΓ
λ
να − Γβ

νλΓ
λ
µα .

(4)

Note that, unlike in usual GR, Eq. (4) includes con-
tributions due to the contorsion tensor K α

µν , i.e.
due to non-vanishing torsion. From the full Riemann
tensor one can then define the Ricci tensor as

Rµν := R α
αµν . (5)

Again, while the form is familiar, the affine con-
nection now includes torsion terms. The curvature
scalar R can be obtained from the contraction
R := R µ

µ = gµνRµν .

This brings us in a suitable situation to define the
Lagrangian of EC gravity. First note that to define
an affine connection we use two ingredients: A met-
ric g, corresponding to a unique g-compatible and
torsion-free Levi–Civita connection. We also need a
contorsion tensor K, which describes the failure of a
general affine connection to be torsion-free. Thus the
curvature scalar R, which appears in the Lagrangian
of Einstein–Hilbert gravity, can now be seen as a
functional R(g,K) of the metric and the contorsion.
With Lm denoting an arbitrary source term, we
then define the action of EC gravity as

SEC [gµν ,K
α

µν ] :=

∫ √
−g

(
1

2κ
R+ Lm

)
dx4 .

(6)

Here κ = 8πG/c4 is a constant and g denotes the de-
terminant of the metric. Note that the action has the
exact same form as that of Einstein–Hilbert gravity,
only that now one does not impose vanishing torsion
and thus needs to treatK α

µν as an independent field.
Before varying the action to obtain the field equa-

tions of EC, we define the modified torsion tensor

M α
µν := τ α

µν + δαµτ
λ

νλ − δαν τ
λ

µλ , (7)

as well as the two tensors Tµν and Θ α
µν which are

defined as the sources of the theory:

Tµν :=− 2√
−g

δLm

δgµν
, (8)

Θ α
µν :=− 1√

−g

δLm

δKµν
α
. (9)

The equations of motion are then obtained by vary-
ing Eq. (6) with respect to the metric δgµν and the
contorsion δKµν

α respectively:

κTµν = Gµν +
⋆

∇λ(−M λ
µν +M λ

ν µ −Mλ
µν ) ,

(10a)

κΘ α
µν = M α

µν , (10b)

where we have defined the ⋆-derivative as
⋆

∇µ := ∇µ + 2 τ α
µα . Looking at Eq. (10a) and

Eq. (10b) one can interpret Tµν as the usual energy-
momentum-density of a fluid, now including terms
due to torsion, and Θ α

µν as describing the fluid
properties coupling to torsion. Accordingly we will
refer to Tµν as the energy-momentum tensor
and to Θ α

µν as the spin-energy tensor. Together,
the equations Eq. (10) can be interpreted to model
the coupling of spacetime to energy (Eq. (10a)) and
to angular momentum (Eq. (10b)), respectively.

The equations of motion Eq. (10) can be com-
bined into a single equation by inserting Eq. (10b)
into Eq. (10a):

G̊µν = κTµν + κ2
[
− 4Θ

[α
µλ Θ λ]

να − 2ΘµλαΘ
λα

ν

+ΘαλµΘ
αλ

ν +
1

2
gµν

(
4Θ β

λ [αΘ
λα

β] +ΘαλβΘ
αλβ

)]
.

(11)

Here G̊µν = R̊µν − 1
2 R̊ gµν is the Einstein ten-

sor associated to the Levi–Civita connection de-
fined by gµν . We have collected all terms related
to the source on the right-hand-side. In this form
(Eq. (11)), torsion can be interpreted as a correction
to the energy-momentum tensor. Note that – due
to the minimal coupling assumption – all terms con-
taining contributions due to torsion are proportional
to κ2 = 64π2G2/c8. As a result one should expect
torsion effects to be small compared to curvature ef-
fects. We will later explore in which situations one
can expect significant contributions due to torsion.

B. Sources of Torsion: Spin-fluids

In Einstein-Cartan theory, particles with intrinsic
spin and fluids composed of them couple to gravity
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through torsion effects [5, 25]. Rotating macroscopic
bodies might be another possible source of torsion
[47, 49]. We will discuss this in section IV. Thus
all rotational properties of a fluid might serve as the
source of the spin-energy tensor Θ α

µν . The spin-
properties of a particle with intrinsic spin are de-
scribed using the antisymmetric spin-density ten-
sor [49, 70]. It has the units of an angular momen-
tum density:

sµν = −sνµ. (12)

The components (s23, s31, s12) correspond to the
magnetic moment of the spinning particle(s) (i.e. the
spin-vector) in the rest-frame and the components
(s01, s02, s03) describe the electrical moment of the
particle(s) [70, 71].
In this work we consider a macroscopic fluid

consisting of particles with half-integer quantum-
mechanical spin. Such a fluid is commonly called
a Weyssenhoff fluid. On a macroscopic scale a
Weyssenhoff fluid is characterized by the spin prop-
erties of its constituent particles. In this case sµν
serves as the only source of the spin-energy tensor
Θ α

µν via

Θ α
µν = sµνu

α , (13)

where uα denotes the four-velocity of the fluid.

The spin-density tensor satisfies the Frenkel
condition [70], which states that in the rest-frame
of a spinning particle, its electrical moment vanishes.
This condition can be formulated as the covariant
expression [49, 70]

sµνu
ν = 0 . (14)

In any physical scenario on the scale of compact as-
trophysical objects, it is reasonable to assume that
the spin contribution of each individual particle in
the spin fluid can be described using space-averaged
quantities. This allows for a macroscopic description
of the fluid using the spin-density scalar [49, 71]

s2 =
1

2
sµνs

µν . (15)

The spin-density scalar of a fluid of half-integer spin
(fermions) with number density n and no spin po-
larization (i.e. randomly oriented spins) is given by
[49, 72–74]

s2 =
1

8
(ℏn)2 . (16)

It should be noted that, to our knowledge, no de-
tailed derivation of the above formula exists in lit-
erature. The formula is first used in [5] and subse-
quently claimed to be true in [72]. We therefore ad-
vise caution when using the above expression. Note

that this form of the spin-density scalar does not af-
fect the conclusions of this work.
Equation (16) takes the role of an equation of state
for the spin-density scalar. Apart from the spin-
contributions of the individual particles to the fluid,
the bulk properties of the fluid must also be con-
sidered. All properties of the Weyssenhoff fluid can
be modeled using a modified version of the energy-
momentum tensor of a perfect fluid, which respects
the contributions of intrinsic spin to the macroscopic
fluid-properties. This leads to the following energy-
momentum tensor (see [69, 75]):

Tµν = (e+ P )uµuν + Pgµν +
⋆

∇λ

(
sνλuµ − sλµuν

)
+ uλuν∇̊α (uαsµλ) + uλuµ∇̊α (uαsνλ) . (17)

Tµν consists of a perfect fluid part and a part
accounting for the spin contributions to the fluid.
The last two terms will vanish due to the Frenkel
conditions Eq. (14) as soon as we assume vanishing
acceleration [49, 71]. This is the case e.g. for a
static fluid.

Apart from relation (16), there are also sim-
pler models for the spin fluid like imposing a
constant spin-density scalar s2 = const.. Another
option is to use a phenomenological model where the
spin-density scalar is proportional to some power of
the pressure [49]:

s2 = βP γ , (18)

where β and γ are scalar constants.

III. SPHERICALLY SYMMETRIC STATIC
SOLUTIONS

A. Equations of Motion

We solve the Einstein-Cartan equations for a static
(zero spatial velocity and zero acceleration) spin-
fluid obeying the Frenkel condition (14) by insert-
ing the ansatz for the spin-density tensor (13) and
the energy-momentum tensor (17), discussed in the
previous section II B, into equations (11) to obtain

G̊µν = κ
{
(eeff + Peff)uµuν + Peffgµν

}
, (19)

where we defined the effective pressure and effec-
tive energy-density of the spin-fluid

eeff := e− κs2 , Peff := P − κs2 . (20)

This leads to the Einstein-Cartan equations (19)
having the same form as the regular Einstein
equations, known from GR, coupled to a perfect
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fluid.
There are now two ways to go forward: Either
one uses the effective quantities and solves the EC
equations with respect to these quantities. Or one
formulates the solution using the pressure P and
the spin-density s2. We opt for the second option
since the first option obscures the phenomenology
of the spin-contributions.

We assume a static spacetime with spherical
symmetry and chose an ansatz with metric func-
tions α(r) and a(r) that depend solely on the
radius:

ds2 = −α2dt2 + a2dr2 + r2dθ2 + r2 sin(θ)2dϕ2 .
(21)

We further use the fact that ∇̊µG̊
µν = 0 and ap-

ply the covariant derivative associated to the Levi-
Civita connection ∇̊µ to the right hand side of equa-
tion (19). This leads to a conversation equation
for effective energy-momentum. The four-velocity
for a static fluid is given by uµ = (1/α, 0, 0, 0) and
uµ = (−α, 0, 0, 0) and is normalized as uµu

µ = −1.
Following these steps one obtains the Tolmann-
Oppenheimer-Volkoff (TOV) equations in EC
gravity for a Weyssenhoff spin-fluid:

a′ =
da

dr
=

a

2

[
(1− a2)

r
+ κra2

(
e− κs2

) ]
,

(22a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ κra2

(
P − κs2

)]
,

(22b)

P ′ =
dP

dr
= −(e+ P − 2κs2)

α′

α
+ κ

d(s2)

dr
. (22c)

The system of equations is closed by an equation
of state P (e, ρ) relating the fluid pressure P to the
energy density e and the restmass density ρ. In ad-
dition, an “equation of state” for the spin-density
s2 is needed. In the following we will investigate
three options of relating s2 to the other hydrody-
namic quantities

a) s2 = const. = s20: This leads to the simplest
modifications of the TOV equations by intro-
ducing a constant offset to both energy density
and pressure. For s2 = s20 = const., equation
(22c) takes the following form:

P ′ = −(e+ P − 2κs20)
α′

α
. (23)

b) s2 = βP γ: Mimicking a polytropic equation of
state, this ansatz can be understood as a paral-
lel to using a polytropic equation P = kργ for

the restmass density. Using this ”polytropic”
ansatz for s2, equation (22c) becomes

P ′ = − (e+ P − 2κβP γ)

(1− κβγP γ−1)

α′

α
. (24)

The parameter β can be understood as the
strength of the spin-coupling to spacetime. We
chose β of the order O(100−102) to match the
parameter range used in [49].

c) s2 = 1
8 (ℏn)

2: This ansatz describes a fermion
fluid with number density n and no spin polar-
ization, see Eq. (16). Equation (22c) changes
to

P ′ = κ
ℏ2

4
nn′ −

(
e+ P − κ

4
(ℏn)2

) α′

α
, (25a)

=
(
e+ P − κ

4
(ℏn)2

)(
1− κ

ℏ2

4
n
∂n

∂P

)−1
α′

α
.

(25b)

For the second equality we used that, if n =
n(P ), one can use dn/dr = ∂n/∂P × dP/dr
and solve for P ′.

At last, we define some relevant global quanti-
ties of neutron stars. The radius R is defined as
the point where the pressure P becomes zero (in
numerical practice, the value is chosen as a small
number ≈ 10−15). Because in vacuum, Einstein–
Cartan gravity is equivalent to general relativity, the
Birkhoff–Jebsen theorem also holds and the outer
solution is given by the Schwarzschild metric. The
gravitational mass can then be computed using
the metric functions as

Mgrav := lim
r→∞

r

2

(
1− 1

(a(r))2

)
. (26)

In practice, the mass can be extracted at r = R
since the gravitational mass will not change for larger
distances. We define the rest mass Mrest as the
spatial integral over the conserved four-current Jµ =
ρuµ of neutron star matter:

Mrest :=

∫ √
−g Jµg

µtdx3 = 4π

∫ R

0

aρr2dr . (27)

B. Analytical Results

In this section, we derive an analytic estimate
for the scale at which the torsion effects derived so
far become relevant. In particular we investigate
if typical neutron stars provide the necessary envi-
ronment to probe torsion. We focus hereby on the
torsion effects sourced by microphysical spin. The
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effect of macroscopic rotation will be discussed in
section IV.

Equation (16) describes a fermion fluid with no
spin polarization with a number density n. The
equation can also be rewritten using the fermion
mass mf and the restmass density ρ:

s2 =
1

8

(
ℏ

ρ

mf

)2

. (28)

The goal is to find out if and at what densities such a
system produces significant contributions to the ef-
fective energy density eeff = e − κs2 (see Eq. (20)),
which has contributions from the energy density e
and the spin-density scalar s2. We derive an ex-
pression to find out where the spin effects have a
certain relative magnitude η := κs2/e compared to
the energy density. Locally, the energy density can
be written as a restmass density e = ρ. By setting
Eq. (28) equal to η × e one thus obtains:

ρ = η
8m2

f

ℏ2κ
. (29)

For a given fermion with mass mf this is the
density at which the spin-effects have a relative
contribution of η. As an example, we consider the
case where the spin density of neutrons contribute
1% (η = 0.01) of the energy density e. We obtain
a density of ρ ≃ 9.718 · 1050kg/m3. This is far
beyond the typical densities found in neutron stars
of just several times the nuclear saturation density
ρsat ≈ 2.7 · 1017kg/m3 = nnucmn [76], where mn

is the neutron mass and nnuc = 0.16 fm−3 is the
average nucleon number density. This situation
is similar for all fermions known to the standard
model. To our understanding, densities in this order
of magnitude can only be expected in the early
universe and near black hole singularities. The
impact of torsion effects in neutron stars due to
microphysical spin is therefore negligible.

Note however that for fermions with small masses,
the spin contributions relative to the matter density
become significantly larger. As a result, very
light fermionic particles with masses of around
10−9 − 10−12 eV only require a matter density
of roughly the nuclear saturation density ρsat for
their spin to have significant effects compared to
the energy density. If torsion exists and couples
minimally to fermions, this opens up the possibility
to probe for ultralight fermionic particles beyond
the standard model, for example as dark matter
candidates, in this mass-range using neutron stars.

IV. UNIFORMLY ROTATING NEUTRON
STARS

So far we considered microphysical spin as a
source for torsion effects. However, the angular
momentum of a macroscopic object might be
another possible source of torsion effects, as argued
e.g. by [47]. The goal of this section is to estimate
the magnitude of such effects using the macroscopic
angular momentum of a rotating neutron star. In
particular, we investigate how large the torsion
effects are compared to the energy-density effects of
the neutron star fluid. However, we expect that tor-
sion effects will always be smaller simply by virtue
of the quadratic coupling constant κ = 8πG/c4 in
the field equations Eq. (11).

From a geometric viewpoint, curvature cor-
responds to the failure of parallel transports to
commute. As a result, the masses of single particles
and the emergent mass of macroscopic objects all
induce curvature by means of that same geometric
description. Similarly, torsion describes the failure
of parallel transport parallelograms to close. Em-
ploying the same geometric reasoning to microscopic
spin and macroscopic rotation, one might very well
expect torsion effects induced from both.

Some authors however, e.g. [5], claim that torsion
can only couple to intrinsic spin (i.e. to intrinsic
angular momentum). The argument is that, on
a sufficiently small scale, all movement due to a
macroscopic spin will look like parallel movement
in a single direction. This adheres to the gauge-
theoretic view on curvature and torsion. There,
the symmetric momentum currents are induced by
the translation part of the Lorentz group and the
antisymmetric spin currents by the rotation part
(for more details, see [5, 12]). Thus it makes sense
— when inspecting very small open neighbourhoods
of particles in a neutron star — to assume that the
macroscopic rotation of the object does not induce
substantial local effects.

Following the gauge-theoretic view on spin-torsion
coupling, there would be a “small” length scale
below which one has to consider the coupling of
angular momentum to torsion. However it is unclear
what this length scale should be. For example,
one might consider small vortices in collections of
moving particles (e.g. charged particles gyrating
around magnetic field lines). Depending on the
length scale, one would have to include the effective
angular momentum as a source for torsion or
not. An instance of this are so-called “oscillons”
[77]: Oscillon configuration arise in collections of
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self-gravitating particles with a periodically rotating
vector field associated to them. They carry effective
intrinsic spin directly proportional to the number of
particles involved but have a macroscopic size. In
the case of neutron stars, we could treat them as a
macroscopic vortex of particles, which is why their
angular momentum might be a potential source of
torsion. We argue that this does not necessarily
conflict with the gauge-theoretic viewpoint: If we
see EC as a gauge theory for the Poincaré group,
then one would expect an associated microscopic
and macroscopic conserved quantity for both the
translation and the rotation part of the group.

In the following, we consider the possibility that
torsion also couples to macroscopic rotation. The
basic idea is to find an expression for the spin-
density tensor Θ α

µν = sµνu
α, such that it describes

macroscopic rotation instead of intrinsic spin (see
section II B). There are a number of possible ap-
proaches, two of which we consider in detail. Be-
cause we are only interested in an order of magni-
tude estimation, we make a number of simplifying
assumptions. We assume that the neutron star is

a) spherically symmetric (thus there is no (θ, ϕ)-
dependencies),

b) uniformly rotating with a constant angular ve-
locity Ω = const..

We further consider the spacetime to be flat. This
entails errors on the order of a few ten percent due
to neglected curvature effects but will simplify our
calculations considerably. The accuracy will be
sufficient to obtain the correct order of magnitude.

For the first approach, we approximate the neu-
tron star as a rotating rigid sphere. We use the
relativistic angular momentum tensor Lµν =
xµpν−xνpµ [78]2, where xµ, pµ are the four-position
and four-momentum respectively. It can be related
to the four-spin (Pauli–Lubanski pseudovector) Sµ

[79, 80] such that Sµ = εµνρσL
νρpσ, where εµνρσ is

the totally antisymmetric symbol. In the particle
rest frame, the components of Sµ are related to the
angular momentum of the particle via

Sµ = (0, Lyz, Lzx, Lxy) . (30)

Without loss of generality, we assume that the an-
gular momentum is entirely aligned along the z-axis.
The angular momentum Sz is then equal to the to-
tal magnitude of the angular momentum L, which we

2 This is a tensorial generalization of L = r × p

take to be equal to that of a rigid uniformly rotating
sphere. Thus

Sz = Lxy = L =
2

5
MR2Ω , (31)

where Ω is the angular velocity. Now that we have
defined the components of the angular momentum
tensor Lµν , we define the spin-density tensor (see
Eq. (12)) as

sµν :=
Lµν

VNS
, (32)

where VNS = 4
3πR

3 is the volume of the neutron
star. It follows that the spin-density scalar Eq. (15)
is given by

s2 =
9

100π2

M2

R2
Ω2 . (33)

For a Keplerian rotation velocity of Ω2 = M/R3

and typical values for a neutron star of M = 2M⊙
and R = 8M⊙ (≈ 12.5 km), we obtain a value of
s2 ≈ 2.226 · 10−6. In comparison to the average
density of the star ē = M/VNS ≈ 9.325 · 10−4,
the relative magnitude of the torsion effects to the
energy-density effects (see Eq. (20)) are expected
to be of order κs2/ē ≈ 6%. This suggests at
most a percent-order correction to the neutron star
properties due to torsion effects. However, note that
realistic neutron stars rotate at significantly lower
rates than the Keplerian limit, which is why the
impact of torsion will likely be even smaller.
Repeating the same calculation as above for the
Sun (M = 1M⊙, R = 471000M⊙) leads to
s2 ≈ 3.9 · 10−31, ē ≈ 2 · 10−18 and finally to a
relative torsion contribution of κs2/ē ≈ 5 · 10−10 %.
This suggests that torsion effects due to rotation
are negligible for main sequence stars like the Sun.

Our second approach is more sophisticated. We
assume that the neutron star is a spherical rigidly
rotating matter distribution. For that we make use
of the relativistic generalization of the angular mo-
mentum tensor for extended bodies as discussed by
[81–83]. The angular momentum tensor is computed
using the integral

Lαβ =

∮
∂U

MαβγdΣγ , (34)

where Σγ is a timelike unit vector on the 3-
dimensional boundary ∂U of the spacetime domain.
Here, the tensor Mαβγ has the units of angular mo-
mentum density and is given by

Mαβγ := (xα − xα
0 )T

βγ − (xβ − xβ
0 )T

αγ , (35)
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where Tµν is the energy-momentum tensor of the
fluid, xµ is the four-position vector of a given fluid
element, and xµ

0 describes the rotational axis and
is constant. Eq. (35) has the units of angular mo-
mentum density and is the Noether current for ro-
tations in spacetime. It is conserved if the energy-
momentum tensor is symmetric, i.e. Tµν = T νµ.
Choosing U such that its boundary is a spacelike
surface of constant time, one obtains

Lαβ =

∮
∂U

MαβtdΣt . (36)

The components Mαβt thus can be interpreted as
describing the angular momentum density of an ex-
tended matter distribution at a fixed time.
We thus define the spin-density tensor Eq. (12) as
the projection of the angular momentum density
Eq. (35) onto a spacetime slice of constant time:

sµν := Mµναnα . (37)

Here nµ is a dimensionless timelike unit vector which
is normal to a surface of constant time. In the
special-relativistic context we are considering here,
nµ = (1, 0, 0, 0) and nµnµ = −1.
We now compute the components Mαβt. For that,
we assume that the neutron star is described by a
perfect fluid in flat spacetime, thus:

Tµν = (e+ P )uµuν + Pηµν . (38)

e and P are the energy density and pressure of the
fluid respectively. To simplify our calculations, we
use a Cartesian coordinate basis expressed in spher-
ical coordinates to compute the tensor components.
We do this because the four-position vector xµ is
not well defined for non-Cartesian coordinate bases.
Without loss of generality we assume that the ro-
tational axis of the neutron star is aligned with the
z-axis. The four-velocity of a given fluid element in
an uniformly rotating neutron star is then given by

uµ = Γ ( 1, −rΩsin(φ), rΩcos(φ), 0 ) . (39)

Here Ω is the angular rotation velocity and we have
defined the Lorentz factor Γ := 1/

√
1− r2Ω2. The

four-position vector is given by

xµ =( t, x, y, z ) (40)

= ( t, r cos(φ) sin(θ), r sin(φ) sin(θ), r cos(θ) ) .

Accordingly, the axis of rotation xµ
0 is given by

xµ
0 =( t, 0, 0, z ) = ( t, 0, 0, r cos(θ) ) . (41)

Using the above information, we compute the com-
ponents of the energy-momentum tensor. Subse-
quently, we compute the components of the angular

momentum density tensor (Eq. (35)). We show the
components of Tµν in Appendix A
The t-components of the spin-density tensor can be
“gauged away” by imposing the condition

LµνP
ν = 0 , (42)

which was proposed by Dixon in [82]. Here Pµ is the
four-momentum of the macroscopic extended body,
defined as

Pµ =

∮
∂U

TµαdΣα , (43)

where Σ and U are defined as above. The condition
Eq. (42) is thus equivalent to choosing the center of
mass frame of the neutron star. Note that this does
not coincide with the co-rotating frame in general.
The Dixon condition Eq. (42) leads to the compo-
nents Ltµ being zero. When considering the compo-
nents of Eq. (36) individually, it is possible to also
extend this constraint to the components of Mαβt

and thus also to the components of sµν = Mµνtnt.
Therefore, we can set stν = 03. More information on
this argument is provided in Appendix B.
The remaining non-zero components of the spin-
density tensor are

sxy = Mxyt = r2ΩΓ2(e+ P ) sin(θ) . (44)

The spin-density scalar Eq. (15) then takes the form

s2 = r4Ω2Γ4(e+ P )2 sin2(θ) . (45)

Finally it should be noted that all calculations here
are performed in the setting of special relativity.
We leave a consistent general-relativistic version for
future work.

We now perform an order of magnitude estimation
of the expected torsion effects in neutron stars. We
use Eq. (45) to estimate the magnitude of the effects
as a function of the coordinate radius r. We assume
different constant rotation rates Ω, relative to the
Keplerian velocity Ω2

Kep = M/R3 of the correspond-
ing NS without torsion effects. We further consider
the torsion effects on the equatorial plane (θ = π

2 ),
where they are expected to be largest. It must be
noted that this estimate is not self-consistent. We
simply computed the expected strength of the tor-
sion effects according to Eq. (45) for a non-rotating

3 Note that when imposing the Dixon condition Eq. (42),
the Frenkel condition Eq. (14) does not necessarily hold
any more since the latter uses the four-velocity of a fluid
particle. The former uses the four-momentum of the whole
body.
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FIG. 1. Upper panel: The magnitude of the spin-
contribution κs2 to the effective energy density (see
Eq. (20)), as given by Eq. (45) (with θ = π

2
). The green

and blue lines correspond to radial profiles of two neutron
stars with a central density of ρc = 4ρsat and different
equations of state, DD2 [84] and APR [85], respectively.
Solid, dashed and dotted lines correspond to different
rotational rates Ω for each star, given relative to the Ke-
plerian rotation rate Ω2

Kep = M/R3 of the corresponding
star without torsion. Lower panel: Same as above, but
this time we show the contribution of the spin effects
κs2 relative to the total energy density e. The relative
contributions can reach the order of 10%. The maximal
relative contribution are marked explicitly for the stars
at the Keplerian limit. Note that the values for κs2 were
obtained non self-consistently using the values of the cor-
responding NS without torsion.

neutron star and without torsion effects. Using the
known values of pressure and energy density, we then
computed s2 for every radial position inside of the
neutron star.
In Figure 1, we show the absolute and relative magni-
tude of the rotation-induced torsion effects κs2. The
DD2 [84] and APR [85] EOS are chosen as represen-
tatives of a stiff and a soft EOS, respectively. The
torsion effects are zero near the centre of the star
and the rise monotonically until they reach a maxi-
mum at roughly ∼ 70% of the NS radius. The tor-
sion effects then decrease in strength until they reach
zero at the NS radius. This can be explained using
Eq. (45). For constant rotation rate Ω, the torsion
effects rise roughly proportional to r4. At the same
time, the pressure P and energy density e of the
NS matter decrease, until they reach zero at the NS
surface. This leads to a “sweet spot” between ra-
dius of the star and falling energy density, where the
rotation-induced torsion effects are strongest. The
lower panel of Figure 1 shows that the relative con-

tributions reach roughly ∼ 15% at ∼ 90% of the NS
radius for the DD2 EOS, and ∼ 10% at ∼ 80% of
the NS radius for the APR EOS. The precise num-
ber and radius will depend on the chosen EOS and
radial matter distribution of the star. At these radii,
one should expect to see the largest changes in the
neutron star structure due to rotation-induced tor-
sion effects. Also, the strength of the torsion effects
increases when increasing the rotation rate, as ex-
pected.
Relative torsion effects on the order of 10− 15% are
considerable and should significantly affect the inter-
nal composition of neutron stars. While effects might
be small for slowly rotating NS, they might be highly
relevant for fast rotating neutron stars. This could
especially be the case in binary neutron star merg-
ers, where the post-merger remnants are predicted to
rotate at velocities close to the mass-shedding limit
with roughly Keplerian rotation velocities, see [86].
Thus, if torsion effects can be sourced through rota-
tion, we expect that the impact on rotating neutron
stars is non-negligible. We will discuss this point
further in the next section.

V. RESULTS

A. Numerical Setup and Methods

We solve the TOV equations Eq. (22a)-Eq. (22c)
numerically using the public code FBS− Solver,
developed by the authors of [60]. It uses a Runge-
Kutta-Fehlberg solver to integrate the equations.
Our version of the code – including the data used to
make all figures – can be found online here [87].
We implemented the polytropic model for the spin
density Eq. (24) (s2 = βP γ) in our code. One could
also study the constant spin-density model Eq. (23)
(s2 = s20) if one takes γ = 0 and sets β ≡ s20.
We do not solve the model for the spin fluid without
spin polarization Eq. (25) (s2 = 1

8 (ℏn)
2). This is be-

cause any contributions of the spin-density will not
significantly affect solution of Eq. (22a)-Eq. (22c)
at the densities present in a NS (see the discussion
in section III B). Another way of motivating this,
is by considering the units c = G = M⊙ = 1 used
in this work. In these units, the Planck mass is
Mp =

√
ℏ ≈ 1.1 × 10−38. This directly implies that

ℏ ≈ 1.2 × 10−76. All terms in Eq. (25) related to
spin contributions are proportional to ℏ2. It can
be concluded that no effect will be visible in any
numerical solution in the context of neutron stars
consisting of standard model particles.
Additionally, we consider the case where the torsion
effects are not sourced by microphysical spin but
rather by macroscopic angular momentum (see the
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FIG. 2. Mass-radius relations of static neutron stars
for the DD2 [84] (green lines) and APR [85] (blue lines)
equation of state with varying torsion parameters β and
γ = 2. The shaded regions indicate measurement con-
straints from different pulsars. The general trend is that
an increase in torsion effects (larger β) tends to decrease
both mass and radius. Deviations from the no-torsion
configuration become larger with increasing β. There
also exists a cutoff point after which there are no stable
configurations with higher mass. The highest possible
mass also decreases when increasing the torsion coupling
strength.

discussion in section IV).

To model the neutron matter, we use the DD2
equation of state (with electrons) [84] and the APR
EOS [85]. Both are taken from the CompOSE
database [88]. We take the DD2 and APR EOS as
representatives of a stiff and soft EOS, respectively.
They were also chosen because they are widely used
by a number of groups and thus are well known in
the literature.

B. Static Neutron Stars

In this section, we investigate the effects that
torsion sourced by micro-physical spin has on the
properties of neutron stars. To that end, we use
the polytropic model Eq. (24) to gauge the nature
and the order of magnitude of these effects. We
chose different values for the parameters β and
γ, which encode information about the coupling
strength between matter and torsion. For now, we
consider values (β,γ) that are suitable to gauge the
general effects and to explore the parameter space.
In the next section, we will make physically moti-
vated choices for these parameters using the naive
spin-density model that we derived for rotating stars.

In Figure 2, we show mass-radius curves of neu-
tron stars for varying values of the β parameter and
γ = 2. We use the DD2 and APR EOS to model the
nuclear matter. The shaded regions mark observa-
tional constraints from measurements of the pulsars
PSR J0952−0607 [64], PSR J0030+0451 [65], and
PSR J0740+6620 [66]. Since we use the polytropic
model (s2 = βP γ , Eq. (24)), β directly correlates to
the strength of torsion effects. Increasing β leads to
NS configurations with lower mass and radius over
all. This is independent of the equation of states
used. There also exists a cutoff point at a specific
maximum mass, after which there are no stable con-
figurations.
The reason for this cutoff is the singularity that
arises in Eq. (24) when the denominator reaches zero,
i.e. when

1
!
= κβγP γ−1. (46)

With this equation, we can obtain a critical density
using a given equation of state where ρ(P ) is known.
For example for the polytropic EOS P = KρΓ

(K,Γ ∈ R), we obtain the critical density analyti-
cally:

ρcrit = K−1/Γ (κβγ)
1/Γ(1−γ)

. (47)

The maximal possible central density a neutron star
can reach in the presence of torsion is thus limited.
This also implies the existence of a highest possible
neutron star mass – where the NS has a central
density slightly below the critical density ρcrit.
For the cases without torsion, it is well known that
the NS of maximal gravitational mass marks the
last configuration that is stable to linear radial
perturbations. This constraint should also apply to
stars in Einstein–Cartan gravity. In addition, the
constraint due to the critical density will also apply.
This can be seen in Figure 2 for the lines with
β > 0. There, the point of highest mass corresponds
exactly to the point where the critical density is
reached.
This finding motivates us to further investigate the
behaviour of the central density for different choices
of β and γ. We discuss this aspect further in the
following paragraphs.

In Figure 3 we show the radius RNS , the central
density ρc and relative change in gravitational mass
Mgrav for neutron stars of constant restmass Mrest

while varying β and γ = {2, 3}. All calculations
were performed using the polytropic spin-density
ansatz (s2 = βP γ) and for the DD2 EOS [84]. In
all panels, the star ⋆ symbols mark the point at
which the critical density is reached and no stable
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FIG. 3. The radius (panels a) and d)), central density
(panels b) and e)) and relative change in gravitational
mass Mgrav (panels c) and f)) for neutron stars of con-
stant restmass Mrest as a function of β and for different
γ = {2, 3}. Stars mark the points where the critical den-
sity ρcrit is reached and the NSs become unstable. With
increasing β, the radius decreases, Mgrav decreases and
the central density increases. This also implies a higher
binding energy since more matter is located deeper in
the gravitational well. All effects are more pronounced
for γ = 2 compared to γ = 3. All calculations were per-
formed for the DD2 EOS [84].

static solution exist (see the discussion of Figure 2).
We investigate here how increasing torsion affects
neutron stars of constant restmass. This can be seen
as equivalent to taking a neutron star with given
restmass without torsion effects, and then gradually
increasing the torsion strength. The strength is
quantified by the parameter β.

In panels a) and d), we show the change in the NS
radius when increasing torsion effects. Independent
of γ, we see a decrease in the radius for increasing
β. The radius change is on the order of 100− 300m.
The smallest radius is reached at the point where
the central density of the star reaches ρcrit.
Panels b) and e) show the central density ρc
as a function of β. The central density rises for
increasing β until it reaches the critical density.
The point where it reaches ρcrit is marked by
a ⋆ symbol. This happens independently of γ,
merely the specific value of ρcrit and β change.
The changes in density are of the order of 0.5 − 1
times the nuclear saturation density. For γ = 3, the
critical central densities reach lower values and are
located at larger values for β. When the equation
of state in known, the concrete value of ρcrit can be
computed using Eq. (46). From this, we also see
that the critical density is inversely proportional
to β. The reason why the central density rises for
larger β in the first place is due to the repulsive
nature of torsion. When considering the effective
energy density eeff = e − κs2 (see Eq. (20)), we
see that torsion has the effect of reducing it. This
enables a given neutron star with a fixed restmass
to support higher central densities, compared to
an equal-restmass neutron star without torsion,
while still being stable. A neutron star in EC
gravity will thus have a higher central density as
their counterpart with equal restmass in general
relativity. This is can be seen especially well for the
cases Mrest = 1.4M⊙ and Mrest = 2M⊙, where the
case β = 0 corresponds to the GR case.
Another way to read panels b) and e) is as follows.
The star symbols mark the last stable NS configu-
rations which have central densities just below ρcrit.
We can construct a curve between all these critical
points. This curve will then mark a boundary
between stable and unstable NSs. When increasing
the NS mass by e.g. accretion, the given central
density will also increase. For a given β, the NS will
rise vertically in the diagram to higher ρc, until it
reaches the boundary ⋆-curve. This also implies a
maximum possible NS mass for every given β.
In panels c) and f), we show the relative change
in the gravitational mass. Because the restmass is
held constant, this also corresponds to the change
in binding energy Ebind := Mrest −Mgrav. One can
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see a clear decrease of Mgrav with higher torsion
strength on the order of up to 1%. This is consis-
tent with the increase in central density and can
be interpreted as follows: Stronger torsion effects
allow for higher densities, which enables matter to
be concentrated deeper in the gravitational well of
the NS. This also directly translates to a higher
gravitational binding energy. The higher binding
energy could have observational consequences in the
scenario of rapid collapse, where potential energy
is released and converted into binding energy and
radiation.

We return to the notion of the critical density and
explore some of its consequences in the following.
By definition, the critical central density ρcrit is as-
sociated with a singularity in P ′ (see Eq. (46)). The
point where the pressure derivative becomes singu-
lar thus also marks the point of maximal/critical
density. For the sake of our argument, we assume
that torsion effects are sufficiently strong to put
ρcrit at densities achievable within NSs (e.g. via a
large value of β). One could then ask what happens
if a small amount of mass ∆M is added to a neutron
star.
We first consider the case of a typical stable NS with
a central density smaller then the critical density.
Adding matter ∆M will lead to an increase in the
central density. This is the case for all typical EOSs
because the gravitational mass is a monotonous
function of the central density and vice-versa (we
here ignore exotic EOS behaviour like e.g. twin
stars). Matter can be added incrementally until the
central density reaches just below ρcrit.
Now, what would happen if we add a further amount
of mass ∆M to such a NS? The differential equation
for the pressure Eq. (24) predicts that surpassing
the critical density leads to a sign change in the
derivative of the pressure. The pressure would
hence increase as a function of the radius. This
is a clear sign that increasing the central density
beyond ρcrit makes the NS unstable. After becom-
ing unstable, the neutron star can either migrate
to a configuration with lower central density via
mass-shedding or internal re-arranging, or it can
collapse into a black hole. The increase in pressure
when above the critical density might also hint
to the NS exploding instead. Precise numerical
simulations are necessary to decide which scenario
is realised. However constructing a numerical model
which can deal with the arising non-equilibrium
system goes beyond the scope of this paper. We
leave this for future work.

In the above paragraph we discussed what might
happen when the central density of a NS surpasses

the critical density. Whether the critical density can
be reached in realistic scenarios is another question
entirely. As an example, we assume that torsion is
sourced by microphysical spin and that the spin den-
sity is given by Eq. (16). The pressure inside of a NS
then evolves according to Eq. (25). The equation be-
comes singular when

1− κℏ2

4
n
∂n

∂P

!
= 0 . (48)

We can now estimate the necessary number density
for this to happen. We do this for a fluid of fermions
which obey the EOS of a Fermi gas:

P =
(3π2)2/3ℏ2

5mf
n5/3, (49)

were mf is the mass of the fermion (e.g. neutrons or
quarks). This should suffice as an order of magni-
tude estimation. Under these assumptions, we find
a critical number density (in SI units) for fermions:

ncrit =
64π4

3
(mfc

2κ)−3 . (50)

For neutrons one obtains the (ridiculous) number
density ncrit = 3.27 × 10157m−3. It lies far beyond
the scope of any known phenomenon. This essen-
tially eliminates any chance of investigating the
critical density in the context of neutron stars for
this microphysical spin density model (Eq. (16)).
Note that this result should be taken with great
caution since at these length scales and densities,
quantum mechanical effects and gravitational effects
will without doubt both be relevant.

However microscopical spin is not the only way
how torsion might affect compact objects. In the
next section, we consider torsion effects induced from
macroscopic rotation and whether these might leave
noticeable imprints on the structure of neutron stars.

C. Rotating Neutron Stars

In this section, we investigate the effects that
torsion sourced by macrophysical rotation has on the
properties of neutron stars. The focus lies on getting
an (upper) estimate for the expected magnitude and
scale of rotation-induced torsion. We also discuss
some physical consequences of our analytical model
for rotation-induced torsion (derived in section IV)
in the case of neutron stars that spin up due to the
accretion of angular momentum.

To get an upper estimate for the torsion effects
due to rotation, we approximate the rotating model
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for the spin density Eq. (45) using a similar form to
the polytropic model (24) as

s2 = βrot(e+ P )2 , βrot = R4Ω2Γ4 . (51)

Here R is the neutron star radius, Ω is the angular
frequency and Γ = 1/

√
1−R2Ω2 is the Lorentz fac-

tor. βrot is an upper bound for the torsion effects,
because β = r4Ω2Γ4 (see Eq. (45)) is maximal at R.
Using the model in Eq. (51), the equation of motion
for the pressure becomes

P ′ = − (e+ P − 2κβrot(e+ P )2)

(1− 2κβrot(e+ P )(1 + ∂e/∂P ))

α′

α
, (52)

where ∂e/∂P is related to the local speed of sound
cs through ∂e/∂P = 1/c2s. In our code, we solve the
TOV equations Eq. (22) and use Eq. (52) for the
pressure. The NS radius R in Eq. (51) is obtained
iteratively: As an initial guess, we take R as the
radius of the non-rotating NS with a given central
density. We then compute βrot and from this we
get a new configuration with a new radius R, which
will be smaller than the previous one. We then use
the new R to update the value of βrot. βrot will be
slightly smaller and subsequently lead to a slightly
larger R. This is repeated until the values converge.
It is also possible to derive P ′ using the full spin
density in Eq. (45). More details are given in
Appendix C. We do not use this here because we
are mainly interested upper bounds and the order
of magnitude of torsion effects due to rotation.

In Figure 4, we show mass-radius curves of NSs
with rotation-induced torsion effects computed
using the “upper-limit” prescription from Eq. (51)
and Eq. (52). We use the DD2 and APR EOS
to model the nuclear matter. All lines correspond
to either NSs with constant rotation frequencies
f = Ω/2π or with fractions of the Keplerian rotation

rate ΩKep =
√
M/R3. The shaded regions mark

observational constraints from measurements of the
pulsars PSR J0952−0607 [64], PSR J0030+0451
[65], and PSR J0740+6620 [66].
As expected, higher rotation rates lead to stronger
torsion effects (quantified by βrot) and leave a
larger impact on the NS mass and radius than
slower rotation rates. As found previously for
microphysical spin, rotation-induced torsion effects
also lead to a decreased radius and gravitational
mass. We find that even for modest rotation rates,
the change in radius can be up to several hundred
meters. However it must be noted that we do not
compute rotation of the NSs self-consistently. In
reality, the centrifugal forces due to rotation would
act to increase the NS radius. We discuss this aspect
in detail later.
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FIG. 4. Mass-radius relations of different NSs
with rotation-induced torsion effects computed using the
“upper-limit” prescription from Eq. (51) and Eq. (52).
Green and black lines correspond to NS with the DD2
EOS[84], blue and red to the APR [85]) EOS. All lines
correspond to either NSs with constant rotation frequen-
cies f = Ω/2π or with fractions of the Keplerian rotation

rate ΩKep =
√

M/R3. The shaded regions indicate mea-
surement constraints from different pulsars. The general
trend is that an increase in torsion effects (larger rota-
tion rates) tends to decrease both mass and radius. De-
viations from the no-torsion configuration become larger
with increasing rotation. Some lines show cut-off points
where the central density surpasses the critical density.
This is an artifact of the simplified prescription (51).

With our present model, we are able to probe
rotation frequencies of up to a few hundred Hz or
up to 20− 30% of the Keplerian rotation rate. This
limitation comes from our simplified approach to
model rotational torsion effects using Eq. (51) and
Eq. (52) (also see the discussion in section IV).
Figure 4 also shows cut-off points, where the central
density would surpass the critical density (see e.g.
the green dashed line for f = 300Hz). This is an
artifact of the simplified prescription (51) - (52):
To get an upper bound, we introduced an effective
torsion coupling strength parameter βrot, which is
constant throughout the NS. But we know from
Eq. (45) that rotation-induced torsion effects should
be zero along the axis of rotation and thus a critical
density should not exist. The results from Figure 4
should therefore be understood with regards to its
general trend with conservative error bars in mind.

If they exist, rotation-induced torsion effects will
play a role as soon as some amount of angular mo-
mentum ∆L is added to a non-rotating neutron star.
This could happen e.g. through non-spherical accre-
tion of matter onto the NS. The NS would then start



15

to rotate and the torsion effects would decrease the
radius of the NS by some amount. Due to the con-
servation of angular momentum, L ∝ R2ΩM , the
decrease in radius also leads to a spin-up of the neu-
tron star. Hence, the NS quantities before the spin-
up (subscript 1) and after (subscript 2) change as

R2 < R1 , M2 < M1 , Ω2 = Ω1

(
R1

R2

)2
M1

M2
. (53)

Note that here, Mi denotes the gravitational mass.
The restmass of the NS stays constant during spin-
up or spin-down. Following from this, we also find
that the Lorentz factors obey Γ2 > Γ1. In addition,
the central densities and pressures increase, such
that e1 + P1 < e2 + P2 (see Figure 3).
For both models of the spin-density scalar s2

considered in this work (Eq. (23) and Eq. (25)), we
find that s22 > s21. This means that the strength of
the torsion effects will increase further. Assuming
that the radius is only affected by torsion effects,
this leads to an uncontrolled and self-reinforcing
spin up (a ”spin-up death spiral”), where the radius
continuously decreases and the rotation rate in-
creases. Eventually this leads either to the collapse
of the NS into a black hole, to tidal disruption due
to quick rotation, or to instability due to passing
the critical central density, depending which limit is
reached first.

However, there is one effect which could counter-
act this trend: The centrifugal force due to rotation.
While stronger torsion effects reduce the NS radius,
stronger centrifugal forces increase it. As a result,
there are a number of possible scenarios when
considering centrifugal forces and torsion effects
together. They depend on which effect is larger and
whether an equilibrium between both effects can
exist.
If the torsion effects always dominate over the
centrifugal forces, then the spin-up death spiral en-
sues. If centrifugal forces always dominate, then the
NS would settle into an equilibrium configuration,
dominated by the outward centrifugal force, albeit
with smaller radius compared to the zero-torsion
case.

Another option is that both effects reach equal
magnitudes at some point. If torsion effects dom-
inate for small rotation rates, the spin-up would
continue until the centrifugal forces catch up in
strength to stop further spin-up. This implies that
any neutron star will reach a characteristic minimal
rotation rate. The rotation rate would depend on
the NS mass and equation of state.
If torsion effects dominate for larger rotation rates,
this would lead to a characteristic maximal stable

rotation rate. Beyond this rate, all NSs would be
caught in a spin-up death spiral.

It is difficult to say, based on our results alone,
which of the two effects will dominate and which
scenarios, if any, are realised in nature. Note also
that the characteristic spin-up/spin-down timescale
due to torsion is not known. If this timescale is sig-
nificantly shorter than the typical NS lifetime, this
could set strong constraints on torsion effects due
to rotation, or even exclude them. Further research
on fully self-consistent solutions for rotating neutron
stars in EC gravity is needed to settle this debate.

VI. CONCLUSIONS

In this work, we investigated how spacetime
torsion affects the structure of neutron stars (NSs).
We modeled torsion as a non-propagating property
of spacetime in the framework of Einstein–Cartan
gravity. In this theory, torsion leads to an ad-
ditional coupling between spacetime and angular
momentum. We derived the corresponding Tolman-
Oppenheimer-Volkoff (TOV) equations, which
describe the structure of static and spherically
symmetric neutron stars. We then used the TOV
equations to model the coupling of different sources
for torsion to gravity.
We considered two physically motivated choices as
sources for torsion effects: Microphysical spin and
macroscopic angular momentum. For microphysical
spin, we considered a model for the spin-density of
a fluid of fermions (spin-fluid) and a phenomenolog-
ical “polytropic” model. For macroscopic angular
momentum, we derived a model where torsion is
sourced by the macroscopic rotation of the neutron
star. We then investigated these different models
analytically and numerically.

For the fermion-fluid, we found that the expected
effects are very small and likely negligible inside
of neutron stars. We therefore investigated the
phenomenological model for the microscopic spin
density to gauge the general effects of microscopic
torsion. For this, we considered neutron stars
with constant restmass. We varied the effective
coupling strength of microphysical torsion to see
how torsion affects neutron stars in general. The
coupling strength has no inherent physical meaning
apart from revealing the expected phenomenology
of torsion.
We found that when including torsion effects,
the gravitational mass and the radius of the NSs
decrease, while the density increases. This can be
understood as torsion leading to effective repulsive
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forces, corresponding to a negative contribution to
the effective total energy density of matter-energy
and torsion-energy (see Eq. (20)). As a result, more
matter can be concentrated within the same volume
because the additional torsion contributions can
stabilize the matter at higher density compared to
the case without torsion.
The torsion effects also lead to a critical bound for
the central density, above which no stable NS can
exist. Beyond this density, a NS will either adapt
its structure, e.g. by shedding mass or internal
re-arranging, or implode/explode. The presence
of a critical density could therefore have strong
implications on the merger and collapse of neutron
stars. It should be noted however that when torsion
is sourced from a spin-fluid, the expected order of
magnitude of the critical density is likely far too
high to be realised in any sensible physical scenario.

We also investigated in detail the case where
torsion is sourced by macroscopic rotation. In
section IV we derived a number of estimates for
the expected magnitude of torsion effects due to
rotation. We derived explicitly the spin-density
s2, which quantifies torsion effects. s2 was found
to depend on the radius within the object, the
rotation rate, and the energy density and pressure.
We found that rotational torsion effects should be
negligible for non-relativistic astronomical objects
such as main sequence stars and planets. For rapidly
rotating neutron stars however, the effects could be
large and have an up to 15% contribution to the
overall energy density. This means that those effects
cannot be neglected. In our numerical investigation,
we found that rotation-induced torsion effects are
zero along the rotational axis of the object and
increase in strength with increasing axial distance.
They fall off in strength when the matter densities
become small near the NS surface.

Regarding the global quantities of NSs, rotational
torsion effects are found to decrease the gravitational
mass and the radius. The radius can be decreased
by up to 900m. This poses an interesting question
regarding the balance of forces inside of rotating
NSs. We performed a Gedankenexperiment where
we added a small amount of angular momentum to
an initially non-rotating NS and investigated the
different possible outcomes. The torsion effects will
decrease the NS radius but centrifugal forces will
act to increase the radius. Depending on which
effect dominates, this could lead to a runaway
torsion-induced spin-up of neutron stars (we call it
the “spin-up death spiral”).
However, it should be noted that our analysis
includes simplifying assumptions which enable us

to give (rough) upper bounds on the strength
of rotation-induced torsion effects. We therefore
believe that it is necessary and interesting to
consider a fully self-consistent model for rotation-
induced effects. This is ongoing work by the authors.

Our results also are also relevant in the wider con-
text of metric-affine theories of gravity. In these the-
ories, the metric and the connection are indepen-
dent degrees of freedom. Depending on the choice
of the connection, non-propagating torsion and non-
metricity can then appear and couple non-trivially
to matter. Our work opens the way to study and
constrain a wide array of metric-affine modifications
of gravity using neutron stars. This can have a large
impact on studying the physical viability of these
classes of theories.

ACKNOWLEDGMENTS

We thank the organizers of the Bad Honnef
Physics School on Black Holes (2022) for provid-
ing the environment where many of the ideas for
this project were kickstarted. We thank Adrià Del-
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APPENDIX

Appendix A: Components of
angular-momentum density tensor

Using the ansatz for the four velocity and metric
described around Equations (38)–(39), the nonzero
components of the energy-momentum tensor are:

T tt = (e+ P )Γ2 − P , (A1a)

T tx = −(e+ P )Γ2rΩsin(φ) , (A1b)

T ty = (e+ P )Γ2rΩcos(φ) , (A1c)

T xx = (e+ P )Γ2r2Ω2 sin2(φ) + P , (A1d)

T xy = (e+ P )Γ2r2Ω2 sin(φ) cos(φ) , (A1e)

T yy = (e+ P )Γ2r2Ω2 cos2(φ) + P , (A1f)

T zz = P . (A1g)

To compute the spin-density tensor sµν we first need
to compute the components of the Mαβγ tensor. We
use Eq. (40)–(41) and the energy-momentum tensor
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form above. The components that contribute to the
final spin-density tensor are the γ = t components
and are given by:

Mααt = 0 ∀α ∈ {t, x, y, z} , (A2a)

Mtxt = r cos(φ) sin(θ)(P − (e+ P )Γ2) , (A2b)

Mtyt = r sin(φ) sin(θ)(P − (e+ P )Γ2) , (A2c)

Mtzt = r cos(θ)(P − (e+ P )Γ2) , (A2d)

Mxyt = r2ΩΓ2(e+ P ) sin(θ) , (A2e)

Mxzt = r2ΩΓ2(e+ P ) sin(φ) cos(θ) , (A2f)

Myzt = −r2ΩΓ2(e+ P ) cos(φ) cos(θ) . (A2g)

Appendix B: Details on Gauging Away
Components of the Spin-Density Tensor

The Dixon condition condition LµνP
ν = 0 and its

pysical meaning was already explained in the main
text, see Eq. (42). We here show how to use the
Dixon condition to gauge away the stµ-components
of the spin-density tensor sµν = Mµναnα. To do
this, we use the four-momentum of the extended
body Pµ (see Eq. (43)) and the angular momentum
tensor Lµν (see Eq. (36)).
For the given energy-momentum tensor (see
Eq. (A1)), the only nonzero component of Pµ is the
P t (the others are zero due to the angle integrals
over φ). We can then impose the Dixon-condition
LµνP

ν = 0. Because P t ̸= 0 we then get the follow-
ing constraint equations:

LxνP
ν = LxtP

t !
= 0 =⇒ Lxt = 0 (B1)

LyνP
ν = LytP

t !
= 0 =⇒ Lyt = 0 (B2)

LzνP
ν = LztP

t !
= 0 =⇒ Lzt = 0 (B3)

That means that we can gauge away the Ltµ-
components using the Dixon condition and set them
to zero.
We apply this fact to constrain the components of
sµν = Mµναnα. The angular momentum tensor Lαβ

is related to the spin density tensor sµν via

Lαβ =

∮
∂U

MαβγdΣγ =

∫
MαβγnγdV3 =

∫
sµνdV3 .

(B4)

On the integration interval, The components of sµν

have no sign change (i.e. are positive definite) and
are nonzero. The integral bounds are also not sym-
metric. The integral of a certain component be-
ing zero then implies that the integrand must also
be zero. When one component of Lµν is zero this
then implies that the corresponding component of
sµν is zero as well. In our case this means that
stx = sty = stz = 0. The only remaining compo-
nents then are: sxy, sxz, syz (also note that sµν is
antisymmetric). For the ansatz chosen in the main
text, some additional components of sµν = Mµναnα

are also zero. In the end, only the sxy contributes to
the spin-density scalar.

Appendix C: Full Pressure ODE for Rotational
Spin Density

We briefly show the derivation of the correspond-
ing ODE for the pressure when using the spin den-
sity model in Eq. (45) for the rotating matter con-
figuration. We only consider the case on the equa-
torial plane (θ = π

2 ) since there the effects are
largest. To derive the ODE for the pressure, we
insert Eq. (45) into Eq. (22c) and take the radial
derivative of s2. We then use the chain rule as
de/dr = ∂e/∂P × dP/dr, which is valid if e = e(P ).
We rewrite ∂e/∂P = 1/c2s with the speed of sound
cs and solve for P ′. We finally obtain:

P ′ =

[
4κs2

(
1
r + rΩ2Γ2

)
−

(
e+ P − 2κs2

)
α′

α

]
(
1− 2κs2

(1+1/c2s)
(e+P )

)
(C1)

This equation correctly captures the behaviour at
r → 0 where the torsion effects become zero (s2 →
0). Thus, a critical central density (see section VB)
does not exist for this model. However, this model
has problems to produce consistent results at large
r, because the first term in the numerator will grow
unbounded and will force the pressure derivative to
be positive. This leads to unphysical increasing pres-
sures for large radii. This likely is a consequence of
neglecting metric components and assuming a flat
spacetime in the derivation of Eq. (45) (see sec-
tion IV for the derivation).
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