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Abstract Natural and anthropogenic disturbances are important drivers of tree mortality, shaping the
structure, composition, and biomass distribution of forest ecosystems. Differences in disturbance regimes,
characterized by the frequency, extent, and intensity of disturbance events, result in structurally different
landscapes. In this study, we design a model‐based experiment to investigate the links between disturbance
regimes and spatial biomass patterns. First, the effects of disturbance events on biomass patterns are simulated
using a simple dynamic carbon cycle model based on different disturbance regime attributes, which are
characterized via three parameters: μ (probability scale), α (clustering degree), and β (intensity slope). 856,800
dynamically stable biomass patterns were then simulated using combined disturbance regime, primary
productivity, and background mortality. As independent variables, we use biomass synthesis statistics from
simulated biomass patterns to retrieve three disturbance regime parameters. Results show confident inversion
of all three “true” disturbance parameters, with Nash‐Sutcliffe efficiency of 94.8% for μ, 94.9% for α, and
97.1% for β. Biomass histogram statistics primarily dominate the prediction of μ and β, while texture features
have a more substantial influence on α. Overall, these results demonstrate the association between biomass
patterns and disturbance regimes. Given the increasing availability of Earth observation of biomass, our
findings open a new avenue to understand better and parameterize disturbance regimes and their links with
vegetation dynamics under climate change. Ultimately, at a large scale, this approach would improve our
current understanding of controls and feedback at the biosphere‐atmosphere interface in the present Earth
system models.

Plain Language Summary Forest dynamics are shaped by different disturbances, which are
challenging to monitor and predict. Identifying individual disturbance occurrences and their impact on forest
carbon stocks (biomass) is complex. However, our study deciphers the characteristics of disturbance
occurrence, that is, disturbance regime, from biomass pattern. We characterized this regime across three
dimensions: extent (μ), frequency (α), and intensity (β). Through a 200‐year landscape experiment, we explored
the synthetic dynamically stable biomass under different disturbance regimes. Statistical features from biomass
simulations revealed distinct spatial patterns, forming a connection between these patterns and the disturbance
regime parameters via machine learning. Notably, specific biomass pattern statistics influence distinct
disturbance regime parameters: μ and β are linked to histogram stats, while α is tied to texture statistics. This
approach establishes a framework to diagnose disturbance regimes from biomass patterns, offering a way to
incorporate these regimes into Earth system models.

1. Introduction
Mortality is one of the key processes of vegetation dynamics (Franklin et al., 1987; Runkle, 2000) that dominates
aboveground carbon turnover (Carvalhais et al., 2014; Thurner et al., 2016) and contributes to model uncertainties
in the carbon cycle (Friend et al., 2014). The diverse range of natural (e.g., fires, droughts, wind‐throws, path-
ogens and insects outbreaks) and anthropogenic disturbances (e.g., agricultural expansion, urbanization, and
clearcutting) act as strong drivers of vegetation mortality, leading to the total or partial loss of biomass
(Grime, 1977; Hammond et al., 2022; McDowell et al., 2022). A better understanding of mortality and distur-
bance and their impacts on carbon dynamics is thus crucial for constraining future carbon cycling prognostics
(Friend et al., 2014).
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The mortality caused by disturbances, as well as primary productivity and allocation, play an important role in
controlling the local distribution and the large scale spatial gradients of above‐ground biomass (AGB, Delbart
et al., 2010; Johnson et al., 2016). However, varying levels of mortality, productivity and disturbance events may
lead to similar biomass levels, presenting an equifinality issue (Ryan & Williams, 2011; Williams et al., 2013).
This challenge, combined with the stochastic nature of disturbances, continues to hinder the understanding of
disturbance regimes relate to biomass patterns (Allen et al., 2010; Chambers et al., 2004; Hammond et al., 2022).
Characteristics of disturbances at the landscape level, that is, disturbance regimes, are commonly inferred using
metrics like size, frequency, intensity, and aggregation (Turner, 2010), which describe the cumulative effects of
all disturbance events in a given area and time period (Senf & Seidl, 2021a). The disturbance regime ultimately
leads to a shifting steady‐state mosaic, represented by patches of distinct successional stages or carbon stocks over
long time periods (Brokaw & Scheiner, 1989).

Most research on quantifying disturbance regime parameters has been carried out either through observation‐
driven methods or by using model‐data‐integration. For example, remote sensing based on spectral bands,
indices and segment outlines have been used to identify changes in vegetation that are associated with disturbance
magnitude, duration, and rate of change (Chambers et al., 2013; Senf & Seidl, 2021a). Williams et al. (2013)
utilized satellite‐based biomass observations to determine two disturbance parameters: average probability and
intensity; realizing a high level of equifinality when analyzing total biomass. Additionally, by analyzing
consecutive biomass maps, several studies have been able to detect differences in patterns of intensity, ranging
from deforestation to widespread low‐intensity disturbance (Hill et al., 2015). Moreover, the clustering pattern of
disturbance events has been recognized as a distinguishing attribute of different disturbance regimes and failure to
resolve these patterns can lead to misestimation of average mortality and growth patterns (Fisher et al., 2008).
These studies inspired the subsequent investigation, and highlighted the significant potential of using biomass
observations to understand and quantify disturbance regimes. In parallel, the emergence of up‐to‐date biomass
observations (Saatchi et al., 2011; Santoro et al., 2021, 2022) opens novel pathways for comprehending and
investigating the clustering patterns of disturbances, alongside other facets of the disturbance regimes, at a more
intricate scale. Ultimately, disturbance parameters based on observations could be incorporated in process‐based
models (e.g., Friend et al., 2014) or individual‐based models (Bossel & Krieger, 1994; Bugmann, 2001; Köhler &
Huth, 1998; Yan et al., 2005) as stochastic model components that allow the quantification of the impacts of
disturbances on the forest carbon cycle from local and global scales.

The goal of our study is to comprehensively characterize disturbance regimes and investigate their connection
with resulting biomass patterns through a model‐based experiment. Specifically, we focus on the methodology
used to simulate the impact of three distinct disturbance regime attributes ‐ extent, frequency, and intensity of
disturbance events ‐ on biomass dynamics. Below, in Section 2, we introduce in detail the carbon model, the
parameters that control the simulated disturbance regimes, describe the approach to generate disturbance cubes,
and the methodology for retrieving disturbance parameters. In Section 3, we present the results of these exper-
iments, namely on the varying patterns of biomass emerging from different disturbance regimes, and the per-
formance of the regression approach to invert the underlying disturbance parameters. This is followed by a
discussion on the robustness of the framework and an outlook in Section 4. We present the conclusions of our
research in Section 5.

2. Methods
2.1. Dynamic Carbon Cycle Model

We simulate the carbon cycle at the patch level. Each patch is specified as a homogeneous forest stand, repre-
senting the smallest computing unit during the simulation (Fisher et al., 2008). The changes in aboveground
vegetation carbon (C, in kgC m− 2 yr− 1) are determined by the difference between aboveground carbon gains (via
photosynthesis, NPPAGB) and losses (L, Equation 1) at the annual scale as,

dAGB
dt

= NPPAGB − L (1)

The aboveground carbon gain, NPPAGB, is calculated from gross primary production (GPP), the losses of C to
growth respiration (1− YG, Amthor, 2000), and the fraction of biomass that is aboveground ( fAGB) as,
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NPPAGB = GPP × (1 − YG) × fAGB (2)

To simplify the experiments, the transfer ratio from GPP to NPPAGB
((1 − YG) × fAGB) is fixed to a value of 0.5, representing 2/3 of C allocation to
AGB and a growth respiration ratio of 0.25 (Amthor, 2000).

The GPP dynamics are represented as a simple saturating exponential func-
tion of biomass. We acknowledge that the variations in the relationship be-
tween GPP and AGB for which we introduce a varying parameter G
(Equation 3). We fixed two constants in Equation 3, A and B, set to 100 and
1,200, respectively, to establish a realist optimal biomass growth curve per

patch reaching an asymptotic maximum with age. The parameter G is left as a free parameter to regulate the
maximum photosynthetic capacity, hence the maximum biomass and the recovery rate simultaneously, repre-
senting the impact of species and local edaphoclimatic conditions in primary productivity dynamics between
different landscapes.

GPP =
A

G + e− AGB
B

(3)

The total carbon loss includes the carbon losses during disturbance events (Ld) and by the background mortality
(Lb, Equation 4) as,

L = Lb + Ld (4)

The Lb is assumed to be a constant proportion of AGB, implicitly including the average effects of litterfall, root
exudates, and herbivory (Thurner et al., 2016) as,

Lb = AGB × Kb (5)

Kb =
1
τ

(6)

where Kb refers to the background mortality rate, a reciprocal of turnover time (τ). To account for the fact that Kb
is also spatially variable (e.g., Thurner et al., 2016), we define a range of Kb between 0.025 and 0.2, with an
interval of 0.025, representing background turnover times from 5 to 40 years (Table 1). The other part of the
carbon loss is caused by disturbance, Ld, determined by the intensity of disturbance event covering the patch as,

Ld = AGB × fL (7)

where, parameter fL represents fraction of carbon loss during the disturbance, and it depends on the size of the
event and the intensity slope (β, see Section 2.2).

2.2. Modeling Different Disturbance Regimes

We applied three parameters to describe different disturbance regimes: the probability of disturbances, μ; the
clustering patterns of events, α; and the intensity slope, β. These parameters represent the fraction of the domain
affected by disturbances, the number and size of disturbed clusters of patches, and the fraction of carbon loss
during each event, respectively. For distributing a sufficiently large and spatially random number of disturbance
events, our experiment is set on a domain of 1,000 by 1,000 pixels to simulate the corresponding landscape‐scale
domains. As in Fisher et al. (2008), here we assume that the smallest disturbance event size is at the patch level,
with a roughly specified canopy area of approximately 10 × 10 m2, resulting in a domain size of circa 100 km2.

2.2.1. Parameterization of Disturbance Regimes

Parameter μ refers to the total disturbed fraction of the domain, where D refers to the total domain size and Da is
the area of the domain affected by disturbances as,

Table 1
Parameter Setting

Parameter Definition Range Interval Count

μ Probability scale [0.01:0.05] 0.005 9

α Clustering degree [1.0:1.8] 0.05 17

β Intensity slope [0.03:0.5] 0.01/0.05/0.1 14

G Photosynthetic capacity [0.03:0.1] 0.01/0.02/0.03 5

Kb Background mortality [0.025:0.2] 0.025 8
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Da = D × μ (8)

We followed Fisher's method by categorizing events into 20 size classes and assigning them specific quantities
using parameter α, which was originally defined as the clustering degree and is the scaling exponent used to
determine the number of events of each particular size (Fisher et al., 2008):

nzi = Azi − α (9)

where zi is the size of the specific class, α is the scaling exponent, nzi represents the number of disturbance events
at a specific event size. A is the proportionality factor, manipulated by the size of the total disturbed area and the
setting of events size series as,

A =
Da

∑(zi · zi− α)
(10)

where zi is the corresponding disturbance event size. We applied an event size ranging between a patch to half the
size of the domain during the simulations (see details in Text S1 of the Supporting Information S1).

For parameter β, we assumed that the intensity of disturbance ( fL, fraction of carbon loss per event) is proportional
to the logarithm of event size (log10(Zi), Chambers et al., 2013). This relationship between intensity and event size
is controlled by parameter β (intensity slope, Figure 3), and b is a constant value:

fL = β · log10 (zi) + b (11)

More details on the parameterization setup related to α and β (Equations 9–11) can be found in Text S1 of the
Supporting Information S1.

2.2.2. Disturbance Parameter Ranges

The inclusion of the parameters μ, α, and β allows a flexible description of disturbance regimes in different
landscapes, containing a wide range of all possible disturbance regimes without specifying disturbance type. For
providing realistic simulation scenarios we consulted existing literature to set different ranges and intervals for the
primary productivity parameter G, background mortality rate Kb, and the three disturbance parameters inde-
pendently (Table 1).

In particular, the parameter G is specified as a range from 0.03 to 0.1, imposing a range in GPP of 1 and 4
kgC m− 2 yr− 1 and an average dynamically stable biomass from 10 to 40 kgC m− 2, without disturbances. The
parameter μ is set in a range of 0.01–0.05 with an interval of 0.005; this range substantially spans the average
value of 0.02 documented in forests by Moorcroft et al. (2001) and Malhi et al. (2004). The settings for the
clustering parameter α comes from observed gap‐size distributions from previous studies in the tropical and sub‐
humid forest ecosystem, which indicated a range between 1.1 and 1.6 (Araujo et al., 2021; Fisher et al., 2008; Jans
et al., 1993; Lawton & Putz, 1988; Nelson et al., 1994; Yavitt et al., 1995). In the experiment, we have increased
the documented range slightly from 1.0 to 1.8, with an interval of 0.05. For parameter β, we have considered the
findings from Chambers et al. (2013) to establish a range between 0.03 and 0.5. The intervals within that range
differ, with a value of 0.01 for the range [0.03, 0.09], 0.05 for [0.1, 0.25], and 0.1 for [0.3, 0.5] (see Figure 3).

Given the current parameter ranges and the simulation length of 200 years, the current setup is bound to
disturbance regimes occurring no less that once every 100 years (minimum μ of 0.01) for the given domain size.
Capturing very low frequency events would necessarily require expanding the simulation length, ensuring the
emergence of a dynamically stable biomass distribution dependent on extremely rare disturbance events.

2.3. Generation of Disturbance Events

A stochastic disturbance event generator was designed to prescribe disturbances in a 1,000 by 1,000 simulation
grid (the simulation domain) according to different disturbance regime parameters that control the size and in-
tensity of each single event. We implemented Fisher et al. (2008)'s approach for distributing disturbance events of

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004099

WANG ET AL. 4 of 19

 19422466, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004099 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [21/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



different sizes per year. For each year the disturbance events (in rectangular
and discussed in Section 4.1.2) are randomly placed in the domain by size in
descending order, without overlapping each other or exceeding the domain
limits. In this way, the generator ensures an accurate prescription of each
disturbance regime for each simulation.

A full factorial combination of the different parameter's ranges and intervals
sums up to a total of 2,142 combinations of disturbance regimes. For every
disturbance regime, we generate a reference disturbance data set for a
1,000 × 1,000 domain per year, for a period of 200 years, in the form of a
three‐dimensional array (a 1,000 × 1000× 200 data cube) (Figures 1e and 1f).
As such, every snapshot of the reference cube is a 1,000 × 1,000 stochastic
disturbance reference map, providing the spatial reference for simulating the
effect of disturbances in carbon cycling dynamics. To further impose vari-
ability in the resulting biomass distributions, for the same disturbance regime,
the disturbance data set was shuffled 10 times in the time domain, generating
a total of more than 2 × 104 simulation scenarios. The emerging AGB dis-
tributions from the different scenarios result from the variations in distur-
bance regimes, in productivity (G), and in background mortality (Kb) levels
(see details in Text S2 of the Supporting Information S1), upon which three
types of statistic metrics were used to characterize the biomass patterns at
steady state on the domain scale.

2.4. Characterizing the Biomass Patterns

The first type of statistics utilized in our study is based on the histogram
distribution, including mean, median, variance, skewness, kurtosis, percen-
tiles, as well as standard deviation and coefficient of variation. Previous
literature suggests that some of these metrics, such as skewness and mean, are
associated with the probability and intensity of disturbances (Williams
et al., 2013). We have additionally introduced information theory based
metric: the Shannon entropy index (Shannon, 1948), also called Shannon‐
Wiener index, which is a widely used indicator for describing the diversity
level in ecosystems (Spellerberg & Fedor, 2003). Furthermore, we included
statistical properties based on the texture of biomass distribution. Texture
provides information about the spatial arrangement of intensities in an image
(e.g., continuity, contrast, smoothness), in our case, the emergent biomass
map. We utilized Gray‐Level Co‐Occurrence Matrices (GLCMs), one of the
most common texture feature extraction methods based on image statistics, to
study the spatial correlation properties by using gray‐scaled images (Haralick
et al., 1973). To characterize texture on the biomass maps we applied four

statistics from the GLCMs method, namely: contrast; correlation; energy; and homogeneity (Table 2). For doing
so, all biomass maps were re‐scaled to a range of 0–255, and AGB outliers were substituted with the nearest
neighboring pixel prior to rescaling to avoid contamination in texture features. These outliers are individual
isolated pixels with substantially higher AGB values resulting from incidentally undisturbed locations during the
200 years of simulations.

The simulation of biomass dynamics using the carbon cycling model involved a comprehensive examination of
85,680 parameter combinations. This comprised of 2,142 disturbance regimes in combination with 5 primary
productivity scenarios and 8 background mortality rate scenarios. Each parameter combination was executed 10
times, with the reference disturbance cube being shuffled in a different sequence for each run. Ultimately, 17
statistics were extracted for each run, including mean GPP at the end of simulation, as well as 16 other statistics
related to the steady‐state biomass distribution.

Figure 1. Conceptual diagram of disturbance reference cubes, (a) displays a
two‐dimensional disturbance reference map, which represents a snapshot
composed of a 1,000 × 1,000 array from a disturbance cube array,
(b) showcases a three‐dimensional disturbance reference cube consisting of
200 snapshots. Each snapshot simulates a unique stochastic spatial
distribution of disturbance events, and the cube features a distinct
combination of μ and α. It is essential to note that the disturbance events
within the cube should not (c) interface with edges or (d) overlap with one
another, (e) and (f) depict two examples of disturbance reference cubes
featuring different disturbance regimes.
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2.5. Prediction and Validation

We used the outputs from the dynamic model for the last 10 simulation years, when there is a dynamically stable
biomass distribution, to compute an average biomass per grid cell. The resulting biomass matrix is used to es-
timate the landscape biomass metrics (described in the above Section 2.4). These landscape metrics are the inputs
to train a multi‐output random forest model for predicting μ, α, and β.

We used a multi‐output random forest regression method in Scikit‐learn (Pedregosa et al., 2011) to investigate the
relationship between the simulated biomass statistics and the prescribed disturbance regimes. Cross‐validation
methods are crucial in mitigating overfitting and enhancing generalization in machine learning models. These
methods assess the robustness of a model by systematically excluding a portion of data from training and
evaluating it across various data subsets. To evaluate the generalization ability of models the cross‐validation
follows three different strategies: Completely Random 10‐fold method (CR), the Leave‐One‐Sequence‐Out
method (LOSO), and the Leave‐One‐Parameter‐Out method (LOPO). The cross‐validation tests additional to
the random 10‐fold aim to evaluate the strength of the approach to predict unseen parameters (LOSO) or unseen
complete disturbance regimes (LOPO) during the training phase, more details in Text S3 in Supporting Infor-
mation S1. Extrapolation in the random forest model leads to unreliable or inaccurate predictions when con-
fronted with data that deviates significantly from the training data. We have devised a supplementary cross‐
validation test called LOPO + LOSO to address this problem.

We use the Nash‐Sutcliffe efficiency (NSE) to evaluate the performance of our prediction model (Nash & Sut-
cliffe, 1970). The NSE measures the accuracy of the predicted disturbance regime parameters compared to the
prescribed values in this study. A higher NSE indicates better accuracy. The formula for calculating NSE (D. N.
Moriasi et al., 2007) is shown in Equation 12,

Table 2
Statistics of the Steady‐State Biomass Map

Feature types Biomass statistics Variable names Formula

Histogram features Mean AGBmean ∑
N

i=1
Ai

N
N: Total patch amount

Ai: Biomass value for patch i
Median AGBmed Med(A) A: Biomass map

Range AGBrange P90− P10 P90: Percentile 90%

P10: Percentile 10%

Variance AGBvar 1
N− 1 ∑

N

i=1
|Ai − μ|2 μ: Mean biomass

standard deviation AGBstd ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N− 1 ∑

N

i=1
|Ai − μ|2

√

coefficient of variation
AGBcv 100 × σ

μ
σ: Standard deviation

Skewness AGBskew
∑
N

i=1
(Ai − μ)3

(N− 1)σ3

Kurtosis AGBkurt
∑
N

i=1
(Ai − μ)4

(N− 1)σ4

Percentile 25% AGBp25 P25 P25: Percentile 25%

percentile 75% AGBp75 P75 P75: Percentile 75%

Trimean AGBtrim (P25 + 2 × MED + P75)/4 MED: Median value

Informative feature Shannon entropy Shannon − ∑p·log2(p) p: Normalized histogram counts

Texture features Contrast Contrast ∑i,j|i− j|
2glc(i,j) i: Reference pixel value

j: Neighbor pixel value
glc(i,j): An entry in GLCM

μi, μj: Means of GLCM w.r.t. i and j
σi, σj: Standard deviations of GLCM w.r.t. i and j

Correlation Correlation
∑
i,j

(i− μi) (j− μj) glc(i, j)
σiσj

Energy
Energy ∑i,jglc(i,j)

2

Homogeneity Homogeneity ∑
i,j

glc(i, j)
1+|i− j|
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NSE = 1 −
∑n

i=1(Y
obs
i − Yprei )

2

∑n
i=1(Y

obs
i − Yobs)

2 (12)

where the Yobsi is the ith prescribed disturbance regime parameter, Yprei is the

ith predicted value for the corresponding parameter, Yobs is the mean of the
prescribed parameter, and n is the total number of observations.

The importance of a feature is estimated as the (normalized) reduction in
prediction error brought by the inclusion of that feature in the RF model
(Pedregosa et al., 2011). The value of feature importance is directly propor-
tional to its contribution for predicting the target variables, in this case, for
predicting disturbance regime parameters.

3. Results
3.1. Parameterization and Dynamic Carbon Model

3.1.1. Parameterization of Disturbance Regimes

The clustering parameter α defines the relationship between the size and frequency of disturbance events across
the domain establishing that the number of events decreases exponentially with the event size (see details in
Figure S1 of the Supporting Information S1). This relationship is diagnosed from the simulated cubes. The
average size of events in the domain exponentially decays as the parameter α increases, conversely, the number of
events tends to a logistic increase, which confirms that larger α corresponds to more and smaller discrete events
rather than few and larger ones. With discrete but progressive α values, the disturbance data cubes provide a
gradient in the relationship between the amounts and sizes of events across the domain (Figure 2).

We have introduced a range in the event intensity parameter, β, that results in an intensity gradient for events of
the same size between the disturbance data cubes. The relationship between β and event size, as defined in
Equation 11, results in a logarithmic increase in disturbance intensity as the event size increases. Figure 3 shows
this relationship for all the assigned β values in our experiment. The results demonstrate the distinct gradient
across all curves, each translating a steeper increase between intensity and event sizes and β increases. When β
was greater than 0.2, the disturbance intensity was 100% for events larger than ∼2 × 103. Notably, β values of 0.5
impose a full intensity disturbance (full loss) for events of any size (Figure 3).

Figure 2. The parameter α exerts control over the total number and average
sizes of events in all disturbance cubes generated with the same total
disturbed area (i.e., same μ), exhibiting an exponential relationship.
Specifically, an increase in α results in a higher proportion of relatively small
events, whereas a decrease in α tends to produce fewer, yet larger events.

Figure 3. Logistic correlation between the intensity of disturbance event and its size. The Y‐axis displays the intensity value,
which refers to the proportion of biomass loss attributed to the event, while the X‐axis represents the gradient event size. The
range of sizes is divided into two parts for ease of visualization: a linear scale for events under 32 pixels and a logarithmic
scale for larger events. Notably, the curve of β− 0.5 is indistinct since it saturates at an intensity of 1 from the outset of the
event size.
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3.1.2. Temporal Carbon Dynamics

By employing the parsimonious carbon model, we can analyze the dynamics of AGB given trends in GPP
alongside the carbon losses due to the background mortality and to the disturbance regime (Figure 4). The range of
values for parameter G, designed to represent variations in the relationship between photosynthesis and biomass,
produce a gradient in maximum GPP at steady states, with and without taking disturbances into account. Such
gradient directly compares to the gradients in maximum AGB, both across the GPP gradients driven by G, with
noteworthy variations in average biomass across domains (from ∼10 kgC m− 2 to 40 kgC m− 2) under a no
disturbance scenario. When considering a disturbance regime with parameters μ = 0.03, α = 1.0, and β = 0.2, the
steady‐state average levels of GPP and AGB clearly exhibit a decrease. Yet, and particularly for this disturbance
regime, the reduction in AGB (∼58%) was more than twice the reductions in GPP (∼23%). Additionally, with the
introduction of disturbance events, the original smooth growth curves are replaced by higher frequency fluctu-
ations that become increasingly pronounced with higher values ofG. The comparison of GPP and AGB evolution
over time in different disturbance regimes is provided in Figure S2 of the Supporting Information S1.

3.1.3. Steady‐State Biomass Distribution

Under the same photosynthetic capacity (fixed G) and background mortality rate (fixed Kb), the dynamically
stable biomass (average level of biomass of the last 10 yr in the simulation) exhibits diverse spatial patterns under
different disturbance regimes, prescribed according to the total disturbance extent parameter μ, clustering degree
parameter α, and intensity indicator parameter β. The combination of the three disturbance regime parameters
resulted in a large diversity of spatial patterns and biomass distributions as shown in Figure 5. Increasing
parameter μ while keeping the other two disturbance regime parameters fixed (first row in Figure 5) imposes an
increasing fraction of the domain affected by disturbance that leads to more areas with lower biomass. As the

Figure 4. The evolution of above‐ground biomass and gross primary production is examined under varying values of Parameter G. Figures (a) and (b) represent the
scenario without any disturbance events, while figures (c) and (d) demonstrate the impact of a disturbance regime with μ− 0.03, α− 1.0, and β− 0.2.
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clustering parameter α increases (second row in Figure 5), the same fraction of disturbance (same μ) is imposed
through a larger number of small events. As such, the spatial distribution of the biomass becomes more homo-
geneous as α increases, shifting from distinguishable disturbance effects to a uniformly distributed noisy mosaic
(from left to right, second row in Figure 5). The impact of higher β values is also evident, with more intense events
resulting in greater biomass removal and lower plant regrowth levels, resulting in more contrasting disturbance
footprints. The combination of the three disturbance regime parameters resulted in a large diversity of spatial
patterns and biomass distributions, ideal to explore the retrieval of disturbance regimes from potential AGB
observations via dynamic vegetation modeling.

3.2. Retrieving Disturbance Regimes From Biomass Patterns

3.2.1. Cross‐Validation

Figure 6 shows that all the strategies of cross‐validation have a good performance for retrieving the three
disturbance regime parameters under various primary productivity and background mortality, namely when
evaluating on: holdout random data cubes from training (CR); holdout full disturbance regimes (full parameter
vectors, LOSO); holdout parameter values (LOPO); and testing for extrapolation (LOPO + LOSO). Relying on
the 16 statistics (Table 2) calculated from the biomass and the average GPP of the last year of the simulation, all
the NSEs of μ, α, and β exceeded 0.94 in the CR and LOSO validation. In addition, the LOPO validation exhibits a

Figure 5. The map of steady‐state biomass is compared across different disturbance regimes. The first row illustrates the impact of increasing μ, which results in more
areas with low biomass values. In the second row, the effect of increasing α is represented, and the low biomass areas tend to be more scattered rather than clustered in
big events. In the third row, the consequences of increasing β are demonstrated, with more pronounced “prints” left by disturbances.
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high degree of precision for estimating μ and β, with an NSE approximately 0.82 and 0.85, and a moderately
accurate prediction for α with NSE of 0.69. This suggests that the model has the ability in predicting target
disturbance regime parameters when they are not present in the training set, although the level of precision may
vary.

The scatter plots of different CV strategies confirmed the high accuracy and apparent gradient for the predictions
across the cross‐validation strategies (from left to right, Figure 6). The results from the random cross‐validation
(CR validation, Figure 6a) as well as for the LOSO cross‐validation approach (Figure 6b) show robust and high
NSE values, and the regression lines close to the 1:1 line, indicating the great accuracy and high correlation with
the prescribed values. The LOSO validation (Figure 6b) maintains a similar prediction accuracy with CR vali-
dation, but the LOPO results show lower NSE values, larger scatters, and a regression line up to 20% away from
the 1:1 line. The performance reduction is especially for parameter α. One possible reason is that, when training, if
certain boundary values of the parameters are absent, the results show an evident bias. To investigate this further,
we conduct a test by replacing the LOPO CV predictions by the LOSOCV predictions specially for the μ, α, and β
that fall at the boundaries of the prescribed intervals. As a result, we found a significant increase in precision, with
the NSE for μ and β exceeding 0.91 and the NSE for α increasing to 0.76 (Figure 6d). These results confirm the
extrapolation challenge faced by our multi‐output random forest model when predicting parameter combinations
outside the prescribed bounds.

3.2.2. Feature Importance

According to the feature importance analysis in the multi‐output random forest method, it is observed all types of
statistics played significant roles in predicting the disturbance regimes (Figure 7). Additionally, information on

Figure 6. Different cross validation accuracy for predicting three disturbance regime parameters. The X‐axis denotes the predicted values, and the Y‐axis denotes the
prescribed values. (a) Illustrates the prediction results of the disturbance regime parameters in the Completely Random cross‐validation strategy (CR), (b) refers to the
leave one sequence out strategy (LOSO), and (c) refers to the leave one parameter out strategy (LOPO), (d) the LOPO predictions of μ, α, and β at the boundaries were
substituted with the LOSO predictions to validate the extrapolation challenge. Specifically, the trained model in LOSO predicted the values of parameter α at 1.0 and
1.8, as well as the values of 0.01 and 0.05 for μ, and 0.03 and 0.5 for β.
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mean GPP contributed around 13% for the predictions, ranking it in the third position among the statistical metrics
on AGB (Figure 7a). GPP, along with the texture feature correlation, and the coefficient of variation, are the main
contributors to the predictions of disturbance regimes (close to 60% of total feature importance). In fact, these
three features alone can explain more than 80% of the variation in the different disturbance parameters
(Figure 7b).

To elucidate the association between the individual disturbance regime parameters and statistics, we retrained a
random forest model specifically for predicting each single parameter. Upon considering features whose
contribution exceeds 5%, we see that μ is primarily governed by features characterizing the statistical distribution
of AGB (feature importance ∼55% of the total contribution, Figure 8a). However, texture feature, correlation, is
the second most important, accounting for 23% of the contribution, while GPP contributes only 6% for predicting
μ. The importance of GPP is more apparent in predicting α (14%) and β (13%). Texture features have a higher
significance in predicting parameter α than μ and β, contributing approximately 37%. The feature that made the
highest contribution was correlation, which accounted for 30% of the prediction (Figure 8b). For parameter β, the
coefficient of variation has a dominant contribution for prediction (∼60%, Figure 8c). The analysis shows that for

Figure 7. (a) Shows the feature importance of multi‐output disturbance regime prediction, where the assigned value denotes the degree of contribution made by each
feature (see the definition in Table 2). (b) Shows the prediction accuracy change for each disturbance regime parameter, ordered by ascending feature importance. The
X‐axis represents the feature(s) used (right) and excluded (left) during the prediction process. For instance, when X‐axis is labeled as gross primary production (GPP), it
means that the prediction process only involved three features, which are GPP, AGBcv, and correlation, and all the other features in the left are excluded. The accuracy
was measured using the Nash‐Sutcliffe efficiency metric, based on the prescribed parameters and the results of multi‐output random forest model's prediction.
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achieving and accuracy over 75% for predicting each of the parameters μ, α, and β individually, would require the
top 4, 3, and 2 features, respectively (Figure 8).

4. Discussion
Disturbance regimes are usually defined by their frequency, severity, and spatial coverage (Liu et al., 2011), and
can vary significantly across the landscape (Nelson et al., 1994). Previous approaches have explored the ability to
infer different properties of disturbance regimes in several ways using modeling and observations, for example,
Fisher et al. (2008) have focused on the number, size, and distribution of disturbance events; Williams
et al. (2013) derived disturbance probability and intensity; while Chambers et al. (2013), following Fisher
et al. (2008) focused on return frequency, area and tree mortality intensity. A common challenge across the
different approaches is the equifinality, the inability to distinguish different disturbance regimes using AGB
integrals or only distribution statistics across the landscape or simple regression approaches. Our results show that
this challenge can be overcome by exploring higher complexity metrics, using primary productivity for

Figure 8. Breakdown of the feature importance for three individual disturbance regime parameters, μ(a), α(b), and β(c). The corresponding feature importance is
depicted through bars, while the colored lines represent the results of the cumulatively exclusive feature test. This test is like Figure 7(b) but employs a single‐output
random forest model for three parameters individually.
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constraining the problem and exploring machine learning approaches for multi‐output regression problems, while
some aspects require further discussion.

4.1. Experimental Factorial Design

Building on antecedent research, here we synthesize disturbance regimes in three overarching parameters μ, α,
and β, which control the average area affected by disturbances, their event size‐frequency relationship, and the
event intensity, respectively. The emergent biomass distribution is further determined by primary productivity,
controlled by G, and by the background mortality, Kb. We implemented a full factorial design in the variation of
these five parameters, imposing a relatively wide range to simulate a sufficiently large sample of disturbance
regime scenarios following Fisher et al. (2008) for μ and α, Chambers et al. (2013), for β, Thurner et al. (2016) for
Kb, and allowingG to generate a range in GPP according to the current ranges emerging from the FLUXNET eddy
covariance network (Pastorello et al., 2020).

Although we ensured that the experimental setup spans the parametric ranges found in literature, further findings
expanding these intervals should necessarily involve expansion of experimental design. Our study relies on a
minimum mortality event size occurring at patch level. The assumption of a patch size of 10 × 10 m2 translates to
a maximum domain size of 10 × 10 km2. Although the patch size, as well as the domain size, can be challenged,
namely using Earth observation data, we acknowledge that the current ML model structure is limited to infer
disturbances larger than the domain and an occurrence likelihood of one in 200 years. Such aspect is especially
relevant given the limitations in predicting boundary values (as shown in Figure 6c). Furthermore, although the
event clustering and intensity parameters (α and β) span widely, here we follow a prescribed relationship between
even size, frequency, and intensity (as in Fisher et al., 2008 and in Chambers et al., 2013). This fixed relationship,
despite based on observations (Chambers et al., 2013) could be dependent on disturbance type. Although we
include in the current setup an intensity prescription independent of event size (β = 0.5), different disturbance
types could express different average intensities per event and challenge the size‐intensity relationship imposed
here. The further introduction of disturbance type dependent intensity ranges and relationships brings with it a
challenge on equifinality, but should however be considered in future analysis. Alternative formulations on the
links between size, frequency and intensity may necessarily lead to different statistical model structures.

4.1.1. Temporal Independence in Disturbance Events

Different types of events may have different size‐frequency‐intensity relationships, or be temporally correlated
(e.g., drought and insect outbreaks (Anderegg et al., 2015). In this regard, the current prescription of disturbance
events is stochastic and, given the lack of quantitative information, temporally independent. The experimental
setup is also insensitive to changes in local edaphoclimatic conditions after disturbances. Disturbance events, such
as fire, can modify the physical and chemical properties in soils or local microclimatic environments, creating
ecological legacies that have cascading implications on carbon dynamics (Liu et al., 2003). The ability to quantify
how different disturbances change the posteriori growth conditions and vary the probability of subsequent
disturbance events may be very local. However, in a context of climate change and for prognostic purposes, it will
support constraining the temporal dynamics of disturbance regimes and potentially provide more realistic pro-
jections of carbon cycle responses to climate.

4.1.2. Shapes of Disturbance Events

In our experiments, following also previous studies, for simplicity the disturbance events are prescribed as
rectangular shapes (Fisher et al., 2008; Williams et al., 2013). Shapes of disturbance events are usually more
complex as demonstrated by high‐resolution remote sensing observations (Chambers et al., 2013; Senf &
Seidl, 2021b). For most statistical properties, such as distribution or information theory metrics, this aspect is
irrelevant. However, the importance of texture features for the prediction of μ and α, especially correlation, may
reflect limitations in the generalization of the approach. We additionally conducted a simple exercise including
disturbances with irregular shapes to confirm the performance of the approach and that the variable importance is
kept (See Figure S3 and Figure S4 of the Supporting Information S1). These results suggest that the landscape
texture patterns are mainly controlled by the frequency‐size relationship rather than by event shape, and hence
type, of disturbances.
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4.1.3. Local Biomass Outliers

Occasionally, local and sporadic very high AGB grid cells emerge from the simulations, even after the 200‐year
simulation period. The outlier, defined as AGB value greater than three standard deviations from the mean value
of the column in which the AGB pixel is located (see more details in Text S4 and Table S1 of the Supporting
Information S1), was filled with the nearest nonoutlier value. Although increasing the simulation years may
theoretically mitigate this phenomenon we found it computationally very inefficient and difficult to control. The
presence of such outliers changes some of the statistical features, especially distribution statistics, which leads to a
reduction in the ability to predict disturbance regimes. This translates mostly that these local outliers can
significantly impact AGB extremes metrics and by that breaking down the relationship between AGB distribu-
tions and the underlying disturbance regimes.

4.1.4. Large Scale Controls on Primary Productivity

Another assumption is the dominant role of climate in controlling landscape scale GPP (H. Wang et al., 2014). In
our experimental design is the relationship between GPP and biomass, determined by parameterG. We prescribed
a gradient in G that corresponds to a gradient in maximum GPP at landscape level between 1,000 and
4,000 gC m− 2 yr− 1. We acknowledge the heterogeneity of photosynthetic capacity within the domain by
randomly perturbing ¼G for each patch. These perturbations represent a variation of 37% onmaximumGPP. The
approach falls short by not considering the high frequency environmental controls on photosynthesis, such as
solar radiation, temperature, vapor pressure deficit or soil water availability (Bao et al., 2022, 2023). As such, the
approach stands on the assumption that landscape scale GPP is mostly controlled by climate rather than by
meteorology (Pastorello et al., 2020; H. Wang et al., 2014). Yet, we acknowledge that G could also be further
stratified in space, given the interaction between topography, soils and species composition in providing an
additional axis of variation, and consequently warranting further detailed investigation on its role on the link
biomass patterns and disturbance regimes. Ultimately, our experimental design translates the strong controls of
large scale climate variability on primary productivity and the large mismatch in the spatial resolution of EO‐
based biomass and photosynthesis data sets, from a few hundred squared meters (e.g., 25 × 25 m2 GlobBio-
mass, Santoro et al., 2021) to squared kilometer scales (e.g., MODIS or FLUXCOM GPP products, Jung
et al., 2020).

4.2. Performance of the Multi‐Output Regression Approach

Overall, the results from the different cross‐validation exercises demonstrate the robustness of the approach
(Figure 6). The challenges in estimating the disturbance regimes underlying different biomass distributions has
been previously highlighted by modeling exercises due to the high spatiotemporal stochasticity that characterizes
disturbance events and the equifinality found between disturbance regimes and total biomass distributions (Fisher
et al., 2008; Ryan et al., 2012; Williams et al., 2013). We argue that the equifinality issue can be addressed by
Equation 1 expanding the feature space to include texture, diversity, and more comprehensive distribution metrics
on the emerging biomass patterns; and Equation 2 including additional information about primary productivity.
We find that deriving parameters outside the training bounds is a limitation (Figure 6c) but extending the
parameter intervals can reduce this problem.

4.3. Landscape Properties Emerging From Disturbances

The multi‐output regression shows that the most important variables to predict μ, α, and β relate to the spatial
distribution of biomass, rather than the mean or any higher quantiles of the biomass distribution (Figure 7). Yet,
the feature importance rankings change across the three disturbance metrics. The average domain fraction
affected by disturbances, μ, is strongly linked to biomass distribution statistics (AGBcv, AGBskew, AGBvar,
AGBstd) and also to the correlation (Figure 8a). Interestingly biomass itself does not emerge as highly important,
although it is implicitly present in AGBcv and AGBstd. The event size‐frequency clustering parameter, α, dis-
plays a notable link to text features, such as correlation, homogeneity, and contrast, which account for ∼37% of
the overall contributions of all features (Figure 8b). The parameter controlling the relationship between distur-
bance intensity and event size, β, is mainly dominated by AGBcv (Figure 8c), contributing ∼60% to β’s pre-
diction, followed by GPP (∼13%). This connection is the most obvious among the three parameters, indicating
that the intensity would directly affect the biomass distribution and indirectly the GPP.
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4.4. Linking Modeling Forest Carbon Dynamics With Earth Observation

In this study we used a simple carbon dynamics model to simulate primary productivity and growth resulting from
carbon gains and losses at patch level. The realistic annual trajectories in primary productivity and AGB dynamics
during recovery (Figure 4), along with model tractability, translate a clear benefit in model simplicity. However,
this supports the analysis of the direct disturbances' impact without considering other detailed physiological
processes and allocation mechanisms. Realistic biomass dynamics may describe different biomass compartments
such as leaves, branches, stems and roots (e.g., CASA, Potter et al., 1993; JSBACH, Reick et al., 2021; DALEC,
Williams et al., 2005); differentiate tree density from carbon stocks and include individual and community
processes to describe forest dynamics (Bugmann, 2001). Often these models include the effects of climate and
other factors on plant growth recovery, such as the impacts of changes in atmospheric CO2 and in rising tem-
perature (Norby et al., 2001; Pan et al., 2010). The present assumption here is that under given factors promoting
primary productivity, disturbances exert the dominant controls on the AGB patterns. Yet we acknowledge the
importance of bringing forward more comprehensive mechanistic models with more detailed carbon compart-
ments and plant physiological processes, along with multiple observed constraints for further testing the
robustness of these results and for differentiating regional biomass dynamics and corresponding disturbance
regimes.

Through the use of remote sensing data and ground‐based networks, significant advances have been achieved in
understanding, representing, scaling, and characterizing disturbances, ultimately leading to the development of
the hypotheses in the process‐based models, which can generally be categorized into compartment models and
demography models (Liu et al., 2011). The compartment models, including the biogeochemical and ecophysi-
ological ones (Bond‐Lamberty et al., 2005; Chen et al., 2000; Liu et al., 2003; McGuire et al., 1992; Parton
et al., 1987; Raich et al., 1991; Running & Gower, 1991), can integrate general stand information and meteo-
rological data to simulate carbon cycling, and applied to simulate the biogeochemical processes of forests
associated with disturbance (Brugnach, 2005; Tatarinov & Cienciala, 2006; W. Wang et al., 2009). And the
demography models, also referred to as gap models, are more focused on the simulation of the impacts of
disturbance on the forest composition, structure, and biomass in a relatively long term (Bugmann, 2001; Hurtt
et al., 1998; Norby et al., 2001; Shugart et al., 1992). To better capture the fine‐tuning functionality of plant sub‐
compartments and the effects of disturbance on demographic dynamics, the complexity of this type of gap models
is increasing (Needham et al., 2022).

Detail in describing disturbances can be also transferred to dynamic global vegetation models (DGVMs), such as
LPJ (Haxeltine & Prentice, 1996), HYBRID (Friend et al., 1997), IBIS (Foley et al., 1996), VECODE (Brovkin
et al., 1997), and LM3V (Shevliakova et al., 2009). Such could be done, for example, by prescribing only μ and
intensity losses of carbon at landscape level, or even via lumped parameters (e.g., whole landscape turnover rates),
to describe the large‐scale impacts of disturbance on carbon dynamics.

Overall, most of these processed‐based models at the moment rely on field or satellite observations to quantify
and evaluate the impacts of disturbance on modeled carbon stocks or fluxes. But model‐data comparisons are far
from trivial and often the model‐observations mismatch is due to missing information, such as the extent, type,
and timing of disturbance events. However, the prescription of individual disturbances based on disturbance
regimes metrics derived from observations would minimize this problem and support the analysis of forest dy-
namics at larger scales. The proliferation of high‐resolution biomass from Earth observation, as those by Saatchi
et al. (2011) and Santoro et al. (2021), offers a valuable prospect for distinguishing different disturbance regimes.

We would further argue that metrics on disturbance regimes hold information about the different natural and
anthropogenic drivers. For example, clearcutting and forest thinning may result in similar spatial patterns of
biomass, but with different biomass loss fractions (see Figure S5 a–b of the Supporting Information S1). This
could be reflected in the similar μ and α, but different β, which could be the same case for wildfire and drought
(see Figure S5 c–d of the Supporting Information S1). However, tornado and insect outbreak (see Figure S5 e‐f of
the Supporting Information S1) differ in the shape of the affected area, resulting in different biomass clustering
patterns, which can be reflected by different α. Therefore, these natural or anthropogenic factors may cause
differential biomass patterns, which are reflected in distinct disturbance parameters.

Furthermore, by analyzing the spatial patterns of biomass stocks over time we can also detect shifts in disturbance
regimes and subsequent successional changes. For example, extended dryness periods could induce extensive
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drought mortality in some regions, leading to higher values of μ and β which would signal transitions in
disturbance regimes. Similarly, more frequent wind‐throws would result in changes in event clustering patterns
over a larger area, presumably indicated by a higher value of μ but smaller values of α. Another example is the
intensification in management activities, such as clearcutting, which would cause significant changes in the
disturbance regimes, resulting in larger values of μ, α and β. Information on the transition in disturbance regimes
is key for improving our capacity to diagnose relevant changes in forest dynamics and for understanding the
relationship between vegetation mortality, the carbon cycle dynamics and climate variability. It can assist us in
identifying susceptible regions that are particularly vulnerable to disturbances, thereby facilitating the imple-
mentation of effective climate adaptation and mitigation strategies, but also management strategies and con-
servation efforts to mitigate the impacts of disturbance on both ecosystem functioning and biodiversity.

5. Conclusion
This study presents a framework for simulating disturbance events using a wide range of disturbance regime
attributes. Together with a simple carbon dynamics model, we simulated the effects of disturbance events, from
combinations of three landscape‐level disturbance regime parameters: μ (probability scale), α (clustering degree),
and β (intensity slope) on biomass patterns. We observe how changes in extent, frequency, and intensity char-
acterizing the different disturbance regimes indeed lead to significantly different biomass patterns even for
analogous primary productivity and background mortality inputs.

The emerging spatial biomass patterns are summarized in a set of metrics containing the central tendencies,
moments, as well as information‐based and texture information. Based on a conceptual model‐based experiment
and machine learning regression we demonstrate that with this set of summary metrics of biomass, along with
primary productivity constraints, the set of disturbance regime parameters can be reliably retrieved. The average
fraction of the domain affected by disturbances, the event size clustering exponent, and the perturbation intensity
could be retrieved with an accuracy of 94.8%, 94.9%, and 97.1%, respectively.

As Earth observation efforts evolve to retrieve space‐borne estimates of vegetation structure and patterns such as
GEDI (Stavros et al., 2017), NISAR (Rosen et al., 2015), and BIOMASS (Le Toan et al., 2011), and as photo-
synthesis patterns are being estimated at high resolution (Cogliati et al., 2015; Jung et al., 2020), the methods
presented in this study will open up avenues to provide observation based long‐term diagnostics on the terrestrial
carbon cycle and background disturbance patterns, which could be used to constrain Earth system models.
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