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correlators of the TT-deformed theories on higher genus Riemann surfaces up
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1 Introduction

The Anti-de Sitter/conformal field theory (AdS/CFT) correspondence [IH3], as a
strong-weak duality, provides a powerful toolkit for understanding the behavior of
strongly coupled quantum field theories. Especially, it offers us a way to compute
the correlators of local operators in the boundary CFT by performing gravitational
perturbative calculations in the bulk.

The correlators of local operators are the most fundamental observables of a
CFT. Among them, the stress tensor correlators have received substantial attention.
They contain information about the energy, momentum, and stress distribution of
a system, enabling analyses of phenomena such as the c-theorem [4] and others.

Extensive research has been conducted on these correlators both within field theory



and in the context of holography [GHIT]. While CFTs on Riemann surfaces have
been explored in depth, research on holographic correlators of the stress tensor
has predominantly focused on CFTs with trivial topology. Further research into
holographic field theories on manifolds with nontrivial topologies is necessary to
provide nontrivial tests of AdS;/CFTs.

In our previous works [12/[13], we computed holographic torus correlators of the
stress tensor by solving the boundary value problem of Einstein’s equation in the
bulk. The prescription we proposed applies to any Riemann surface. In [I4] we
applied our approach to compute holographic torus correlators involving both the
scalar operator and the stress tensor. Additionally, we extended the procedure to
holographic correlators at a finite cutoff in the bulk. We further extended our anal-
ysis to AdS5/CFTy in [I5], where we computed the holographic Euclidean thermal
two-point correlators of the stress tensor and U(1) current from the AdS planar
black hole. In this paper we will take another step beyond the torus: we consider
the higher genus case.

The holography of arbitrary genus compact Riemann surfaces has long been
established [16]. Moreover, higher genus partition functions have been previously
investigated [I7H20], both for the handlebody and non-handlebody solutions. Our
paper focuses on the handlebody solution, which can be constructed through the
Schottky uniformization, as outlined in [I6]. Following the approach in [12], we
calculate the holographic correlators of the stress tensor on the conformal bound-
ary, based on the well-established near-boundary solution in the form of Fefferman-
Graham coordinates [2TH25]. Our results coincide with the Ward identity of CFT on
the general Riemann surface [10], providing a non-trivial verification of AdS;/CFTs.
We also derive recurrence relations for computing some higher-point correlators dur-
ing the calculation.

Furthermore, we extend our procedure to the case of the cutoff-AdSz/TT-CFT,
correspondence. The T'T deformation [26,27], as an integrable deformation, has at-
tracted considerable attention in recent years. It has been proposed that the AdSs
gravity with a Dirichlet boundary as a cutoff at a finite radial coordinate is dual

to a TT-deformed CFT, living on that Dirichlet boundary [28]. It is an interest-



ing and valuable topic to calculate correlation functions of TT-deformed theories.
Stress tensor correlators of TT-deformed CFTs have been investigated using vari-
ous approaches [TTHI4129-34]. Nevertheless, most of relative studies focus on the
TT-deformed theory either on the complex plane or on the torus. The T'T operator
has been observed to lose factorization property in the presence of non-zero cur-
vature [35], posing a challenge for studying TT-deformation in curved spacetime.
However, the factorization property still holds in a large ¢ limit. Following the dy-
namical coordinate formulation in [36] established for TT deformation in curved
spacetime with trivial topology, we generalize the construction to the case of gen-
eral Riemann surfaces, which allows us to derive a set of flow equations describing
how the modular parameters of the cutoff Riemann surface change along the flow.
Based on this construction, we calculate the stress tensor one-point correlators and
two-point correlators perturbatively, as a worthwhile attempt to study the 7T de-
formation in curved spacetime with nontrivial topology.

The remainder of the paper is organized as follows. In section[2, we briefly review
the Schottky uniformization as the basis for subsequent calculations. In section[3l we
calculate holographic correlators of the stress tensor on the conformal boundary. We
review how to obtain holographic correlators through near-boundary analysis and
the GKPW dictionary and calculate stress tensor one-point correlators in subsection
B.I Two-point correlators are computed in subsection B.2l Recurrence relations are
derived in subsection B3l In section Ml we investigate holographic correlators at a
finite cutoff. We derive the explicit form of the dynamical coordinate transformation
for a Riemann surface cutoff in subsection LIl Perturbative stress tensor one-
point and two-point correlators are calculated in subsection and [L.3] respectively.
Section [l is for conclusions and perspectives. Additionally, we review the necessary
definitions and properties of differentials and Green’s function in appendix [A] which
are utilized in the main text. In the end, we list all the independent three-point and

four-point correlators of the CFT case in appendix



2 Holography of Riemann surfaces

In this section, we briefly review the basics of the holography of arbitrary genus
compact Riemann surfaces [16].

In general, one can obtain all types of constant negative curvature three-dimensional
spaces by identifying the points of the Euclidean AdSs appropriately. Specifically,
starting with the Euclidean AdS3, namely the three-dimensional hyperbolic space
H?, we can obtain other constant negative curvature space by the quotient construc-
tion

H?/3, (1)

where ¥ is the Kleinian group [16,37], a discrete subgroup of PSL(2, C), the group
of orientation-preserving isometries of H3. The quotient presents some subtleties
when extending the action of X to the conformal boundary S? ~ C U {oo}: the
action may have fixed points on S?. We denote A as the so-called limit set, that
is, the closure of the set of fixed points of the action. The difference set Q = S\ A
is called the region of discontinuity of X, an open set on which the Kleinian group
Y acts freely discontinuously. The quotient €2/% then can be a smooth manifold,
serving as the conformal boundary of the quotient space H3/¥.

The topology of the three-dimensional space obtained from quotient by a general
Kleinian group can be very complicated [37,88]. In this paper, we focus on the
simplest case that ¥ is a classical Schottky group [16,89,[40]. In this case, the
quotient space we obtain corresponds to a handlebody solution.

A marked classical Schottky group I'y of genus g is freely generated by g lox-
odromic generators Ly, ---, L, (an element in PSL(2,C) is called loxodromic if its

action has two fixed points on S? and Tr(L;) ¢ [0,2]). To show how I', acts on the

Riemann sphere, let Cy,---,Cy, Cf, - - -, C’; denote 2¢ non-intersecting circles in S2.
Each generator L;,i =1,2,---, g can be represented in the form
Li(z) — a; Z — a;
=\ , z€CU{oc}, 2

where a; and b; are the two fixed points of L;, which can always be chosen as the

centers of C; and Cf, and the multiplier \; is a complex number with 0 < |\;| < 1.



The action of L; maps C; to C!, while the exterior of C; is mapped to the interior
of €}, and vice versa. The fundamental domain of I is thus the exterior of all the
2¢ circles. An example of the g = 2 case is shown in figure [Il

According to the classical retrosection theorem [41[42], for any compact Riemann
surface, one can always find a Schottky group I' such that the Riemann surface can
be represented in the form Q/I", where ) is the region of discontinuity of I'. The
Schottky group can be chosen such that the image of C;’s become g generators
of the fundamental group m;(X) of the Riemann surface X we construct. Also,
the moduli space of X can be obtained from 3¢g — 3 parameters of I'; after fixing
three parameters by Mobius transformation [16,40]. The procedure above is called
Schottky uniformization.

The holography of Riemann surfaces has received significant attention in the
study of 2+1 dimensional wormholes [43-47], where the handlebodies play a role of
Euclidean counterparts of the Lorentzian wormholes in the sense of the real-time

gauge/gravity duality [40,[48[49]. Non-handlebody geometries are also considered

o@e

Figure 1: The illustration of the Schottky uniformization for a genus 2 Riemann surface. Schottky

SZ

generator L; identifies the exterior of C; with the interior of C{, i = 1,2, and vice versa. The green

part stands for the fundamental domain D of the Schottky group I'y—s.



3 Holographic correlators of higher genus CFT

In this section, we compute holographic correlators of the stress tensor of conformal
field theories on Riemann surfaces of genus g > 2. During the calculation, we follow

the method developed in [12]14].

3.1 Holographic setup and one-point correlators

Firstly we review how to obtain holographic stress tensor correlators within the
framework of AdS3/CFT;. As outlined in [12], we employ the Fefferman-Graham
coordinates near the boundary [21124] for the holographic calculation, in which the

bulk metric can be expressed in the form

dp? 1 S
ds? = 1 + ;gij(x, p)dz’ da’. (3)

gij(z, p) can be expanded into a series of p, which truncates in three dimension

spacetime:
0 2 4
9:i(w,p) = 9 (@) + 97 (0)p + g ()", (4)
With this metric, Einstein’s equation can be reduced into three equations about

90 ¢@ and ¢

1 (2) (0)kl . (2)

4
gi(j) = Zgik g9 g5 (5)
v(O)igi(;) _ V§0)g(2)i7 (6)
2)i 1
Y= =5l (7)

In all three equations above, the covariant derivative and raising (lowering) indices
are with respect to ¢(®, which can be identified with the boundary metric the CFT
living in.

According to the GKPW dictionary of AdS/CFT [3], there exists an equivalence
between the bulk gravitational partition function and the generating functional of
the boundary CFT, where the former can be approximated as a sum over all saddles
in the semiclassical limit. In our calculation, we assume that only one saddle dom-

inates, thus the generating functional of connected correlators of the CF'T is equal



to the on-shell action of this saddle. The one-point correlator of the stress tensor in
the boundary CFT can be identified with the Brown-York tensor [23] in the case:
1
(Tij) = =g (Kij = Khij + hij), (8)
where GG is Newton’s constant, which is related to the CF'T central charge through

the Brown-Henneaux relation [50] ¢ = % K;; and h;; are the extrinsic curvature
and the induced metric of the boundary, respectively. Using the Fefferman-Graham
coordinates and equations ([l (@) (@) above, we can obtain the expression of one-point

correlator with respect to ¢(® and ¢
1 2 2) (0
(L) = o (95 = 90l (9)

with the conservation law and holographic Weyl anomaly:

Vi (T) = 0, (10)
(T) = 1= Rlg). (1)

To compute multi-point correlators of the stress tensor, by definition, we only
need to take the functional derivative of the one-point function with respect to the

metric. Here we choose the convention of the definition to be

(-2 )"5"ICFT

T )+ Tognln)) = = Vdet(gO(21)) - - - y/det(gO(z,))dg i () - - - §gOinin

(12)
where Icpr is the generating functional of connected correlators of the boundary
CFT.

Now we return to the concrete calculation of higher genus correlators. we need
to fix the boundary metric first. What should be noted is that in the higher genus
case, the boundary metric cannot be set to be flat like the torus case. This can be
seen from the Euler characteristic of a closed-oriented Riemann surface, given by
X = 2 — 29, where g > 2 yields a negative value. Instead, a unique complete metric
with constant negative curvature R = —1 [40] exists on any such compact Riemann

surface. This metric can be obtained from the flat metric in conformal gauge via a

Weyl transformation:

ds? = ¥ dz dz, (13)

zn)’



where ¢(z, Z) is a Liouville field that satisfies
80,0:¢ = e (14)

by the condition R[¢g(")] = —1. Moreover, to make the metric single-valued under the

Schottky uniformization, the Liouville field ¢ must have the transformation property

6(1(2),703) = 6(z,2) — 5 [ (2) (15)

under the action of any generator vy of the Schottky group I'y. This property provides
a boundary condition if we choose v as the generator L;’s of I'y. The Liouville
equation (I4) is hard to solve with such quasiperiodic boundary conditions. There
has been some work solving it numerically [51.52]. Throughout this paper, we will
keep the Liouville field ¢ in all expressions.

To obtain the correlators, we start by finding the proper Fefferman-Graham
coordinates, in which the metric coincides with ([I3]) on the boundary. Starting from

the Poincaré coordinates

dé?  dydy
2
= =4 == 1
ds 162 + £ (16)
this can be done directly by taking the transformation [53]:
—2¢ —2¢
§= y=2+ 00— (17)

(1+ pe=22]0.¢[)? 1+ pe=2%|0,¢[*
After the coordinate transformation, the metric becomes the Fefferman-Graham

form that we need:

a2 1 .
ds? = 4—’;2 n ;e%5 dzdz + T¢d:2 + T9dz2 + 2R dz dz

+pe 2 (T?dz + RA2)(T?dz + Rdz), (18)
where
Therefore, when compared with the general form of the metric in Fefferman-Graham

coordinates ([B]) (), we can read off

1.2¢ ¢
4O = 0 3e R T R
e 0 R T?
(20)
TR L(ToT? +R?
g TR AT
S(TOT? +R?) RT?

8



It is easy to verify that they indeed satisfy Einstein’s equations () (@) ([@). Then we

get the expression of one-point correlators in terms of the Liouville field:

<Tzz>:%7'¢_$( ¢ ( z¢))

e2®
() = (Te) = — g = — o 0ust = 2, 1)
(Tsz) = # 7O = 81G (020 — (0:9)°) .

It’s also straightforward to verify that they satisfy the conservation law (I0) and
Weyl anomaly ([IT]).

There is also one point worth mentioning. Taking (7,.) as an example, to en-
sure the holomorphic form (7.) dz? is single-valued on the Riemann surface after
Schottky uniformization, (7.) must be an automorphic form of type (2,0) [54], that
is, (T,.) must satisfy

(T(v() [V ()] = (Tea(2)) (22)
on the covering space for any element v of the Schottky group. This can be verified

straightforwardly. By utilizing the transformation property () of the Liouville
field ¢, we can get

1 1

240 2_1 -
817G [y (=) <az¢> (9:0)" = 5517, }), (23)

(Te2(7(2))) =

where S{~v, z} is the Schwarzian derivative
stnh =00 3 (7Y 21
Y(z)  2\(2)
This Schwarzian derivative term doesn’t contribute because the Schottky group is
a subgroup of PSL(2,C), and (24]) vanishes for any v in PSL(2,C). Consequently,
[23) simplifies to the expected (22)).

3.2 Two-point correlators

Now we are ready to compute higher-order correlators of the stress tensor, starting
with (T.,.(2)Tww(w)) as an illustrative example. As previously mentioned, we initiate

by varying the boundary metric:
59(0 dz’ da? = ey;; da’ da’. (25)

9



The variation of gg;?) induces a corresponding variation of the one-point correlator

(T3;), which can be formally expressed as a series of the infinitesimal parameter e:

S e m. (20

n=1

We can solve (Tl-j>["] order by order from the two equations ([0, ({I]) and take n-th
functional derivatives to obtain (n + 1)-point correlators. For (T,.(z)T ., (w)), we
take the first order terms of € in (I0), and then take the functional derivative with

respect to sz, and then evaluate the result in the unperturbed metric:

08T 1) L ) (130,00, + 120,007 — 8(0.6)° — 60260, — 60,007
: 5}(@@(%0) 167TG ‘ - - ‘ : - ’ ’ ’

—20%¢ + 0%)6@ (2 —w) = 0.
(27)
This differential equation can be solved with Green’s function on general Riemann

surfaces [10,39,54]. The Green’s function is an automorphic form which satisfies

1
—0:G (2, Z;w, ) = 5(2)(,2 —w) — pa(z, Z;w), (28)
T
where
39—3
p2<272; w) - Z MZZ(zvz)(baww(w)- (29)
a=1

Here, ¢,.. and . are holomorphic quadratic differential on the Riemann surface
and Beltrami differential dual to ¢,., [10,89,55]. We review the details about these
differentials and Green’s function on a general Riemann surface in appendix [Al Thus
we have

I(Teo(®) _ 0T () _ [ o s, (T (20)
595@%(10) N Oxwaw (W) _/Dd 00z ) OXwaw (W)

0 <TZZ>[1] (20)

Sxon(w) | 0

1
Z/dzzo (_820Gz22(20720;272)+p2(20720;2))
D s

where D is the fundamental domain of I';. We consider the two terms separately.
For the first term, integrating by part and applying Stokes’ theorem, we obtain:

0 (T2) . (20)

1
d2 -9 20 = . =
/D w0 WaZOG 220, %0; %, 2) IxXww(w)

10



(T, (Zo)]

MXww(w)

1
:/d220 _650
D ‘e
-1

o 2 20 = . = —2¢(z0,20) 192 2 12 2 o 3
/;)d 20 G zz<z07 205 %5 Z) |:167T2G€ ( (8ZO¢) 8ZO + azo¢az0¢ 8(620(]5)

0

— 602,60z, — 60,00, — 20,6 + 5,6 (20 — w)|
) Tzz)m z

{ 1 N (20) [ s
- _ dzn =G0 . o ¢(w,w)a3 G .
9 éD <0 T zz<z07207z7z> 5X@@<U}) 167T2G€ w zz<w7w7 Z, 2)7

(31)
where 0D denotes the boundary of the fundamental domain D of the Schottky group
I';. By the construction of Schottky uniformization, 9D is just the 2g circles Cj, C7,
i=1,2,---,g9. And Vz; € C;, there exists a z; = v;(z;) € C!. Remembering that

both G*_(z0, Zo; 2, 2) and (T..)!" (20) are automorphic forms, we find

fgp B Z <7{c B 7{ ) (32)

and

ST (i)
5}(@@(10)

3 (T) (2h)
O Xwaw (W)

_ ars I -
- j{ dzO G Ozz<207 201 % Z)
C;

# A D i) 2D 2)

- f dzjli(20)] G5.. (25, 265 2, 2)Di(46)] )]

(T (=)
5wa(w)

0 <TZZ>M (Z(Z))
5wa(w) .
(33)

_ izl I -
- f dzO G 0zz<207 201 % Z)
!

i

Therefore the boundary term cancels out, yielding;:

1 (T (2) 1
d2 _82 G* 5 v % = -
/1; <0 T 0 ZZ(ZO 205 % Z) 5X@@<U}) 1671'2G

—2¢(w,w) 53 o
e 20D G (w,w; 2, Z).

(34)

By definition, the two-point correlator (7.,7T,,,) can be obtained by taking the

first-order functional derivative of (7..) with respect to ¢g(®®* namely

-2 §(T..(2))

(T,.(2) T (w)) = . (35)
A /g(o)(w) 5g(0)ww(w)
Simultaneously, we have
1 w,w ww
g = =g, (36)

11



Thus, the relationship between the two-point correlator and the functional derivative
with respect to Yo is

0 <TZZ>[1] ()

_ 672(;5(111,1?;) 5 w) .
Svoalw) (T2 (2) T (w)) (37)

Then we obtain

3 Yw . =
167T2G8wG (w,w; z,2). (38)

1
/ d220 _aiongz<zO7 ZO; 2 2) <TZZ<Z>Tww<w>> =
D T
For the second term in (B0, adopting the notation in [I0], we define the Te-
ichmiiller deformation of the correlator as

1
ZdTeich ((gb ng tot Z 57—04 / g(o)g(O)zz,uzz < zz¢1 T ¢N>tot ) (39)

where 7,’s are modular parameters of the moduli space of the Riemann surface. We
add the subscript tot’ to distinguish these total correlators from the connected ones
we consider.

When the curvature of the Riemann surface is a constant, we can also express
the one-point correlator as an integral with holomorphic quadratic differential and

Beltrami differential:

T, w> = Z(baww /D d2z g(O)g( )zz/izz <TZZ> : <40)

Combining ([39) with ([0), it is straightforward to obtain
39—3

/Ddzzo pQ(Zo, 205 2) <TZZ(ZO Z ¢o¢zz ww> : (41)

a

This result can be generalized to the case with an (n + 1)-point correlator on the
left and an n-point correlator on the right.
There is also another more direct way to obtain ({Il). By employing the definition

(I2) of the stress tensor correlator, we can rewrite the second term in (B0]) as follows,

8 (T, )M ,
/ @220 pa(0, 203 2) ol B0) _ st / 020 pa(20, 207 2) Tz (0) T ()
D 5Xu77(w) D

39—3

T,
_ Z (bazzefQ(b(ww /szO QﬁaZoZoW' (42)

2020 (ZO>

12



The second line describes the change in the one-point correlator (T,,,,) after a phys-
ical variation of the boundary metric. As reviewed in appendix[Al the physical vari-
ation of the metric is characterized by holomorphic and antiholomorphic quadratic

differentials on the Riemann surface,

39—3

50z = Y (qbazzéfa(dz)Q + %Z,Zéra(dZ)Q). (43)
a=1
Then it is straightforward to obtain

2 —5<Tww(w)> o 0
/D P o 5 L = G Tl (44)

Z0%
which immediately reproduces (@I).
Combine ([B8) with (41), we finally obtain the result

39—3
0

3G _(w,w; 2, 2) + Z <Z5azz (Tww(w)),  (45)

(T:2(2) T (w)) = 167T2G w -

which matches the result from Ward identity in [I0] correctly. The specific expres-

sions of the Green’s function G, the holomorphic quadratic differentials ¢,.., and

zz)
modular parameters 7, depend on the genus of the Riemann surface and the basis
we choose.

Two-point correlators of other stress tensor components can be obtained by the

same method. Here we list all independent two-point correlators:

1 N
(T2 (2) Tpw(w)) = — 167T2Ga§"G (W, w2, 2) + Z (bazz . (Tww) » (46)
(T,.(2)Ton(w)) = 161 G(48w¢6w¢ Ow®Og + 20500, — 80,05® — 6w6w)5(2)(w —
39—3
v Ga Va0 pl10:) + 3 sy (Tew) (a7)
(Toz(2) Ty (w)) = (282 —20.¢0, + 02)0® (2 — w), (48)

3.3 Recurrence relations and higher-point correlators

We can also compute higher point correlators and derive valuable recurrence re-

lations concerning them. By taking the n-th (n > 2) functional derivative of the

13



n-th order of (I0)) with respect to xs: and evaluating the result in the unperturbed

metric, we obtain

n (T [n] n—1 [n—1]
825 n( ZZ> (Z) . 672¢>(z,z) Z az5 1—[<5X><z)<2) 5(2) (Z . Z@')
Zl;ll dxzz(2) i=1 > zz\%j
noosn—1 [n—1]
_ 9p26(22) o H(T)" T (2) 0.6 (2 — 2)

6 (2 — z) = 0. (50)

Following (B87]), we have

o <Tzz>[n] (Z) —2¢(21,21) —2¢(2n,2Zn)
—e 221 e ., %n Tzz z Tzz Z1) 'Tzz Zn)) 51
OXzz(21) -+ - Oxzz(2n) T 5) =) o
thus (B0) becomes
€2¢(z’2)az <Tzz(z)Tzz(Z1) e TZZ(zn»
- Z 62¢(Zi’2i)8z <Tzz(2)Tzz(21) o Tzz(zi—l)Tzz(zi-i-l) o TZZ(ZN» 5(2)(2 - ZZ)

+ 2 Z €2¢ #ir%i) zz )Tzz(zl) e Tzz<zi71)Tzz<Zi+1) zz(zn» 8 5 (Z - Zi)

—4 Z €2¢(Zi7gi) <Tzz(z)Tzz(Z1) e Tzz<zi71>Tzz<zi+l) e Tzz(zn» 8Z¢<Z, 2)5(2) (Z - Zi)-

(52)
Solved with Green’s function, we have
(Toa(2)Toa(21) -+ Toalz)) Zaz G* (2,252, %) (Toa(21) - - - T (2))
39-3
+= ZG% %, 23 2, 2)0z, (Tea(21) -+ Tiz(20)) + Z Goe(2) 5 (Toal21) - Tec(20))
(53)

which gives the recurrence relation of correlators of 7., components.

In particular, we can obtain the three-point correlators (7,,7..T,,) directly from

14



the recurrence relation above:

<Tzz(z)Tzz(Z1)Tzz(22 Z 8ZZG 2z zz; ZZ7 z Z) <Tzz<zl>Tzz<Z2)>
39—3 a
+ — ZG% Ziy 25 2, 2) 05, (Ton(21) 1oz (22)) + ; Gazz(2 87’a (T..(21)T%.(29)) -

(54)

There are also other useful relations. For example, by taking the n-th (n > 3)
functional derivative of the n-th order of (I0) with respect to x,. and evaluating the

result in the unperturbed metric, we have

n [n] n n—1 [n—1]
0, 0" (Ty.) ™ (2) | e20(22) 25(2)(2 — )0 0" (T) (2)

75XZZ<21> 5X22<zn) i=1 ' ZéXzz(Zl) e 5Xzz(zi71)5Xzz<zi+1) c

26—4¢(z - Z ( 5(2 - ) Jn—2 < >[n 2] (Z) 825(2)(2 o Zo(n))
(n - 2)! 0€ESn 5XZZ<20(2 ) 5Xzz(z<7(n 1))

+5(2)(2_2(1))5(2)(2_2(2 )6 o 2< >” 2]( )
7 7 5Xzz(zo 3)) 5XZZ<20(”))

n—2 1 [n—2] P
T Tm) () 0-6(2, z)) = 0. (55)

+ 40P (2 = 2,0))8% (2 = Zo() @5y (2a(3) -+ 0xzz(20(m))

Solved with Green’s function, finally, we have

n

(Te:(2)Tes(21) - - Tos(2)) = %Z G (21, 212, 2)05 (Tez(21) - - - Tez(2n))

i=1

- n _ ,W Z Gz U(l) o(l )3 % 2) (2 <T22(20(1)) e 'Tzz(zo(n—l)» 820(1)

gE€Sy

“0Xz2(2n)

+ 02,0, (Tz2(201))  * Tez(20(n-1))) + 4 (T22(26(1)) - - T22(20(n-1))) O, ¢)5(2)(Zo(1> — Zo(n))

39—3

+ Z gbazz zz(zl) T’Z(zn» ) (56)

Cl{

which gives the relation between the correlator of one T,, component, n 1:; compo-
nents and the correlator of n T:; components (n > 3).

We can also obtain the relation between the correlator of one T, component, n
T.. components, and the correlator of n T,, components (n > 2). Taking the n-th

derivative of the n-th order of ([Il) with respect to xz; and evaluating the result in
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the unperturbed metric, we have

(Toz(2)T.z(21) - - Tia(20))

n

= (Tzz(z)Tzz(zl) o 'Tzz(zi—l)Tzz(zi-i-l) i Tzz(zn)> 5(2)(2’ - Zz)

i=1

(57)

Applying the same method, we compute all independent three-point and four-
point correlators of the stress tensor. However, many contain numerous contact

terms, so we leave them to appendix

4 Holographic correlators at finite cutoff

In the previous sections, we computed the holographic stress tensor correlators on
a general Riemann surface within the framework of AdS;/CFT,. In what follows,
we will investigate the holographic aspects of a cutoff AdS;. Let (p, z,z) be the
FG coordinates in the bulk. The Dirichlet boundary M. is a hard radial cutoff at
p = pe. The generalized GKPW relation gives a natural holographic dictionary for
cutoff AdSs,

c 1 c)ij
Y G

where the sources gi(;) (2, 2) = gi;(pe, 2, Z) are the components of the boundary metric.
The dual EFT on the right-hand side is obtained by 7T deformation of the original
CFT [28], which is defined by the following flow equation for the action,

dS)\ o 1 2
L /d » det[T3]. (59)

The deformation parameter A is related to the cutoff location p. by
A = 167Gp,. (60)

This paper is concerned with the holographic stress tensor correlators in cut-
off AdS3. The one-point correlator is identified with the Brown-York tensor [50]
evaluated on the cutoff surface,

1 c c c c
(Ti)o = = grg (5 = KOhg + hip). (61)

v]
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Plugging (&) into Einstein’s equation to replace the extrinsic curvature, we obtain

Vi{Tij)p. = 0, (62)
: 1

<7;Z>Pc - 16 GR(C) - 87TGpCdet[T]pc7 (63)
T

8pc <EJ>PC = 47TG[2<,‘Z—‘Z]€>00 <Tk']>l)c - <T/f>Pc <1—‘Z]>pc - det[T]chl(]c)]? (64)

where the indices are raised by g% and det[T1,, = §((T})2 — (T"),.(T;j),.). The
first two equations (62) and (G3]) represent the conservation equation and the trace
relation of the stress tensor, respectively. These equations are subsequently utilized
for calculating two-point correlators. The final equation (64]), which characterizes
the radial flow effect of the stress tensor within the same FG coordinate system, will

be employed to compute the deformed one-point correlators.

4.1 Dynamical coordinate transformation

The gravitational partition function on the left-hand side of (58)) can be approxi-
mated as a sum over all saddles in the semiclassical limit, with the dominant saddle
being assumed to be the handlebody solution. In contrast to the solution employed
in section Bl here we fix the metric at a finite cutoff instead of on the conformal
boundary. The boundary metrics on various radial slices can be related by employ-
ing the dynamic coordinate transformation [57-H59] and Weyl transformation [36.60].

In the following, we derive the explicit form of the dynamical coordinate trans-
formation for a Riemann surface as the cutoff boundary. In a certain FG coordinate

system, the metric on a given fixed p slice is expressed in the conformal gauge as
9ii(p, 2, 2)datda? = =9 dzdz. (65)

Meanwhile, the Riemann surface at p is constructed by taking the quotient of C U
{00 }\A(I",) with respect to some Schottky group I',. To ensure the invariance of
the line element under the action of I, it is necessary for the Weyl factor w, to

satisfy the following equivariance condition,

wp(1p(2),7p(2)) = wp(2, 2) = %mw;(z)\?, (66)
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for any 7, € I',. Consider a small radial shift 6p of the cutoff boundary. The
variation of the boundary metric can be expressed in the original FG coordinate

system as follows:

8pgi5 = (95 +2pg\)0p = 87G((T33)p — 6" (Th) p9:5)9p- (67)

Under a tangential coordinate transformation dx! = e;, the metric on the new
boundary (i.e. the hard radial cutoff at p + dp) can be rewritten in the conformal

gauge, and the metric variation corresponds to an infinitesimal Weyl transformation,

0Gij = 0,9ij + Legij = 200,05 (68)

It follows that
Oz€; = —87Ge (1) ,0p,  0Ose, = —8nGe > (T..),0p, (69)
dw, = %(32”” [0.(e*7€2) + D:(e* ) — 167G (T%z) 0. (70)

The variation of the stress tensor one-point correlator is also divided into two parts:
one arises from the radial flow in the original FG coordinate system (64]), and the

other originates from the tangential coordinate transformation,
LATyy)p = eson(Tis)p + 0i€n(Tij)p + 05€r(Tik) p- (71)

Combining (&4)) ([69) (71)) we obtain

5<T22>P = <€kak =+ 28z€z)<TZZ>pv
5<T52>P = <€kak + 28262) <Tzz>p7

5(T.z), = ("0 + Ohe*)(T.2), — 2 Ge*rdet[T],6p. (72)

Next, we need to find the explicit form of the diffeomorphism ei) that satisfies (€9)).
In [36], the authors present a construction of €' on a curved plane. However, directly
extending this construction to a Riemann surface can’t be feasible, as the metric e~
and the stress tensor correlators (7%:), (7,.) and (T%;) on a Riemann surface should
exhibit “periodicity”. In the Schottky uniformization, this “periodicity” implies that
e* . (T.z), (T..), and (T%;) are automorphic forms of type (1,1), (1,1), (2,0), and

(0,2) respectively. As we vary the radial coordinate of the boundary, the Schottky
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group associated with the Riemann surface also changes, which is described by a

curve in the modular space,
To = Talp), «a=1,2,...,3g— 3. (73)

Assuming that e* and (Tj;), are already automorphic forms with respect to the
Schottky group I',. After a small radial shift dp, the metric and stress tensor cor-
relators on the new boundary should be manifested as the automorphic forms to

another Schottky group I',,s),, i.e. satisfy

2wyt 5p(2,2) _ A 2w, 160 (Vpt8p(2)Vpt5p(2
e P+ p( )_f)/erép( )fyp-i-ép(z p+op\Tp+ p() P+ p( ))’

Je
)

z)>p+5p 7p+6p< )7p+5p<z ( zz<’7p+5p< ), 7p+5p(z)>>p+6pa

|

/~
—~
Jt\z N

2)>p+5p = (7;+6p(2)) ( ZZ(Vp-i-ép(z)a7p+6p(z))>p+6pa
(

<T57(Zv 2))04—50 = (/7;;+6p(2)) <T22 7p+6p(2)77p+6p(2))>p+6p- (74)
The variations of the Weyl factor dw, and the one-point correlators 6(7};), are

determined by ([f0) and ([2), respectively. By combining these with (4], we can

deduce the periodicity conditions of €7 and ei,

€5 (10(2),7%5(2)) = 7,(2)€5(2, 2) = 07, (2),
&5 (70(2),70(2)) = 7, (2)€5(2, 2) — 67, (2). (75)

One can observe that € is not an automorphic form. It is multiple-valued on the
Riemann surface, and the discontinuity corresponds to the variation of the Schottky

group element ~,. Based on (69) and ([75]), we present the following construction,

39—3

€ = —8G5p/ e~ 2wp (WD) (T@w)p[Gfm + Z fé(bawwh d*w,
D a=1 p

P
39—3

6= =8GHp [ T, (G + Y T Fwe(70)
a=1 L

P

where D, is the fundamental domain for I',. G7,, is the Green’s function on the

Riemann surface, and {¢auw} forms a basis of the space 7—[;, both of which have
been employed in section Bl fZ is the Bers potential (as defined in appendix [A]),

which is associated with the Beltrami differential through

1
—0:fZ=ps, a=12.,3g—3. (77)
T
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fZ is not an automorphic form, and its discontinuity can be written as

Fa(10(2):70(2)) = 7,(2) fa(2, 2) = 7,(2)Z5 [l (2)- (78)

The functioxH EZ[7,)(2) is polynomial in z of degree 2 [39]. The discontinuity of
Bers potential governs the flow of the corresponding Schottky group element in the

modular space [39,[61,162],

8'7/)(2) _ l / =z _ _
o = nyp(z)_a[fyp](z), a=1,2,..3¢—3. (79)

Returning to the construction of ei) in (76), it becomes apparent, based on the
definitions in (28) and (1), that €, satisfies the differential equation (6d). Moreover,

the discontinuities of € and ei are given by

39—3
z z = a’y Z — 2w, (w,w
6p(7p<z)77p<z>) - ’}/;(Z)EP<Z7Z) == 87TG5p Z [ a:_( ) /D e 2o, )<Tww>p¢awwd2w]u
a=1 « 4
: S e Y—
6;(7/)(2)7 /YP(Z)) - 7;)(2)62(27 2) - 87TG5P Z [ a:__ /D 6—2wp(w,w) <Tww>p¢o¢wwd2w] .
a=1 @ P
(80)
Comparing equations (75) and (80), since v, = dp 329 g—l’%, we read off
dTC‘f —2wp (w, ) 2
— = 871G e YN T w) pbawwd™w, a=1,2,...,3g — 3. (81)
dp D,

One can observe that the changes in the modular parameters are also dynamic since
they depend on the deformed stress tensor correlators (i), and (Tpe),. In the
perturbative calculation, the dynamical flows (8I) of the modular parameters do
not contribute to the first-order correction of the correlator (as we will demonstrate
in the next subsection); however, they play a crucial role in computing higher-order

corrections of the correlator.

4.2 Perturbative stress tensor one-point correlator

Starting from AdS; with the boundary located at p = 0, the boundary metric is

written in the conformal gauge as g;;dz'da? = e*dzdz. Following the approach

“Moreover, =2 [7,](z) is the component of an Eichler 1-cocycle for I',,.
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in [53[63,64], the near-boundary solution is constructed by transforming Poincaré
AdSj3 using a bulk diffeomorphism that preserves the FG gauge, and the stress tensor

one-point correlator takes the form

1
(Tij) pmo = ——= (0:0jw0 — OiwoOswo — N OROrwomij + §n’“15‘kaé’zwomj)- (82)

8 G
Since wy satisfies the equivariance condition (66), it is easy to check that the com-
ponents of (7};),—o are automorphic forms. Then, we need to solve the coupled
nonlinear equations (Z0) and (72) by employing the diffeomorphism ([Z6]), while im-
posing Dirichlet boundary conditions at p = p.,

W (2,2) = P(2,2), T, =T. (83)

In general, obtaining the exact solution can be quite challenging; however, the per-

turbation method remains viable. Expanding wy and (7};),. in p,

wo(z,2) = ¢(2,2 +Zp On(2,2)s (Ty(2,2))pe = ) Pe(Ty(2.2))ny  (84)

and plugging them into (Z0) and (2)). At the leading order, (7;;)o agrees with the

CFT one-point correlator. At the subleading order, we obtain

39—3

01(2.2) = g~ G [0 (050~ 00N+ 2000 Gl + 3 S

39—3

+ (056 — (0u9)*) (9= + 20:0)(C +Z Fiaun) ) d%w].

1 . ) 39—3
(1.1 = g3 (@0~ 007 + | 020 ~ @uo0RAG + 3 i) ]
1 s - 3g §
(11 = 1505 30020~ 07 + | 020 ~ Quo)0TEL + 3 g
(Tuthy = = [0 — e — (2.0 (55)

A self-consistency check is that (7;;); satisfies both the conservation law (G2) and
the TT trace relation (63). Furthermore, since 92=2[y,](z) = 0, we can verify
that the one-point correlators (7,.); and (7%:); are indeed automorphic forms.
The deformed one-point correlators (7,,); and (T%;); involve integrals of the forms
J €U Taw)02 (G + 22 Fibawn)Pw and [ €722 (To)002 (G 32 Fbaun)d*w
which could suggest the non-locality of the 7T deformation.
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4.3 Perturbative stress tensor two-point correlator

According to the generalized GKPW relation (58]), the multi-point stress tensor
correlators can be computed by taking functional derivatives of (7;;) with respect

to the boundary metric. We specify the boundary metric as

gz(jc)< z) = A + exii (2, 2), (86)

where € is an infinitesimal parameter. The perturbed stress tensor (7;;(€)),, can be
written as a power series in €, (Tj;(€)),. = > ., e"(Tij)[pT?. Expanding the conser-

vation equation (62) the T'T trace relation (G3) in €, and the coefficients of * lead

to
i k]
(Ta)i) = A, (T + Ap (Tl + FL, (87)
O:(T.z)y) = =220, (e7*(Toa)))) + J'"k]p (88)
0. <TZZ>Lk] €2¢62(€72¢< > ) Zch (89)
Here lez]p , fi’ZLC and FZ%]/)C consist of lower-order coefficients and local functions of

Xij- A, and A, are defined by

A (Z 2) _ 87TGpc< zz( Z)>[PC]
pel €262 + 167G po(Tos(2, )2

A (n7) - 871G p(Tex(2, 2))) (90)
pel™ e2¢(2,2) + 167TGpc< zz(za 2)>[Poj

Once again, each coefficient (Tl-j)[pr? can be expanded in terms of p.. In the leading
order, (87)(88))(RI) are consistent with the differential equations of CFT correlators.

At the subleading order, we obtain

(T = 87Ge 2 ((Toa) PUT) Y+ (L)) ) + FI, (91)
0:(T ) = —87Ge® 0. [e ¢ ((Toa) ST + (T )T i)
N A S (92)

0.(To) ! = —87Ge* 0. [ ((Toe) N TN + (T )T ) B]

f 62¢8Z[ _2¢f2z1] (93)

zz1

One can observe that (ng)[lk}, (T ZZ)[lk}, and (ng)[lk} are decoupled in these differential

equations, which can be solved by employing the genus-g Green’s function defined in
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appendix[Al In this paper, we present detailed results for the 7'7-deformed two-point

correlators at the subleading order in the expansion parameter p,.

(LTt = €2 | (020 = (9:6))(Tox Tuwho + (020 — (az¢>2><ngTww>o}
39—3

i [ 1 / 672¢(z’72/)<a§/¢ _ (8 63 GZ/ ; + Z fz(baz/z/

167G

2 2 —
(07 + 2000, +50% — 3(0.0) )] (= = w)
<Tz2TzDﬁ)>1 = c.c. of <Tz2Tww>17

(TsTua) = 9| (026 — (0:0)°) (TcTua)o + (026 — (9:0)°) (TecTos))

1 2¢(z,%) 212 _ = 2¢(2,%) @)y _
— S5 0205 + 1267906 — (0.9)°) — -e®=9) |5z —w),
3g 3 a 1 2¢( ! */) !
<Tzszw 1 — Z (bazz o ww>1 - ;/1; |:€ ’ (az/ —|— 28Z'¢)Gzz

x [(02¢ — (0=¢)* ) (Torzr Tuw)o + (026 — (3z'¢)2)<Tz'z'Tww>o]} d*’
1 1
o (305 026 — (@u0)0 + (00 + 20,0020 — 4(0,6)")) G
o l —20(z,2') (92 4 )2 w w93 ([ w = w 2,/
T /De (az’(b (az (b) )(Gzzaw + Qaszz)aw< 2z’ + ; fa (bazlzl)d z i|7
<T22T1Dﬁ)>1 = c.c. of <Tzszw>17

39—3
1

Tzszw Z gbazz 1D1D - _/ |:6_2¢(Z,72,) (82’ + 28z’¢)G§;
D

a ™

% (026 — (920)*) (Lo Taa)o + (026 = (96)*) (Tow Taaho] |4

- 1671%; [1(8% — (050)%) (0w + 20,,¢) — s[> (2 — (aqu)Z)]] G
-1 61 G[ (040 — 20500y + 20,005 + (13662(;5(%10) — 0O
39—3
_ 46_2¢(w’w)|85}¢ ( w¢)2|2)] Z 1P dons), (94)

where (71;;Ty)o represent the CET two-point correlator, which has been obtained in
subsection B2l Some integral terms that imply the non-locality of the 7T deforma-

tion can also be found in the two-point stress tensor correlators.
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5 Conclusions and perspectives

In this paper, we investigate the holographic correlators of stress tensor on a higher
genus Riemann surface within the frameworks of AdSs;/CFT; and cutoff-AdS3/TT-
CFTjy, respectively. In AdS3/CFTy, we employ the near-boundary analysis to solve
Einstein’s equation and utilize the GKPW relation in the semiclassical limit for cal-
culating holographic correlators. We obtain the concrete form of the correlator with
up to four stress tensors inserted. In addition, we derive recurrence relations for a
specific class of higher-point correlators to establish connections between the n-point
and (n + 1)-point correlators. Our results are consistent with the Ward identity in
CFT, thus providing a specific validation of AdS3/CFTy with non-trivial topology.
In the context of cutoff-AdS3/TT-CFTs,, we extend the method of dynamical coor-
dinates to the Riemann surface. We provide a construction of dynamical coordinate
transformation that ensures the single-valuedness of deformed stress tensor corre-
lators on the Riemann surface. Subsequently, we employ the perturbation method
to calculate the deformed one-point and two-point stress tensor correlators at the
subleading order in the deformation parameter.

The results in this paper apply to the case where the Euclidean space is a han-
dlebody, and it would be interesting to extend our calculations to non-handlebody
solutions, such as the solution described in [45]. Furthermore, investigating holo-
graphic correlators in the presence of matter fields in the bulk is also a crucial
direction. Additionally, it is imperative to develop a non-perturbative approach for

computing holographic correlators in cutoff-AdSs.
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A Differentials and Green’s function

We start by reviewing certain aspects of differentials on a Riemann surface. After
introducing the metric ds? = g,,d¢?d¢® on the Riemann surface, the compatible

complex structure is defined as follows:

Jy = /9 %acd”, (95)

where €11 = €99 = 0, €190 = —e91 = 1. Subsequently, one can establish harmonic

coordinates (z, z) that satisfy the Beltrami equation,

0z 0z 0z 0z
b 92 _ . p 02 0%
Ja@gb Z@E“’ “ g Z@S“’ (96)

in which the metric takes the form
ds? = p(z,z)dzdz. (97)

The space of the metrics on a genus-g Riemann surface is denoted as ¢,. The
variations of the metric can be classified into two categories, with the first category

being unphysical and encompassing diffeomorphisms and Weyl transformations,
8Gi;d2'd2? = pdodzdz + pd,e*(dz)? + pdze*(dz)?, (98)

where dw = dw + 0.(pe*) + 0:(pe?) for some Weyl rescaling dw and infinitesimal
vector field €. Typically, selecting a gauge slice ¥ in ¥, is necessary to fix the
unphysical degrees of freedom, and the variations tangent to the gauge slice are
considered as physically meaningful. The physical variation is denoted as dg;;, and

it can be formally written as
8gi;d2'd2? = pSpdzdz + 6¢..(dz)? + 0¢,.(dz)>. (99)
Applying the orthogonality condition introduced in [65],
109,09l = /\/ggikgjlagijagkldQZ
= / (p&]}&p + 00,0z + @&265) d?z

=0, (100)
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we obtain
590 = 07 825¢zz - 8z@ = 0. (101)

The physical variation d¢..(2)(dz)? is known as the holomorphic quadratic differ-
ential. According to the Riemann-Roch theorem [66], the dimension of the linear
space 7—[3 for holomorphic quadratic differentials is 3g — 3 (when g > 2, and 1 when
g = 1). Thus d¢,.(z) can be parameterized by the variations of 3g — 3 complex
modular parameters {7,},

39—3

06::(2) = ) Paz:(2)07a. (102)

After selecting a basis {¢q,..} in ’H;, the dual basis in the space of Beltrami differ-

entials is defined as follows:

/ bouns (21122, ) A2 = G, (103)

where 0,5 = 1 for & =  and d,5 = 0 for a # . The construction of the basis {uZ;}
is provided in [65],

39—3

22 = Z p71<N271>a6¢5zz7
p=1

where  (N2)ag :/p_l(z,z)@(i)@m(z)d%. (104)

By choosing an appropriate basiJg {Paz2} such that (N2)ap = dap, the dual Beltrami
differential can be simplified as p?, = p~'@,.., as employed in [54)55,[61,67]. The
Beltrami differentials naturally parameterize the metrics on a Riemann surface. Se-
lect a point on the gauge slice ¥ equipped with the metric ds*(7) = p(7)dzdz, and
the metric at the neighboring point 7 4+ 07 can be expressed as

39—3

2
ds?(7 + 07) = p(7)|dz + Z e (T)oTedz] . (105)
a=1

5Given any basis for the space of holomorphic quadratic differentials, we can employ the Gram-

Schmidt orthogonalization to find a new basis satisfies (N2)ag = dag-
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On a genus-g Riemann surface, the Green’s function Gy(z, z; w,w) for J; is a

bidifferential of weight (1 — N, N) satisfies the following two equations [39],

1 —~

—0:G ;7 (2, 2w, w) = 6(2 —w) — pn(2, Z;w),

T =

1. A

;%Gi.fu( 2w, ) = —6(2 —w). (106)

Here py(z,w) is the projection kernel defined as

dim?—[f]v
= Y G w(W)bar (0N (2.2), (107)
a=1 N N

where {gbaz -} is a basis of the space ’HN for holomorphic N-differentials and
{08, ) is the dual basis of {bow...w} With respect to the Petersson inner product,
~ ~—

X N

(U e = [ (00000 (0B )0 = s (108)

In this paper, we are concerned with the case of N = 2. Since we have already

assumed that (N3)as = dap, the Petersson dual ¢7,,, is equivalent to ¢nuw. The

aww

complex conjugate ¢,.. is further substituted with the Beltrami differential puZ_,

yielding [10},39]
39—3

= >~ #ixlz ) Pawulw). (109)

For a general basis {¢,..} the projection kernel takes the form

39—3

pa(z, 7 w) = Y [(No)asphs] (2 2) S (w)- (110)
a,f=1

When employing Schottky uniformization, the exact Green’s function can be ex-

pressed by utilizing the Poincare series in the following manner [39,[54]68]G9]:

N-1 2N—-1
1 z—A;
Gz, Zw,w) = — Z(/Y/(w))N H ’
: = y(w) =z - y(w) = 4,
dlm’Hf]V Nt
3
= Y (W) (2), (111)
a=1 "
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where I' is the Schottky group and {A;} are distinct elements of the limit set A(T).

N-1

f;{\z is the Bers potential for ¢O‘Q‘5 [70L71], which can be constructed as

v A
féz _ /plN(w’ QD) Z(v/(w))N 1 — p ’y(};}) —‘i4j Qsa&kngw, (112)

The second term on the right-hand side of (ITT]) ensures that G’ *, 1s an automorphic

'U, 'lU
form in both z and w, i.e. satisfies [68]

N-1 N-1

o Y N 1-N ; _ _
G ow(1(2),7(2);w,w)(Y(2) T =G, (2 2w, W),
X et
zN 12 = / N 7\/% _ _
Gum.u( 2 y(w), y(w)) (Y (w)™ =G, (z, 2w, o). (113)

B List of three-point and four-point correlators

We show the list of all six independent three-point correlators and nine independent
four-point correlators of the CFT case in this appendix. Other correlators at the
same order can be obtained by complex conjugation. For simplicity, we will use
§; and &;; as the abbreviation of 6 (2 — z;) and §®(z; — ;). The six three-point

correlators are:

<Tzz(z)Tzz(zl 2z 22 ZazlGZZ Zuzlv z Z) <Tzz(zl)Tzz(22)>
39—3 8
+ — Z GZZ 227 sz z Z)az, <Tzz(zl)Tzz ZZ + ; ¢o¢zz 87‘a <Tzz(zl)Tzz(22)> )
(114)
(T..(2) Tz ()T ZGZ %y %5 2, 2) 0y, (Tez(21) Toz(22))

Z; 2
T 2G Z (G (20,7032, 2) ( — 802005, + 805,002 — 4006 + 2400026 — 16(05,0)°)

39—3

+20:,G% (2, Zi5 2, Z) (agl — 46;105851-)] 012 + Z Qbozzza% (Ts2(21)T%:(22)) (115)
(To2(2) T2z (21) Tz (22)) = (T22(2)T32(22)) 01 + (Tez(2)T2(21)) 02, (116)
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(Toz(2)T,2(21)T3:(22)) = (To2(2)T52(22)) 01 + (T32(2)T2x(21)) 02

1
+ ———(0,020:01 — 0,010509 — 4020:610,¢ — 4610,020:¢ + 1681020,005¢),

160G
(117)
(T2(2)Toz(21)Tez(22)) = (Tez(2)T22(22)) 01 + (T22(2)Tez(21)) 62
+ L( (8Z¢)25152 + 4010,620.¢ — 0,010,069 — 451526§¢ — 518552), (118)

167G

(To2(2)Tez(21)Toz(22)) = 2(Toz(2)Tez(21)) 02 + 2(T2z(2)Tez(22)) 61
161 = [24016:0.00.0 — 66,(0.00.5, + 0:00.62) — 63,(0.00:5, + 0:00.5,)

F 00,026+ 0.0:0:0, — 40,6,0.0:0 + 26,0.0:0, + +20,0.0:5, . (119)

And the nine four-point correlators are:

(Ta(2) T (1) s (22) Ton(23)) Z 0..G% (2, Zi; 2, 2) (Ton(21) Ton(22) Tiz(23))
+ % Z GZ;Z(ZZ‘, 5@7 z, E)azl <Tzz(zl)Tzz<Z2>Tzz(Z3)> + Z Qbazz(z)a—?_a <Tzz<zl)Tzz(Z2>Tzz<z3)> )
(120)
(Teo(2)T52(21) T35 (22) T32(25)) = % Z G*L (i, Zi; 2, 2) 05, (T3:(21) Te2(22) Ti2(23))
_ % Z G2 (201)s Zo1); 2, Z) (2 (T5:(201)) T32(202))) Oz, 1) + Oz, 1y (T22(20(1)) T22(20(2)))
oS3
+4<T25(ZU(1))T22(Z )> 0(1)¢) o(1)o(3) + Z gbazz a Tz Zl)T (ZQ)T (23)>
(121)
<T22(2)T22(21)Tzz(ZZ)TZZ(Z3)> = <TZZ(Z)TZZ(22) 22(23» 5 (Z - 21)
+ (T (2) T (20) T (23)) 6P (2 — 2) + (Tos(2) Tz (21) Tz (22)) 6@ (2 — 23), (122)

<Tz2<Z>Tz2<zl)Tz2(22)Tzz<z3>> - <Tzz<z)Tz2<zl>Tz2<Z2)> 53 + <Tz2<z>Tz2<z2)Tzz(23)> 51
+ (Toz(2)Toz(21) ez (23)) 02 — 2 (T (2)Toz(22)) 6103 — 2 (T%2(2)Tez(21)) 0203

1
+ 160G [ — 4610503(0.0)* — 1261620, 00.65 + 2610.620.03 + 2650.610.03 + 461050302
+ 251520353} , (123)
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(Toz(2) T (21) Tox(22) T35 (23)) = (T2a(2)T2(21)T35(23)) 02 + (T22(2) 1oz (22) T52(23)) 61
-+ <T22(2)Tzz(Z1)Tzz(Z2>> 53 + ﬁ [ 8535162528Z(]5 — 8535262«(5162«(]5 -+ 2518z528z53

+26,0,0,0.04 + 453@5@52] , (124)
<Tz2<Z>Tz2<zl)Tzz(22)Tzz<z3>> - <Tzz<z)Tz2<zl>Tzz<Z2)> 53 + <TZZ<Z>TZZ<ZI> zz(23)> 52
— 2(T..(2)T}2(22)) 0103 — 2 (122 (2) T2 (23)) 010, (125)

(e ()T (2) T () T (28)) = (Ton (o) Tor (1) T (25)) B+ (T (1) s (22)) B
 {Ten (o) Ter(25)) 02 — {Ter(2) T (22)) s + o

+ 8020305010,¢ + 801020,0305¢ + 802030,01050 + 010,020503 — 0105020,03 — 20205010,03

— 480102030, 00:¢ + 8910305020, ¢

— 2650:6,0.51) (126)

T
N
Y
~~
I
S——
o3
|
~~
N
g
N—
o3
Y
—
N
[\]
N—
&3
N
~~
N
w
S——
=

= 2(T.2(2)T.2(22) Toz(23)) 01 + 2 (T2z(2) Tz (21)Thz(23)) 02
(2)T%2(21)T22(22)) (03 + 613 + d23) — 6 (T22(2)T.z(21)) 0203
— 6 (T,2(2)T.5(22)) 0103 — 4 (T,5(2)T.5(23)) 6109 + 6 (T5(2)) 619203

[ — 240,5(1)05(2)00(3) 020020 + 1205(1)00(2) 0z05(3) 0. ¢

gED3
+ 12045(1)00(2) 02 05.(3) 02 — 305(1)0205(2) 0z05(3) + 605(1)05(2)05(3) 02020
— 350(1)50(2)@3550(3)} : (127)

(T (2) T2z (21) Toz(22) T2 (23)) = i[—‘leiz(Zz,Zz;Z,Z)a@ (T.2(21)Tz(22)) 0a3
+2G7, (21, 713 2, 2) 0z, (Tea(21) Tez(22)) 013 + 2G7L, (21, 213 2, 2) 0z, (Tea(21)T32(23)) 012
+ 16G™, (22, 223 2, 2) (T22(21)T32(22)) 02305, — 4G*2, (22, 225 2, Z) (T52(21) T35(22)) O, 023
— 4G (23, 235 2, 2) (122(21) T2(23)) Oz 003 + G™2 (23, 235 2, 2) Oz (Tea(21)T52(22) T2 (23))
+ G7(22, 22 2, 2) 0z (T2(21) Tz (22) To2(23)) — G7Lu(21, 215 2, 2) 0z (T (21) T2(22) Tz (23)
+4G™ (21, 215 2, Z) (Tea(21)T32(22) T32(23)) 020 @ + 2G7L (21, 215 2, 2) 0z, (Tea(21)T55(22) Ti2(23))
+20,,G?L (21,21; 2, 2) (To.(21)Tz5(22) T52(23)) }

! {6220, 2212, ) | 20801202 (02,0)%0-,6) — 800200,0120-, 60,6

16m2G
+ 80512852 523832 ¢852¢ + 16652 (512523832 gb) — 48512523632 gb@%gb + 8523822 512632¢)

+

— 40019020930, — 4020230.,612 — 3203,0930,,01202,¢ — 40z,(0.,01202,023)
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+ 45238225126§2¢> + 88;2523832512 — 52512632523(822@2 + 200.,09305,01205, ¢
+ 120, (81203,09305,0) + 126190,, 02302, ¢ — 20,,0230%, 619 — 60, (01202, 623)
— 11201202303, 90,0z, @ + 1602303,0120,,05,¢ + 801205,0230.,0z,¢ + 403,0230,,05,012

— 80120.,03,09305, ¢ — 405, (0120, 0s,003) + 246190230.,0% ¢ + 46150.,02 523}

+ aZQGZ§Z<22, 52; Z, 5) [12512652523832(b — 6512822(523] + 822 GZEZ(ZQ, 22; Z, 2) [16(5125238Z2(b

— 40.,6120,02 — 401200500 | } + 3 6712 G{ZQ o 2}
3g—3

3 G (T () T22) T (2)) (128)

07

References

[1] J. M. Maldacena, The Large N limit of superconformal field theories and
supergravity, Adv. Theor. Math. Phys. 2 (1998) 231-252, [hep-th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators
from noncritical string theory, Phys. Lett. B 428 (1998) 105-114,
[hep-th/9802109)].

[3] E. Witten, Anti-de Sitter space and holography,
Adv. Theor. Math. Phys. 2 (1998) 253-291, [hep-th/9802150].

[4] A. B. Zamolodchikov, Irreversibility of the Flux of the Renormalization Group
in a 2D Field Theory, JETP Lett. 43 (1986) 730-732.

[5] H. Liu and A. A. Tseytlin, On four point functions in the CFT / AdS
correspondence, Phys. Rev. D 59 (1999) 086002, [hep-th/9807097].

[6] E. D'Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli,
Graviton and gauge boson propagators in AdS(d+1),
Nucl. Phys. B 562 (1999) 330-352, [hep-th/9902042].

[7] G. Arutyunov and S. Frolov, Three point Green function of the stress energy
tensor in the AdS / CFT correspondence, Phys. Rev. D 60 (1999) 026004,
[hep-th/9901121].

31


http://dx.doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1103/PhysRevD.59.086002
https://arxiv.org/abs/hep-th/9807097
http://dx.doi.org/10.1016/S0550-3213(99)00524-6
https://arxiv.org/abs/hep-th/9902042
http://dx.doi.org/10.1103/PhysRevD.60.026004
https://arxiv.org/abs/hep-th/9901121

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Raju, Four Point Functions of the Stress Tensor and Conserved Currents

in AdS,/CFTs, Phys. Rev. D 85 (2012) 126008, [1201.6452].

D. Friedan and S. H. Shenker, The Analytic Geometry of Two-Dimensional
Conformal Field Theory, |Nucl. Phys. B 281 (1987) 509545,

T. Eguchi and H. Ooguri, Conformal and Current Algebras on General
Riemann Surface, Nucl. Phys. B 282 (1987) 308-328.

S. He and Y.-Z. Li, Genus two correlation functions in CFTs with TT
deformation, |Sci. China Phys. Mech. Astron. 66 (2023) 251011,
[2202.04810].

S. He, Y. Li, Y.-Z. Li and Y. Zhang, Holographic torus correlators of stress
tensor in AdSs; /CFT,, JHEP 06 (2023) 116, [2303.13280].

S. He, Y. Li, Y.-Z. Li and Y. Zhang, Note on holographic torus stress tensor
correlators in AdSs gravity, 2405.01255.

S. He, Y.-Z. Li and Y. Zhang, Holographic torus correlators in AdSs gravity
coupled to scalar field, [2311.09636.

S. He and Y. Li, Holographic Fuclidean thermal correlator,
JHEP 03 (2024) 024, [2308.13518].

K. Krasnov, Holography and Riemann surfaces,

Adv. Theor. Math. Phys. 4 (2000) 929-979, [hep-th/0005106].

X. Yin, Partition Functions of Three-Dimensional Pure Gravity,

Commun. Num. Theor. Phys. 2 (2008) 285-324, [0710.2129].

X. Yin, On Non-handlebody Instantons in 3D Gravity, JHEP 09 (2008) 120,
[0711.2803].

S. Giombi, A. Maloney and X. Yin, One-loop Partition Functions of 3D
Gravity, JHEP 08 (2008) 007, [0804.1773].

32


http://dx.doi.org/10.1103/PhysRevD.85.126008
https://arxiv.org/abs/1201.6452
http://dx.doi.org/10.1016/0550-3213(87)90418-4
http://dx.doi.org/10.1016/0550-3213(87)90686-9
http://dx.doi.org/10.1007/s11433-022-2049-1
https://arxiv.org/abs/2202.04810
http://dx.doi.org/10.1007/JHEP06(2023)116
https://arxiv.org/abs/2303.13280
https://arxiv.org/abs/2405.01255
https://arxiv.org/abs/2311.09636
http://dx.doi.org/10.1007/JHEP03(2024)024
https://arxiv.org/abs/2308.13518
http://dx.doi.org/10.4310/ATMP.2000.v4.n4.a5
https://arxiv.org/abs/hep-th/0005106
http://dx.doi.org/10.4310/CNTP.2008.v2.n2.a1
https://arxiv.org/abs/0710.2129
http://dx.doi.org/10.1088/1126-6708/2008/09/120
https://arxiv.org/abs/0711.2803
http://dx.doi.org/10.1088/1126-6708/2008/08/007
https://arxiv.org/abs/0804.1773

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

B. Chen and J.-q. Wu, 1-loop partition function in AdSs/CFT,,
JHEP 12 (2015) 109, [1509.02062].

C. Fefferman and C. R. Graham, Conformal invariants, ” Elie Cartan et les

Mathematiques d’Aujourd’hui,” Asterisque, hors serie (1985) 95-116.

M. Henningson and K. Skenderis, The Holographic Weyl anomaly,
JHEP 07 (1998) 023, [hep-th/9806087].

S. de Haro, S. N. Solodukhin and K. Skenderis, Holographic reconstruction of
space-time and renormalization in the AdS / CFT correspondence,

Commun. Math. Phys. 217 (2001) 595-622, [hep-th/0002230].

K. Skenderis and S. N. Solodukhin, Quantum effective action from the AdS /
CFT correspondence, |Phys. Lett. B 472 (2000) 316-322, [hep-th/9910023].

C. Fefferman and C. R. Graham, The ambient metric (AM-178). Princeton
University Press, 2012.

A. B. Zamolodchikov, Ezpectation value of composite field T anti-T in
two-dimensional quantum field theory, hep-th/0401146.

F. A. Smirnov and A. B. Zamolodchikov, On space of integrable quantum field
theories, Nucl. Phys. B 915 (2017) 363-383, [1608.05499].

L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with
TT, JHEP 04 (2018) 010, [1611.03470].

P. Kraus, J. Liu and D. Marolf, Cutoff AdSs versus the TT deformation,
JHEP 07 (2018) 027, [1801.02714].

S. Hirano and M. Shigemori, Random boundary geometry and gravity dual of
TT deformation, | JHEP 11 (2020) 108, [2003.06300].

S. He and Y. Sun, Correlation functions of CFTs on a torus with a TT
deformation, |Phys. Rev. D 102 (2020) 026023, [2004.07486].

33


http://dx.doi.org/10.1007/JHEP12(2015)109
https://arxiv.org/abs/1509.02062
http://dx.doi.org/10.1088/1126-6708/1998/07/023
https://arxiv.org/abs/hep-th/9806087
http://dx.doi.org/10.1007/s002200100381
https://arxiv.org/abs/hep-th/0002230
http://dx.doi.org/10.1016/S0370-2693(99)01467-7
https://arxiv.org/abs/hep-th/9910023
https://arxiv.org/abs/hep-th/0401146
http://dx.doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
http://dx.doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
http://dx.doi.org/10.1007/JHEP07(2018)027
https://arxiv.org/abs/1801.02714
http://dx.doi.org/10.1007/JHEP11(2020)108
https://arxiv.org/abs/2003.06300
http://dx.doi.org/10.1103/PhysRevD.102.026023
https://arxiv.org/abs/2004.07486

32]

[35]

[36]

[37]

[38]

Y. Li and Y. Zhou, Cutoff AdSs versus TT CFT, in the large central charge
sector: correlators of energy-momentum tensor, JHEP 12 (2020) 168,
[2005.01693].

S. Hirano, T. Nakajima and M. Shigemori, TT Deformation of stress-tensor
correlators from random geometry, JHEP 04 (2021) 270, [2012.03972].

S. He, Y. Sun and J. Yin, A systematic approach to correlators in TT
deformed CFTs,2310.20516.

Y. Jiang, Expectation value of TT operator in curved spacetimes,

JHEP 02 (2020) 094, [1903.07561].

P. Caputa, S. Datta, Y. Jiang and P. Kraus, Geometrizing TT,
JHEP 03 (2021) 140, [2011.04664].

B. Maskit, Kleinian groups, vol. 287. Springer Science & Business Media,
2012.

W. P. Thurston, Three-Dimensional Geometry and Topology, Volume 1.
Princeton University Press, Princeton, 1997, doi:10.1515/9781400865321.

M. P. Tuite, Meromorphic Ezxtensions of Green’s Functions on a Riemann

Surface, 1912.07947.

P. G. Zograf and L. A. Takhtadzhyan, On uniformization of Riemann surfaces
and the Weil-Petersson metric on Teichmiiller and Schottky spaces,

Mathematics of the USSR-Sbornik 60 (1988) 297.

P. Koebe, Uber die Uniformisierung der algebraischen Kurven. IV, Math.
Ann. 75 (1914) 42-129.

R. Hidalgo, On the retrosection theorem, Proyecciones (Antofagasta) 27
(2008) 29-61.

S. Aminneborg, I. Bengtsson, D. Brill, S. Holst and P. Peldan, Black holes
and wormholes in (2+1)-dimensions, Class. Quant. Grav. 15 (1998) 627644,
[gr-qc/9707036].

34


http://dx.doi.org/10.1007/JHEP12(2020)168
https://arxiv.org/abs/2005.01693
http://dx.doi.org/10.1007/JHEP04(2021)270
https://arxiv.org/abs/2012.03972
https://arxiv.org/abs/2310.20516
http://dx.doi.org/10.1007/JHEP02(2020)094
https://arxiv.org/abs/1903.07561
http://dx.doi.org/10.1007/JHEP03(2021)140
https://arxiv.org/abs/2011.04664
http://dx.doi.org/doi:10.1515/9781400865321
https://arxiv.org/abs/1912.07947
http://dx.doi.org/10.1088/0264-9381/15/3/013
https://arxiv.org/abs/gr-qc/9707036

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

D. Brill, Black holes and wormholes in (2+1)-dimensions, Lect. Notes Phys.
537 (2000) 143, [gr-qc/9904083].

J. M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02 (2004) 053,
[hep-th/0401024].

K. Skenderis and B. C. van Rees, Holography and wormholes in 2+1
dimensions, |Commun. Math. Phys. 301 (2011) 583-626, [0912.2090].

V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S. F. Ross,
Multiboundary Wormholes and Holographic Entanglement,
Class. Quant. Grav. 31 (2014) 185015, [1406.2663].

K. Skenderis and B. C. van Rees, Real-time gauge/gravity duality,
Phys. Rev. Lett. 101 (2008) 081601, [0805.0150].

K. Skenderis and B. C. van Rees, Real-time gauge/gravity duality:
Prescription, Renormalization and Examples, JHEP 05 (2009) 085,
[0812.2909)].

J. D. Brown and M. Henneaux, Central Charges in the Canonical Realization
of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,

Commun. Math. Phys. 104 (1986) 207-226.

H. Maxfield, S. Ross and B. Way, Holographic partition functions and phases
for higher genus Riemann surfaces, |Class. Quant. Grav. 33 (2016) 125018,
[1601.00980].

J. Wien, Numerical Methods for Handlebody Phases, 1711 .02711.

K. Krasnov, On holomorphic factorization in asymptotically AdS 3-D gravity,
Class. Quant. Grav. 20 (2003) 4015-4042, [hep-th/0109198].

E. J. Martinec, Conformal Field Theory on a (Super)Riemann Surface,
Nucl. Phys. B 281 (1987) 157.

E. D'Hoker and D. H. Phong, The Geometry of String Perturbation Theory,
Rev. Mod. Phys. 60 (1988) 917.

35


https://arxiv.org/abs/gr-qc/9904083
http://dx.doi.org/10.1088/1126-6708/2004/02/053
https://arxiv.org/abs/hep-th/0401024
http://dx.doi.org/10.1007/s00220-010-1163-z
https://arxiv.org/abs/0912.2090
http://dx.doi.org/10.1088/0264-9381/31/18/185015
https://arxiv.org/abs/1406.2663
http://dx.doi.org/10.1103/PhysRevLett.101.081601
https://arxiv.org/abs/0805.0150
http://dx.doi.org/10.1088/1126-6708/2009/05/085
https://arxiv.org/abs/0812.2909
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1088/0264-9381/33/12/125018
https://arxiv.org/abs/1601.00980
https://arxiv.org/abs/1711.02711
http://dx.doi.org/10.1088/0264-9381/20/18/311
https://arxiv.org/abs/hep-th/0109198
http://dx.doi.org/10.1016/0550-3213(87)90252-5
http://dx.doi.org/10.1103/RevModPhys.60.917

[56] J. D. Brown and J. W. York, Jr., Quasilocal energy and conserved charges
derived from the gravitational action, Phys. Rev. D 47 (1993) 14071419,
l[gr-qc/9209012].

[57] S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of
Quantum Gravity, JHEP 09 (2012) 133, [1205.6805].

[58] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS,
holography and TT,|JHEP 09 (2017) 136, [1706.06604].

[59] R. Conti, S. Negro and R. Tateo, The TT perturbation and its geometric
interpretation, JHEP 02 (2019) 085 [1809.09593].

[60] J. Tian, On-shell action of TT-deformed Holographic CFTs,2306.01258!

[61] K. Roland, Beltrami differentials and ghost correlators in the Schottky
parametrization, Phys. Lett. B 312 (1993) 441-450.

[62] S. Playle, Deforming super Riemann surfaces with gravitinos and super

Schottky groups, | JHEP 12 (2016) 035, [1510.06749].

[63] C. Imbimbo, A. Schwimmer, S. Theisen and S. Yankielowicz, Diffeomorphisms
and holographic anomalies, |Class. Quant. Grav. 17 (2000) 1129-1138;
[hep-th/9910267].

[64] K. Skenderis, Asymptotically Anti-de Sitter space-times and their stress energy
tensor, \Int. J. Mod. Phys. A 16 (2001) 740-749, [hep-th/0010138].

[65] A. A. Belavin and V. G. Knizhnik, Complez Geometry and the Theory of
Quantum Strings, Sov. Phys. JETP 64 (1986) 214-228.

[66] M. Nakahara, Geometry, topology and physics. 2003.

[67] S. B. Giddings, Conformal Techniques in String Theory and String Field
Theory, Phys. Rept. 170 (1988) 167.

36


http://dx.doi.org/10.1103/PhysRevD.47.1407
https://arxiv.org/abs/gr-qc/9209012
http://dx.doi.org/10.1007/JHEP09(2012)133
https://arxiv.org/abs/1205.6805
http://dx.doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
http://dx.doi.org/10.1007/JHEP02(2019)085
https://arxiv.org/abs/1809.09593
https://arxiv.org/abs/2306.01258
http://dx.doi.org/10.1016/0370-2693(93)90980-V
http://dx.doi.org/10.1007/JHEP12(2016)035
https://arxiv.org/abs/1510.06749
http://dx.doi.org/10.1088/0264-9381/17/5/322
https://arxiv.org/abs/hep-th/9910267
http://dx.doi.org/10.1142/S0217751X0100386X
https://arxiv.org/abs/hep-th/0010138
http://dx.doi.org/10.1016/0370-1573(88)90096-8

[68] A. McIntyre and L. A. Takhtajan, Holomorphic factorization of determinants
of laplacians on Riemann surfaces and a higher genus generalization of

kronecker’s first limit formula, Analysis 16 (2006) 1291, [math/0410294].

[69] P. Di Vecchia, F. Pezzella, M. Frau, K. Hornfeck, A. Lerda and S. Sciuto, N
Point g Loop Vertex for a Free Fermionic Theory With Arbitrary Spin,
Nucl. Phys. B 333 (1990) 635-700.

[70] L. Bers, Inequalities for finitely generated Kleinian groups,
Journal d’Analyse Mathématique 18 (1967) 23-41.

[71] L. Bers, Eichler integrals with singularities,

Acta Mathematica 127 (1971) 11-22.

37


https://arxiv.org/abs/math/0410294
http://dx.doi.org/10.1016/0550-3213(90)90135-Z
http://dx.doi.org/10.1007/BF02798032
http://dx.doi.org/10.1007/BF02392049

	Introduction
	Holography of Riemann surfaces
	Holographic correlators of higher genus CFT
	Holographic setup and one-point correlators
	Two-point correlators
	Recurrence relations and higher-point correlators

	Holographic correlators at finite cutoff
	Dynamical coordinate transformation
	Perturbative stress tensor one-point correlator
	Perturbative stress tensor two-point correlator

	Conclusions and perspectives
	Differentials and Green's function
	List of three-point and four-point correlators

