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We study the superconducting Josephson junction diode operating via the magnetic field of
skyrmions. Inspired by the near-field optical microscopy, we propose to partially screen the mag-
netic field and analyze part-by-part the magnetic texture of the skyrmion. The detected asymmetric
supercurrent is influenced by the skyrmionic magnetic field and magnetic texture. This enables the
Josephson junction diode to function as a hyperfine sensor and to read out the information about
the morphology of the complex magnetic textures. The proposed setup opens a new avenue in mag-
netometry and represents an alternative to the technologies based on the nitrogen-vacancy centers.

Introduction: Diode is a device which exhibits the
non-reciprocal responses and transport properties. The
asymmetric conductance of the diode applies not only
to the electric current but also its sonic counterparts,
the propagation of acoustic vibrations, and the rectifi-
cation of the heat transport at the nano-level. Recently
the Josephson diode effect has been discovered [1–5]. In
a Josephson junction, a thin metal or dielectric barrier
layer separates two superconductors. When the inver-
sion symmetry is broken by an external magnetic field,
the Cooper pairs acquire a finite center-of-mass momen-
tum, which leads to the phase mismatch between the
left- and right-propagating currents and correspondingly
to the asymmetric transport across the junction. This is
the underlying mechanism of the Josephson diode effect.

In conventional Josephson junctions near the critical
temperature, the current-phase relations are typically si-
nusoidal j(φ) = jc sin(φ), where jc is the critical cur-
rent, φ = φ1 −φ2 is the difference between phases of the
superconducting order parameters ∆1,2 = ∆eiφ1,2 . In
the systems with preserved time-reversal symmetry the
current-phase relation is always antisymmetric j(φ) =
−j(−φ). By contrast, the broken time-reversal symme-
try leads to the φ0-type of the current-phase relations
j(φ) = jc sin(φ + φ0), cf. [6, 7] for more details. The
deeper analysis of the symmetry properties of the On-
sager’s coefficients suggests, that the two-terminal resis-
tance must be even with respect to the magnetic field.
This argument also applies to the case of the linear mag-
netoresistance, when resistance ϱ depends linearly on the
magnetic field B. Therefore to preserve the symmetry
properties of the Onsager’s coefficients, one needs to in-
troduce an extra chiral term χL/R in the expression of
the resistance ϱL,R(k,B) = ϱ

(
1 + χL/RI ·B

)
[8] for the

left and right currents respectively. Here, k is the wave
vector, I the current and the different sign χL = −χR

is required by the parity reversal symmetry. The occur-
rence of the chiral resistance ϱL,R(k,B) is the most es-
sential consequence of the magnetochiral anisotropy. Re-
cently, the experimental observation of the superconduct-
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FIG. 1. The schematic representation of the Josephson junc-
tion sensoring device. The magnetic field of the skyrmion
breaks the inversion symmetry of the Josephson junction and
gives rise to the superconducting diode effect. To increase the
sensibility of the sensor, one can partially cover the skyrmion
surface and analyse the effect of the magnetic field from the
uncovered part. It is always possible to keep the open part
of the skyrmion surface smaller than the characteristic size of
the Josephson junction.

ing diode effect has been reported [1], which triggered a
substantial theoretical interest in this phenomenon [2–5].
Although it has been known that the Josephson junc-
tion can sense small magnetic fields, only the effects of
uniform constant external magnetic fields have been in-
vestigated that far.

The superconducting diode implies the effect of the
nonreciprocal charge transport, which can be achieved
when both, the spatial inversion and the time-reversal
symmetries are broken. The Rashba spin-orbit term
breaks the uniaxial spatial inversion symmetry along the
z-axis. The magnetochiral anisotropy is achieved in two
realizations of external fields: (a) By applying the ex-
ternal magnetic field along the y-axis and the electric
field along the x-axis. Then the non-reciprocal effect
is quantified by the term ϱ = ϱ0 [1 + γ(B× z) · I] [1];
(b) Alternatively one can direct electric field along the
z-axis. Then both, the magnetic field and the cur-
rent are in-plane, leading to the chiral resistance term
ϱ = ϱ0 [1 + γ(B× I) · z] [5]. In previous studies, the
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magnetic field in the expression of chiral resistance has
been associated with some homogeneous external field
[2–5]. In contrast to that, in the present project we will
consider the magnetic field generated by the complex
magnetic textures, such as for example the skyrmionic
magnetic textures. In particular, the proximity effect
of the skyrmion lattice or of individual skyrmions and
stray magnetic fields can violate the PT -symmetry. The
skyrmion exerts the stray magnetic field (odd in T and
even in P) on the Josephson junction and violates PT -
symmetry. The superconducting diode should in princi-
ple feel the stray magnetic field and read out the informa-
tion about the magnetic texture Fig.(1). In the present
project, we propose the superfine superconducting diode
sensor. Such a sensor can open new avenues in exper-
imental skyrmionics, e.g. for studying the morphology
of complex magnetic textures and systems. In partic-
ular, the superconducting diode sensors would be able
to identify different magnetic phases, such as Néel and
Bloch skyrmions, or ferromagnetic phases, and monitor
transitions between them in a time domain.

In order to increase the sensibility of the supercon-
ducting Josephson junction sensor, we need to analyze
the magnetic field (i.e., skyrmion magnetic texture) part
by part separately for different flakes of the skyrmion
texture. Thus we are looking for the spatially resolved
effect. Near-field optical microscopy is a technology that
allows covering the surface from unwanted electromag-
netic interactions except for the small selected regions of
20-30nm in characteristic size. The magnetic field lines
are closed loops. However, magnetic lines also can be
redirected by offering them a preferred path (e.g., using
high permeability materials to shield the magnetostatic
field) [9]. Recent studies show that graphene can serve as
a perfect shield due to its extraordinary properties [10].

The expression for the superconducting current can be
derived phenomenologically [2, 4]. The free energy of the
system has the form

F = −2|γ1|∆2 cosφ− |γ2|∆4 cos(2φ+ δ), (1)

where γ1 and γ2 denote the first- and second-order
Cooper pair tunnelling processes. We derive the explicit
expressions for γ1,2(B) from the microscopic theory. The
key issue is the explicit dependence of coefficients γ1,2 on
the magnetic field. The phases in Eq. (1) are defined as
follows: φ = φ2 − φ1 + arg(γ1), δ = arg(γ2) − 2arg(γ1).
The superconducting current I (φ) = 2π

Φ0

∂F
∂φ becomes

I (φ) =
2π

Φ0

{
∆2|γ1| sinφ+∆4|γ2| sin(2φ+ δ)

}
, (2)

where Φ0 = h/e denotes the superconducting flux quan-
tum, e the charge of the electron. From Eq.(2) it is easy
to see that the asymmetry between the left and right
currents arises due to the term proportional to ∆4. The
skyrmions emerge in the thin magnetic films with bro-
ken inversion symmetry. The lack of inversion symmetry
is associated with the Dzyaloshinskii–Moriya interaction

(DMI) [11–22]. Below we describe the magnetic texture
of skyrmions by the local magnetization M(r). The dy-
namics of the local magnetization is governed by the phe-
nomenological Landau-Lifshitz-Gilbert (LLG) equation

∂M

∂t
= −γM×Heff +

α

Ms
M× ∂M

∂t
. (3)

Here, M(r) = Msm describes the magnetic texture of
the thin magnetic film, Ms being the saturation magne-
tization, m is the unit vector along the magnetization di-
rection M, and α is the phenomenological Gilbert damp-
ing constant. The total effective magnetic field Heff

reads Heff =
2Aex

µ0Ms
∇2m+Hzz−

1

µ0Ms

δED

δm
, where the

first term describes the internal exchange field with the
exchange stiffness Aex, the second term corresponds to
the external magnetic field Hz (z is a unit vector along
the axis z normal to the film), while the last term is
the DM field, with the DM interaction energy density

ED = Dm[(mz
dmx

dx −mx
dmz

dx ) + (mz
dmy

dy −my
dmz

dy )] and

Dm being the strength of the DM interaction.

For numerical calculations we use the set of parameters
which correspond to Co/heavy-metal multi-layers: Aex =
10pJ/m, Dm = 0.2mJ/m2, andMs = 1.2×106A/m. The
bias magnetic field Hz = 100 mT is used for stabilization
of the skyrmion structure. The skyrmion width is 45 nm.
The size of the ferromagnetic layer is 3000× 240× 3nm3.
The ferromagnetic layer is discretized with the cells of
size 3× 3× 3nm3. Of particular importance is structure
of the stray magnetic field B(m(r)) generated by the
magnetic skyrmion texturem(r). The explicit expression
for the stray magnetic field can be derived analytically
[23], but the derivation is rather involved and is placed
into the Supplementary Information [24].

For the microscopic estimation of the parameters of
the phenomenological free-energy Eq.(1) we exploit the
Bogoliubov-deGennes Hamiltonian of the junction

HBdG =


h0 − µ ∆∗

0,1 t∗ 0
∆0,1 −h0 + µ 0 t∗

t 0 h0 − µ ∆∗
0,2

0 t ∆0,2 −h0 + µ

 , (4)

where µ denotes the chemical potential, which is applied

to both sides of the junction and h0 = − ℏ2

2m∇2. ∆0,i =

∆0e
iχi , i = 1, 2 denotes the mean-field order parameter

in each superconductor of the junction. Furthermore,
t = teiξ is the complex tunneling amplitude across the
junction, related to the overlap of the electronic quantum
wave functions on each superconducting side. Here we do
not consider the tunneling matrix elements in the spin-
flip channel, since flipping spins costs additional energy.
To set up the free-energy energy functional, we have to
consider the fluctuations in the order parameter above
its mean-field value. In the simplest approximation, the
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fluctuation term would read [25]

δH =

 0 ∆∗
1 0 0

∆1 0 0 0
0 0 0 ∆∗

2

0 0 ∆2 0

 , (5)

where ∆1,2 = ∆eiφ1,2 are the time and position-
dependent fluctuations of the order parameters corre-
sponding to each superconductor. The free energy F is
related to the grand-canonical partition function Z via

Z = e−F , (6)

where the properly normalized zero-temperature grand
canonical partition function reads

Z[δH] = lim
β→∞

Tr e−β(HBdG+δH)

Tr e−βHBdG
, (7)

and β = (kBT )
−1. Within the functional integrals for-

malism, the grand-canonical partition function Eq. (7)
becomes

Z[δH] =
1

Z0

∫
DΨ̄DΨ e−S[Ψ̄,Ψ], (8)

where Z0 = Z[0]. The corresponding action comprises
two terms S = SBdG + δS, where the first part corre-
sponds to the mean-field Hamiltonian and the second to
the term containing the fluctuations of the order param-
eters. Concretely we have SBdG = Ψ̄ · [ℏ∂τ1 + HBdG]Ψ,
δS = Ψ̄ · δHΨ with HBdG and δH defined in Eq. (4) and
Eq. (5). The Grassmann fields ψ†, ψ, and φ†, φ corre-
sponding to both leads of the junction are combined to

the Nambu bispinors Ψ̄ = (ψ†
↑, ψ↓, φ

†
↑, φ↓), where the up-

and down-arrows denote two spin projections. The action
is quadratic in Grassmann fields, and their integration
can be performed exactly, which leads us to the general
expression of the free energy as a function of fluctua-
tions. The evaluation of this expression is conveniently
performed by functional integrals, which leads us to

F [δH] = −tr log[1+G0δH], (9)

with the imaginary time Green’s function

G0(rτ ; r
′τ ′) = ⟨r, τ |[∂τ1+HBdG]

−1|r′τ ′⟩. (10)

In the expansion in powers of δH, we only keep terms
which are present in the effective action Eq.(1). To
the second order we get 1

2 tr(G0δH)2 ≈ 2γ1∆1∆
∗
2 +

2γ∗1∆
∗
1∆2 + · · · , with the coupling parameter

γ1 ≈ e−i(χ1−χ2)
1

2

ρ(EF )t
2

3!∆2
0

cos γ, (11)

where γ = 2ξ − χ1 + χ2. The phases of the type γ often
appear in multipartite superconducting systems, e.g. [26].

The density of states (DOS) for two spin projections of
the 3d free electron gas at the Fermi surface reads

ρ0(EF ) =
1

2π2

(
2m

ℏ

) 3
2
√
EF

ΩBZ

, (12)

where ΩBZ denotes the volume of the Brillouin zone.
Hence, ρ0(EF ) and correspondingly γ1 have the units
of inverse energy. From the fourth order expansion term
1
4 tr(G0δH)4 ≈ γ2(∆1∆

∗
2)

2 + γ∗2 (∆
∗
1∆2)

2 + · · · we extract
the explicit form of the coupling parameter γ2 as follows:

γ2 ≈ e−i(2χ1−2χ2+ϕ[γ]) ρ(EF )t
2

5!∆4
0

g[γ], (13)

which has the dimension of energy−3. Here we have

introduced g[γ] =
√

49 cos2 γ + 25 sin2 γ and ϕ[γ] =
atan

[
5
7 tan γ

]
. Note that in general, in Eqs. (11) and

(13) the fluctuations depend on both time and spa-
tial coordinates and the summation over these variables
has to be understood. With Eq. (11) and (13) fol-
lows for the time-reversal symmetry breaking phase shift
δ = arg(γ2) − 2arg(γ1) = ϕ[γ]. The diode current
across the junction is proportional to sin[δ], which gives
δI

(
±π

2

)
∼ sin[δ] ∼ sin[γ]. Hence, the superconduct-

ing diode effect is rather general and in principle should
be observable in any junction even without an external
magnetic field. However, it is to expect that without an
external field, the angle γ is very small and the diode cur-
rent would be suppressed by the thermal or mechanical
noise. In the presence of the magnetic field, the phase
difference is fixed to δ = 2 e

ℏ
∮
C dr · A with the vector

potential A related to the magnetic field via B=curlA
and factor 2 counting two superconductors on both sides
of the junction [24]. Finally we use the Stokes theorem∮
C dr ·A =

∫
S
dS · curlA =

∫
S
dS ·B. For instance this

yields for the homogeneous y-directed magnetic field [24]

δ = 2By

e

ℏ

∫ h

0

dz

∫ λL

0

dx =
By

Bd

, (14)

where h is the height of the superconducting lead and
λL the London penetration length. Introducing the flux
Φ we can further write δ = hλL

e
ℏBy = 2π Φ

Φ0
. Eq. (14)

recovers the earlier result of the work [4].
The magnetic stray field B(r) induced by the skyrmion

does not only influence the phases of the condensate
but also the coupling parameters of the free energy, en-
tering it via the density of the states. The complex-
ity of our problem is due to the fact that the mag-
netic stray field is not uniform, and the correspond-

ing Hamiltonian ĥ(B) = − ℏ2

2m∇2
rσ0 + µBσ · B(r), with

µB = eℏ/(2m) ≈ 5.63 · 10−5eV/T being the Bohr’s mag-
neton and the Lande factor assumed to be 2, cannot be
generally diagonalized exactly. Thus the problem in our
case is much more demanding than in earlier studies. The
cumbersome evaluation and the final results for the DOS
are presented in the Supplementary Information [24].
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FIG. 2. The dependence of the supercurrent asymmetry
δI

t2ρ(EF ,B)
on homogeneous external magnetic field. Varying

the external magnetic field from B0 < 0 to B0 > 0 we observe
the change of the sign of current asymmetry

The effect of the magnetic field on the DOS arises from
both, the topography (i.e. Néel or Bloch skyrmion) and
the geometry (size) of the magnetic texture. Our aim
is to explore these parameters via the rectification of
the superconducting diode current. The details of cal-
culations are presented in the Supplementary Informa-
tion [24]. The resulting supercurrent asymmetry reads

δI = −t2ρ(EF ,B)
|∆|4

3∆4
0

sin[δ]. (15)

We calculate the phase difference δ = χ2−χ1 with the
Stokes’ theorem

∮
C dr ·A =

∫
S
dS ·B. Taking account of

the particular device geometry we acquire:

δ =
4π

ϕ0

λL∫
0

dx

W
2∫

−W
2

dy Bz, (16)

where λL is the London penetration length. The explicit
form of the skyrmion field Bz is given in [24].
Discussions: The skyrmion magnetic field enters the

supercurrent asymmetry Eq. (15) via the DOS and the
phase factor. First we study the dependence of the su-
percurrent asymmetry δI

t2ρ(EF ,B)
on the external homo-

geneous magnetic field. Varying the values of the ex-
ternal magnetic field from negative B0 < 0 to positive
B0 > 0 value, we observe the change of the sign of cur-
rent asymmetry shown in the left panel of Fig. 2. A
similar behavior is expected to be seen in the case of the
inhomogeneous field of a skyrmion. To increase the sensi-
tivity of the diode sensor, we screen most of the surface of
the skyrmion and leave the small flake region uncovered
to contribute to the effect. The center of the unscreened
square region with the size 6 × 6 nm is spatially sepa-
rated from the skyrmion center at (x = 0, y = 0) by a
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FIG. 3. Top: Variation of the supercurrent asymmetry in
an inhomogeneous skyrmion field for (a) Néel and (b) Bloch
skyrmions. q is the distance from the unscreened region to the
center of the skyrmion at (x = 0, y = 0). Bottom: Skyrmion
magnetic field component Bz(x, y) as function of the distance
from the skyrmion center (x = 0, y = 0). (b), (d) Crosssection
profiles of the magnetic field components Bz(x, y = 0) for (b)
Néel and (d) Bloch skyrmions. The distance between the
skyrmion and the diode is d = 1.5nm for all figures.

characteristic distance q. It makes the superconducting
diode a hyperfine spatially resolved sensor. The ampli-
tude and the spatially resolved profile of the asymmetry
rectification effect depend on the type of skyrmion and
magnetic texture. This is shown in the upper panel in
Fig. 3. Changing of the sign of δI we can vary the sign of
the corresponding spatially resolved magnetic field and
the magnetic texture, cf. the bottom panel of Fig. 3.
Summary : In this paper we develop the phenomeno-

logical and theoretical framework of the hyperfine sensing
device based on the superconducting Josephson diode ef-
fect. The main purpose of the device is to investigate the
structure of the magnetic films textures with special em-
phasis on the high precision skyrmion morphology and lo-
cation detection. By screening off large areas of the films,
e.g. by graphene microshields, the effective exit area of
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the magnetic field is reduced to the scales comparable to
the typical size of the Josephson junction. The sensing
process consists in tracking the supercurrent anysotropy,
which is influenced by the magnetic field of the film. Our
theoretical modelling demonstrates persuasively that the
supercurrent anysotropy imitates the topography of the
investigated magnetic tissue of the film.
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A. Ernst, Phys. Rev. B 106, 104424 (2022).

[21] X.-g. Wang, G.-h. Guo, V. K. Dugaev, J. Barnaś, J. Be-
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