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Quantum dynamics of a fully blockaded Rydberg atom ensemble
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Classical simulation of quantum systems plays an important role in the study of many-body phenomena and in
the benchmarking and verification of quantum technologies. Exact simulation is often limited to small systems
because the dimension of the Hilbert space increases exponentially with the size of the system. For systems that
possess a high degree of symmetry, however, classical simulation can reach much larger sizes. Here we consider
an ensemble of strongly interacting atoms with permutation symmetry, enabling the computation of certain
collective observables for hundreds of atoms at arbitrarily long evolution times. The system is realized by an
ensemble of three-level atoms, where one of the levels corresponds to a highly excited Rydberg state. In the limit
of all-to-all Rydberg blockade, the Hamiltonian is invariant under permutation of the atoms. Using techniques
from representation theory, we construct a block-diagonal form of the Hamiltonian, where the size of the largest
block increases only linearly with the system size. We apply this formalism to derive efficient pulse sequences to
prepare arbitrary permutation-invariant quantum states. Moreover, we study the quantum dynamics following a
quench, uncovering a parameter regime in which the system thermalizes slowly and exhibits pronounced revivals.
Our results create opportunities for the experimental and theoretical study of large interacting and nonintegrable
quantum systems.
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I. INTRODUCTION

Characterizing and understanding the emergent behavior
of quantum many-body systems has been a key research fo-
cus of condensed-matter physics. Many questions still remain
unanswered owing to the complexity of these systems. Re-
cent experimental advancements have created new avenues to
approach these open problems. It is now possible to experi-
mentally study the dynamics of large quantum systems and
to directly probe physical phenomena such as the growth of
entanglement and the presence or absence of thermalization
[1–9]. The high level of precise control required for these ex-
periments moreover constitutes a crucial step towards building
large-scale quantum computers.

Ultracold atoms have been a particularly fruitful platform
for this line of research [10–14]. By means of cooling and
trapping, one can prepare large ensembles of identical atoms.
The internal degrees of freedom of each atom, such as distinct
hyperfine levels, give rise to a discrete state space suitable
for quantum information processing. While the states can
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be manipulated by external electromagnetic fields, they also
retain coherence for a long time due to their weak coupling
to the vacuum. The interaction between atoms in low-lying
states is typically weak, which is beneficial for preserving the
collective quantum state but prevents the creation of complex
states with large entanglement.

This limitation can be overcome, for example, by promot-
ing atoms to highly excited Rydberg states, which interact
strongly via the van der Waals interaction [15]. In this work
we investigate the quantum dynamics of the collective many-
body system in the regime of the so-called Rydberg blockade,
where the van der Waals interaction is so strong that it
prevents excitation of more than one atom within a certain
volume [16–18]. In practice, a fully blockaded ensemble may
contain hundreds of atoms [19]. When trapped individually in
an array of optical tweezers, typical values of the blockade
radius and the separation between atoms allow for a fully
blockaded system comprising tens of atoms [20–24]. The
Rydberg blockade realizes an effective multiatom interaction,
which can be used to directly implement few-qubit gates with-
out a decomposition into two-qubit gates [25–30]. In addition,
fully blockaded ensembles provide an avenue for fast state
preparation and readout [19].

To advance the development of quantum technologies
based on Rydberg atoms, it is desirable to develop classi-
cal simulations that enable efficient benchmarking. Owing
to its nonlocality, the Rydberg blockade is expected to lead
to rapid growth of entanglement. Many classical simulation
techniques such as tensor networks will therefore be limited
to short times or small systems. We address this challenge
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FIG. 1. System setup. (a) We consider atoms with two hyperfine
ground states |0〉 and |1〉 and a highly excited Rydberg state |r〉. The
hyperfine states are coupled by a driving field with Rabi frequency
�1 and detuning �1. The state |1〉 is further coupled to |r〉 with
Rabi frequency �2 and detuning �2. (b) The strong van der Waals
interaction between two Rydberg states defines a blockade radius Rb,
within which the excitation of more than two atoms to the Rydberg
state is effectively forbidden. We assume that Rb is greater than the
largest distance between any pair of atoms. Equivalently, a sphere of
radius Rb/2 around an atom in the Rydberg state (purple) is assumed
to intersect the sphere of the same size centered at any other atom
(orange).

by considering a constrained model with a high degree of
symmetry. In particular, we analyze instances where all atoms
are within the blockade radius of each other, as shown by
Fig. 1(b), and all driving fields are homogeneous. Due to the
separation of scales inherent to the Rydberg blockade and thus
insensitivity to the exact value of the interaction, the system is
invariant under any permutation of the atoms. This symmetry
enables numerical simulation of the quantum dynamics of
ensembles containing several hundreds of atoms for arbitrarily
long times.

Our formal approach is based on a representation theoreti-
cal analysis of the quantum Hamiltonian, which we introduce
in Sec. II. The analysis may be viewed as a generalization of
Dicke states from two-level to three-level atoms [31]. Dicke
states correspond to eigenstates of total angular momentum,
which are mathematically constructed as the irreducible repre-
sentations of the Lie group SU(2). For atoms with three levels,
we have to instead consider the irreducible representations
of SU(3). We apply this formalism in Sec. III to construct
pulse sequences that prepare arbitrary permutation-invariant
quantum states. In Sec. IV we investigate the dynamics of
a large system initialized in product states. We uncover a
parameter regime in which the system exhibits robust revivals.
The revivals indicate a slow progression to equilibrium de-
spite the strong interactions. We show that the revivals are
intimately linked to the symmetries of the model and provide
a simple explanation in terms of an effective spin model. We
summarize our findings in Sec. V and discuss directions for
future research.

II. SETUP AND NOTATION

A. System Hamiltonian

Throughout this work, we consider a set of n identical
atoms whose dynamics are restricted to three internal states:
two hyperfine states denoted by |0〉 and |1〉 and a highly
excited Rydberg state |r〉. Transitions between these states are
controlled by two external driving fields as shown in Fig. 1(a).

The first drive (Rabi frequency �1 and detuning �1) acts
on the |0〉 ↔ |1〉 transition, while the second drive (�2 and
�2) acts on |1〉 ↔ |r〉. Both drives are assumed to be global,
meaning that the Rabi frequencies and detunings are the same
for each atom.

The large polarizability of the Rydberg state gives rise
to strong van der Waals interactions between nearby atoms,
which creates an energy shift if two atoms are in the Ryd-
berg state. The energy shift scales with the sixth power of
the inverse distance [15]. At short distances, the energy shift
can therefore be much larger than any other scale, in which
case states with more than one Rydberg excitation can be
adiabatically eliminated. This mechanism is the so-called Ry-
dberg blockade. The adiabatic elimination is valid at distances
shorter than the blockade radius Rb, which depends on the
driving strength [15]. We assume that Rb exceeds the largest
separation between any pair of atoms [see Fig. 1(b)], so it
is a good approximation to assume that no more than one
Rydberg excitation exists in the system. We will thus restrict
our analysis to the subspace containing zero or one Rydberg
excitation. The Hamiltonian describing the system can then
be written, in the rotating frame and within the rotating-wave
approximation, as

H = −�1

n∑
i=1

|1〉〈1|i − (�1 + �2)
n∑

i=1

|r〉〈r|i

+ 1

2

n∑
i=1

(�1|1〉〈0|i + H.c.)

+ 1

2
P

n∑
i=1

(�2|r〉〈1|i + H.c.)P, (1)

where the subscript i indicates which atom an operator acts on
and P projects onto the subspace with at most one Rydberg
excitation.

As a consequence of the global drive and the insensitivity
of the Rydberg blockade to the distance, the Hamiltonian is
invariant under permutations of the atoms. To take advantage
of this symmetry, we introduce collective raising operators

T + =
n∑

i=1

|0〉〈1|i, (2)

U + =
n∑

i=1

|1〉〈r|i, (3)

V + =
n∑

i=1

|0〉〈r|i. (4)

We further define the lowering operator T − = (T +)† and
the Hermitian operators T x = (T + + T −)/2, T y = (T + −
T −)/2i, and T z = [T +, T −]/2 with analogous expressions
for U and V . Together, these operators may be viewed as
a generalization of collective spin operators to the setting
of three-level systems. The Hamiltonian can be rewritten in
terms of these collective operators as

H = 2
3�1T z + 2

3�2U
z + 2

3 (�1 + �2)V z

+ 1
2 (�1T − + �∗

1T +) + 1
2 P(�2U

− + �∗
2U +)P, (5)
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where we dropped an unimportant term proportional to the
identity.

B. Review of irreducible representations of su(3)

The operators T α , U α , and V α (α ∈ {x, y, z}) generate the
Lie algebra su(3) of the special unitary group SU(3). We
can see this by considering a single atom, for which these
operators are represented by traceless Hermitian 3 × 3 ma-
trices. Moreover, any traceless Hermitian 3 × 3 matrix can
be expressed as a linear combination of these operators with
real coefficients. Hence, the algebra spanned by the operators
corresponds to the defining representation of su(3). We note
that the nine operators are overcomplete since the Lie group
SU(3) is only eight dimensional. Indeed, one of the operators
is redundant due to the linear relation T z + U z = V z.

The Lie algebra generated by a set of operators is fully
determined by their commutation relations. We provide the
full set of commutation relations between T α , U α , and V α in
Appendix B 2. Since the commutation relations are indepen-
dent of the number of atoms, these operators also describe a
representation of su(3) for more than one atom. The represen-
tation is reducible except for the special case of a single atom.
Our strategy is to decompose the representation into a direct
sum of irreducible representations, in which the operators T α ,
U α , and V α become block diagonal. We will see that the
projector P, and hence the Hamiltonian, is block diagonal
in the same basis. This greatly simplifies the computation
of many quantities such as the eigenenergies. Formally, the
block-diagonal form exists as a consequence of Schur-Weyl
duality for permutation-invariant systems (see Appendix A).
In what follows, we pursue a less abstract viewpoint and focus
on an explicit construction of the matrix representation of the
irreducible blocks of H .

Before we turn to the irreducible representations of su(3),
let us review the simpler case of su(2). This is particularly
instructive because the operators T α generate a su(2) subalge-
bra of su(3). This follows from the fact that for a single atom,
these operators act on the two-dimensional subspace spanned
by {|0〉 , |1〉}. Alternatively, one can verify that they satisfy
the familiar commutation relations of angular momentum
[T α, T β] = i

∑
γ∈{x,y,z} εαβγ T γ , where εαβγ is the Levi-Civita

symbol. Similar arguments apply to the subalgebras generated
by U α and V α .

The finite-dimensional irreducible representations of su(2)
are commonly labeled by the spin s, which is a non-negative
integer multiple of 1/2. The dimension of the represen-
tation is 2s + 1. There exists an orthonormal basis {|m〉},
where m runs from −s to s in integer increments. In this
basis, the matrix elements of the generators of the Lie
algebra, or spin operators, are fully determined by the rela-
tions T ± |m〉 = √

s(s + 1) − m(m ± 1) |m ± 1〉 and T z |m〉 =
m |m〉. The basis states belonging to an irreducible repre-
sentation are commonly illustrated using a so-called weight
diagram [32,33], shown in Fig. 2(a). Each dot represents a
basis state |m〉, ordered from left to right by increasing m. Ad-
jacent states are connected by nonvanishing matrix elements
of T ±.

The above concepts set a stage for our discussion of
the representations of su(3). We restrict ourselves to the

(a)

(c)

(b)

(d)

FIG. 2. Irreducible representations of su(2) and su(3).
(a) Weight diagram of the spin s = 3/2 representation of su(2). Each
dot corresponds to a basis state |m〉. The raising operator T + induces
transitions between the states as indicated by the orange arrows.
The numbers next to the arrows give the associated matrix element.
(b) The three levels of a single atom form the (p, q) = (1, 0)
representation of su(3). The colored arrows show the directions
in which the three distinct raising operators act. (c) In general,
the weight diagram of the (p, q) representation of su(3) takes the
form of a hexagon with side lengths p and q. Here (p, q) = (2, 1).
Each solid dot and each surrounding circle correspond to a basis
state. The basis states are simultaneous eigenstates of T z, U z, and
V z. The respective eigenvalues mt , mu, and mv can be read off at
the orthogonal projection onto the corresponding coordinate axis.
The origin of the axis lies at the center of the diagram. (d) Matrix
elements of the raising operators T +, U +, and V + for (p, q) = (0, 2)
and the same color coding as in (b).

aspects most pertinent to our problem and refer the reader
to Refs. [32,33] for a more comprehensive exposition. To
describe the irreducible representations, one can generalize
the weight diagrams introduced above. For su(3), the nodes
of the weight diagrams occupy a two-dimensional triangular
lattice, in contrast to the one-dimensional lattice in the case
of su(2). The raising and lowering operators T ±, U ±, and V ±
induce transitions between neighboring nodes along the three
distinct lattice directions. The representation corresponding to
the three basis states of a single atom hence form a triangle as
shown in Fig. 2(b).

Two further examples of weight diagrams of irreducible
representations of su(3) are shown in Figs. 2(c) and 2(d). In
general, each irreducible representation forms a hexagon that
can be labeled by two non-negative integers (p, q). Three of
the sides of the hexagon have length p, the other three length
q. If either p = 0 or q = 0, the hexagon simplifies to a trian-
gle [e.g., Figs. 2(b) and 2(d)]. When p = q = 0, the weight
diagram consists of a single node. The basis states associated
with each node are indicated by black dots and circles. A
single black dot means that there is one state associated with
this node. Every circle surrounding a dot corresponds to an
additional, degenerate basis state. The outermost nodes are
always singly occupied. Moving inward, the number of states
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per node increases by one if the nodes in the previous step
formed a hexagon; if they form a triangle, the number of states
stays the same. Following these rules, the (p, q) representation
can be shown to have dimension (p + 1)(q + 1)(p + q + 2)/2
[32].

The basis states are simultaneous eigenstates of T z, U z, and
V z. They are arranged in the weight diagram in such a way
that the operators T ±, U ±, and V ± induce transitions between
states occupying adjacent nodes along the three distinct lattice
directions. Consequently, we can introduce three coordinate
axes that determine the eigenvalues mt , mu, and mv , respec-
tively, belonging to T z, U z, and V z at each point of the weight
diagram as shown in Fig. 2(c). We can hence obtain the matrix
elements of the diagonal operators T z, U z, and V z simply from
the layout of the basis states in the weight diagram.

To compute the matrix elements of the raising and lowering
operators T ±, U ±, and V ±, we make use of the fact that the
states along a single line in a lattice direction form the basis of
a representation of su(2). It follows that the matrix elements
of the operators acting along these lines obey the rules of
standard spin operators. However, care must be taken when
constructing the matrix elements along different directions,
especially when there is more than one state per node, to
ensure that all commutation relations of su(3) are satisfied.
We present a general recipe to compute the matrix elements
relevant for our purposes in Appendix B 3. As an illustration,
Fig. 2(d) shows the matrix elements of the raising operators
T +, U +, and V + in the (p, q) = (0, 2) representation. While
the magnitude of the matrix elements can be understood by
viewing each line along a lattice direction as either a spin-1/2
or spin-1 system, some matrix elements are inevitably nega-
tive because the operators T +, U +, and V + do not mutually
commute.

C. Representation of n atoms

Following the above steps, we can construct explicit matrix
representations of the operators T α , U α , and V α for any irre-
ducible representation (p, q). In this section we describe how
the reducible representation of n atoms, defined by Eqs. (2)–
(4), decomposes into these irreducible representations. While
p and q can in principle be any non-negative integers, the
values that arise for n atoms are restricted. This is similar to
the addition of spins, where n spin-1/2 systems can combine
into a total spin with quantum number of at most n/2. Given
n atoms with three levels, the allowed values of p and q are
in one-to-one correspondence with partitions of n into a sum
of three non-negative integers [32,33]. More concretely, let
λ1 � λ2 � λ3 � 0 be three integers such that

λ1 + λ2 + λ3 = n. (6)

Each such partition of n corresponds to an allowed irreducible
representation with

p = λ1 − λ2, q = λ2 − λ3. (7)

In what follows, we will refer to an irreducible representa-
tion interchangeably by the labels (p, q) or by a partition
λ = (λ1, λ2, λ3).

The Rydberg blockade places further constraints on the
relevant irreducible representations by limiting the allowed

basis states within each sector to have at most one Rydberg
excitation. The number of atoms in the |0〉, |1〉, and |r〉 states is
well defined for every node in a weight diagram. This follows
from expressing the number operators as

n0 =
n∑

i=1

|0〉 〈0|i = 1

3
(nI + 2T z + 2V z ), (8)

n1 =
n∑

i=1

|1〉 〈1|i = 1

3
(nI − 2T z + 2U z ), (9)

nr =
n∑

i=1

|r〉 〈r|i = 1

3
(nI − 2U z − 2V z ) (10)

together with the fact that the basis states are eigenstates of
T z, U z, and V z. We note that the occupation numbers change
along axes that are perpendicular to the mt , mu, and mv axes
in Fig. 2(c).

The Rydberg blockade restricts the relevant Hilbert space
to nr � 1. We can therefore account for it by discarding all
nodes in a weight diagram for which this condition is violated.
Given the orientation of the mu and mv axes, Eq. (10) implies
that nr is constant along any horizontal row and increases by
one for each row from top to bottom. Hence, the Rydberg
blockade simply selects up to two horizontal rows from each
diagram. Which rows are selected depends on the number
of atoms n and on the irreducible representation (p, q). For
the top right corner of a weight diagram, we have U z = q/2
and V z = (p + q)/2 such that nr = (n − p − 2q)/3 = λ3 in
the top row. If λ3 = 0, the top two rows are selected, which
contain zero or one Rydberg excitation. If λ3 = 1, then only
the top row is kept. Irreducible representations with larger
values of λ3 contain only states with more than one Rydberg
excitation and therefore do not participate in the dynamics.
Below, we will often assume that the initial state contains
no Rydberg excitations. In this case, it suffices to consider
partitions with λ3 = 0.

Let us illustrate these notions with the concrete examples
of n = 2 and n = 3 atoms. For two atoms, there are two
partitions (λ1, λ2, λ3) = (2, 0, 0) and (λ1, λ2, λ3) = (1, 1, 0)
corresponding to (p, q) = (2, 0) and (p, q) = (0, 1), respec-
tively. The weight diagrams of these representations are
shown in Fig. 3(a), where all states with more than one Ry-
dberg excitation have been grayed out to reflect the blockade
constraint. Explicit expressions for the Hamiltonians and the
states in both the computational basis and the block-diagonal
basis are given in Appendix B 4. Similarly, Fig. 3(b) shows
all possible partitions and the corresponding weight diagrams
for n = 3 atoms. To account for the 27 basis states of the
full Hilbert space (without blockade constraint), the partition
(λ1, λ2, λ3) = (2, 1, 0) occurs with multiplicity μλ = 2. This
is analogous to the fact that three spin-1/2 particles can form
a system with total spin 1/2 in two different ways.

To further elucidate the role of the multiplicity of the irre-
ducible representations, we write the quantum state of n atoms
as

|ψ〉 =
∑

λ

μλ∑
i=1

dλ∑
j=1

αλ
i j |λ, i, j〉 , (11)
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(a)

(b)

FIG. 3. (a) Irreducible representations arising for n = 2 atoms.
The axis shows the number of Rydberg atoms. States with more
than one Rydberg excitation are grayed out as they violate the block-
ade constraint. The table shows the partition (λ1, λ2, λ3), the labels
(p, q), and the multiplicity μλ associated with each weight diagram.
(b) Same as (a) but for n = 3 atoms.

where the sum of λ runs over the partitions of n. The multiplic-
ity μλ is accounted for by the index i, while the index j refers
to the different states of the weight diagram. The number dλ

is the dimension of the irreducible representation restricted
by the Rydberg blockade. We provide explicit expressions for
both μλ and dλ in Appendix B 1.

As a consequence of Schur-Weyl duality (see Appendix A),
the Hamiltonian, as well as any other operator that is invari-
ant under permutation of the atoms, decomposes into blocks
that depend on the irreducible representation but not on the
multiplicity index i. Put differently, the Hamiltonian acts non-
trivially only on the index j of the above basis. We may
therefore express the Hamiltonian as

H =
⊕

λ

Iμλ
⊗ Hλ, (12)

where Iμλ
is the μλ × μλ identity matrix. The matrix Hλ

can be constructed by inserting the λ representation of
the operators T α , U α , and V α into Eq. (5) and restricting
the Hilbert space according to Rydberg blockade constraint
(see Appendix B 3). Although we label the blocks Hλ by the
partition λ = (λ1, λ2, λ3), they only depend on the parameters
p and q of the irreducible representation and are independent
of n.

D. Efficient computation

Let us briefly summarize the insights gained above. The
Hamiltonian can be brought into a block-diagonal form, where
each block is associated with an irreducible representation

of SU(3) labeled by two integers p and q. The matrix ele-
ments of each block can be computed following the recipe
in Appendix B 3. Crucially, it is not necessary to compute
the unitary transformation that brings the Hamiltonian into
the block-diagonal form. This is an advantage from a com-
putational perspective because the complexity of classically
constructing this transformation increases exponentially with
the number of atoms [34]. However, the set of quantities that
can be computed without the explicit basis transformation
is restricted due to the limited knowledge about the relation
between the basis states in the block-diagonal form and the
original tensor-product basis.

The full energy spectrum of the Hamiltonian is an example
of a physically relevant quantity that can be computed without
knowledge of the basis states. We will show in Sec. IV that it is
also possible to compute the number of atoms in the |0〉, |1〉, or
|r〉 state after evolving an initial product state for an arbitrary
time t . In both cases, the computational effort scales polyno-
mially with the number of atoms n. To see this, we recall that
the Rydberg blockade constraint requires that λ3 � 1, which
implies that the number of distinct irreducible representations
increases linearly with n. The dimension dλ of the unblock-
aded subspace in a given irreducible representation increases
linearly with p (see Appendix B 1), which is in turn bounded
from above by n. Since the eigenvalues and eigenvectors of a
matrix of size m × m can be determined in time O(m3) [35],
the computational effort to exactly diagonalize all irreducible
representations is O(n4).

The polynomial scaling represents an exponential improve-
ment over brute-force diagonalization of the Hamiltonian in
the blockaded Hilbert space, which, considering the Ryd-
berg blockade, has dimension 2n + n2n−1. We remark that
the exponential size of the Hilbert space is accounted for by
large multiplicities μλ (see Appendix B 1). The computational
speedup is enabled by the fact that it suffices to diagonal-
ize each irreducible representation once, regardless of its
multiplicity.

We note that the abstract formalism in terms of irreducible
representations can be useful even if knowledge of the basis
states is required. We discuss such a situation in the next
section, where we explore the preparation of quantum states
that are invariant under permutations. Efficient computation is
possible for this special case because all permutation-invariant
states of n atoms are part of the (n, 0) representation.

III. PREPARATION OF PERMUTATION-INVARIANT
QUANTUM STATES

Having established our formalism to describe a fully block-
aded system of n atoms, we apply it to the preparation
of arbitrary permutation-invariant quantum states. First, we
note that all permutation-invariant quantum states belong to
the (p, q) = (n, 0) representation, which includes the states
where all atoms are in the |0〉 or |1〉 state. This follows for-
mally from the Schur-Weyl duality (see Appendix A). The
basis states in the top row of the (n, 0) representation are
the so-called Dicke states |Dn

n0
〉 [31], which consist of equal

superposition of n0 atoms in the |0〉 state and n1 = n − n0

atoms in the |1〉 state, where n0 ranges from 0 on the left to n
on the right of the top row. Any permutation-invariant state in
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(a)

(b)

(e)

(c)

(d)

FIG. 4. Preparation of the two-atom GHZ state starting from the
initial state |00〉. The preparation corresponds to the time reversal of
the five pulses in (a)–(e). The numbers next to the arrows indicate
the product k�t for each pulse, where � is the Rabi frequency for
a single atom, t the duration of the pulse, and k the magnitude of
the matrix element of the collective transition. The amplitude of
each basis state (up to a global phase) is indicated by the numbers
next to the nodes, which are shaded according to the corresponding
occupation.

the |0〉 and |1〉 basis can be decomposed into a superposition
of Dicke states. We show below that one can design a pulse
sequence to prepare an arbitrary permutation-invariant state
starting with all atoms in the |0〉 states.

We explain the protocol with a simple example of prepar-
ing a two-qubit Greenberger-Horne-Zeilinger (GHZ) state (or
Bell state) (|00〉 + |11〉)/

√
2, as illustrated in Fig. 4. The

protocol closely follows the steps originally proposed in
Ref. [17]. The key idea is to derive a pulse sequence for the
reverse process of preparing the |00〉 state from the GHZ state.
The actual state preparation can then be obtained by time
reversal of this pulse sequence.

Starting from the GHZ state, one can progressively move
the population in the top left node of the weight diagram (|11〉
state) to the top right node (|00〉 state), as shown in Fig. 4. In
each of the steps, we choose a pulse such that the population of
the leftmost occupied node is moved to the right. To this end,
we alternate between pulses that act on the |1〉 ↔ |r〉 and on
the |0〉 ↔ |r〉 transition. The pulse on the |1〉 ↔ |r〉 transition
can be realized using then Rabi drive �2 in the Hamiltonian
(5). By contrast, we do not allow for a direct drive of the
|0〉 ↔ |r〉 transition in the Hamiltonian. It is possible, how-
ever, to effectively realize such a pulse by first applying a π

pulse on the |0〉 ↔ |1〉 transition, which exchanges the |0〉 and
|1〉 states of each atom. The desired pulse can then be applied
to the |1〉 ↔ |r〉 transition, before undoing the initial π pulse.
For simplicity, we leave this decomposition implied in what
follows and describe the pulse sequence directly in terms of
effective pulses on the |0〉 ↔ |r〉 transition.

Owing to the Rydberg blockade, the pulses connect pairs
of states between the first and second rows of the weight
diagram. Hence, we can determine the pulse that empties
the population of the leftmost state by exactly solving the
dynamics of a two-level system. As we can see from Figs. 4(a)

and 4(b), the first two steps are π pulses, transferring the
population from the top left node to the bottom left node and
then to the top middle node. A π pulse can be implemented by
setting all detunings to zero and choosing the pulse duration
t and the appropriate Rabi frequency � such that k�t = π .
The numerical factor k accounts for the matrix element of U ±
or V ± connecting the two states. Following the discussion of
Sec. II B, it is given by k = √

2 for the first pulse and k = 1
for the second pulse.

The state-dependent matrix elements lead to a partial trans-
fer of the population from the top right node (|00〉 state) to
the bottom right node during the second pulse. Therefore,
the third pulse is not a π pulse. Nevertheless, we can readily
determine the required pulse numerically by keeping track of
matrix elements and the amplitude of each basis state, as illus-
trated in Fig. 4. The approach readily generalizes to more than
two atoms. The numerically calculated pulse sequences for
preparing GHZ states for n = 2, 3, and 4 atoms are included
in Appendix C.

We note that the existence of the Rydberg energy level |r〉
and the blockade effect are crucial for this protocol by allow-
ing us to isolate effective two-level systems. If we were to
directly drive the |0〉 ↔ |1〉 transition, all states on the top row
would evolve together, rendering it impossible to completely
move the population from the GHZ state to the state where
all atoms are in the |0〉 state. This is expected as one cannot
create an entangled state from a product state using only the
noninteracting hyperfine states.

The above protocol straightforwardly generalizes beyond
GHZ states to arbitrary permutation-invariant states, including
the W state. In general, it consists of n pulses on the |1〉 ↔ |r〉
transition alternating with n pulses on the |0〉 ↔ |r〉 transition.
The latter are in practice each decomposed into three pulses,
resulting in 4n pulses in total. The parameters of each pulse
can be computed numerically considering only effective two-
level systems such that the computational cost increases only
linearly with the system size. We highlight that the linear
dependence of the number of pulses on the system size is
optimal [36], although the protocol duration may potentially
be reduced using the tools of optimal control at an increased
computational cost [37].

IV. EQUILIBRATION DYNAMICS

A. Method

We now use our formalism to study the equilibration of
a permutation-invariant Rydberg system. We emphasize that
we only consider the unitary dynamics of a closed system. In
contrast to an open system with dissipation [38], the system
remains in a pure state at all times and does not converge to a
mixed steady state. Equilibration in a closed system occurs as
the off-diagonal elements of an observable in the energy basis
dephase. At late times, the time-averaged expectation value
of the observable converges to the average of its diagonal
elements in the energy basis, weighted by the overlap of the
initial state with the corresponding eigenstate [39].

We numerically explore the time evolution of an observ-
able for different initial states. In the examples below, we
focus on the number of Rydberg excitations nr , although the

043111-6



QUANTUM DYNAMICS OF A FULLY BLOCKADED RYDBERG … PHYSICAL REVIEW A 109, 043111 (2024)

approach readily applies to any observable that is invariant
under permutations of the atoms. As pointed out in Sec. II C,
any such observable A can be written as

A =
⊕

λ

Iμλ
⊗ Aλ, (13)

where the direct sum runs over the irreducible representations
of SU(3) labeled by λ. The matrices Aλ describe the action
of A on the vector space associated with the irreducible rep-
resentation. In the case of nr , these irreducible blocks can be
readily constructed using Eq. (10).

Given a state |ψ〉, the expectation value of A may be ex-
pressed as

〈ψ |A|ψ〉 =
∑

λ

Tr(Aλρλ), (14)

where ρλ is the (unnormalized) state obtained by projecting
|ψ〉 〈ψ | onto the irreducible representation labeled by λ and
tracing out its multiplicity. Using the notation of Eq. (11), ρλ

can be written explicitly as

ρλ =
μλ∑
i=1

dλ∑
j=1

dλ∑
j′=1

αλ
i jα

λ∗
i j′ |λ, j〉 〈λ, j′| . (15)

Here the states {|λ, j〉} form an orthonormal basis of the
dλ-dimensional vector space associated with the irreducible
representation. Since the projection commutes with the
Hamiltonian, we can apply the time evolution to each ρλ

separately. Given the initial state ρλ(0), we can classically
compute the time-evolved state ρλ(t ) = e−iHλtρλ(0)eiHλt at a
computational cost that increases polynomially with the sys-
tem size. Hence, it is possible to efficiently determine the
time-dependent expectation value of permutationally invariant
observables.

We focus on initial states with a well-defined number of
atoms in the |0〉 and |1〉 states and no atom in the Rydberg
state |r〉. According to Eqs. (8)–(10), such states are eigen-
states of T z, U z, and V z. The respective eigenvalues uniquely
specify the node in the weight diagram of each irreducible
representation. Moreover, since nr = 0, only irreducible rep-
resentations with λ3 = 0 contribute and the node lies in the
top row. Because all nodes in the top row host nondegenerate
states, the occupation numbers specify a unique initial state
for each irreducible representation. We denote this state by
|λ, n0, n1〉, where n0 and n1 are the number of atoms in the |0〉
and |1〉 states, respectively. Taking this state to be normalized,
we have

ρλ(0) = wλ |λ, n0, n1〉 〈λ, n0, n1| , (16)

where wλ is the probability that the system occupies the irre-
ducible representation labeled by λ. We show in Appendix B 5
that

wλ = (p + 1)
n0!n1!

q!(p + q + 1)!
(17)

if λ3 = 0 and |n0 − n1| � p � n, and wλ = 0 otherwise. The
representations Aλ with A = nr are diagonal matrices with
entries 0 for the states corresponding to the top row of the
weight diagram and 1 for the states in the bottom row.

B. Numerical results

We next numerically study the dynamics of large systems
with different initial states. Figure 5 shows the results for
n = 100 atoms with initial product states of the form |ψ (0)〉 =
|0〉⊗n0 |1〉⊗n1 . We remark that due to permutation invariance, it
is irrelevant which of the atoms are in the |0〉 state and which
are in the |1〉 state. The system is subject to simultaneous
driving of the |0〉 ↔ |1〉 and the |1〉 ↔ |r〉 transitions with
equal Rabi frequencies �1 = �2 = �. The field driving the
hyperfine transition is detuned by �1 = �, whereas the Ryd-
berg drive is resonant �2 = 0. We note that only the (p, q) =
(n, 0) representation is relevant for Figs. 5(a) and 5(c), where
all atoms occupy the same state, rendering the state invariant
under permutations. This is not the case in Fig. 5(b), for which
we have to sum over all irreducible representations satisfying
λ3 = 0.

For all three initial states in Fig. 5, the Rydberg popu-
lation oscillates rapidly. We note that the typical period of
the oscillation is much shorter than 2π/�2, which is the
duration of a 2π pulse between the |1〉 and |r〉 states of a
single atom. This can be explained by the enhanced Rabi
frequency experienced by states with more than one atom in
the |1〉 state. The Rabi frequency experienced by the |1〉⊗n

state is given by
√

n�2, which shortens the period by a factor
1/

√
n. Other states experience a weaker enhancement, which

depends on both the number of atoms in the |0〉 and |1〉 states
and the irreducible representation. Following the construction
of matrix elements in Sec. II and Appendix B 3, we find that
the largest enhancement factor in the (p, q) representation is√

(n + p)/2. Hence an enhancement factor proportional to
√

n
is expected independent of the initial state.

In addition to the fast oscillation, the dynamics exhibit a
much slower modulation of the oscillation amplitude. When
the atoms all start in the state |0〉 [Fig. 5(a)], the fast oscilla-
tions as well as the slow modulation possess little structure.
By contrast, when half or all atoms start in the |1〉 state
[Figs. 5(b) and 5(c)], the system undergoes damped oscilla-
tions with strong revivals after a time of more than 100/�.
Revivals in such a large system are surprising and are often
indicators of symmetries such as the permutational invariance
in the present setting.

We characterize the revivals by determining the time and
strength of the revival. We accomplish this numerically by
sorting the evolution times according to their corresponding
Rydberg population. The largest Rydberg populations occur at
short times. As the Rydberg population decreases, the sorted
evolution time jumps up when the highest point of a revival is
reached. Because the strength of the revivals is monotonically
decreasing, this jump reliably identifies the first revival. We
refer to the time and Rydberg population at this point as the
revival time trev and the revival strength 〈nr〉rev, respectively
[see Fig. 5(b)]. We plot both quantities in Fig. 6 as a function
of the number of atoms for the two initial states that exhibit
pronounced revivals.

Figure 6(a) shows that the time of the first revival increases
with

√
n. The functional dependence of the revival strength

on n is not evident from the data in Fig. 6(b), but the revival
strength remains above 0.9 even for n = 300 atoms. This in-
dicates that the first revival stays pronounced in large systems
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(a) (b) (c)

FIG. 5. Expected number of Rydberg excitations in a fully blockaded ensemble of n = 100 atoms. The dynamics are shown for three
different initial states (a) |ψ (0)〉 = |0〉⊗n, (b) |ψ (0)〉 = |0〉⊗n/2 |1〉⊗n/2, and (c) |ψ (0)〉 = |1〉⊗n. The system is simultaneously driven by two
external fields with Rabi frequencies �1 = �2 = � and detunings �1 = � and �2 = 0 (see Fig. 1). The plots in the top row show the rapid
oscillations of the Rydberg population for times between �t = 0 and �t = 20.

even as it shifts to later times. The strength of subsequent
revivals, however, decreases and data at very late times show
that they eventually disappear (see Appendix D 2).

C. Spin model

To shed light on the physical origin of the revivals, we
consider the dynamics of the initial state |1〉⊗n in more detail.
In this case, the evolution is restricted to the irreducible repre-
sentation (p, q) = (n, 0), whose weight diagram is shown in
Fig. 7(a). The top row of this diagram, where no atom is in the
Rydberg state, may be viewed as the states of a spin with total
angular momentum quantum number s = n/2. Similarly, the
bottom row, where exactly one atom is in the Rydberg state,
represents a spin s = (n − 1)/2. In the limit of large n, we may
ignore the difference between these spins. We formalize this
idea by adding an unphysical state to the bottom row. This ad-
ditional state will have little impact on the dynamics provided
its amplitude remains negligible throughout the evolution. We
expect this to be indeed the case because the initial state is
situated at the top left corner of the weight diagram and the

(a) (b)

FIG. 6. (a) Revival time trev and (b) revival strength 〈nr〉rev as a
function of the number of atoms n. Both quantities are determined by
locating the largest value of 〈nr〉 at the first revival. The Hamiltonian
parameters are the same as in Fig. 5. The solid curves in (a) are fits
to the function a

√
n + b.

detuning �1 = � creates an energy difference of order n�1

between opposite ends of the diagram such that occupying the
added state is energetically unfavorable.

The addition of the unphysical state leads to a great sim-
plification because both rows now have n + 1 states. This
allows us to factorize the Hilbert space into a spin s = n/2

(a)

(b)

FIG. 7. (a) Illustration of the spin-model approximation to the
(n, 0) representation. By adding an unphysical state (light blue cir-
cle connected to dashed line), the Hilbert space can be viewed as
the tensor product of a spin s = n/2 and a two-level system σ . The
colored lines indicate the transitions that are being driven. The pur-
ple numbers show the matrix elements for the |1〉 ↔ |r〉 transition.
(b) Revivals of an ensemble of n = 300 atoms initialized in the state
|1〉⊗n. The Hamiltonian parameters are the same as in Fig. 5. The
light blue curve shows the exact values of the expectation value of
the number of Rydberg excitations. The blue envelope was obtained
from the approximate spin model.
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and a two-level system whose states |0〉 and |1〉 correspond
to the number of atoms in the Rydberg state. As a further
approximation, we modify the matrix elements of T x,y,z in
the bottom row, which originally correspond to those of a
spin s = (n − 1)/2. In the limit of large n, it is justified to
replace the matrix elements by those of a spin s = n/2. The
spin-model Hamiltonian resulting from these approximations
can be compactly expressed as

HSM = (�1Sx + �1Sz ) ⊗ I2

+ �2

2
I2s+1 ⊗ σ z + �2

2

√
sI2s+1 − Sz ⊗ σ x, (18)

where σ x,y,z are Pauli matrices and Sx,y,z are the standard spin
operators with total angular momentum s = n/2. For simplic-
ity, we assume that �1 and �2 are real. The operators Sx,y,z

couple the same states as T x,y,z with the above modification
of the matrix elements and the additional, unphysical state.
The term

√
sI2s+1 − Sz accounts for the matrix elements of

the U ± operators in the original Hamiltonian [see Fig. 7(a)].
We note that the Pauli matrices are related to the occupation
of the Rydberg state by nr = I2s+1 ⊗ (I2 − σ z )/2.

In the special case �2 = 0, the states |±〉 = (|0〉 ±
|1〉)/

√
2 of the two-level system are decoupled. It is therefore

convenient to express the state of the system as

|ψ (t )〉 = |φ+(t )〉 |+〉 + |φ−(t )〉 |−〉 . (19)

The states |φ±(t )〉 evolve under the Hamiltonian

H±
SM = �1Sx + �1Sz ± �2

√
sI2s+1 − Sz/2. (20)

In terms of this ansatz, the number of atoms in the Rydberg
state is given by

〈nr (t )〉 = 1
2 − Re 〈φ+(t )|φ−(t )〉 . (21)

This implies that 1/2 − | 〈φ+(t )|φ−(t )〉 | � 〈nr (t )〉 � 1/2 +
| 〈φ+(t )|φ−(t )〉 |. The absolute value of the overlap between
|φ+(t )〉 and |φ−(t )〉 hence determines the envelope of the
Rydberg population, whereas the relative phase is responsible
for the fast oscillations.

To verify the validity of the spin model, we plot in Fig. 7(b)
the exact dynamics of n = 300 atoms together with the
spin-model envelope 1/2 ± | 〈φ+(t )|φ−(t )〉 |. The atoms are
initialized in the state |1〉⊗n and the Hamiltonian parameters
are the same as in Figs. 5 and 6. There is excellent agreement
between the exact evolution and the envelope. We highlight
that the spin model also captures the fast oscillations, which
have been omitted from the figure for clarity.

The spin model enables us to explain the characteristics of
the revivals displayed in Fig. 6. In fact, it is sufficient to work
within a semiclassical approximation, which is valid in the
limit of large s. We write Sz = 〈Sz(t )〉 + δSz(t ) and expand√

sI2s+1 − Sz to linear order in δSz(t ). This yields√
sI2s+1 − Sz ≈

√
s − 〈Sz(t )〉 − Sz − 〈Sz(t )〉

2
√

s − 〈Sz(t )〉 . (22)

The expansion is justified if the fluctuation δSz(t ) is small
compared to s − 〈Sz(t )〉. This is indeed the case for suffi-
ciently large detuning �1: Since 〈Sz(0)〉 = −s, the detuning
ensures that s − 〈Sz(t )〉 is of order s at all times. In com-
parison, the fluctuations in the initial state are smaller by a

factor 1/
√

s according to
√

〈δSz(0)2〉 ∼ √
s. We note that the

uncertainty in the spin vector remains constant within the ap-
proximations of Eq. (22). Although higher-order corrections
may cause the fluctuations to grow, we expect those terms to
only become relevant at very late times.

By substituting Eq. (22) into the expression for the spin-
model Hamiltonian in Eq. (20), we find that the states |φ±(t )〉
evolve according to

H±
SM = ± �2

2

(√
s − 〈Sz(t )〉 + 〈Sz(t )〉

2
√

s − 〈Sz(t )〉
)
I2s+1

+ �1Sx +
(

�1 ∓ �2

4
√

s − 〈Sz(t )〉
)

Sz. (23)

The term proportional to the identity leads to a phase dif-
ference between the states and thus causes oscillations in
the Rydberg population with a frequency of order

√
n�2.

The second row of the Hamiltonian describes an effective
magnetic field around which the states |φ±(t )〉 precess. Since
there are no nonlinear terms, the states remain spin-coherent
states at all times and can be simply described by the direction
of their spin vector. The state overlap can be expressed as
| 〈φ+(t )|φ−(t )〉 | = cos2s(θ/2), where θ is the angle between
the two respective spin vectors [40]. The magnitude of the
magnetic fields experienced by the two states differs by a
term proportional to �2/

√
s − 〈Sz(t )〉. Hence, the two spin

vectors separate and rephase over a time of order
√

s, which
explains the revival timescale trev ∼ √

n observed in Fig. 6(a).
The revival is imperfect because the rotation axes fluctuate
such that the spins do not return to the exact initial direction
but are displaced by an angle of order �θ ∼ 1/

√
s. We expect

that the strength of the first revival 〈nr〉rev is independent of
the system size since cos2s(c/

√
s) tends to e−c2/2 in the limit

of large s for any constant c. This is consistent with the weak
dependence on the system size observed in Fig. 6(b).

We have shown that the spin model captures the salient
features of the revivals when the system starts in the state
|1〉⊗n. The system fails to equilibrate quickly because it is well
approximated by a linear spin model. As pointed out above,
the revivals decay over time, which is also true within the
spin model. The approximations of the spin model, however,
render it inapplicable at very late times, as can be seen in
Fig. 9 of Appendix D 2.

The spin model can be adapted to the initial state |0〉⊗n

(see Appendix D 1). The additional, unphysical state must
be added to the left end of the weight diagram to ensure
its occupation remains small. However, the resulting Hamil-
tonian is more complicated than Eq. (18) because driving
the |1〉 ↔ |r〉 transition results in a term that simultaneously
changes the large spin s and flips the two-level system. The
dynamics therefore cannot be separated as in Eq. (19). As a
consequence, the large spin and the two-level system do not
periodically disentangle, which explains the absence of re-
vivals for this initial state. For the initial state |0〉⊗n/2 |1〉⊗n/2, a
similar analysis is more involved because it requires summing
over multiple irreducible representations. Moreover, a two-
level system coupled to a large spin is insufficient to capture
the two states per node that appear in the second row of many
representations. The pronounced revivals for this initial state
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are thus surprising and a more refined model is required to
explain their physical origin.

V. SUMMARY AND OUTLOOK

We have presented a general formalism to efficiently com-
pute the quantum dynamics of an ensemble of three-level
systems evolving under a permutation-invariant Hamiltonian.
The high degree of symmetry allowed us to numerically simu-
late ensembles of 100 s of atoms that interact via the Rydberg
blockade mechanism. We applied the formalism to derive
sequences of at most 4n pulses to prepare arbitrary symmetric
states of n atoms, including important entangled states such as
the W state and the GHZ state. In addition, we studied the dy-
namics of an ensemble after a quench and uncovered a regime
of parameters in which the system approaches equilibrium
surprisingly slowly despite the strong nonlinearity due to the
Rydberg blockade. We explained this slow equilibration and
the appearance of revivals in terms of an effective spin model
for permutation-invariant initial states. The physical origin of
the revivals for other initial states is left for future research.

Our formalism generalizes the notion of Dicke states from
two-level to three-level systems. The approach is general and
can accommodate other forms of interaction besides Rydberg
blockade, provided the Hamiltonian remains invariant under
permutations. For instance, it may be applied to atoms with
equal pairwise spacings and finite van der Waals interaction
[28] or to atoms interacting via a one-dimensional waveguide
when their separation is commensurate with the transition
wavelength [41,42]. It is possible to generalize our results
beyond three-level systems to arbitrary d-level systems as
the underlying Schur-Weyl duality also applies to the group
SU(d ). Future work may further extend the formalism to open
systems governed by a permutationally invariant Lindblad
operator [38,43].
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APPENDIX A: SCHUR-WEYL DUALITY

Schur-Weyl duality formalizes an intimate relation be-
tween representations of the symmetric group Sn and and the
general linear group GLd . We consider a system formed by n
qudits with local Hilbert space dimension d . The duality states
that the corresponding Hilbert space decomposes according to

(Cd )⊗n ∼=
⊕

λ

Pλ ⊗ Qλ, (A1)

where the sum runs over all partitions of n into d non-negative
integers. Each partition λ labels an irreducible representation
of Sn and of GLd .

The duality further states that representations of Sn and
GLd act nontrivially only on the respective vector spaces Pλ

and Qλ. Concretely, the representation M(π ) that permutes

the qudits according to some π ∈ Sn can be written as

M(π ) =
⊕

λ

Mλ(π ) ⊗ Idim Qλ
, (A2)

where Mλ(π ) is an irreducible representation of the symmetric
group. Similarly, given the representation N (U ) of U ∈ GLd

that acts on (Cd )⊗n as U ⊗n, we have

N (U ) =
⊕

λ

Idim Pλ
⊗ Nλ(U ). (A3)

Here Nλ(U ) is an irreducible representations of GLd .
In the main text we were concerned with the special unitary

group SU(d ) instead of GLd . Schur-Weyl duality continues
to apply since SU(d ) is a subgroup of GLd . The duality
further constrains the form of operators that commute with all
permutations. According to Schur’s lemma, any such operator
O must take the form

O =
⊕

λ

Idim Pλ
⊗ Oλ. (A4)

We further note that the partition λ with λ1 = n and
all other λk = 0 (k = 2, 3, . . . , d) describes the trivial rep-
resentation ρλ(π ) = 1 of the symmetric group. Hence, the
contribution of this partition to the direct sum of Eq. (A1)
corresponds to the subspace of states that are invariant under
permutations.

APPENDIX B: IRREDUCIBLE REPRESENTATIONS
OF su(3)

1. Dimensions

Here we give expressions for the dimensions of the irre-
ducible representations Pλ and Qλ of the symmetric group Sn

and the special unitary group SU(3), respectively. The repre-
sentations are labeled by λ = (λ1, λ2, λ3), which partition n
such that λ1 + λ2 + λ3 = n. For concreteness, we order the
three integers as λ1 � λ2 � λ3 � 0. For conciseness, we also
use the quantities p = λ1 − λ2 and q = λ2 − λ3.

In the main text we referred to the dimension of the irre-
ducible representation Pλ of Sn as the multiplicity μλ. It can be
computed using the hook formula (see Chap. 2.8 of Ref. [44]),
which gives

μλ = dim Pλ = n!
(p + q + 2)(p + 1)(q + 1)

(λ1 + 2)!(λ2 + 1)!λ3!
. (B1)

The dimension of the irreducible representation Qλ of
su(3) can be obtained by directly counting of the states in the
weight diagram. We find

dim Qλ = 1
2 (p + q + 2)(p + 1)(q + 1). (B2)

We note that in the presence of Rydberg blockade, the states
with more than one Rydberg excitation do not participate in
the dynamics. According to the discussion in the main text,
the number of Rydberg excitations is bounded by nr � λ3. It
follows that the subspace Q̃λ of Qλ with at most one Rydberg
excitation has dimension

dλ =
⎧⎨
⎩

3(p + 1) − (p + 2)δq,0 if λ3 = 0
p + 1 if λ3 = 1
0 otherwise.

(B3)
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2. Commutation relations

The generators of the Lie algebra su(3) form three su(2)
subalgebras with the commutation relations

[T ±, T z] = ±T ±, [T +, T −] = 2T z, (B4)

[U ±,U z] = ±U ±, [U +,U −] = 2U z, (B5)

[V ±,V z] = ±V ±, [V +,V −] = 2V z. (B6)

The su(3) algebra is fully defined by these commutation rela-
tions together with

[T +,V −] = −U −, (B7)

[T +,U +] = V +, (B8)

[U +,V −] = T −, (B9)

2[T z,U ±] = ∓U ±, (B10)

2[T z,V ±] = ±V ±, (B11)

[T +,V +] = [T +,U −] = [U +,V +] = 0. (B12)

Further commutation relations can be derived by nesting the
above equations and taking the Hermitian conjugates.

3. Matrix elements

In this section we describe how to explicitly construct
irreducible representations of the su(3) algebra. We label the
states in a given diagram corresponding to the irreducible
representation (p, q) by |r; t, mt 〉. Here r is a non-negative
integer assigned to each row, with r = 0 corresponding to
the top row. The value of r increases by one each time we
move down by one row. The other two labels are angular
momentum eigenvalues such that

T 2 |r; t, mt 〉 = t (t + 1) |r; t, mt 〉 , (B13)

T z |r; t, mt 〉 = mt |r; t, mt 〉 , (B14)

where T 2 = (T x )2 + (T y)2 + (T z )2. We may view mt as a
horizontal coordinate in the weight diagram. Its values are
restricted to {−t,−t + 1, . . . , t}. The total angular momen-
tum quantum number t serves to resolve different states on
multiply occupied nodes of the weight diagram. Since the
operators T α form a su(2) subalgebra, we further have

T ± |r; t, mt 〉 =
√

t (t + 1) − mt (mt ± 1) |r; t, mt ± 1〉 .

(B15)

We further note that the states in the weight diagram
are simultaneous eigenstates of U z and V z. Using the rela-
tions U z − V z + T z = 0 and r = (p + 2q − 2U z − 2V z ), we
find

U z |r; t, mt 〉 = 1
4 (p + 2q − 3r − 2mt ) |r; t, mt 〉 , (B16)

V z |r; t, mt 〉 = 1
4 (p + 2q − 3r + 2mt ) |r; t, mt 〉 . (B17)

It remains to determine the matrix elements of U ± and
V ±. These matrix elements are more complicated because
they couple states with different values of t . As we are only
interested in matrix elements between states with at most one
Rydberg excitation, we restrict the remaining discussion to the
top two rows of any weight diagram, which limits the range
of values of t . The top row is always singly occupied with
t = p/2. To determine the allowed values for t in the second
row, we distinguish between four cases.

Case p = q = 0. The irreducible representation is
one dimensional and there is only a single state, for
which t = 0.

Case p = 0 and q = 0. All nodes in the second row are
singly occupied with t = 1/2.

Case p = 0 and q = 0. All nodes in the second row are
singly occupied with t = (p − 1)/2.

Case p = 0 and q = 0. The second row supports states
with t = (p + 1)/2 and t = (p − 1)/2. The two edge nodes
remain singly occupied, while all inner nodes are doubly
occupied.

The matrix elements can now be constructed from the com-
mutation relations of the Lie algebra [32]. Given an integer
0 � k � p/2, they can be concisely written as

U −
∣∣∣∣0;

p

2
,

p

2
− k

〉
=

√
q(p − k + 1)

p + 1

∣∣∣∣1;
p + 1

2
,

p + 1

2
− k

〉
+

√
k(p + q + 1)

p + 1

∣∣∣∣1;
p − 1

2
,

p + 1

2
− k

〉
, (B18)

V −
∣∣∣∣0;

p

2
,

p

2
− k

〉
= −

√
q(k + 1)

p + 1

∣∣∣∣1;
p + 1

2
,

p − 1

2
− k

〉
+

√
(p − k)(p + q + 1)

p + 1

∣∣∣∣1;
p − 1

2
,

p − 1

2
− k

〉
. (B19)

The matrix elements of U + and V + follow by taking the Hermitian conjugate. The expressions hold in all four of the above cases.
When p = 0 or q = 0, some of the coefficients on the right-hand side vanish such that only states with either t = (p + 1)/2 or
t = (p − 1)/2 are present.

4. Hamiltonian for n = 2 atoms

In this section we give explicit expressions for the Hamiltonian for n = 2 atoms, both in the original basis and in
the block-diagonal form. Taking into account the Rydberg blockade, the Hilbert space is spanned by the eight states
{|00〉 , |01〉 , |0r〉 , |10〉 , |11〉 , |1r〉 , |r0〉 , |r1〉}. Using this ordering of the states, the Hamiltonian in Eq. (1) has the matrix
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representation

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 �1/2 0 �1/2 0 0 0 0
�1/2 −�1 �2/2 0 �1/2 0 0 0

0 �2/2 −�1 − �2 0 0 �1/2 0 0
�1/2 0 0 −�1 �1/2 0 �2/2 0

0 �1/2 0 �1/2 −2�1 �2/2 0 �2/2
0 0 �1/2 0 �2/2 −2�1 − �2 0 0
0 0 0 �2/2 0 0 −�1 − �2 �1/2
0 0 0 0 �2/2 0 �1/2 −2�1 − �2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B20)

Following the discussion of Sec. II, this Hamiltonian can be brought into block-diagonal form with two blocks corresponding
to the partitions λ = (2, 0, 0) and λ = (1, 1, 0). The blocks are explicitly given by

H(2,0) =

⎛
⎜⎜⎜⎜⎜⎝

0 �1/
√

2 0 0 0
�1/

√
2 −�1 �1/

√
2 �2/2 0

0 �1/
√

2 −2�1 0 �2/
√

2
0 �2/2 0 −�1 − �2 �1/2
0 0 �2/

√
2 �1/2 −2�1 − �2

⎞
⎟⎟⎟⎟⎟⎠, H(0,1) =

⎛
⎝−�1 �2/2 0

�2/2 −�1 − �2 �1/2
0 �1/2 −2�1 − �2

⎞
⎠.

(B21)

Here we label the blocks by (p, q) instead of the partition λ to
highlight that their form also applies to other values of n.

One can explicitly check that H(2,0) and H(1,0) correspond
to the matrix elements of H in the subspaces respectively
spanned by

|0; 1, 1〉 = |00〉 , (B22)

|0; 1, 0〉 = 1√
2

(|01〉 + |10〉), (B23)

|0; 1,−1〉 = |11〉 , (B24)

|1; 1/2, 1/2〉 = 1√
2

(|0r〉 + |r0〉), (B25)

|1; 1/2,−1/2〉 = 1√
2

(|1r〉 + |r1〉) (B26)

and

|0; 0, 0〉 = 1√
2

(|01〉 − |10〉), (B27)

|1; 1/2, 1/2〉 = 1√
2

(|0r〉 − |r0〉), (B28)

|1; 1/2,−1/2〉 = 1√
2

(|1r〉 − |r1〉). (B29)

These are the basis states associated with the nodes of the
weight diagrams labeled as in Appendix B 3. We observe that
the states in the (p, q) = (2, 0) irreducible representation are
invariant under permutation. The states in the (p, q) = (0, 1)
representations change sign under permutation. The states can
be constructed by first constructing the eigenstates of total
angular momentum of two atoms with two levels |0〉 and
|1〉. The remaining states can subsequently be obtained by
applying the operators U − and V −.

5. Projector

In this section we derive a closed-form expression for the
overlap of a given state with the (p, q) representation. We con-
sider initial product states of the form |s1〉 |s2〉 · · · |sn〉, where
si ∈ {0, 1} for all i ∈ {1, 2, . . . , n}. Since there are no Rydberg
excitations for this initial state, the overlap with the (p, q)
representation is equal to the probability that the product state
carries total spin quantum number t = p/2 with respect to the
operator T 2.

Given a finite-dimensional representation ρ of a compact
group G, the projector Pλ onto an irreducible representation
ρλ of dimension dλ can be written as (see Ref. [45])

Pλ = dλ

∫
dU χ∗

λ (U )ρ(U ). (B30)

Here the integral runs over the Haar measure on G and
χλ(U ) = tr[ρλ(U )] is the character of the group element in
the irreducible representation.

Since the Rydberg level plays no role, the group of interest
is SU(2). The elements of SU(2) can be described by the ro-
tation axis n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) and the rotation
angle α. The initial representation is defined by applying the
same rotation to each atom,

ρ(U ) =
(

cos
α

2
I − i sin

α

2
n̂ · σ

)⊗n

,

where the Pauli matrices σ x, σ y, and σ z act on the two-level
system {|0〉 , |1〉}. Integration over the Haar measure can be
written as (see Sec. 4.1 of Ref. [44])

∫
dU = 1

(2π )2

∫ 2π

0
dα sin2 α

2

∫ 1

−1
d(cos θ )

∫ 2π

0
dϕ. (B31)

The dimension of the irreducible representation with total
angular momentum t is dt = 2t + 1 and the character is given
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TABLE I. Pulse parameters to prepare a GHZ state of n = 2, 3,
and 4 atoms. The detuning is zero for each pulse and the phase of the
drive is constant. The pulses are ordered to prepare the GHZ state
from the |0〉⊗n atoms, which is opposite to the order in which the
parameters were computed.

No. of atoms Pulse no. |�|t/π

2 1 0.90635
2 2 1.42788
2 3 1
2 4 0.70711
3 1 0.71439
3 2 1.40051
3 3 0.86508
3 4 0.70711
3 5 1
3 6 0.57735
4 1 0.56629
4 2 1.30474
4 3 0.80500
4 4 0.70711
4 5 0.70711
4 6 0.57735
4 7 1
4 8 0.5

by (see example 12.23 of Ref. [33])

χt (U ) = sin[(2t + 1)α/2]

sin(α/2)
.

We next apply these expressions to a product state with n0

atoms in the state |0〉 and the remaining n1 atoms in the |1〉
state. This yields

〈ψ |Pt |ψ〉 = 2t + 1

2π

∫ 2π

0
dα sin

α

2
sin[(2t + 1)α/2]

×
∫ 1

−1
d(cos θ )

(
cos

α

2
− i sin

α

2
cos θ

)n0

×
(

cos
α

2
+ i sin

α

2
cos θ

)n1

. (B32)

The integral over cos θ can be carried out by parts, resulting in
a sum of elementary integrals over α. Assuming that n0 � n1,
we arrive at

〈ψ |Pt |ψ〉 = (2t + 1)
n1∑

k=0

n0!n1!

k!(n + 1 − k)!
δk,n/2−t . (B33)

The sum is zero unless 0 � n
2 − t � n1 or, equivalently,

1
2 (n0 − n1) � t � n

2 . By noting that the answer must be sym-
metric under the exchange of n0 and n1, we finally obtain

〈ψ |Pt |ψ〉 = (2t + 1)
n0!n1!

(n/2 − t )!(n/2 + t + 1)!
(B34)

if 1
2 |n0 − n1| � t � n

2 and 〈ψ |Pt |ψ〉 = 0 otherwise. Equa-
tion (17) follows by substituting in t = p/2 and noting that
n = p + 2q. The latter equation holds because |ψ〉 contains
no Rydberg excitation by assumption, which implies that only
irreducible representations with λ3 = 0 contribute.

(a)

(b)

FIG. 8. (a) To construct a spin model for the initial state |0〉⊗n,
we add an additional, unphysical state to the left of the weight
diagram (gray circle connected to dashed line). (b) Exact evolution
and dynamics under the spin model (D1) of n = 300 atoms with
�1 = �2 = �, �1 = �, and �2 = 0.

APPENDIX C: STATE PREPARATION

Following the strategy outlined in Sec. III, one can prepare
any permutation-invariant state from the initial state |0〉⊗n

by applying a sequence of alternating pulses that drive the
transitions |0〉 ↔ |r〉 and |1〉 ↔ |r〉. To determine the pulse
parameters, we start from the target state and choose each
pulse such that it empties the leftmost occupied node. After
at most 2n pulses, the entire population will thus be moved to
|0〉⊗n. To prepare the target state, we simply time reverse the
pulses.

Determining the parameters of each pulse is computation-
ally straightforward since each pulse only couples pairs of
basis states (see Fig. 4). We focus on the two-level system that
includes the leftmost occupied node. Given the amplitudes of
these two basis states and the corresponding (unnormalized)
Bloch vector, we can readily find the pulse parameters that
rotate the Bloch vector to the desired pole. It is always pos-
sible to set the detuning to zero, corresponding to a rotation
axis on the equator. The phase of the Rabi frequency must
then be chosen such that the axis of rotation is perpendicular
to the plane spanned by the initial Bloch vector and the pole.
The rotation axis will point along the y axis if the amplitudes
are real.

We demonstrate this procedure by giving the parameters
for the pulses required to create a GHZ state of two, three, and
four atoms in Table I. We note that the rotation angle on the
Bloch sphere is given by |�|t times the matrix element of the
two-level system of interest. The parameters are obtained for
a constant phase of the drive, corresponding to a fixed rotation
axis. This is possible because the amplitudes of the state
(|0〉⊗n + |1〉⊗n)/

√
2 are real. We note, however, that this leads

to a suboptimal sequence in terms of the total time as certain
pulses correspond to a rotation on the Bloch sphere by an
angle θ > π . These pulses could be shortened by introducing
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(a) (b) (c)

FIG. 9. Expected number of Rydberg excitations at late times for the same parameters as in Fig. 5 (n = 100, �1 = �2 = �, �1 = �, and
�2 = 0). The dynamics are shown for three different initial states (a) |ψ (0)〉 = |0〉⊗n, (b) |ψ (0)〉 = |0〉⊗n/2 |1〉⊗n/2, and (c) |ψ (0)〉 = |1〉⊗n. In
(c) we also include the envelope computed according to the spin model (18).

a π flip in the phase of the drive, which reduces the rotation
angle to π − θ .

APPENDIX D: EQUILIBRATION

1. Spin model for initial state |0〉⊗n

It is also possible to construct a spin model when all atoms
are initially in the |0〉 state. Because the initial state is local-
ized on the right-hand side of the weight diagram, we must
add the additional, unphysical state to the left-hand side as
shown in Fig. 8(a). This ensures that the population in this
state remains small for all times at sufficiently large detuning
�1.

Making the same approximations as for the |1〉⊗n initial
state, the spin model takes the form

H (0)
SM = (�1Sx + �1Sz ) ⊗ I2 + �1 + �2

2
I2s+1 ⊗ σ z

+ �2

2
S+M ⊗ σ− + H.c., (D1)

where σ− = (σ x − iσ y)/2. Here M is a matrix which is diag-
onal in the eigenbasis of Sz. Denoting the basis states of Sz

with eigenvalue m by |m〉, we have

〈m|M|m〉 =
⎧⎨
⎩

0 if m = s√
s−m

s(s+1)−m(m+1) otherwise.
(D2)

The role of the denominator
√

s(s + 1) − m(m + 1) is to can-
cel the matrix element of S+. Hence, the states coupled by the
|1〉 ↔ |r〉 drive are connected by a matrix element of magni-
tude

√
s − m, as indicated by the purple labels in Fig. 8(a).

The presence of the operators S± in Eq. (D1) is a key differ-
ence compared the spin model for the initial state |0〉⊗n. As a
consequence, the state does not factorize unlike in Eq. (19).
The two-level system and the large spin become entangled
in a more complex fashion and in particular do not periodi-
cally disentangle. This explains the absence of revivals for the
initial state |0〉⊗n. Nevertheless, the spin model provides an
accurate description of the dynamics as shown in Fig. 8(b).

2. Dynamics at very late times

In Fig. 9 we show the number of Rydberg excitations at
late times for the same parameters as in Fig. 5. The plots
indicate that the revivals do not survive up to infinite times.
Nevertheless, the dynamics remains complex and the number
of Rydberg oscillations fluctuates significantly even at late
times. In Fig. 9(c) we also show the envelope of the spin model
described in the main text. The agreement with the exact data
is poor for this late-time dynamics. This is expected at late
times due to the approximations of the spin model.
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detection of a Rydberg qubit using atomic ensembles, Phys.
Rev. Lett. 127, 050501 (2021).

[20] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì,
T. Lahaye, and A. Browaeys, Tunable two-dimensional arrays
of single Rydberg atoms for realizing quantum Ising models,
Nature (London) 534, 667 (2016).

[21] S. Ebadi, T. T. Wang, H. Levine, A. Keesling, G. Semeghini,
A. Omran, D. Bluvstein, R. Samajdar, H. Pichler, W. W. Ho,
S. Choi, S. Sachdev, M. Greiner, V. Vuletić, and M. D. Lukin,
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