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Gravitational wave observations of black hole-neutron star binaries, particularly those where the black
hole has a lower mass compared to other observed systems, have the potential to place strong constraints on
modifications to general relativity that arise at small curvature length scales. Here we study the dynamics of
black hole-neutron star mergers in shift-symmetric Einstein-scalar-Gauss-Bonnet gravity, a representative
example of such a theory, by numerically evolving the full equations of motion. We consider quasi-circular
binaries with different mass-ratios that are consistent with recent gravitational wave observations, including
cases with and without tidal disruption of the star, and quantify the impact of varying the coupling
controlling deviations from general relativity on the gravitational wave signal and scalar radiation. We find
that the main effect on the late inspiral is the accelerated frequency evolution compared to general relativity,
and that—even considering Gauss-Bonnet coupling values approaching those where the theory breaks
down—the impact on the merger gravitational wave signal is mild, predominately manifesting as a small
change in the amplitude of the ringdown. We compare our results to current post-Newtonian calculations
and find consistency throughout the inspiral.
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I. INTRODUCTION

The growing number of gravitational wave observations
[1–4] has opened up new opportunities to probe the strong
gravity regime governing the coalescence of compact
binary systems, marking a new chapter for tests of general
relativity (GR) [5–15]. To robustly test GR in this highly
dynamical and nonlinear regime, we need accurate pre-
dictions in modified theories of gravity that cover the full
inspiral, merger, and ringdown of compact object binaries.
Many proposed modifications to GR rely on effective

field theory arguments [16,17], and hence result from
adding additional curvature terms to the Einstein-Hilbert
action multiplied by some coupling constants with (pos-
itive) dimensions of length. Examples include not only the
most generic Horndeski theories [18] and dynamical
Chern-Simons gravity [19], but also theories that add
higher-dimensional curvature operators without introduc-
ing new light degrees of freedom [20,21]. It is then natural
to expect that such alternative theories of gravity exhibit the

strongest deviations in the presence of the shortest curva-
ture length scales. This makes the smallest mass compact
objects ideal probes for finding evidence of, or constraining
such theories.
In this paper, we study how black hole-neutron star

(BHNS) mergers can be used to probe a representative
modified theory of gravity introducing modifications to GR
at small curvature length scales, namely Einstein-scalar-
Gauss-Bonnet (EsGB) gravity. An interesting aspect of
EsGB gravity is that neutron stars carry no scalar charge,
while black holes do [22–27]. This means that unlike
Damour-Esposito-Farese scalar-tensor (ST) theories [28],
where neutron stars develop a scalar charge and black holes
do not [29–32], EsGB gravity evades binary pulsar system
constraints based on dipolar radiation [5,33],1 and instead
one has to search for observational signatures in other
ways, such as through compact object merger dynamics.
An important feature of EsGB gravity is the emission of
scalar radiation in addition to the usual tensor radiation
found in GR [37]. Similar to ST theories, the leading scalar
radiation is dipolar, and thus dominates over quadrupolar
gravitational waves at low frequencies [38]. The strength of*Contact author: maxence.corman@aei.mpg.de
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1We note that while ST theories are strongly constrained by
binary pulsar observations [5,33], there are examples where the
neutron star undergoes spontaneous scalarization (dynamical
[34,35] or induced [28,29]) or the scalar field is massive [36],
which suppresses effects at the separations currently observed,
hence avoiding current constraints.
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this radiation depends not only on the scalar charge of the
compact objects, which is inversely proportional to the
square of the smallest mass black hole in the system, but
also on the square of the difference between the charges of
the constituent objects [38]. Therefore, if two objects
possess similar charges, such as in an equal or near equal
mass binary black hole merger, the dipolar radiation will be
suppressed. Conversely, the strongest constraints on EsGB
gravity, as well as ST theories, can come from a mixed
binary consisting of ideally a small black hole and a
neutron star, as only one of them carries a scalar charge.
Recently, in Ref. [39], fully nonlinear numerical simula-
tions were used to study a BHNS merger in ST theory,2

focusing on how the gravitational wave emission is affected
by the spontaneous scalarization of the neutron star.
Considering a binary with parameters consistent with the
gravitational wave event GW200115 [40], Ref. [39] found
that the ST system inspiraled faster than its GR counterpart
due to the emission of scalar radiation, showing good
agreement with predictions from post-Newtonian (PN)
theory during the inspiral.
In the third observing run of the Advanced LIGO [41],

Advanced Virgo [42], and KAGRA [43,44] network of
gravitational wave detectors, the LIGO-Virgo detectors
observed GW200105 and GW200115, the first gravita-
tional wave detections from the mergers of BHNS systems
[40]. By adopting the leading order (dipolar) PN cor-
rection, Ref. [45] derived the strongest bound on coupling
constant of theory at that time to be on the order
of kilometer or less. This was achieved through a
Bayesian Markov-chain Monte Carlo analysis combining
GW200105, GW200115, GW190814 [46],3 and selected
binary black hole events. More recently, the LIGO-Virgo-
KAGRACollaboration (LVK) reported the observation of a
compact object binary merger in May 2023, GW230529,
with component masses 3.6þ0.8

−1.2M⊙ and 1.4þ0.6
−0.2M⊙, the

most probable interpretation of which is the coalescence of
a black hole in the lower mass gap and a neutron star [47].
To verify whether GW230529 is consistent with GR, the
LVK collaboration performed so-called parametrized tests,
searching for parametric deviations to the gravitational
wave phase during the inspiral, specifically using the
TIGER [48,49] and FTI [50] frameworks. For all waveform
models and PN orders so far considered, GW230529
was found to be consistent with GR, with constraints on
the -1PN (dipolar) coefficient being an order of magnitude
tighter than previous bounds for BHNS and binary black
hole (BBH) mergers reported by the collaboration [47].
Applying the same methods as Ref. [45] to GW230529,
Ref. [51] improved the bounds on coupling constant by a

factor of approximately four. Alternatively, mapping
the -1PN constraints from FTI tests to a constraint on
the coupling constant in EsGB gravity, Ref. [52] also
obtained a tighter bound on coupling constant. With
upcoming improvements in the sensitivity of the LVK
gravitational wave detectors [53], as well as future third-
generation ground-based detectors [54,55], it is thus timely
and vital to provide predictions of gravitational wave
signals from BHNS binaries in EsGB gravity. Although
significant progress has been made in modeling compact
object mergers in EsGB gravity using PN theory
[37,38,56–58], as one approaches the merger, PN theory
breaks down, and numerical relativity is required. For
EsGB gravity, numerical relativity has been used to study
binary neutron star and binary black hole systems, solving
the full equations [59–64], and using a decoupling or order-
by-order approximation [65–68]. See also Ref. [69] for a
comparison of the different approaches for treating mod-
ifications to full general relativity that have been used to
study binary black hole mergers.
However, a simulation of a BHNS merger in EsGB

gravity is still missing. In this work, we aim to fill this gap
and take advantage of recent advances in solving the full
equations of shift-symmetric EsGB gravity to study the
nonlinear dynamics of BHNS mergers in this theory. In
particular, we make use of the modified harmonic formu-
lation [70,71] and methods developed in Refs. [59,60,62]
for evolving black holes and neutron stars in shift-sym-
metric EsGB gravity. We focus on how the gravitational
wave emission is impacted by the presence of an additional
energy dissipation channel.
Motivated by the LVK observations, we consider two

binary systems, namely one consistent with GW200115,
and another with GW230529. For the latter, we choose an
equation of state (EOS) and mass ratio so that the neutron
star is tidally disrupted. For coupling values comparable to
the upper bound obtained from GW200115, we find a
noticeable dephasing in the gravitational wave signal
compared to GR in the inspiral. However, in the last few
orbits, the rate of dephasing becomes small (even being
consistent with zero or indicating a slower inspiral rate for
EsGB compared to GR to within the numerical errors). In
part due to this suppression, we find the PN approximation
to be consistent with our results into the late inspiral. We
also study the effect of modifications to GR on the merger
and ringdown signal. We find that the effect on the peak
amplitude of the gravitational wave signal is small, with the
relative change in the ringdown frequency being at most on
the order of ∼1% for the largest couplings we consider,
while the amplitude of ringdown signal can vary by ∼10%
for the GW200115-like binary. We observe a amplification
(or suppression) in the amplitude of ringdown gravitational
wave signal with increasing coupling when neutron star is
(or not) tidally disrupted. We conjecture that the amplifi-
cation is due to the neutron star being more compact
and less strongly tidally disrupted for larger couplings.

2ST theories do not modify the principal part of the Einstein
equations and can be evolved in the same way.

3This event is consistent with both a binary black hole and a
BHNS binary.
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Finally, in the case where neutron star is tidally disrupted,
we find that the amount of mass remaining outside black
hole after the merger decreases slightly with increasing
coupling when fixing the EOS.
The remainder of this paper is organized as follows.

We review the theory we consider, shift-symmetric EsGB
gravity, in Sec. II. We describe our numerical methods for
evolving this theory coupled to hydrodynamics and analyz-
ing the results in Sec. III. Results from our study of BHNS
binaries in shift-symmetric EsGB gravity are presented in
Sec. IV. We discuss these results and conclude in Sec. V. We
discuss the accuracy our simulations in theAppendix.Weuse
geometric units: G ¼ c ¼ 1, a metric sign convention of
−þþþ, and lower case Latin letters to index spacetime
indices. The Riemann tensor is Ra

bcd ¼ ∂cΓa
db − � � �.

II. SHIFT-SYMMETRIC EINSTEIN SCALAR
GAUSS BONNET GRAVITY

The action for shift-symmetric EsGB gravity is

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − ð∇ϕÞ2 þ 2λϕGÞ þ Smatter; ð1Þ

where g is the determinant of spacetime metric and G is the
Gauss-Bonnet scalar

G≡ R2 − 4RabRab þ RabcdRabcd: ð2Þ
Here, λ is a constant coupling parameter that, in geometric
units, has dimensions of length squared, ϕ is the scalar field
and Smatter is the action for any other matter (in our case the
neutron star fluid). As the Gauss-Bonnet scalar G is a total
derivative in four dimensions, we see that the action is
preserved up to total derivatives under constant shifts in the
scalar field: ϕ → ϕþ constant.
The covariant equations of motion for shift-symmetric

EsGB gravity are

□ϕþ λG ¼ 0; ð3Þ

Rab −
1

2
gabRþ 2λδefcdijgðagbÞdR

ij
ef∇g∇cϕ ¼ 8πTab; ð4Þ

where δabcdefgh is the generalized Kronecker delta tensor and
Tab ¼ TSF

ab þ Tmatter
ab with

TSF
ab ≡ 1

8π

�
∇aϕ∇bϕ −

1

2
ð∇ϕÞ2gab

�
: ð5Þ

We do not introduce any nonminimal coupling for the
matter in the Einstein frame, and the equations of motion
for the matter terms are the same as in GR.
Schwarzschild and Kerr black holes are not stationary

solutions in this theory: if one begins with such vacuum
initial data, the black holes will dynamically develop stable
scalar clouds (hair). The end state is a black hole with
nonzero scalar chargeQSF, such that at large radius the scalar

field falls of like ϕ ¼ QSF=rþOð1=r2Þ. Furthermore,
studies have found that stationary solutions exist, as long
as the coupling normalized by the total black hole mass
as measured at infinity m, λ=m2, is sufficiently small
[24,25,60,72]. In particular, regularity of black hole solutions
and hyperbolicity of the theory set λ=m2 ≲ 0.23 for non-
spinning black holes, [25,72].
Neutron stars, in contrast to black holes, do not have a

scalar charge in EsGB gravity [37,56]. However, it is
important to note that despite not having a scalar charge, a
neutron star in EsGB gravity will still be surrounded by a
scalar cloud (sourced by the Gauss-Bonnet invariant). The
lack of scalar charge arises because the scalar field decays
much more rapidly than with 1=r, as would be required for
the neutron star to have a scalar charge. Neutron stars in
shift-symmetric EsGB gravity were studied (restricting to
spherical symmetry) in Ref. [73], where it was numerically
found that (independently of the equation of state of
neutron star) turning on the EsGB coupling tends to reduce
the maximum gravitational mass or increase the central
density when a solution exists. It was further analytically
shown that depending on the value of the coupling and
neutron star EOS, there is a maximum central density
beyond which no spherically symmetric perfect fluid
solutions can be constructed.
In general, the equations of motion for EsGB gravity can

only be evolved in time in a well-posed manner for weakly-
coupled solutions [60,61,70,71,74].4 In earlier studies of
collapse and black hole and neutron star binaries in EsGB
gravity, it was found that when the coupling of the theory is
made too large, the compact objects can evolve from an
initial weakly coupled state, to a strongly coupled state,
where the hyperbolicity of the evolution equations breaks
down, although approaching this limit does not appear to be
preceded by any singular behavior developing in the metric
or scalar field [59,60,62,74–77]. Here we find evidence that
this breakdown happens in BHNS mergers not only when a
black hole scalarizes, but also sometimes when the scalar
field in the neutron star grows in magnitude, leading to an
increase in the star’s density. However, this breakdown
occurs for coupling values comparable to or larger than the
best existing constraints on EsGB gravity and approaching
this limit does not appear to be preceded by dramatically
different spacetime and/or scalar field dynamics.

III. METHODS

A. Evolution equations and code overview

We numerically evolve the full shift-symmetric EsGB
equations of motion using the modified generalized

4Weak coupling means that the Gauss-Bonnet corrections to
the equations of motion remain sufficiently small compared to the
leading two-derivative terms. This is consistent with strong-field
black hole dynamics provided the size of the smallest black hole
in the system is larger than the length scale.
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harmonic formulation [70,71]. We use similar choices for
the gauge and numerical parameters as in Ref. [60]. We
model the neutron star using ideal hydrodynamics. The
Euler equations are the same as in GR, and evolved using
the hydrodynamics code described in Ref. [78]. We use the
same methods and parameters for evolving BHNS binaries
as in Ref. [79]. Our simulations use box-in-box adaptive
mesh refinement provided by the PAMR library [80]. We
typically use seven levels of mesh refinement in our
simulations, unless otherwise noted. We provide details
on numerical resolution and convergence in the Appendix.

B. Initial data and cases considered

We use quasicircular BHNS binary initial data con-
structed with the Frankfurt University/Kadath (FUKA)
Initial Data code suite [81], which is based on an extended
version of the KADATH spectral solver library [82]. We
choose ϕ ¼ ∂tϕ ¼ 0 on the initial time slice, in which case
the constraint equations of shift-symmetric EsGB gravity
reduce to those of vacuum GR. We slowly ramp on the
coupling of the theory as described in Appendix B of
Ref. [83], in such a way that the scalar field grows on a
timescale that is short compared with the orbital binary
timescale. The set of hydrodynamical evolution equations
are closed by an equation of state connecting pressure p to
specific internal energy ϵ and rest mass density ρ, i.e.,
p ¼ pðρ; ϵÞ. Though in general it would be interesting to
consider different EOSs in order to determine how this
impacts the results and to test for possible degeneracies, for
this first study we consider a single one for the neutron star.
We use a cold piecewise polytropic EOS [84] approximat-
ing the ALF2 EOS [85] for the neutron star. This proto-
typical stiff EOS predicts the radius of a 1.4M⊙ neutron star
to be R1.4 ∼ 12.32 km [86], has a maximum mass of
∼2.0M⊙ for nonspinning stars [85], and is consistent with
pulsar observations [87–91], with both electromagnetic
and gravitational wave observations [92–97] of the binary
neutron star event GW170817 [98], as well as the gravi-
tational wave observations of GW190814 [99] and
GW190425 [100]. Thermal effects are added to the zero-
temperature polytrope with an additional pressure contribu-
tion of the form pth ¼ ðΓth − 1Þρϵ, where ϵth denotes the
excess specific energy compared to the cold value at the same
density. We use Γth ¼ 1.75, motivated by studies comparing
nonzero temperature EOSs such as Refs. [101,102].
The binary parameters we consider for one of the BHNS

system we study are chosen to be consistent with
GW200115 [40]. The source of GW200115 has component
masses 5.7þ1.8

−2.1 and 1.50.7−0.3M⊙ at a 90% confidence level
and mass ratio q ¼ 0.260.35−0.10. The primary spin has a
negative spin projection onto the orbital angular momen-
tum (anti-aligned spin), but is also consistent with zero spin
χ1 ¼ 0.33þ0.48

−0.29 . The spin and tidal deformability of the
neutron star were unconstrained, and no electromagnetic
counterpart has been identified to date. We consider a

nonrotating neutron star with gravitational mass mNS ¼
1.5M⊙ and a nonspinning black hole with mass
mBH ¼ 5.7M⊙. We consider two initial separations: D ¼
10.35M and D ¼ 8.61M, where M ¼ 7.2M⊙ is total mass
of system. The systems undergo approximately 7 and 4.5
orbital periods, respectively, before merging in GR. For the
longer inspiral, we consider two values of the coupling
parameter, namely λ=m2

BH ¼ ð0; 0.1Þ. For values much
above the maximum value of the coupling we consider,
we find that with these binary parameters the neutron star
becomes ill-behaved, suggesting we are approaching the
value where no spherically symmetric neutron star exists
for this EOS. We estimate the initial orbital eccentricity to
be ∼6 × 10−3. For the shorter inspiral, we consider an
additional coupling of λ=m2

BH ¼ 0.05.
The second system we consider has binary parameters

consistent with the recent GW230529 event [47]. The
source of GW230529 has component masses 3.6þ0.8

−1.2M⊙
and 1.4þ0.6

−0.2M⊙ andmass ratio q ¼ 0.390.41−0.12 at the 90% con-
fidence level. The primary spin most likely has a negative
component when projected onto the orbital angular
momentum, but is also consistent with zero spin: χ1 ¼
0.44þ0.40

−0.37 . The spin and tidal deformability of the neutron
star were unconstrained, and no electromagnetic counter-
part has been identified to date. Using the high-spin
combined posterior samples, Ref. [47] found that the
probability that the neutron star was tidally disrupted is
0.1, corresponding to an upper limit on the remnant baryon
mass produced in the merger of 0.052M⊙ at the 99% con-
fidence interval. Yet this source is the most probable of
the BHNS events reported by the LVK to have undergone
tidal disruption because of the increased symmetry in the
component masses. We therefore consider a nonrotating
neutron star with gravitational mass mNS ¼ 1.4M⊙ and a
nonspinning black hole with a mass of mBH ¼ 3.5M⊙, so
that for the EOS we choose the neutron star is tidally
disrupted at merger. The initial separation isD ¼ 9.82M, or
approximately 5 orbits before merging in GR. We consider
coupling values of λ=m2

BH ¼ 0, 0.1, and 0.15, where the
maximum value of the coupling here approaches limit
where hyperbolicity of black hole solution breaks down
during scalarization process (λ=m2

BH ≈ 0.23).
For ease of comparisons with other works, we convert

our coupling λ into αGB ≡ λ=
ffiffiffiffiffiffi
8π

p
used in, e.g.,

Refs. [45,103].5 Restoring physical units we have,

ffiffiffiffiffiffiffiffi
αGB

p
≈ 3.77 km

� ffiffiffi
λ

p

mBH

��
mBH

5.7M⊙

�
: ð6Þ

For reference, Ref. [45] sets a constraint of
ffiffiffiffiffiffiffiffi
αGB

p ≲
1.18 km at a 90% confidence level by comparing

5However, several other studies (e.g., Refs. [65,104–106]) take
conventions leading to a value of αGB that is 16

ffiffiffi
π

p
× times larger.
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gravitational wave observations of BHNS binaries to PN
results for EsGB. In comparison, the largest coupling we
consider for the GW200115-like event (λ ¼ 0.1m2

BH) cor-
responds to

ffiffiffiffiffiffiffiffi
αGB

p ∼ 1.19 km, which is at the limit of the
observational bound. For the tidally disrupted event, where
the mass of the black hole is smaller, the largest coupling
(λ ¼ 0.15m2

BH) corresponds to
ffiffiffiffiffiffiffiffi
αGB

p ∼ 0.89 km, i.e. within
the observational bounds. We summarize the parameters of
the BHNS systems we consider in Table I.

C. Diagnostic quantities

We use many of the same diagnostics as in Refs. [60,62],
which we briefly review here. We measure the scalar and
gravitational radiation by extracting the scalar field ϕ and
the Newman-Penrose scalar Ψ4 on coordinate spheres at
large radii (r ¼ 100M where M is the total mass). We
decomposeΨ4 and ϕ into their spin −2 and spin 0 spherical
harmonic components. We use the average value of ϕ at
large radius r ¼ 100M to calculate the scalar charge QSF.
We sometimes find it useful to consider the gravitational
wave strain h≡ hþ þ ih× instead, related to Ψ4 through
Ψ4 ¼ ḧ. We numerically integrateΨ4 using fixed frequency
integration [107].
We track the apparent horizon associated with the black

hole, and measure its area and associated angular momen-
tum JBH. From this, we compute the black hole mass mBH
via the Christodoulou formula [108]. We also track the total
fluid rest mass outside the black hole horizon

M0 ¼
Z

ρut
ffiffiffiffiffiffi
−g

p
d3x ð7Þ

where ρ is the rest-mass density and ua is the four-velocity
of the fluid.

D. Post-Newtonian theory

In this section, we summarize existing PN predictions for
gravitational and scalar waveforms in EsGB gravity. We
perform a comparison with our numerical waveforms in
Sec. IV B. As pointed out in Ref. [38], the relative size of
the leading scalar dipolar radiation to the leading tensor
quadrupolar radiation is

F nd

F d
¼ 24x

5ζS2
−

ð8Þ

with F denoting the energy flux rate and the subscripts d
and nd denoting the dipolar and nondipolar part of the
energy flux rate, respectively. x ¼ ðGABMΩÞ23 is the PN
expansion parameter (see, e.g., Refs. [38,109]) where
GAB ¼ Gð1þ αAαBÞ is the effective gravitational constant
and αA=B is the scalar charge of body A(B), and the
gravitational constant is reintroduced for clarity. Finally,
Ω is the orbital frequency, which we approximate as half
the gravitational wave frequency [110–112]. In addition, ζ
and S− are PN parameters that depend on theory considered
and are summarized in Table I of Ref. [109]. For the range
of frequencies and coupling values we probe in our
simulations, we find that the quadrupolar radiation domi-
nates over the dipolar radiation by a factor of ∼40–100,
meaning we are in the so-called quadrupole driven
regime [38].
We first consider the gravitational modes hlm whose PN

expression have been computed to 2PN6 order in scalar-
tensor theories [38] and, more recently, to 1PN directly in
EsGB [57,58]. We consider the PN expressions from
Ref. [38]

r
M

hlm ¼ 2G̃ð1 − ζÞηx
ffiffiffiffiffiffiffiffi
16π

5

r
Ĥlme−imψ ; ð9Þ

where η ¼ mBHmNS=M2 is the symmetric mass ratio, ψ the
orbital phase given by Eqs. (60), (61) of Ref. [38], and G̃7 is
a PN parameter again defined in Table I of [109]. The
expressions for the amplitude modes Ĥlm are long, and
given in Eq. (67) of Ref. [38]. We have mapped these
expressions toEsGBusing themapping outlined in Sec. IVA
of Ref. [114]. Note that, tidal effects, which enter into the

TABLE I. Summary of the parameters of the GW200115- and GW230529-like BHNS systems we consider. The
black hole is nonspinning and has an irreducible massmBH, while the neutron star has a gravitational massmNS with
radius given by RNS. TD indicates whether neutron star is tidally disrupted or not before merger and NGR

cycle is the
number of gravitational wave cycles before merger in GR. The coupling values we consider are denoted by

ffiffiffiffiffiffiffiffi
αGB

p
.

GW event mBH=M⊙ mNS=M⊙ q RNS=km D=M TD NGR
cycle

ffiffiffiffiffiffiffiffi
αGB

p
=km

GW200115 5.7 1.5 0.26 12.3 10.35 No 7 f0; 1.19g
GW200115 5.7 1.5 0.26 12.3 8.61 No 4 f0; 0.84; 1.19g
GW230529 3.5 1.4 0.40 12.3 9.82 Yes 5 f0; 0.73; 0.89g

6We adopt the convention that all PN order are relative to the
quadrupolar radiation in GR. In this convention, the dipolar
radiation enters at -0.5PN in the waveform and -1PN in the
energy flux [113].

7Comparing with Eq. (65) of [38] we note that we have
replaced G with G̃ to avoid confusion with our gravitational
constant G. G̃ is the notation used in Ref. [113] and Table I of
Ref. [109].

BLACK HOLE-NEUTRON STAR MERGERS IN … PHYS. REV. D 110, 084065 (2024)

084065-5



phase evolution at 5PN [115], were ignored inRef. [38]. This
is a reasonable assumption here, since after using the values
listed in first row of Table I we find that the mass-weighted
tidal deformability Λ̃GR ∼ 13 of the system is small, and
hence is expected to have little impact on the binary
dynamics. We also note that scalar-induced dipolar tidal
effects derived to leading order for nonspinning binary black
holes in EsGB [116], and to next-to-next-to-leading order in
scalar-tensor theories [117], vanish for shift-symmetric
EsGB gravity.
We next consider the spherical harmonic components of

the scalar radiation ϕlm. These were derived to relative
0.5PN order in EsGB in Refs. [57,58], and relative 1.5PN
order (2PN order beyond the leading dipolar contribution in
waveform) in scalar tensor theories by Ref. [113]. Here, we
use the results of Ref. [113] and map them to EsGB using
the mapping of Sec. IV.B of Ref. [114], keeping only
leading order terms in λ=m2

BH. The expressions can be
found in Appendix E of Ref. [114].8

IV. RESULTS

We follow the evolution of two types of BHNS binaries
distinguished by whether the neutron star is tidally dis-
rupted before merger (see Table I). For both scenarios,
we vary the EsGB coupling all the way up to near the
maximum value for which we were able to carry out the
evolution. We first consider a system with GW200115-like
parameters and evolve it both in GR and EsGB gravity with
a coupling comparable to the upper bound obtained in
Ref. [45]. In Sec. IVA, we first focus on the dynamics
during inspiral and show that the EsGB system inspiral
faster than its GR counterpart. We then compare both the
scalar and gravitational radiation to predictions from PN
theory in Sec. IV B. Our main result is that the PN
prediction is a good approximation to the amount of
dephasing in binary up to late in the inspiral. In Sec. IV
C, we focus on the merger dynamics and trends with
varying EsGB coupling. We find a negligible change in
amplitude of gravitational wave signal at merger.
Independently of whether the neutron star is tidally dis-
rupted, the main effect on the ringdown signal is not a shift
in ringdown frequencies but a change in the amplitude of
the signal. Specifically, the amplitude increases (or
decreases) with increasing coupling when the neutron is
(or is not) tidally disrupted. In the case where the neutron
star is tidally disrupted, we also study the amount of
material remaining outside the black hole after the merger
and find a slight decrease in the amount of material leftover
with increasing coupling due to the neutron star being more
compact.

A. Comparison between GR and EsGB
during inspiral

We first consider the BHNS system with GW200115-
like parameters and an initial separation of D ¼ 10.35M.
We evolve the system both in GR and with a coupling value
of

ffiffiffiffiffiffiffiffi
αGB

p ¼ 1.19 km. For the parameters and EOS we
consider, the neutron star is swallowed by the black hole
without tidal disruption (see the first row of Table I).
For simplicity, we use the same initial data for the EsGB

system and its GR counterpart, i.e. we set ϕ ¼ ∂tϕ ¼ 0 on
the initial time slice but slowly ramp on the coupling of the
theory over 100M. In the bottom panel of Fig. 1, we show
the average value of the scalar field on the black hole
apparent horizon. Note that the black hole acquires its
scalar charge on a timescale much shorter than the inspiral
timescale and we therefore do not expect our results after
this transitory period to be noticeably affected. We have
also checked that the scalarization process does not
appreciably impact the orbital eccentricity or increase
the level of constraint violation compared to that coming
from truncation error (see Appendix).
The top panel of Fig. 1 shows the evolution of the

coordinate separation between the two compact objects for
the GR and EsGB systems. We first note that the merger
part of both systems can be aligned through a time shift (see
below). This implies they have a similar orbital separation
or frequency for the onset of the plunge. This arises because
the gravitational attraction in EsGB gravity is characterized
by the effective gravitational constantGAB ¼ Gð1þ αAαBÞ
introduced earlier. Since the neutron star charge αNS ¼
Oðλ3Þ is negligible, the gravitational pull of a BHNS

FIG. 1. (Top) Coordinate separation of BHNS merger with
binary parameters consistent with the GW200115 event in GR
and EsGB gravity with a coupling value of

ffiffiffiffiffiffiffiffi
αGB

p ¼ 1.19 km.
With the chosen initial separation, the binary undergoes ∼7 orbits
before merger in GR. The increase in coordinate separation
during the first 2 ms is due to the transition to damped harmonic
gauge. The bottom panel shows the value of the scalar field
averaged on the black hole apparent horizon for the EsGB case.

8Note that Ref. [114] uses different conventions from this
paper so that, ϕ ¼ ffiffiffi

2
p

φ where φ is scalar field in Ref. [114].
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system in GR and EsGB is similar. By contrast, in binary
black hole mergers, both black holes carry a positive scalar
charge (see below for the explicit value), which increases
the gravitational pull and therefore the orbital separation at
which the objects merge. However, the BHNS system in
EsGB still admits an additional energy dissipation channel
via scalar radiation, and hence inspirals faster compared to
GR, as can be seen from Fig. 1.
The shorter inspiral in EsGB gravity also leads to a

shorter gravitational wave signal. Figure 2 shows the l ¼
m ¼ 2 harmonic of the strain in GR and EsGB. We align
the two waveforms by requiring that the EsGB and GR
waveform agree in time and phase at some fiducial
frequency ωm. More precisely, we leave the GR waveform
untouched but construct a new shifted EsGB waveform

hGB022 ðtÞ ¼ hGB22 ðtþ tc − tmÞeiðΦGBðtcÞ−ΦGRðtmÞÞ; ð10Þ

where tc is the time so that the derivative of the complex
phase of EsGB waveform satisfies Φ̇GBðtcÞ ¼ ωm and
similarly tm is the time where Φ̇GRðtmÞ ¼ ωm. Note that
the gravitational wave frequency computed from the time
derivative of the complex phase of the numericalwaveform is
typically noisy at early times and becomes smoother near the
merger. To allow a matching at any time, we fit a polynomial
in time through the frequency. In Fig. 2,Mfm ¼ Mωm=ð2πÞ
was chosen to be 0.01.We also show the phase evolutionΦ of
the aligned waveforms in the right panel of Fig. 2, as well as
the corresponding waveform phase differences,

ΔΦ ¼ ΦGB −ΦGR ð11Þ

in the bottom right panel of Fig. 2. After the amplitude of the
EsGB waveform peaks, it takes the GR waveform another

∼4.3 radians to peak. Similarly to the binary black hole
mergers in Ref. [62], we find that the dominant truncation
error in our simulations does not depend strongly on thevalue
of the coupling and therefore partially cancels out when
calculating the difference in gravitational wave phase
between EsGB and GR simulations using the same reso-
lution. See Appendix for details. We estimate the truncation
error in ΔΦ to be ∼1.2. This is smaller than the estimated
phase error in the GR waveform itself.

B. Comparison to post-Newtonian theory

We now quantitatively compare the gravitational and
scalar waveforms we obtain from our numerical evolution
with the existing PN predictions in EsGB gravity outlined in
Sec. III D. Along the way, we comment on the accuracy of
current methods using PN predictions to constrain EsGB
gravity.
Considering the same system as in the previous section,

we use Eq. (9) to compute the PN prediction for dephasing
of gravitational wave phase,

ΔΦPN ¼ 2Δψ ¼ 2ðψGB − ψGRÞ ð12Þ

and compare this to the dephasing in our numerical simu-
lation, ΔΦNR [see Eq. (11) and Fig. 2]. Similarly we also
compare the relative change in amplitude of waveform,

ΔA
A

¼ jhGB22 j − jhGR22 j
jhGR22 j

ð13Þ

computed using Eq. (9) and in our numerical simulation. In
Fig. 3, we show the numerical and PN prediction for the
relative change in amplitude and dephasing as a function of
gravitational wave frequency.We note that, as wasmentioned

FIG. 2. Left: gravitational wave radiation for a BHNS merger with binary parameters consistent with the GW200115 event in GR and
EsGB gravity with a coupling value of

ffiffiffiffiffiffiffiffi
αGB

p ¼ 1.19 km. We show the real part of the l ¼ m ¼ 2 spherical harmonic of the
gravitational wave strain h extracted at 100M. Right: the gravitational wave phase of the aligned waveforms Φ. The bottom shows the
phase difference between the two waveforms ΔΦ ¼ ΦGB −ΦGR. The waveforms have been aligned in time and phase at a gravitational
wave frequency fm ¼ 0.01=M, or equivalently tm ¼ f9.7; 8.1g ms for

ffiffiffiffiffiffiffiffi
αGB

p ¼ f0.0; 1.19g km according to Eq. (10).
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in the previous section, although the binary in EsGB inspirals
faster than in GR, the frequency at which the objects merge is
similar, with an agreement of ∼2% for this particular system.
More precisely, the left panel shows the total dephasing
computed to 2PN, ΔΦ2PN, but also when considering the
leading dipolar (-1PN) contribution only, ΔΦ-1PN, as well as
the dephasing computed up to 0PN and 1PN (we omit the
0.5PN and 1.5PN results for clarity). Since the EsGB
corrections to the waveform within the PN expansions are
only expected to bevalid during the inspiral stage, tests of GR
on the inspiral turn off corrections to GR at some cutoff
frequency, whichwas taken to be f ¼ 0.018=M (or∼500 Hz
for this particular system) in Ref. [45].9 We find that the
difference between the PN and numerical results up to f ¼
0.018=M are smaller than or comparable to our estimates of
the truncation error inΔΦ. Our result suggests that using the
PN expansion up to f ¼ 0.018=M to constrain EsGB gravity,
as was done in Ref. [45], is a good approximation.
A similar argument would apply to constraints that

would be obtained by mapping constraints on the -1PN
coefficient (from a parametrized test) to constraints onffiffiffiffiffiffiffiffi
αGB

p
through the post-Einsteinian formalism [118], as was

done in, for instance, Refs. [7,52]. It would be interesting to
perform parameter estimation on our numerical simulations
using not only the PN results for EsGB, as was done for the
observational data in Refs. [45,51]; but also using theory-
agnostic approaches, such as the TIGER [48,49] or FTI
[50] frameworks, which constrain the PN coefficients by

varying them one at a time. However, this is beyond the
scope of this paper, and we leave it to future work. Note that
the left panel of Fig. 3 also shows that the leading order
dipolar contribution to the dephasing dominates. Although
a more detailed study would be required, this indicates that
constraints on the leading PN coefficient recovered when
only variations at that particular order are allowed (as is
typically done in most current analyses), would in the case
of EsGB, be a satisfactory assumption, which was already
argued in Ref. [119].
We note that the PN prediction combining all orders

predicts that the EsGB system should inspiral faster than
GR at any given frequency all the way up to near merger,
but that this effect diminishes at high frequencies.
Moreover, we find that the highest PN corrections, namely
1.5 and 2PN (see Fig. 3), reduce the rate of inspiral with
respect to GR. This trend is consistent with our numerical
simulations which show in Fig. 3 that the extra dephasing
past the inspiral stage is negligible. This is in agreement
with Ref. [109], where it was found that when considering
the conservative part of the dynamics, including higher PN
orders tends to decrease the orbital frequency of the binary
at the innermost stable circular orbit. This further suggests
that setting the corrections to the phase to zero past the
inspiral stage, as in Refs. [45,51,52] is a good approxima-
tion, at least for EsGB gravity where we find that the
changes to the phase during merger and ringdown
are small.
Finally, we note that the PN prediction for the amplitude

of waveform, shown in right panel of Fig. 3, is consistent
with our numerical results, and that the relative change in
amplitude of waveform remains small throughout the
inspiral. This further motivates generic inspiral tests of
GR on the phase rather than the amplitude of waveform.

FIG. 3. PN and numerical predictions for the dephasing (left) and correction to the amplitude (right) of gravitational waveform of the
binary shown in Fig. 2 [see Eqs. (11)–(13)]. We also show the dephasing when only considering leading order (dipolar) contribution to
phase and all contributions up to 0PN and 1PN order. The first vertical line corresponds to frequency at which waveforms are aligned fm
according to Eq. (10), the second line to the end of inspiral stage in GR finsp, and the third to frequency at which amplitude of GR
waveform peaks fpeak.

9Parametric tests on the inspiral done in the LVK analyses in
Refs. [9–12,15] use a cutoff frequency of fPARc ¼ 0.35f22peak
where f22peak is the GW frequency at the peak amplitude of ðl ¼ 2;
m ¼ 2Þ waveform. In our particular setup, this would correspond
to a frequency of fM ∼ 0.017.
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We next compare the spherical harmonic components of
the scalar radiation ϕlm extracted from our simulations with
PN predictions. In Fig. 4, we compare our numerical scalar
modes ϕ11 and ϕ22 to the PN predictions at successively
higher PNorders. As in the comparisons of scalarwaveforms
computed in Refs. [57,58,62,65], the frequencywe use in the
PN expressions are obtained from our numerical evolutions,
so our comparison is measuring the accuracy of the PN
approximation in determining the amplitude of the scalar
field, given its frequency. We see that the lowest PN order
contributes the most to the amplitude of waveform. We find
that the fractional difference between the numerical wave-
forms and the 1PN ðl ¼ 1; m ¼ 1Þmode is about 5%, while
for the ðl ¼ 2; m ¼ 2Þ it is initially ∼22% and grows as

binary inspirals. We note that the inclusion of the next-to-
leading order in the ðl ¼ 2; m ¼ 2Þ waveform worsens the
agreement between the PN and numerical waveform, so
higher PN terms may be needed for better agreement with
numerical simulations.

C. Merger dynamics and trends
with varying EsGB coupling

Lastly, we study the effects of EsGB on the merger and
ringdown of two different scenarios: a BHNS merger with
the same intrinsic parameters as in the previous two
sections, i.e. GW200115-like, but with smaller initial
separation and considering additional values for the

FIG. 4. Scalar radiation for a BHNS binary merger with binary parameters consistent with the GW200115 event for a coupling value
of

ffiffiffiffiffiffiffiffi
αGB

p ¼ 1.19 km. We show the real part of the ðl ¼ 2; m ¼ 2Þ (right) and ðl ¼ 1; m ¼ 1Þ (left) spherical harmonic of scalar
waveform ϕ extracted at 100M. During the inspiral, we also display the PN predictions derived to relative 1.5PN. The vertical line
roughly corresponds to time at which modifications to GR are turned off in Ref. [45], i.e. tðfinsp ¼ 0.018=MÞ. Time is measured with
respect to time where both waveforms have a gravitational wave frequency fm ¼ 0.01=M.

FIG. 5. Gravitational wave radiation (left) and scalar radiation (right) for a BHNS merger with binary parameters consistent with
the GW200115 event for different values of the EsGB coupling. We show the real part of the ðl ¼ 2; m ¼ 2Þ spherical harmonic
of the strain h and (2,2) component of ϕ both extracted at 100M. Time is measured with respect to the time where amplitude of h22 is
maximum tpeak.
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coupling, and a GW230529-like BHNS merger where the
neutron is tidally disrupted before merger (see Table I). For
these two systems, we vary the EsGB coupling up to near
the maximum value where we are able to carry out the
evolution, allowing us to study the trends with the coupling
of the theory.
Figure 5 shows the gravitational (left) and scalar radi-

ation (right) for the first scenario. After ∼ 4–5 orbits, the
black hole swallows the neutron star and rings down to
form a final remnant black hole with a larger mass. In
addition to GR, we consider two other couplings,

ffiffiffiffiffiffiffiffi
αGB

p ¼
0.84 km and 1.19 km, with the largest value at the limit of
the observational bounds,

ffiffiffiffiffiffiffiffi
αGB

p ∼ 1.19 km. Here we align
the waveforms in time and phase at the peak of amplitude of
the gravitational waveforms. Despite the shorter inspiral,
we observe some dephasing in the l ¼ 2, m ¼ 2 harmonic
of the strain (left panel), consistent with EsGB binaries
merging faster the larger their coupling due to the addi-
tional energy loss through scalar radiation. The l ¼ 2,
m ¼ 2 component of the scalar radiation (right panel)
shows similar behavior to the gravitational waves both
in the inspiral and ringdown. After rescaling for the test-
field dependence on coupling, we find that there is a mild
nonlinear enhancement just before merger, but this is
negligible earlier in the inspiral and during ringdown.
The gravitational quasinormal modes of rotating black

holes were computed numerically in Ref. [106] by perform-
ing a slow-rotation expansion, as in Ref. [105], to second
order in the dimensionless spin parametera≡J=m2

BH (where
J is the angular momentum of black hole).10 According to

Ref. [106], the real frequency of the fundamental l ¼ 2,
m ¼ 2 quasi-normal mode of a black hole in EsGB gravity
should decrease with coupling and the relative change
should be ∼1% for the largest coupling we consider here.
The correction to the decay rate (imaginary frequency)
changes from a positive to a negative correction for the
values of spins and couplings we probe and is expected to
be negligible. We note that Ref. [106] found that the
expansion in λ=m2

f, where mf is mass of remnant black
hole, is accurate within 1% as long as λ=m2

f < 0.07 for the
real modes and λ=m2

f < 0.053 for the imaginary modes.
The couplings we consider correspond to λ ¼ 0.032m2

f and
0.066m2

f, meaning the results here should be applied with
care.11 We find that the real frequency decreases with
increasing coupling and that the relative change is on the
order of ∼1% for the largest coupling considered, i.e. it is
the right order of magnitude, but it is too small to reliably
quantify with our current numerical data. The change in the
imaginary part is negligible, also in agreement with
perturbation theory. The most noticeable effect is a sup-
pression in the amplitude of ringdown gravitational wave
signal with increasing coupling as shown in the left panel of
Fig. 6 (by ≈10% for the largest coupling), which is
consistent with an increasing amount of radiation going
into the scalar field with increasing coupling.

FIG. 6. The amplitude of the l ¼ 2, m ¼ 2 spherical harmonic Ψ4 for a BHNS binary merger with parameters consistent with
the GW200115 event (left) and for a binary where the neutron star is tidally disrupted (right) for different values of the EsGB coupling.
Time is measured with respect to tpeak, the time where jΨ4;22j is maximum.

10We note that more recently Ref. [120] developed a general
method using perturbative spectral expansions to compute
quasinormal modes in a wide class of modified theories of
gravity for black holes of any sub-extremal spin and applied this
method to EsGB gravity.

11We also note that Ref. [106] argued that, although the results
are only accurate to second order in spin, with an appropriate
resummation of the spin expansion parameter, the results should
be accurate for dimensionless spins as large as ∼0.7. The results
quoted here were obtained using the fitting formula Eq. (47) in
Ref. [106] which do not include the resummation. Note also that
the computation of the quasinormal modes in Refs. [104–106]
were performed in Einstein-dilaton-Gauss-Bonnet gravity, which
is equivalent to the EsGB gravity theory considered in this work
only in the limit where ϕ is small.
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The amplitude of the l ¼ 2, m ¼ 2 mode of the scalar
waves, shown in Fig. 7, displays small, yet measurable,
oscillations that track the neutron star oscillations in the
fundamental fluid mode (f-mode) of the star. These are
evident in the oscillations of the star’s central value of both
the rest mass density and the scalar field value ϕc (see
Fig. 8). The relative amplitude of the oscillations in the
central density are not strongly affected by the value of the
GB coupling and hence do not seemed to be an artifact of
the way we turn on the scalar field. Instead, we attribute
the oscillations to numerical errors as they decrease as the
numerical resolution is increased. Finally, we note that the
right panel of Fig. 8 shows that turning on the EsGB
coupling increases the central density of neutron star, up to
10% for the largest coupling we consider, as predicted from
numerical studies of single neutron stars in EsGB [73].

We also consider a BHNS merger where the neutron is
tidally disrupted before merger, with binary parameters
similar to the GW230529 event(see last row of Table I). We
show the gravitational and scalar radiation in Fig. 9. The
binary here undergoes ∼5 orbits before merger. We con-
sider evolutions with coupling values of

ffiffiffiffiffiffiffiffi
αGB

p ∼ 0.73 and
0.89 km, where the highest coupling is 50% larger, when
normalized by the black hole mass, than considered in the
previous case. Similarly to before, we find that the most
noticeable effect is the decrease in the inspiral timescale
with increasing coupling. According to perturbation theory,
the larger the dimensionless coupling value λ=m2

f and spin
of remnant black hole, the larger the change in real and
imaginary frequencies of quasinormal modes. In compari-
son to the previous case, the final remnant here is smaller,

FIG. 7. Left: the scalar charge QSF rescaled by λ=m2
BH, measured from the average value of the scalar field at 100M as a function of

retarded time ðt − rÞ=M, for the BHNS mergers considered in this paper (see the last two rows of Table I). The mergers where the
neutron star is tidally disrupted (TD) are indicated by dashed lines. Right: amplitude of scalar radiation for a BHNS merger with binary
parameters consistent with the GW200115 event for different values of the EsGB coupling. We show the amplitude of the ðl ¼ 2;
m ¼ 2Þ component of ϕ extracted at 100M. Time is measured with respect to when jΨ4;22j is maximum.

FIG. 8. Left: The maximum value of the scalar field over the numerical domain (excluding black hole interior) and value of the scalar
field at the center of the neutron star (which is negative for most of the evolution). Right: The maximum rest-mass density (located at
center neutron star). These results are for the GW200115-like BHNS merger and various EsGB coupling values.
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leading to higher coupling values of λ ¼ 0.054m2
f and

0.082m2
f, and the final dimensionless spin is ∼0.6, while it

was previously 0.5. Both of these effects lead to a larger
change in the quasinormal frequency, with a predicted
relative change in the real frequency of −2% for the largest
coupling we consider and a change of −0.65% for the
decay rate, according to Ref. [106] (and with the caveats
discussed above). Although we find that the change in the
real frequency has the right order of magnitude and the
change in imaginary frequency has the right sign, they
are both still too small to reliably quantify.
The main difference compared to the binary where the

neutron star is not tidally disrupted is that the amplitude of
the ringdown gravitational wave signal increases slightly

with increasing coupling (by ≈2% for the largest coupling),
as shown in the right panel of Fig. 6. We hypothesize that
this can be attributed to the fact that the neutron star is more
compact, and less strongly tidally disrupted for larger
couplings. Consistent with this, we also find a small
increase in the amount of fluid rest mass falling into the
black hole with increasing coupling, as shown in Fig. 10.
We find that the amount of mass remaining outside of the
black hole 8 ms after merger decreases from a value of
0.049M⊙ in GR to 0.047M⊙ for the largest coupling we
considered (3.5% decrease). Of this postmerger material,
we estimate that ∼10−3M⊙ is gravitationally unbound from
the system with mildly relativistic asymptotic velocities; we
find no clear trend in the unbound material with EsGB
coupling values. In passing, we note that the leftover rest
mass in GR is roughly an order of magnitude larger than
that predicted by the fitting formula in Ref. [121]. Though
some of the discrepancy may be due to truncation error, the
formula in Ref. [121] was also not fit with any simulation
results in the range q−1 ∈ ð1.2; 3Þ, making it difficult to
judge its uncertainty in this regime.

V. DISCUSSION AND CONCLUSION

In this work, we have taken advantage of recent advances
in solving the full equations of EsGB gravity to study
BHNS mergers for the first time. This was motivated by the
fact that neutron stars do not have scalar charge in this
theory and black hole masses in such binaries are typically
small in comparison to binary black holes [122], making
them an ideal probe to test for modifications to GR at
smaller curvatures length scales. We find that the BHNS
binaries inspiral faster in EsGB relative to GR due to the
emission of scalar radiation. We first evolved a system
chosen to be consistent with GW200115 and with EsGB
coupling at the limit of the observational bounds placed by
applying PN predictions to the event. Comparing our scalar

FIG. 9. Gravitational wave radiation (left) and scalar radiation (right) for a BHNS merger where the neutron star is tidally disrupted for
different values of the EsGB coupling. We show the real part of the ðl; mÞ ¼ ð2; 2Þ spherical harmonic of the strain h and (2,2)
component of ϕ both extracted at 100M. Time is measured with respect to the time where jh22j is maximum.

FIG. 10. The total fluid rest mass outside black hole horizon for
the merger where the neutron star is tidally disrupted for different
values of the EsGB coupling. Time is measured with respect to
the time where half of the neutron star mass has been accreted
onto black hole t1=2 and the rest mass is normalized by its
initial value.
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and gravitational waveforms to existing PN predictions for
EsGB, we find reasonable agreement in the dephasing
relative to GR all the way up to end of ∼500 Hz, in part due
to the fact that the dephasing between GR and EsGB
becomes small in the final orbits. This suggests current
bounds on EsGB using PN theory up to the end of inspiral
phase are a good approximation. It would be interesting to
carry out a full Bayesian parameter estimation using PN
theory as well as the theory agnostics approaches such as
TIGER or FTI to better understand how these methods
perform and study some of the degeneracies that might
arise and lead to parameter estimation biases. To fully
understand the observational prospects of constraining
EsGB gravity with BHNS mergers, future work should
also explore a range of EOSs, EsGB couplings, and binary
parameters, and understand possible degeneracies, includ-
ing with tidal effects [39].
In addition tomeasuring the dephasing, we also found that

the leading order PN contribution compareswell inmatching
the amplitude of scalar radiation emitted during the inspiral at
a given frequency. This is in qualitative agreement with
binary black hole simulations in EsGB [62], and can be
partially explained by the fact that corrections to the scalar
field amplitude in the GB coupling enter at third order for
shift-symmetric EsGB gravity (see, e.g., Appendix D of
[62]). We also note that the next-to-leading order was found
to increase the error in amplitude, and the next-to-next-to-
leading order is needed to improve consistency.
We also studied the effect of modifications to GR on the

dynamics of the merger and ringdown signal of newly
formed black hole for two different scenarios: a BHNS
merger where the neutron star is not tidally disrupted, and
one where it is. Most of the literature has focused on
computing a change in frequency using perturbation theory.
However, for both cases considered here, we find that the
frequency shift is small, in qualitative agreement with
perturbative predictions, and we find that the dominant
effect is instead a change in the amplitude of the ringdown
signal. This observation is in agreement with evolutions of
binary black hole and binary neutron star mergers in EsGB
[59,62,123]. This observational signature could potentially
be leveraged in ringdown tests of GR, but also introduces
further complications [124–129]. In particular, we found a
suppression of the amplitude with increasing coupling
when the neutron star is not tidally disrupted, explained
by an increase by the amount of emitted scalar radiation.
However, when the neutron star is tidally disrupted, we
found that the amplitude increases with coupling, which we
attribute to the fact that, for a fixed EOS, the NS is more
compact and less easily tidally disrupted.
Even setting aside modified gravity considerations, the

lower mass ratio case we consider (q ¼ 0.4) probes a
regime that has not been extensively studied using full GR
simulations of BHNS mergers, but has become particularly
interesting with the observation of GW230529. It is worth

noting that we find (in GR) that an accretion disk forms
postmerger with a few percent of a solar mass, which is one
order of magnitude larger than the prediction of the com-
monly used fitting formula in Ref. [121] for this particular
case. Coupled with other recent studies [130,131], this
suggests that analyses using this formula may under-
estimate the prospects for a postmerger electromagnetic
transient in this part of the parameter space.
Though not comprehensively addressed here, it would

also be interesting for future work to quantify how modified
gravity affects potential electromagnetic transient arising
from the merger. This would involve considering a range of
binary parameters and choices for the neutron star EOS in
order to determine under what circumstances modified
gravity effects could be important, and nondegenerate with
other parameters, in determining the size of the postmerger
accretion disk, the amount of unbound material, and other
properties that affect potential electromagnetic signatures.
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APPENDIX: NUMERICAL CONVERGENCE
AND ERROR ESTIMATES

For the BHNS mergers considered in this paper, we
perform simulations with seven levels of refinement where
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the finest level has a linear grid spacing of dx ∼ 0.016M,
and each successive level has a linear grid spacing that is
twice as coarse. In Fig. 11, we show the norm of the
modified generalized harmonic constraint violation, inte-
grated over the domain as a function of time. In the left
panel, we compare a simulation that transitions to a nonzero
EsGB coupling to the equivalent simulation in GR. As can
be seen, this transition does not noticeably impact the
constraint violation, modulo the faster inspiral of the
modified gravity system.
For the GW200115-like binary where the initial sepa-

ration is D ¼ 8.6M, we also perform a convergence study
with grid spacing that is 4=3 and 2=3× as large, which is

shown in right panel of Fig. 11. All results in the main text
are from the medium resolution. Although at early times the
order of convergence is closer to first order, presumably
from high frequency noise (junk radiation) in the initial data
which may engage the shock capturing scheme, at later
times the convergence is consistent with roughly second
order, as expected from our numerical scheme in the
absence of shocks. In addition, we note that the constraints
jump again at the end, which corresponds to when the NS
starts to plunge into the BH.
We compare the dephasing between the EsGB and GR

waveforms in Fig. 2 to the numerical errors in the
simulations using the techniques applied to binary black

FIG. 11. Left: volume integrated norm of the modified generalized harmonic constraint violation Ca as a function of time for the
BHNS system with GW200115-like parameters and an initial separation of D ¼ 9.8M in GR and EsGB with λ ¼ 0.1m2

BH. We observe
that the constraints are the same modulo a time shift. Right: convergence of the volume integrated constraint violation for same system as
in left panel, but for an initial separation of D ¼ 8.6M and at three resolutions. The values have been scaled assuming second order
convergence, though at early times the convergence is closer to first order.

FIG. 12. We show the difference between the low and medium resolutions of the amplitude (left) and phase (right) of the gravitational
waveform for the BHNS binary with GW200115 like parameters, an initial separation of D ¼ 8.61M, and coupling offfiffiffiffiffiffiffiffi
αGB

p ¼ 1.19 km. We also show the difference between the EsGB and GR amplitude and phase at low and medium resolutions
(dashed brown line). This provides evidence that the truncation error roughly cancels between the EsGB and GR runs.
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hole mergers in Ref. [62] (and detailed in Appendix A of
that paper). The error in the Richardson extrapolated phase
at the frequency where GR peaks is ∼7.2 radians, which is
comparable to the dephasing. However, similarly to the
binary black hole mergers in Ref. [62], we find that the
dominant truncation error in our simulations does not
depend strongly on the value of the coupling and therefore
partially cancels out when calculating the difference
in gravitational wave phase between EsGB and GR

simulations using the same resolution. We see evidence
that this is the case, for example, by comparing a measure
of the truncation error in ΔΦ, computed by comparing the
GW200115 simulation starting at a shorter initial separa-
tion in GR to an equivalent EsGB simulation with

ffiffiffiffiffiffiffiffi
αGB

p ¼
1.19 km at two different resolutions, to an estimate of
the overall truncation error in Φ for the same EsGB case.
We find the former to be ∼6× smaller than the latter
(see Fig. 12 in the Appendix).
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