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Summary 

The balance of excitation and inhibition is a key functional property of cortical microcircuits which 
changes through the lifespan. Adolescence is considered a crucial period for the maturation of 
excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo 
evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. 
Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in 
human adolescents, estimated using large-scale simulations of biophysical network models fitted to 
resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 
752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in 
association cortices paralleled by a relative age-related increase of excitation, or lack of change, in 
sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale 
markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition 
development in adolescence was robust to inter-individual variability of structural connectomes and 
modeling configurations. Notably, we found that alternative simulation-based markers of excitation-
inhibition balance show a variable sensitivity to maturational change. Taken together, our study 
highlights an increase of inhibition during adolescence in association areas using cross sectional and 
longitudinal data, and provides a robust computational framework to estimate microcircuit maturation 
in vivo at the individual level. 
 
Keywords: Excitation-inhibition balance, Adolescence, Biophysical network modeling, Resting-state 
functional magnetic resonance imaging. 
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Introduction 
The vast repertoire of cortical functions emerges from a careful tuning of the interactions between 
excitatory (E) and inhibitory (I) neurons in microcircuits embedded in the structural scaffolding of the 
brain1. Excitation and inhibition, mainly transmitted via glutamate and γ-aminobutyric acid (GABA), 
respectively, are inseparable and balanced, that is, the inhibition generated in the cortical microcircuits 
is proportional to the local and incoming excitation2. This phenomenon has been observed during both 
responses to external stimuli3–5 and spontaneous cortical activity4,6. The E-I balance is proposed to be 
essential for central aspects of cortical functioning, including the dynamic stability of activity7, efficient 
coding of the information8, sharp tuning of sensory stimuli2, and generation of synchronous cortical 
oscillations in gamma and beta ranges2,6,9,10. Conversely, disturbed E-I balance can lead to cortical circuit 
dysfunctioning and is hypothesized as a key pathophysiological mechanism in various 
neuropsychiatric conditions such as schizophrenia, autism spectrum disorder, and epilepsy11–15. 

Adolescence is a critical developmental period with substantial changes in the brain including 
maturation of the E-I balance16–18. During this period, several important changes occur in the 
architecture and function of excitatory and inhibitory neurons and synapses, which together are 
suggested to lead to a re-calibration of the E-I balance16. For instance, post-mortem histology of 
adolescent brains has shown a pruning of excitatory synapses within the prefrontal cortex, in rats19,20, 
non-human primates21,22 and humans23–25. In addition, post-mortem transcriptomic studies of the 
prefrontal cortex in animals and humans have indicated marked changes in the expression of genes 
involved in inhibitory neurons and GABAergic signaling, including parvalbumin9,26,27 and GABAA 
receptor subunits28–31. These transcriptomic changes are accompanied by the maturation of inhibitory 
function with stronger and shorter inhibitory postsynaptic currents, as observed in the prefrontal 
cortex of non-human primates9,30, overall indicating a relative increase of inhibitory synaptic 
transmission in this area16,32.  

Currently available evidence on the in vivo maturation of the E-I balance in humans is limited, as the 
invasive methods used in animal studies are not feasible in humans. However, in vivo proxies of E-I 
balance have been proposed, relying on its putative macroscale functional consequences captured in 
functional imaging33,34 and electrophysiology35–37, or through biochemical quantification of 
glutamatergic or GABAergic neurotransmitters using magnetic resonance spectroscopy38–40. Such 
approaches are informative, but lack a certain level of mechanistic insight and detail that is observed 
with, for example, direct measurement of the excitatory and inhibitory input currents as done in animal 
research. Furthermore, studies on the development of E-I balance are often focused on selected areas, 
primarily within the prefrontal cortex, and the knowledge on the regional patterns of E-I balance 
maturation across the whole cerebral cortex is limited. Biophysical network modeling (BNM) of the 
brain is a promising computational technique that can bridge different scales of investigation at a 
whole-cortical level. It provides a tool to non-invasively derive mechanistic inferences about a hidden 
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brain feature at the microscale, such as the E-I balance, based on the observed (empirical) in vivo data 
at the macroscale, and has provided valuable insights into brain (dys)function41–47. In this approach, 
dynamic spontaneous activity of brain areas are simulated using biologically realistic models which 
are informed by, for instance, the blood-oxygen-level-dependent (BOLD) signal measured during 
resting-state functional magnetic resonance imaging (rs-fMRI)48–51. 

In this study, we aimed to investigate the adolescent maturation of the regional E-I balance in humans 
at the individual level, by applying the BNM approach on two independent cross-sectional and 
longitudinal neuroimaging datasets from the Philadelphia Neurodevelopmental Cohort (PNC) and the 
IMAGEN study52,53. We performed large-scale simulations of individualized BNMs44,54,55, in which 
models were informed by structural connectivity (SC) and functional imaging data of each subject. The 
subject-level precision of these models allowed for mapping the estimated E-I balance specifically in 
each individual using simulations that best represented their empirical data, and furthermore enabled 
studying within-subject maturation longitudinally. By doing so, we extended a previous study that 
used the BNM approach to study the development of the E-I balance in the PNC dataset at the level of 
age groups56. We demonstrated replicable effects across the two datasets indicating cross-sectional and 
longitudinal age-related increases of relative inhibition in the association areas and a lack of significant 
changes or even relative increases of excitation in the sensorimotor areas. We found this 
neurodevelopmental pattern of the shifts in E-I balance was aligned with the proposed sensorimotor-
association axis of the cortical neurodevelopment18. Subsequently, given that the simulation results 
may be affected by various modeling and analytical choices57–59, or might be confounded by the 
variability of underlying structural connectome, as well as the noise within the simulations and 
parameter optimization, we extensively assessed and demonstrated the robustness of our simulation-
based findings against these nuisances. Lastly, we contrasted our marker of the E-I balance to 
alternative previously-used BNM-based markers and highlight methodological and conceptual 
considerations regarding the usage and interpretation of these markers. 
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Results 

Overview 

We included 752 adolescents from the cross-sectional PNC dataset52 (409 female, mean age: 15.3±2.4 
[10-19] years) and 149 participants from the longitudinal IMAGEN study53 (72 female, mean age: 
14.4±0.4 years at baseline, 18.9±0.5 years at follow-up). Subject/session diffusion-weighted imaging 
(DWI) and rs-fMRI data was used to generate individual matrices of: i) structural connectome based 
on the density of white matter streamlines, ii) functional connectivity (FC) matrix as the correlation of 
the BOLD signals, and iii) functional connectivity dynamics (FCD) matrix as a measure of how the FC 
dynamically evolves through sliding windows of time during the scan, across 100 cortical areas60. 
Hereafter, we refer to FC and FCD matrices derived from the imaging data as empirical FC and FCD to 
distinguish them from simulated FC and FCD.  
 
Next, we performed individualized BNM simulations and parameter optimizations for each 
subject/session to estimate their in silico regional measures of the E-I balance based on their in vivo 
imaging data (Figure 1). We applied the reduced Wong-Wang model61, which models each node as 
coupled excitatory and inhibitory neuronal pools, where the excitatory neuronal pools of different 
nodes are interconnected through the individual-specific SC. The model was controlled by global and 
regional free parameters which were fit to the empirical resting-state functional data of the target 
subject/session using the covariance matrix adaptation-evolution strategy (CMA-ES) optimization 
algorithm62–64. This involved running a maximum of 33600 simulations per subject/session using an 
efficient implementation of BNM simulations on graphical processing units (GPUs; 
https://cubnm.readthedocs.io). The model parameters included a global parameter 𝐺 which scales the 
strength of inter-regional coupling, in addition to regional parameters 𝑤!"", 𝑤!"# and 𝑤!#" which 
characterize the connectivity weights between E and I neuronal pools within each node. Motivated by 
recent developments of this model65,66, we let 𝑤!"" and 𝑤!"# to vary across nodes, i.e., they were computed, 
independent of each other, through weighted combinations of six fixed biological maps that represent 
morphological, functional, genetic and neurochemical heterogeneity of the human cerebral cortex. 
These maps were obtained from independent healthy adult samples, and included average T1-
weighted/T2-weighted ratio (T1w/T2w), average cortical thickness, principal gradient of FC (FC G1), 
principal axis of gene expression (Gene PC1), and average NMDA and GABAA/BZ receptor PET maps67–

75 (Figure S1). Furthermore, in each simulation 𝑤!#" was determined based on an analytical-numerical 
feedback inhibition control (FIC) algorithm, which aimed to maintain the firing rate of excitatory 
neurons within a biologically plausible range of 3 Hz61,66. Following, from the optimal simulations of 
each subject/session we extracted the in silico input current to the excitatory neuron of each node 𝐼!", 
averaged across simulation time, which resulted in individual-specific ⟨𝐼!"⟩ maps. The ⟨𝐼!"⟩ values reflect 
in silico estimates of regional E-I balance, given 𝐼!" results from the combination of excitatory input 
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currents to each node (from itself, and from the excitatory neurons of the other nodes through the SC) 
balanced by local inhibitory currents. Therefore, increase of ⟨𝐼!"⟩ can be interpreted as a relative increase 
of excitation or decrease of inhibition within a model region. 

 
Figure 1. Overview. Individualized biophysical network model (BNM) simulation-optimization (a-c) was 
performed to derive the subject-/session-specific regional measures of the E-I balance, defined as time-averaged 
in silico input current to the excitatory neurons, ⟨𝐼!"⟩ (d). The model consists of coupled excitatory (E) and inhibitory 
(I) neuronal pools in each node, where the E neuronal pools of brain nodes are interconnected through the 
structural connectome (SC) of the given subject/session (a; left). The model is controlled by a global parameter 𝐺 
which adjusts inter-regional coupling, in addition to regional parameters 𝑤!"", 𝑤!"# and 𝑤!#" which characterize the 
connection weights between E and I neuronal pools within each node. In each simulation, 𝐺, 𝑤!"" and 𝑤!"# are set 
by the optimizer while 𝑤!#" is determined based on feedback inhibition control (FIC) algorithm (b). The covariance 
matrix adaptation-evolution strategy (CMA-ES) algorithm was used to optimize model parameters with respect 
to empirical functional data of the given subject (c). The optimization goal was to maximize the goodness-of-fit 
by tuning 15 free parameters, including 𝐺, as well as bias and coefficient terms used to determine 𝑤!"" and 𝑤!"# 
based on six fixed biological cortical maps (Figure S1). In each generation of the optimizer, 210 simulations 
(“particles”) with different parameters were performed. The goodness-of-fit of each simulation to the empirical 
functional data (a, right) is assessed as the correlation of functional connectivity (FC) matrices subtracted by their 
absolute mean difference and the Kolmogorov-Smirnov distance of functional connectivity dynamics (FCD) 
matrices derived from the simulated or empirical blood-oxygen-level-dependent (BOLD) signal. After 
completion of two CMA-ES runs, each with a maximum of 80 generations, the optimal simulation with the best 
goodness-of-fit to the empirical functional data of the target subject/session is selected (c). Lastly, the in silico 
input current to the excitatory neuron of each node 𝐼!" is averaged across simulation time, resulting in an ⟨𝐼!"⟩ map 
for each subject/session, which was used as a regional marker of the excitation-inhibition balance in this study 
(d). 
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Cross-sectional age-related variation of the E-I balance 

Following, we studied cross-sectional age-related variation of the excitation-inhibition balance in 
adolescence, estimated based on ⟨𝐼!"⟩, in the PNC dataset. The individualized optimal simulations of the 
PNC dataset showed a goodness-of-fit of 0.259±0.101 to the empirical data (Figure S2). Based on these 
simulations, we found widespread significant age-related decreases of ⟨𝐼!"⟩ in association areas within 
the frontal, parietal, and temporal lobes, in contrast to its age-related increases in visual and 
sensorimotor areas as well as the left posterior insula, after controlling for goodness-of-fit, sex, and in-
scanner rs-fMRI motion, and adjusting for multiple comparisons at a false discovery rate (FDR) of 5% 
(Figure 2a). The effect sizes across these regions, calculated as Pearson correlation coefficient between 
age and ⟨𝐼!"⟩ controlled for the confounds, ranged between -0.255 to 0.156. We then assessed within-
sample stability of the age effects across 100 subsamples of the data, each including half of the total 
sample with 376 subjects. The unthresholded age effects on ⟨𝐼!"⟩ across all pairs of subsamples were 
correlated with a mean correlation coefficient of 0.863±0.047, indicating high within-sample stability of 
the observed age effects (Figure 2c). Of note, assessing maturational differences of ⟨𝐼!"⟩ between males 
and females, we found no significant age-by-sex interactions after FDR correction.  
 

 
Figure 2. Cross-sectional effect of age on excitation-inhibition balance during adolescence. (a) Linear effect of 
age on ⟨𝐼!"⟩, showing its significant age-related decrease (blue) and increase (red) during adolescence in the PNC 
dataset, after removing outliers and controlling for goodness-of-fit, sex and in-scanner rs-fMRI motion, corrected 
for multiple comparisons using false discovery rate (FDR). (b) Unthresholded map of the effect of age on ⟨𝐼!"⟩. (c) 
The distribution of correlation coefficients between ⟨𝐼!"⟩ age effect maps of all pairs of subsamples across 100 half-
split subsamples of the dataset. 

Longitudinal changes of the E-I balance 

To extend and assess the replicability of our findings in the cross-sectional PNC study, we next 
investigated the longitudinal E-I maturation in the independent IMAGEN dataset, including 149 
participants assessed at the ages of 14 and 19 years. The individualized optimal simulations in the 
IMAGEN had a mean goodness-of-fit of 0.266±0.102 at the baseline and 0.231±0.113 at the follow-up 
session (Figure S3). Within these simulations, we found a significant longitudinal age-related decrease 
of ⟨𝐼!"⟩ in widespread association areas within the frontal, parietal and temporal lobe, and a significant 
increase in visual areas, controlled for goodness-of-fit, sex, in-scanner rs-fMRI motion, and site, and 
adjusted for multiple comparisons at FDR of 5% (Figure 3a). The effect sizes across these regions, 
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calculated as the standardized mean difference of baseline to follow-up session in ⟨𝐼!"⟩ controlled for 
the confounds, ranged between -0.299 to 0.229. We next assessed the within-sample stability of age 
effects using 100 subsamples of the IMAGEN data, each including half of the total sample with 74 
subjects. This resulted in a mean correlation of r = 0.746±0.108 between the ⟨𝐼!"⟩ age effect maps across 
all pairs of subsamples (Figure 3c). Furthermore, we found no significant age-by-sex interactions after 
FDR correction, yielding no evidence for sex differences in the maturation of ⟨𝐼!"⟩. Of note, given the 
quality of the tractograms in the baseline session of the IMAGEN dataset was lower, in these 
simulations we used the SC of the follow-up session in the models of both sessions. However, in a 
subset of subjects with adequate quality of tractograms in both baseline and follow-up sessions (N = 
110; 52 female), using models with session-specific SCs resulted in largely similar effects of age on ⟨𝐼!"⟩ 
(r = 0.779, pspin < 0.001; Figure S4). 
 
We next assessed the similarity of cross-sectional and longitudinal age-related variation of ⟨𝐼!"⟩ observed 
in the two datasets. Conjunction of regions with significant age effects on ⟨𝐼!"⟩ in the PNC and IMAGEN 
datasets revealed 33 regions in the association cortices showing significant decrease of ⟨𝐼!"⟩, whereas no 
region showed significant replicable age-related increase of ⟨𝐼!"⟩ (Figure 3d). Mean ⟨𝐼!"⟩ across these 
association regions, after regressing out the effects of confounds, showed a correlation coefficient of r 
= -0.232 with age in the PNC (T = -6.64, p < 0.001), and a standardized mean difference of -0.312 between 
the sessions in IMAGEN (T = -4.17, p < 0.001; Figure S5). Furthermore, the unthresholded map of ⟨𝐼!"⟩ 
longitudinal age effects in IMAGEN (Figure 3b) was significantly correlated (r = 0.630, pspin < 0.001; 
Figure 3e) with the cross-sectional age effect map observed in PNC (Figure 2b). 
 
Therefore, overall, across the two datasets we observed replicable cross-sectional and longitudinal 
effects indicating a developmental relative increase of inhibition in the association areas in contrast to 
a lack of significant changes or a relative increase of excitation in sensorimotor areas. 
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Figure 3. Longitudinal effect of age on the excitation-inhibition balance during adolescence. (a) Linear effect 
of age on ⟨𝐼!"⟩, showing its significant longitudinal decrease (blue) and increase (red) through adolescence, using 
a mixed effects model with random intercepts for each subject, after removing outliers and controlling for 
goodness-of-fit, sex, in-scanner rs-fMRI motion and site, and corrected for multiple comparisons using false 
discovery rate (FDR). (b) Unthresholded effect of age on ⟨𝐼!"⟩. (c) The distribution of correlation coefficients 
between ⟨𝐼!"⟩ age effect maps of all pairs of subsamples across 100 half-split subsamples of the dataset. (d) 
Conjunction of regions showing significant decreases of ⟨𝐼!"⟩ associated with age in the PNC and IMAGEN 
datasets. (e) Spatial correlation of longitudinal effects of age on ⟨𝐼!"⟩ in IMAGEN with cross-sectional effect of age 
on ⟨𝐼!"⟩ in PNC.  

Neurodevelopmental pattern of EI balance co-aligns with the 
sensorimotor-association axis of cortical organization 

Having observed differential effects of age on the E-I balance across cortical areas, we next sought to 
investigate the embedding of this spatial neurodevelopmental pattern across different domains of 
cortical organization as well as meta-analytic maps of cortical function and developmental 
transcriptomics. 
 
We first studied the spatial co-alignment of the observed age effects on ⟨𝐼!"⟩ with a previously proposed 
sensorimotor-association axis of cortical neurodevelopment and the multimodal cortical features it was 
composed of18 (Figure S6, Table S1). The ⟨𝐼!"⟩ age effect maps of both datasets were significantly (pspin < 
0.001) correlated with the sensorimotor-association axis map (PNC: r = -0.617; IMAGEN: r = -0.607) as 
well as several of its components, notably including FC G1 (PNC: r = -0.691; IMAGEN: r = -0.641) and 
T1w/T2w (PNC: r = 0.437; IMAGEN: r = 0.548; Figure 4a, S7a). Next, comparing the ⟨𝐼!"⟩ age effects 
across seven canonical resting-state networks76, we observed more negative age effects in the default 
mode and frontoparietal networks compared to the somatomotor and visual networks (Figure 4b, S7b). 
These findings indicated co-alignment of the E-I balance maturational pattern with the sensorimotor-
association axis of the cortex with higher age-related relative increase of inhibition towards the 
association areas. 
 
Following, we assessed the functional relevance of the observed developmental patterns by evaluating 
their spatial correlation with meta-analytical maps of terms related to cognitive and behavioral 
functions70 obtained from the NeruoSynth database77,78 (123 terms, Table S2). We found significant (pspin 
< 0.001) negative correlations of the age effect maps with the maps of terms such as “intention” (PNC: 
r = -0.425; IMAGEN: r = -0.376) and their positive correlations with the maps of terms such as “visual 
perception” (PNC: r = 0.261; IMAGEN: r = 0.256), overall suggesting that areas which show a relative 
increase of inhibition during adolescence are associated with higher-order functions (Figure 4c, S7c). 
 
Lastly, we performed developmental transcriptomics enrichment analysis of ⟨𝐼!"⟩ age effect maps. Using 
partial least squares regression with the gene expression maps obtained from the Allen Human Brain 
Atlas71,73, we identified the top 500 genes expressed higher towards the negative and positive ends of 
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⟨𝐼!"⟩ age effect maps. Next, we investigated the developmental enrichment of the two sets of genes using 
specific expression analysis of BrainSpan dataset79 and found that the genes expressed towards the 
negative ends of ⟨𝐼!"⟩ age effect maps to be enriched in later stages of development, primarily during 
and after childhood, in contrast to the genes expressed towards the positive ends of ⟨𝐼!"⟩ age effect maps 
that were enriched in earlier fetal stages of development, though not significantly (Figure 4d, S7d). 
 

 
Figure 4. Embedding of the excitation-inhibition developmental pattern in the PNC dataset along the 
sensorimotor-association axis. (a) Spatial correlation of ⟨𝐼!"⟩ age effect in the PNC dataset with maps of 
sensorimotor-association cortical axis based on Sydnor et al.18 (Figure S6). Colored diamonds show statistically 
significant (pspin < 0.05) positive (red) and negative (blue) spatial correlations. (b) Distribution of ⟨𝐼!"⟩ age effects 
across the canonical resting-state networks (F = 13.85, pspin < 0.001). Post-hoc tests (Bonferroni-corrected) showed 
significantly more positive age effects in visual (VIS) and somatomotor (SMN) compared to limbic (LIM), 
frontoparietal (FPN) and default mode networks (DMN), in addition to more positive age effects in dorsal 
attention network (DAN) compared to DMN. (c) top: Meta-analytical maps with significant spin correlation to 
the ⟨𝐼!"⟩ age effect map. Double asterisks denote associations that were significant after false discovery rate (FDR) 
adjustment. bottom: Word clouds of meta-analytical maps negatively (blue) or positively (red) correlated with the 
⟨𝐼!"⟩ age effect map. Size of the words is weighted by their correlation coefficient. (d) left: Mean expression of the 
top 500 genes associated with the ⟨𝐼!"⟩ age effect map split into sets of negatively- (N = 187, blue) and positively-
associated (N = 313, red) genes. right: Specific expression analysis of the two sets of genes across developmental 
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stages in the cortex. Y-axis shows the negative log of uncorrected p-values. Asterisks denote significantly 
enriched developmental stages after FDR adjustment. 
 
SA: sensorimotor-association, T1w/T2w: T1-weighted to T2-weighted ratio, FC G1: principal gradient of functional 
connectivity, Evo.: evolutionary, CMR: cerebral metabolic rate, Glu.: glucose, CBF: cerebral blood flow, Gene PC1: principal 
axis of Allen Human Brain Atlas gene expression data, NeuroSynth PC1: Principal component of NeuroSynth meta-analytical 
maps, LTC G1: principal gradient of laminar thickness covariance. 

Robustness analyses 

Thus far, we observed consistent age effects in the adolescent maturation of E-I balance in two 
independent cross-sectional and longitudinal datasets across a sensorimotor-association axis by using 
simulations of individualized BNMs. However, these simulation-based findings may be sensitive to 
various modeling and analytical choices57–59 as well as confounding effects of the underlying structural 
connectome or noise. Therefore, we next assessed the robustness of ⟨𝐼!"⟩ and its age-related changes to 
such nuisances, including the effects of inter-individual variability of SC, modeling configurations, and 
the randomness within the optimizer and simulations. For brevity and to reduce the usage of 
computational resources, we limited these analyses to the PNC dataset. 
 
Inter-individual variability of structural connectome. Using subject-specific SCs in the main analyses 
enabled modeling of brain function within an individualized structural scaffold which better 
represents each subject. However, this potentially introduces inter-individual variability of SCs as a 
source of variability in ⟨𝐼!"⟩, particularly given 𝐼!" is directly related to the SC in the model Eq. 1. As a 
result, the associations of age with model-derived features may be confounded by age-related variation 
of trivial features of SC, such as the node-wise strength. However, the age effect on ⟨𝐼!"⟩ was robust to 
controlling for the node-wise SC strength as an additional confound (r = 0.959, pspin < 0.001; Figure 5c, 
Figure S8a). Furthermore, when SC variability was eliminated by using an identical template SC in the 
BNM simulations of all the subjects, we observed an age effect on ⟨𝐼!"⟩ largely consistent with the effects 
observed in main analyses (r = 0.618, pspin < 0.001; Figure 5c, S8b).  
 
Parcellation, heterogeneity maps and inter-hemispheric connections. Following, we assessed a range 
of alternative modeling configurations, which we performed at the level of age groups (N = 30, each 
with 25-27 subjects) to limit the usage of computational resources. We found largely consistent ⟨𝐼!"⟩ age 
effect maps similar to the age effects obtained using the main analysis configuration (Figure 5b, S9) 
with: i) using an alternative parcellation with higher granularity of 200 nodes60 (r = 0.479, pspin < 0.001; 
Figure 5d, S10), ii) using two (r = 0.339, pspin < 0.001) or four (r = 0.832, pspin < 0.001) instead of six 

heterogeneity maps to determine regional variability of the parameters 𝑤!"" and 𝑤!"#	(Figure	5e,	S11), 
and iii) including the inter-hemispheric connections in the calculation of goodness-of-fit and the 
optimizer cost function (r = 0.753, pspin < 0.001; Figure 5f, S12). 
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Conduction velocity. Next, we assessed the potential impact of inter-regional conduction delay at the 
individual level by repeating the optimal simulations while adding conduction delay between model 
regions informed by the subject-specific tractograms. We next calculated the node-wise median 
absolute deviation intraclass correlation coefficient (ICC) of ⟨𝐼!"⟩ between delayed-conduction and non-
delayed-conduction simulations, and found its high test-retest reliability with a mean of 0.975±0.027 
using velocity of 1 m/s to 0.998 ±0.003 using velocity of 6 m/s (Figure S13). 
 
Gaussian noise random seed. Using a similar analysis as above, we investigated the impact of the 
array of Gaussian noise injected into the simulations by repeating the optimal simulation of each 
subject with 50 alternative random seeds for the Gaussian noise. The median node-wise ICC of ⟨𝐼!"⟩ 
between the original simulations and each of the 50 alternative simulations with different seeds, had 
an average of 0.802±0.100 (range: [0.449-0.929]) across regions which indicates moderate to high test-
retest reliability of ⟨𝐼!"⟩ across random seeds (Figure S14). 
 
Optimization random seed. It could be that within the parameter space multiple local optima exist 
that feature different ⟨𝐼!"⟩ values. To assess whether this may have been the case, we calculated the node-
wise ICC of ⟨𝐼!"⟩ across the two optimal points obtained from the two CMA-ES runs of each subject. We 
found a mean ICC of 0.947±0.019 (range [0.853-0.984]) across nodes, indicating high test-retest 
reliability of ⟨𝐼!"⟩ across alternative optima, which shows a low risk of optimizers convergence to 
different local optima with respect to ⟨𝐼!"⟩ (Figure S15). 
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Figure 5. Robustness analyses. The unthresholded effect of age on ⟨𝐼!"⟩ observed in the PNC dataset using the 
default configurations at subject level (a) or age-group level using template SC (b) compared to age effects 
observed using alternative configurations, including: (c, left) linear regression additionally controlled for the 
node-wise structural connectome (SC) strength, that is, row-wise sum of the SC matrix, (c, right) using a fixed 
template SC based on the MICs dataset, (d) definition of nodes based on a Schaefer parcellation with higher 
granularity of 200 nodes, (e) using two (left; T1-weighted to T2-weighted ratio, principal gradient of functional 
connectivity) or four (right; T1-weighted to T2-weighted ratio, principal gradient of functional connectivity, N-
methyl-D-aspartate receptor density, γ-aminobutyric acid type A/Bz receptor density) maps to determine the 
heterogeneity of regional parameters, and (f) including the inter-hemispheric connections in the goodness-of-fit. 
In all the panels the statistics indicate spatial correlation of each map with the ⟨𝐼!"⟩ age effect observed using the 
default configurations at subject level (panel c correlated with panel a) or age-group level (panels d-f correlated 
with panel b). 

Alternative BNM-based measures of the E-I balance 

In vivo estimation of the E-I balance based on BNMs has been the aim of several previous studies using 
this or similar models47,56,80–82. Yet, there has been no consensus on the BNM-based measures of the E-I 
balance and various measures have been proposed and utilized across studies. Here, we present our 
findings regarding alternative BNM-based measures of the E-I balance used in the previous literature 
and highlight some considerations regarding their usage. 
 
Firstly, the optimal model parameters have been commonly used as measures of the E-I balance47,80–82. 
Variation of these parameters can be interpreted as shift of the balance towards higher excitation (e.g., 
increase of 𝐺 or 𝑤"") or higher inhibition (e.g., increase of 𝑤"#or 𝑤#"). However, in a multidimensional 
model in which these parameters can simultaneously covary and may be degenerate, the interpretation 
of their variations is not straight-forward. Indeed, across optimal simulations of subjects in the PNC 
dataset we found significant associations between optimal parameters, such as a negative association 
of 𝑤"# and 𝑤#", indicating that lower excitatory-to-inhibitory connection weights are accompanied by 
(compensatory) higher inhibitory-to-excitatory connection weights (Figure 6a). These associations 
were also reflected in the effects of age on the parameters (Figure 6b), as for example, there was an 
inverse correlation between the unthresholded effects of age on 𝑤"# and 𝑤#" (r = -0.667, pspin < 0.001). 
The observed covariance between model parameters and their age effects, indicates that these age 
effects should not be interpreted in isolation, and based on this data, the net effect of age on the E-I 
balance remains ambiguous. 
 

In our study, as a solution to this problem of degeneracy between model parameters, we focused on a 
state variable of model nodes within the optimal simulations, which, as a “final common pathway”, 
reflects the collective outcome of the various model parameters on the E-I balance within each node. 
At a neuronal level, the E-I balance is commonly defined as the balance, or the ratio, between excitatory 
and inhibitory currents, potentials or conductances onto excitatory neurons83,84. Accordingly, in our 
study, we quantified the E-I balance based on time-averaged input current onto the excitatory neurons, 
⟨𝐼!"⟩, which reflects the net difference of the excitatory and inhibitory currents onto these neurons. Of 
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note, our measure differs from another BNM-based measure of the E-I balance based on model state 
variables which was utilized in a similar previous study56: the ratio of time-average excitatory synaptic 
gating variable, ⟨𝑆!"⟩, to time-average inhibitory synaptic gating variable, ⟨𝑆!#⟩. By inspecting the time 
series of model state variables in an example optimal simulation, we found that 𝐼!$" and 𝑆!$"/𝑆!$#  are indeed 
positively correlated (R2 = 0.472). However, in subsequent analyses we found notable differences 
between these two alternative BNM-based measures of the E-I balance: (i) Assuming that the firing rate 
of excitatory neurons, 𝑟", is an outcome of the E-I balance61 which indicates low versus high states of 
activity83, we expect a measure of the E-I balance to positively correlate with it. Accordingly, in an 
example simulation and using an exponential generalized linear mixed effects model we found that 𝑟!$" 
correlates positively across nodes and time with both 𝐼!$" (R2 = 0.976) and 𝑆!$"/𝑆!$#  (R2 = 0.582), but is more 
strongly correlated with 𝐼!$" (Figure S16). This was not surprising given model Eq. 3 directly relates 𝐼!$" 
to 𝑟!$". (ii) Next, given the optimal simulation of 40 randomly selected subjects of the PNC dataset, we 
performed perturbed simulations in which one of the model parameters was increased or decreased 
by 10%, pushing the simulation to an expected state of increased/decreased excitation/inhibition (e.g., 
10% increase of 𝐺 is expected to push the system towards higher excitation). We then used paired T-
tests to compare each measure of the E-I balance before and after the perturbation (Figure S17), and 
found larger effects of perturbations on ⟨𝐼!"⟩ (mean |T| = 21.476±5.375), compared to ⟨𝑆!"⟩/⟨𝑆!#⟩ (mean 
|T| = 6.995±2.730). This shows that ⟨𝐼!"⟩ may be more sensitive to capture the variations in the E-I 
balance caused by parameter perturbations. (iii) Lastly, we studied the effects of age on ⟨𝑆!"⟩/⟨𝑆!#⟩ in the 
PNC dataset across different model configurations and found: 1) widespread and unimodal-dominant 
increases using main configurations, 2) increases in unimodal and decreases in transmodal areas when 
using template SCs, and 3) widespread and unimodal-dominant decreases using age-group-averaged 
functional data, template SC, and two heterogeneity maps, which reflected the pattern observed in the 
study by Zhang et al.56 that used a similar configuration (Figure S18). This showed that ⟨𝑆!"⟩/⟨𝑆!#⟩ age 
effects vary with different modeling configurations, though we found it was less sensitive to the effect 
of random seeds in the simulation (mean ICC: 0.999) and optimization (mean ICC: 0.968) relative to 
⟨𝐼!"⟩.  
 
These findings, combined with the commonly used definition of the E-I balance in experimental and 
theoretical research at neuronal level, suggest that ⟨𝐼!"⟩ may be a more direct and interpretable measure 
of the E-I balanced using the BNM approach compared to the alternatives used in the literature. They 
also highlight how modeling choices and parameters can impact the outcomes of E-I changes with age. 
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Figure 6. Optimal model parameters inter-relation and association with age in the PNC dataset. (a) left: Pearson 
correlation of model parameter 𝐺 and brain-averaged values of regional parameters 𝑤"", 𝑤"# and 𝑤#" across 
subjects are shown. Asterisks denote statistically significant correlations. right: Inter-relation of regional values 
of parameters 𝑤"", 𝑤"# and 𝑤#" across nodes and subjects based on a linear mixed effects model with random 
intercepts and slopes per each node. (b) left: Effect of age on optimal parameter 𝐺. Points represent the residual 
of 𝐺 for each subject after removing confounds. right: Unthresholded effect of age on regional parameters 𝑤"", 𝑤"# 
and 𝑤#". 
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Discussion 
In this study, we used large-scale simulations of biologically realistic and individualized biophysical 
network models to estimate regional excitation-inhibition balance based on in vivo imaging data and 
evaluated its maturation during adolescence. We found a developmental shift of the E-I balance 
towards higher inhibition (lower excitation) in the association areas while the sensorimotor areas 
showed a lack of significant changes or a developmental shift towards higher excitation (lower 
inhibition). This finding was supported by imaging data from two independent datasets and through 
investigating both cross-sectional, inter-individual age-related variations of the E-I balance, as well as 
its longitudinal, within-individual changes through adolescence. Our observed pattern of regional 
variability in the E-I balance development aligned with the sensorimotor-association axis of cortical 
organization, and highlighted divergence of low- versus high-level brain functions, as well as early- 
versus late developmental timing of the sensorimotor and association areas. Lastly, we showed that 
our findings were robust to various modeling nuisances and choices and contrasted our simulation-
based measure of the E-I balance to the alternative measures used in the literature. 
  
The robust and replicable developmental pattern of decreased ⟨𝐼!"⟩ found in the association areas, 
indicates a relative shift of the E-I balance towards increased inhibition or decreased excitation. This 
observation is in line with several findings from previous animal and human studies. At the molecular 
level, transcriptomics and proteomics analyses have revealed peri-adolescence changes in the 
expression of genes related to excitation and inhibition, such as the NMDA receptor subunits85, 
calcium-binding proteins parvalbumin, calretinin, and calbindin, which are expressed in different 
types of interneurons9,26,27,32, and GABAA receptor subunits28–31. These molecular shifts mirror changes 
in neuronal functional properties. For instance, within the prefrontal cortex, there is an increase in the 

subunit composition of the GABAA receptors, from ɑ2- to ɑ1-containing receptors, which have a faster 
decay time, resulting in faster synaptic inhibition31,32,86. Consistent with this, recording of pyramidal 
neurons of the prefrontal cortex in non-human primates has indicated an increase in the strength as 
well as shortening of the inhibitory postsynaptic currents9,30. At the same time, microscopic 
investigation of the pyramidal neurons in the prefrontal cortex across different species has revealed a 
dramatic reduction of the excitatory synaptic density during adolescence19–23,25,87. In humans, magnetic 
resonance spectroscopy has been used in several studies to quantify in vivo levels of glutamate and 
GABA, primarily in the frontal areas. Yet, the findings of these studies have been inconsistent and 
include reports of age-related decrease of glutamate39,88,89 as well as increase38,40 or decrease of GABA39, 
increase of glutamate-GABA balance39,89, and several null findings38–40,89–91. Furthermore, a recent study 
on the PNC dataset quantified the in vivo E-I ratio by modeling multivariate patterns of FC and 
assessing their (dis)similarity to the FC of adults receiving alprazolam, a GABAergic agonist, and 
reported a significant developmental increase of the E-I ratio which was specific to association areas33.  
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In contrast to the widespread relative increase of inhibition in association regions during adolescence, 
we found relative increase of excitation or no significant age-related changes in the sensorimotor areas. 
Human cortical maturation is suggested to unfold across a sensorimotor-association axis, with a 
differential temporal patterning indicating earlier maturation of the sensorimotor areas in contrast to 
later and more protracted maturation of the association cortices18. In line with this, we found that the 
spatial pattern of differential E-I balance maturation across cortical areas co-aligns with the proposed 
sensorimotor-association axis of neurodevelopment18, and indicated that the genes preferentially 
expressed in association areas are more prominent in later stages of development. The sensorimotor-
association neurodevelopmental variation has been observed in cortical maturation of macrostructural 
features92, intracortical myelination93,94, white matter connectivity95 and functional organization18,96,97, 
parallel to the maturation of excitation and inhibition18. Consistent with the findings in the prefrontal 
cortex21,22, accelerated pruning of excitatory synapses around puberty has been observed in 
sensorimotor areas as well87,98,99, though synaptic pruning in association regions is protracted and peaks 
later than in sensorimotor areas18,24. In addition, the maturation of parvalbumin inhibitory interneurons 
in association areas is suggested to be more prolonged18,100. Given the differences in the 
neurodevelopmental timing along the sensorimotor-association axis, it may be that the E-I balance 
matures earlier in the sensorimotor areas before adolescence, and hence, we did not find maturational 
increase of relative inhibition in these areas during our study age period. In line with our observation, 
two other studies using human in vivo markers of E-I balance reported significant increase of inhibition 
markers in association areas despite no significant changes in sensorimotor regions33,40. Therefore, an 
intriguing area for the future research will be to investigate the maturation of model-estimated E-I 
balance in earlier stages of development before adolescence. 
 
Our study extends upon a recent modeling study which found widespread relative increase of 
inhibition across the cortex, most prominently in the sensorimotor areas, by using BNMs constructed 
for 29 age groups of the PNC dataset and based on a template SC of an adult sample56. In contrast, here 
we used large-scale simulations to construct individualized BNMs44,54,55, which allowed more specific 
simulation-based mapping of the E-I balance in each individual subject and this also enabled studying 
changes of the E-I balance longitudinally within the same individual. In addition, individualized BNMs 
are shown to enhance reliability of model parameters and fingerprinting accuracy of the simulated 
data55. Though our findings within the association areas were in agreement with the study by Zhang 
et al.56, indicating a maturational shift of the E-I balance towards inhibition, they diverged in the 
sensorimotor areas. We suspect this divergence can be attributed to several differences of the two 
studies, which, in addition to the usage of group-level versus individualized BNMs, include different 
simulation-based markers of the E-I balance as well as the methodological details of image processing, 
modeling and optimization. Importantly, we showed that we can (qualitatively) replicate the findings 
of Zhang et al.56 at the level of age groups when similarly using T1w/T2w and FC G1 as the 
heterogeneity maps and ⟨𝑆!"⟩/⟨𝑆!#⟩ as the marker of E-I balance. However, we presented findings which 
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highlighted that 𝐼!" compared to 𝑆!"/𝑆!#, as well as model parameters, may be a more direct BNM-based 
marker of the E-I balance and be closer to its common definition in the literature as the balance, or the 
ratio, between excitatory and inhibitory currents, potentials or conductances onto excitatory 
neurons83,84. Indeed, establishing the optimal methodological choices in mapping the E-I balance using 
BNMs is a challenging open question, and it will be crucial for the future research to: i) 
comprehensively assess how modeling choices may affect the simulation-derived E-I measures, ii) 
evaluate the replicability of our findings in alternative datasets, particularly with higher imaging 
quality and more extensive follow-ups, and the fitting of BNMs to alternative or additional empirical 
measures, for instance using magneto-/electroencephalography44,101, and iii) ultimately, 
experimentally validate the E-I measures obtained through fitting of BNMs to the fMRI data against 
empirical measures obtained using electrical recordings, or evaluate them in response to 
excitatory/inhibitory interventions.  
 
Overall, in this study we observed in vivo evidence based on individualized BNMs suggesting a 
replicable and robust relative increase of cortical inhibition in association areas during adolescence. 
The normative maturation of E-I balance is suggested to have important functional consequences18,102 
and its dysmaturation is believed to be associated with various neurodevelopmental disorders11,12. For 
example, the neurodevelopmental model of schizophrenia suggests that aberrant cortical maturation, 
importantly in the development of excitatory and inhibitory functions, may contribute to the 
emergence of the disease later in life12,13,17,103. Therefore, beyond further methodological and validation 
studies discussed above, future studies will be needed to investigate the clinical relevance of adolescent 
maturation of E-I balance in association with the risk and diagnosis of neurodevelopmental disorders 
such as schizophrenia. Ultimately, investigating model-estimated E-I balance and its deviations from 
the normative developmental trajectory may be used as a biomarker which can present an opportunity 
for early detection and treatment of such disorders. 
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Methods 
This research complies with the ethical regulations as set by The Independent Research Ethics 
Committee at the Medical Faculty of the Heinrich Heine University Düsseldorf (Study number 2018–
317). We used previously published data from sources that have received ethics approval from their 
respective institutions52,53,104,105. 

Participants 

We studied adolescents from two population-based datasets, including the cross-sectional 
Philadelphia Neurodevelopmental Cohort (PNC)52,104,105 and the longitudinal IMAGEN dataset53. We 
selected subjects and follow-up sessions within the age range of 10 to 19 years. In the IMAGEN cohort, 
within this age range, phenotypic assessments were conducted at the ages of 14, 16 and 19 and imaging 
data was acquired at the ages of 14 and 19. Next, we excluded subjects with poor quality of raw or 
processed imaging data, as detailed below in the section “Image processing and quality control”. In 
the IMAGEN, the subjects were excluded if the imaging data had poor quality in any of the baseline or 
follow-up sessions, except for the diffusion weighted imaging data for which subjects were selected 
based on the image quality of the follow-up session. Our final sample consisted of 752 adolescents from 
the PNC (409 female, mean age: 15.3±2.4 years) and 149 participants from IMAGEN (72 female, baseline 
mean age: 14.4±0.4 years, follow-up mean age: 18.9±0.5 years). The PNC data was collected at a single 
center in Philadelphia, while the IMAGEN data was acquired in five different centers across Europe, 
in Dresden (N = 58), Paris (N = 45), Mannheim (N = 30), London (N = 14) and Dublin (N = 2). Of note, 
in some of the robustness analyses performed on the PNC we used aggregate data of 30 age groups, 
which were defined as 29 groups of 25 subjects and one group of 27 subjects, after sorting the subjects 
by age. 

Image acquisition 

T1-weighted, resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion weighted 
imaging (DWI) data was acquired using 3T scanners from different manufacturers (PNC: Siemens, 
IMAGEN: Siemens, Philips, General Electric). For more details on the image acquisition parameters we 
refer the reader to the respective publications for each dataset (PNC: Table 1 of Ref.52, IMAGEN: 
Supplementary Table 5 of Ref.53). Of particular relevance to our study, the repetition and acquisition 
times of the rs-fMRI images were respectively 3 seconds and 6:18 minutes in the PNC, and 2.2 seconds 
and 6:58 minutes in the IMAGEN. 

Image processing and quality control 
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T1-weighted structural magnetic resonance imaging 

T1-weighted MRI images were processed using the recon-all command of FreeSurfer (version 7.1.1; 
https://surfer.nmr.mgh.harvard.edu/), which includes brain extraction, registration to standard 
space, tissue segmentation, and cortical surface reconstruction106,107. Quality of the FreeSurfer output 
was controlled based on the Euler characteristic, which represents the number of cortical surface 
defects before correction. We excluded outlier subjects with Euler characteristic greater than 𝑄3	 +
	1.5	 × 	𝐼𝑄𝑅 of their cohort108. The FreeSurfer output and raw T1w images were subsequently used in the 
pipelines of rs-fMRI and DWI processing. 

Resting-state functional magnetic resonance imaging 

Resting-state fMRI images were preprocessed using fMRIprep (version 22.0.0; 
https://fmriprep.org/en/stable/), which performed brain extraction, image registration and motion 
correction, estimation of confounds, and when possible, susceptibility distortion and slice time 
corrections109. The latter two steps were omitted in the IMAGEN data given unavailability of slice 
timing and variability of fieldmap formats across centers. We next further processed the output of 
fMRIprep, which involved the following steps: 1) applying Schaefer-100 parcellation60 by taking the 
average signal of all vertices within each parcel at each time point, 2) removing the first 3 volumes, 3) 
high-pass temporal filtering > 0.013 Hz, 4) regressing out confounds including average signal of white 
matter and cerebrospinal fluid voxels as well as 24 motion parameters (translation and rotation in the 
three directions, in addition to their squares, derivatives, and squares of derivatives)110 and 5) scrubbing 
motion outliers, defined based on root mean squared translation > 0.25 mm. The scrubbing was done 
by setting the signal in motion outlier volumes to zero while Z-scoring the rest of the volumes. This 
approach, compared to discarding the motion outliers, preserves the temporal structure of the BOLD 
signal which is important in calculating dynamic functional connectivity. 
 
We excluded subjects/sessions with high rs-fMRI in-scanner motion defined as less than 4 minutes of 
scan remaining after scrubbing motion outlier volumes or a time-averaged root mean square > 0.2 mm. 
In addition, we performed visual quality control of the fMRIprep output and excluded subjects with 
gross misregistration or incomplete field of view. 

Functional connectivity 

Functional connectivity (FC) was calculated as the Pearson correlation of BOLD signal time series 
between the cortical areas. In the PNC, we additionally calculated age-group FCs by taking the mean 
of Z-transformed FC matrices across the subjects of each age group followed by its inverse Z-
transformation. 

Functional connectivity dynamics 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2024. ; https://doi.org/10.1101/2024.06.18.599509doi: bioRxiv preprint 

https://surfer.nmr.mgh.harvard.edu/
https://fmriprep.org/en/stable/
https://doi.org/10.1101/2024.06.18.599509
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Adolescent development of excitation-inhibition balance Saberi et al. 

	

21 
 

Functional connectivity dynamics (FCD) matrix represents the temporal variability of the dynamic 
patterns of FC computed across sliding windows of time111. To compute the FCD matrix, we initially 
calculated time-resolved FC matrices of sliding windows (PNC: size 30 s and step 6 s, IMAGEN: size 
30.8 s and step 4.4 s). We discarded edge windows and windows with ≥ 50% motion outliers. 
Subsequently, we computed FCD as the correlation between lower triangular parts of window FC 
patterns. The distribution of values within the FCD matrix represents the amount of recurrence of time-
resolved FC patterns. In the PNC, we additionally calculated age-group FCDs by concatenating lower 
triangles of FCD matrices of all subjects within an age group, followed by its sorting and 
downsampling to reduce computational costs of model fitting. 

Diffusion-weighted imaging 

DWI images were processed using Micapipe (version 0.1.1; 
https://micapipe.readthedocs.io/en/latest/)112 which combines tools from FSL (version 6.0.0)113 and 
MRTrix3 (version 3.0.0)114. This pipeline performed DWI processing steps including rigid-body 
alignment of images, MP-PCA denoising, Gibbs ringing correction, motion and eddy current-induced 
distortions correction, non uniformity bias correction, registration to the processed structural image, 
brain mask generation and estimation of fiber orientation distributions using spherical deconvolution. 
Following, on each image probabilistic tractography was performed using iFOD2 algorithm to estimate 
10 million streamlines115. Additionally, a track density image was computed using the iFOD1 algorithm 
with 1 million streamlines which was used for the quality control116. The quality control of the 
tractograms was done by visual inspection of the tractogram density images. 

Structural connectivity 

The structural connectome (SC) matrix for each subject was created using Micapipe by parcellating the 
tractogram using the Schaefer-100 parcellation map60 non-linearly registered to the DWI space. We 
subsequently normalized each SC matrix by division by its mean × 100, resulting in an equal mean of 
0.01 in all SCs.  
 
In addition to subject- and session-specific SCs of the adolescents, we used a higher-quality DWI data 
(3T, three shells, 140 directions) of an adult sample of 50 healthy volunteers (MICs dataset, 23 female, 
mean age: 29.5±5.6 years) to construct a template SC117. To do so, we obtained the SC of individual 
MICs subjects preprocessed using Micapipe and calculated a group-averaged SC by taking the median 
of streamline counts in each edge. The template SC was subsequently normalized by its mean × 100, 
similar to the subject- and session-specific SCs of the adolescents. 
 
In the individualized models reported in the main analyses, we used subject-specific SCs, but the adult 
template SC was used in the robustness analyses on the confounding effects of inter-individual 
variability in SC, as well as the effects of modeling choices. Of note, in IMAGEN, given the lower 
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quality of tractograms in the baseline session, the main analyses were performed by using the follow-
up SC of each subject for the modeling of functional data in both the baseline and follow-up sessions. 
However, in a supplementary analysis, we additionally performed simulations using session-specific 
SCs, within a subset of the IMAGEN subjects with adequate quality of tractograms in both sessions (N 
= 110, 52 female).  

Biophysical network modeling 

Next, we performed BNM simulation-optimization at the level of each individual subject/session 
(Figure 1).  

Model simulation 

We simulated the spontaneous neuronal activity of 100 cortical regions from the Schaefer atlas60 as 
network nodes regulated by the reduced Wong-Wang model and interconnected through the SC61. In 
short, this model describes the activity of large ensembles of interconnected excitatory and inhibitory 
spiking neurons in each area by a dynamic mean field model as a reduced set of dynamic equations 
governing the activity of coupled excitatory (E) and inhibitory (I) pools of neurons. In this reduced 
model, the excitatory synaptic currents are mediated by the N-methyl-D-aspartate (NMDA) receptors 
and the inhibitory synaptic currents are mediated by the γ-aminobutyric acid type A (GABAA) 
receptors. Within each cortical region, the E and I neuronal pools are interconnected, and between 
regions, the E neuronal pools are coupled through a scaled SC matrix. 
 
Model equations. The model is mathematically described by a set of dynamic equations61. The total 

input current (in nA) to each excitatory (E) and inhibitory (I) neuronal pool of each cortical node i, 𝐼!
("/#), 

is calculated as: 

𝐼!"(𝑡) = 𝑊"𝐼( +𝑤!""𝑆!"(𝑡) + 𝐺𝐽)*+,8𝐶!-𝑆-"(𝑡)
)

-

−𝑤!#"𝑆!#(𝑡)  (1) 

𝐼!#(𝑡) = 𝑊#𝐼( +𝑤!"#𝑆!"(𝑡) − 𝑤##𝑆!#(𝑡) (2) 

where 𝑊"𝐼(= 0.382 nA and 𝑊#𝐼(= 0.267 nA are the baseline input currents; 𝑆!
("/#) denote the synaptic 

gating variables; N = 100 is the number of nodes; 𝐶 is the structural connectivity matrix, which together 
with the NMDA receptor conductance, 𝐽)*+, = 0.15 nA, and 𝐺 (global coupling), a free parameter of the 
model, determine the excitatory input current transmitted from the other nodes; 𝑤!"" is the recurrent 
excitatory connection weight; 𝑤!"# indicates the excitatory-to-inhibitory connection weight; 𝑤!#" is the 
inhibitory-to-excitatory connection weight; 𝑤## = 1.0 denotes recurrent inhibitory connection weight. 
The local connection weights 𝑤!"", 𝑤!"# and 𝑤!#" can vary across nodes and simulations through the free 
parameters of the model and the feedback inhibition control, as described below. 
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The total input current received by each neuronal pool is subsequently transferred to 𝑟!
("/#), firing rates 

in Hz, using the sigmoidal neural response function, 𝐻("/#): 

𝑟!"(𝑡) = 𝐻"(𝐼!") 	=
𝑎"𝐼!"(𝑡) − 𝑏"

1 −  𝑒./!(0!#"!($).(!)
 (3) 

𝑟!#(𝑡) = 𝐻#(𝐼!#) 	=
𝑎#𝐼!#(𝑡) − 𝑏#

1 −  𝑒./#(0##"#($).(#)
 (4) 

where 𝑎"= 310 nC-1 and 𝑎#= 615 nC-1 determine the slope of 𝐻("/#); 𝑏" = 0.403 nA and 𝑏# = 0.288 nA define 
the thresholds above which the firing rates increase linearly with the the input currents; 𝑑" = 0.16 and 
𝑑# = 0.087 determine the shape of 𝐻("/#) curvature around 𝑏("/#). 
 

Finally, the synaptic gating variables, 𝑆!
("/#), follow: 

𝑑𝑆!"(𝑡)
𝑑𝑡 = −

𝑆!"(𝑡)
𝜏"

+ A1 −  𝑆!"(𝑡)B𝛾𝑟!"(𝑡) + 𝜎𝜈!(𝑡) (5) 

𝑑𝑆!#(𝑡)
𝑑𝑡 = −

𝑆!#(𝑡)
𝜏#

+ 𝑟!#(𝑡) + 𝜎𝜈!(𝑡) (6) 

where 𝑆!" is mediated by NMDA receptors with a decay time constant 𝜏" = 0.1 s and 𝛾 = 0.641, and 𝑆!# is 
mediated by GABA receptors with a decay time constant 𝜏# = 0.01 s. 𝜈!(𝑡) is uncorrelated standard 

Gaussian noise with an amplitude of 𝜎 = 0.01 nA. 𝑆!
("/#) is subsequently bound within the range [0, 1]. 

Note that the fixed parameters in equations 1-6 are based on a previous paper by Deco et al.61. 
 
Model free parameters. The model is controlled by 15 free parameters, including 𝐺, as well as bias 
terms and coefficients for a fixed set of six biological maps which together determine the regional 
values of 𝑤!"" and 𝑤!"#. More specifically, 𝑤!1, 𝑝	 ∈ 	 {𝐸𝐸, 𝐸𝐼} is calculated as: 

𝑤!
1 =	𝑤(

1	. (1+8𝑐2
1𝑀2!

3

241

) (7) 

where 𝑤(1, the bias term, and 𝒄𝒑, a vector of six coefficients, are free parameters. 𝑀 is a 6×100 matrix 
including the Z-scored biological maps in Schaefer-100 parcellation (Figure S1). These maps were based 
on independent samples of healthy individuals, obtained from neuromaps74 and Hansen et al.70 and 
included: 1) group-averaged T1-weighted/T2-weighted (T1w/T2w) ratio map of the Human 
Connectome Project (HCP) dataset68,69,118, 2) group-averaged cortical thickness map of the HCP dataset, 
3) principal gradient of functional connectivity (FC G1)72, 4) principal axis of Allen Human Brain Atlas 
gene expression data (Gene PC1)71,73, 5) NMDA receptor density positron emission tomography map67,70 

and 6) GABAA/BZ receptor density positron emission tomography map70,75. The resulting 𝑤!
(""/"#) maps 

were subsequently shifted if needed to ensure 𝑚𝑖𝑛(𝑤!
(""/"#)) ≥ 0.001. We used the following ranges for 

the model free parameters: 𝐺: [0.5, 4.0], 𝑤(
(""/"#): [0.05, 0.75]. The range of coefficients for each map was 
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defined as [ .6
708(701)

, .6
7!9(701)

], corresponding to cT1w/T2w: [-0.48, 0.59], ccortical thickness: [-0.40, 0.39], cFC G1: [-0.59, 

0.72], cGene PC1: [-0.36, 0.48], cNMDA: [-0.49, 0.42] and cGABAa/bz: [-0.30, 0.32].   
 
Feedback inhibition control. Feedback inhibition control (FIC) was used to determine the regional 
values of 𝑤!#" in each simulation, given the SC and other model parameters. The FIC algorithm aims to 
maintain a state of E-I balance in each region by adjusting 𝑤!#" to satisfy an excitatory firing rate close 
to 3 Hz, which is suggested to be within the biological range61. We used a two-stage implementation of 
the FIC by combining the original numerical implementation61 with an analytical solution proposed by 
Demirtaş et al.66. The latter solution analytically solves for 𝑤!#" to satisfy the self-consistency of the model 
equations at the steady-state condition with ⟨𝑟!"⟩ ≈ 3 Hz, corresponding to ⟨𝑆"⟩ ≈ 0.164757 and ⟨𝐼"⟩ ≈ 
0.37738 nA: 

𝑤!#" =
𝑊"𝐼( 	+	𝑤!""⟨𝑆"⟩ + 𝐺𝐽⟨𝑆"⟩ − ⟨𝐼"⟩

⟨𝑆!#⟩
 (8) 

in which the steady-state inhibitory synaptic gating variable ⟨𝑆!#⟩ = 	𝐻#(⟨𝐼!#⟩)𝜏#	was estimated by solving 
for ⟨𝐼!#⟩ in: 

𝑊#𝐼( 	+ 𝑤!"#⟨𝑆"⟩ −	𝐻#(⟨𝐼!#⟩)𝜏# 	−	 ⟨𝐼!#⟩ = 0	 (9) 

Subsequently, analytical estimates of 𝑤!#" 	values were fed into the numerical implementation of FIC and 
were adjusted numerically61. In this approach, given the analytical estimates of 𝑤!#", the model equations 
1-6 are numerically integrated for a short period of 10 s and subsequently the average input current to 

the excitatory pool of each brain region, ⟨𝐼!"⟩ is calculated. If ⟨𝐼!"⟩ − (!
0!
	 in a region exceeded the target -

0.026 by more than 0.005 nA, 𝑤!#" is up-/downregulated when the input current is higher/lower than 
the target, and the simulation is repeated with the adjusted 𝑤!#" values in the next trial. This procedure 
is repeated for 10 trials or until the FIC target is satisfied in all nodes. Note that the maximum number 
of FIC numerical adjustment trials used here is lower than that of the original implementation to 
facilitate the scaling of the simulations. Furthermore, as the initial 𝑤!#" values are estimated analytically 
rather than being fixed to 1 (as was done in the original implementation), a smaller number of trials 
will be needed. 
 
Hemodynamics model. The simulated synaptic activity of the excitatory population of each node, 𝑆!", 
was subsequently fed to the Balloon-Windkessel model of hemodynamics to simulate BOLD signal119. 
This model is mathematically described by the following system of differential equations with state 
variables 𝑥 (vasodilatory signal), 𝑓 (blood inflow), 𝑣 (blood volume) and 𝑞 (deoxyhemoglobin content): 

𝑑𝑥(𝑡)
𝑑𝑡 = 𝑆"(𝑡) − 𝜅𝑥(𝑡) 	− 𝛾(𝑓(𝑡) 	− 	1) (10) 

𝑑𝑓(𝑡)
𝑑𝑡 	= 	𝑥(𝑡) (11) 
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𝜏
𝑑𝑣(𝑡)
𝑑𝑡 = 𝑓(𝑡) 	−	𝑣

6
ɑ(𝑡) (12) 

𝜏
𝑑𝑞(𝑡)
𝑑𝑡 =

𝑓(𝑡)
⍴ [1	 −	(	(1	 − 	⍴)

6
;($))] 	−	

𝑞(𝑡)𝑣
6
ɑ(𝑡)

𝑣(𝑡) 	 (13) 

where 𝜅 = 6
<.3>

 s-1 is rate of signal decay, 𝛾 = 6
<.?6

 s-1 is rate of flow-dependent elimination, 𝜏 = 0.98 s is 

hemodynamic transmit time, ɑ = 0.32 is Grubb’s exponent and ⍴ = 0.34 is resting oxygen extraction 
fraction. These parameters were based on a previous paper by Friston et al.119. Finally, based on the 
model state variables the BOLD signal is calculated as: 

𝐵(𝑡) = 𝑉<[𝑘6(1 − 𝑞(𝑡)) + 𝑘@(1	 −
𝑞(𝑡)
𝑣(𝑡))) 	+ 𝑘A(1	 − 	𝑣(𝑡))]	

(14) 

in which 𝑉< = 2% is the resting blood volume fraction119 and 𝑘6 = 3.72, 𝑘@ = 0.527 and 𝑘A = 0.53 are 
dimensionless parameters that were derived for 3T scans66,120. Last, the simulated BOLD signal was 
downsampled to match the repetition time of the empirical rs-fMRI data, that is, 3 s for the PNC and 
2.2 s for IMAGEN.  
 
Numerical integration of the models. For each simulation, the model equations were numerically 
integrated using the Euler method with a time step of 0.1 ms for the neuronal model (Equations 1-6) 
and a time step of 1 ms for the hemodynamic model (Equations 10-13). The model simulations were 
performed using in-house code (https://github.com/amnsbr/bnm_cuda, 
https://cubnm.readthedocs.io) on graphical processing units (GPUs) of JURECA-DC, a 
supercomputer at the Jülich Supercomputing Centre121. This GPU implementation enabled efficient 
parallelization of calculations for individual simulations (across GPU ‘blocks’) and the regions within 
each simulation (across GPU ‘threads’). To match the duration of empirical rs-fMRI scans, the 
simulations were done for a biological duration of 450 s, from which the first 30 s were discarded to 
ensure the BNM system’s state has stabilized. 

Model evaluation 

The goodness-of-fit of the simulated BOLD signal given a set of candidate parameters and SC matrix 
to a target empirical BOLD signal was evaluated based on three measures of static and dynamic 
functional connectivity, following previous studies56,65: 
Static edge-level functional connectivity. The simulated FC was calculated as the correlation of 
simulated BOLD signal time series between nodes. The correspondence of simulated and empirical FC 
patterns was evaluated by calculating the Pearson correlation coefficient between the lower triangles 
of the matrices (FCcorr), with larger values representing higher correspondence. 
Static global functional connectivity. The absolute difference of the averaged simulated and empirical 
FC matrices across all the lower triangular edges (FCdiff) was calculated to assess the similarity of global 
FC strength, with smaller values showing higher correspondence.  
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Functional connectivity dynamics. The simulated FCD matrix was constructed by calculating the 
correlation of FC patterns between sliding windows of simulated BOLD signals, as described 
previously for the empirical data. The correspondence of simulated and empirical FCD distributions 
was calculated as the Kolmogorov-Smirnov (KS) distance of their lower triangular parts (FCDKS), with 
smaller values showing higher similarity of the distributions. 
 
Subsequently, these measures were combined into a single measure of goodness-of-fit as FCcorr – FCdiff 

- FCDKS. Of note, in goodness-of-fit calculations, following Demirtaş et al.66, we excluded the 
interhemispheric connections. However, we also performed a robustness analysis in which these 
connections were included in the goodness-of-fit calculations. 

Parameter optimization 

The model free parameters (N = 15) were fit to the empirical data of each subject/session using the 
covariance matrix adaptation-evolution strategy (CMA-ES) optimization algorithm62–64. CMA-ES is an 
efficient evolutionary optimization algorithm which features a set of Λ particles exploring the 
parameter space collaboratively in an iterative process. The particles from each iteration, which are 
individual simulations with different free parameters, are regarded as a generation from which only 
the best particles are selected to form the descendant population of the next generation. Specifically, at 
each generation the cost function of each particle is calculated, as described below. Following, a 

weighted mean of the best fitting ⌊Λ/2⌋ particles is calculated. Then, a new generation of particles is 
created by taking Λ samples from a multivariate normal distribution centered around the weighted 

mean of the best fitting ⌊Λ/2⌋ particles from the previous generation. The covariance is determined by 
a matrix which is updated to take the location of the current best points into account. In this way, the 
search distribution is adapted iteratively towards a concentration around the optimal solutions. This 
iterative process is continued for a maximum of 80 generations, following Wischnewski et al.64, and 
eventually, the optimal point across all generations is selected as the optimal parameters for the best 
fit of the simulation to the given target empirical data. We also applied an early termination rule in 
which the iteration was stopped if there was no improvement in the cost function greater than 0.005 
over the past 30 generations. 
 
The optimization goal was to maximize the goodness-of-fit while minimizing a penalty term. Particles 
were penalized if 1) the parameter of sampled particles fell outside the pre-specified ranges, in which 
case the parameters were corrected and a penalty was added63, or 2) the ⟨𝑟!"⟩ was outside the range of 
2-4 Hz in any node, indicating insufficiency of the FIC. For the latter, the FIC penalty was calculated 
as: 

𝐹𝐼𝐶	𝑃𝑒𝑛𝑎𝑙𝑡𝑦 =
2
𝑛8(1	 − 	𝑒.<.<>|⟨D"!⟩	.A|)

!

	 (15) 
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in which 𝑛 is the number of nodes and the summation is done across nodes with out-of-range ⟨𝑟!"⟩. Of 
note, we refrained from setting the success of FIC as a hard constraint, but through this penalty term 
applied it as a soft constraint, to allow for inter-individual variability of E-I balance while keeping it 
within a biologically viable range61. 
 
Given the relatively high dimensionality of the optimization problem in our model and to sufficiently 
cover the large parameter space, we chose Λ = 210 in the CMA-ES. Consequently, with maximum 80 
generations, this involved performing a maximum of 16800 simulations per run for each 
subject/session, which necessitated an efficient GPU-based implementation. In addition, for each given 
subject/session, the model simulation-optimization was repeated twice using different random seeds 
of the optimization to assess and reduce the risk of local optima. We then took the best fitting 
simulation across the two runs of each subject/session as their optimal simulation for the next step. 

Estimation of the excitation-inhibition balance in silico 

Thus far, we described the procedure for deriving the optimal parameters that result in a simulation 
best fitting to the empirical rs-fMRI data of a given subject/session using individualized BNMs. 
Following, given the optimal simulation for each subject/session, we extracted an in silico measure of 
regional E-I balance. To do so, we calculated the average of total input current to the excitatory neurons 
of each region, after discarding the initial 30 seconds of the simulation. This measure can be interpreted 
as an in silico marker of the regional E-I balance, as 𝐼!" (Eq. 1) results from the combination of excitatory 
input currents to each node (from itself, and from the excitatory neurons of the other nodes through 
the SC) balanced by the inhibitory currents from the inhibitory neuron of the same node. Therefore, an 
increase of ⟨𝐼!"⟩ can be interpreted as a relative increase of excitation or decrease of inhibition. 
Furthermore, using a similar approach we calculated ⟨𝑆!"⟩/⟨𝑆!#⟩ as an alternative marker of the E-I balance 
used in a previous study56.  

Perturbed simulations 

We performed a control analysis to assess the effect of known perturbations in the model parameters 
on the alternative markers of the E-I balance, namely, ⟨𝐼!"⟩ and ⟨𝑆!"⟩/⟨𝑆!#⟩. In this analysis, we randomly 
selected 40 subjects of the PNC dataset and for each subject, given their optimal simulations, we 
performed perturbed simulations in which one of the model parameters (𝐺, 𝑤"", 𝑤"#or 𝑤#") was 
increased or decreased by 10% while the other three parameters were fixed to the optimal values. 
Notably, in these simulations, when 𝑤#" was not perturbed, it was not readjusted using FIC, and was 
fixed to the 𝑤#" values obtained by the FIC run on the original optimal simulation. Similarly, 
perturbation of 𝑤#" was done by a 10% increase or decrease of these original 𝑤#" values. This was to 
ensure only one parameter in the model is perturbed and therefore the net direction of the effect of 
perturbation on the E-I balance is predictable. Lastly, the effect of perturbation on the E-I balance 
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markers in each subject was assessed using paired T-tests comparing the marker across nodes before 
and after the perturbation. 

Statistical and contextualization analyses 

Age effects 

Given the regional in silico regional measures of the E-I balance for each subject/session, ⟨𝐼!"⟩, we 
performed group-level univariate statistical analyses to investigate the effects of age on these measures. 
Linear regression models were used to study the effect of age on ⟨𝐼!"⟩ and map coefficients, with 
goodness-of-fit, sex, and rs-fMRI in-scanner motion (based on time-averaged root mean squared 
translation) as confounds. In IMAGEN, longitudinal variation of E-I measures across the two sessions 
was assessed using similar mixed effects linear regression models with random intercepts per subject 
and inclusion of site as an additional confound. In each model we excluded outliers with a dependent 
variable ≥3 SDs above/below the mean. We adjusted for multiple comparisons across regions using 
false discovery rate (FDR) based on the Benjamini/Hochberg method (q < 0.05). Similar models were 
used to investigate the effects of age on optimal model parameters and ⟨𝑆!"⟩/⟨𝑆!#⟩. We used statsmodels122 
(https://www.statsmodels.org/stable/index.html) to perform regressions and FDR adjustment. 

Within-sample stability of age effects using subsampling 

In each dataset, we randomly selected 100 subsamples of the subjects (N within each subsample: 376 
in PNC, 74 in IMAGEN) and investigated the age effects of ⟨𝐼!"⟩ separately in each subsample. 
Subsequently, we calculated the correlation of unthresholded age effect maps between all pairs of 
subsamples, and reported its distribution as a measure of within-sample stability. 

Spatial correlation of maps 

We calculated spatial correlation of maps using spin permutation in i) assessing between-sample 
replicability of PNC and IMAGEN ⟨𝐼!"⟩ age effect maps, ii) assessing stability of ⟨𝐼!"⟩ age effect maps 
within the PNC in the different robustness analyses in comparison to the age effect map observed in 
the main analysis, iii) assessing the correlation of ⟨𝐼!"⟩ age effect maps with the sensorimotor-association 
axis of cortical organization described in a recent study by Sydnor et al.18 as well as its components or 
their substitutes68,69,71–73,77,123–128 (Figure S6, Table S1), and iv) NeuroSynth77 meta-analytical maps of 123 
cognitive and behavioral terms (Table S2, based on Hansen et al.70) obtained from BrainStat78. The target 
maps in the latter two analyses were available in fsaverage, fsLR, or MNI152 spaces and were parcellated 
in their respective spaces using the Schaefer-100 parcellation60. Spin permutation was implemented at 
parcel level using the ENIGMA Toolbox129 (https://github.com/MICA-MNI/ENIGMA) and using 
1000 permutations. 
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Distribution of the ⟨𝑰𝒊𝑬⟩ age effects across the canonical resting-state networks 

We assessed the association of the ⟨𝐼!"⟩ age effect maps with the map of seven canonical resting-state 
networks76 using one-way ANOVA with post-hoc Bonferroni-corrected independent T-tests. To control 
for spatial autocorrelation we assessed the statistical significance of resulting F and T statistics using 
null distributions generated from 1000 spun surrogates based on parcel-level spinning implemented 
in the ENIGMA Toolbox129. 

Partial least squares regression of gene expressions and their developmental enrichment 

Regional microarray expression data were obtained from 6 post-mortem brains (1 female, age = 24.0–
57.0) provided by the Allen Human Brain Atlas71 (AHBA; https://human.brain-map.org). Data was 
processed with the abagen toolbox73 (https://abagen.readthedocs.io/en/stable/) using the Schaefer-
100 atlas60. Gene expression data from the right hemisphere was excluded due to the sparsity of 
samples and large number of regions with no expression data. We subsequently used scikit-learn130 
(https://scikit-learn.org/stable/) and performed partial least squares regression analysis to identify 
gene expression patterns with high spatial co-alignment with the ⟨𝑰𝒊𝑬⟩ age effect maps within the left 
hemisphere. After selecting the top 500 genes with highest absolute weights, we divided them into two 
sets of positively- and negatively- associated genes. Subsequently, using an online tool we performed 
specific expression analysis across developmental stages and brain structures79 
(http://doughertylab.wustl.edu/csea-tool-2/). This tool performs comparison of the gene lists against 
developmental expression profiles from the BrainSpan Atlas of the Developing Human Brain 
(http://www.brainspan.org), and for each developmental stage and brain structure reports the inverse 
log of Fisher's exact p-values. Here, for each set of genes we reported the inverse log of p-values based 
on the specificity index (pSI) threshold of 0.05 within the cerebral cortex. 

Test-retest reliability of ⟨𝑰𝒊𝑬⟩ across simulations 

We measured node-level test-retest reliability of ⟨𝐼!"⟩ across simulations of the same subject performed 
using i) alternative optimizer seeds, ii) alternative Gaussian noise seeds, and iii) alternative conduction 
delays. This was done by measuring median absolute deviation intraclass correlation coefficient (ICC) 
of each region between the alternative simulations and across subjects 
(https://warwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/scripts/matlab/madicc.m). 

Association of optimal model parameters across subjects 

The association of optimal regional parameters (𝑤"", 𝑤"#and 𝑤#") across subjects and nodes was tested 
via mixed effects linear regressions with random intercepts and slopes per each node. These 
regressions were performed using lme4 R package131. In addition, we used Pearson correlation to test 
the association of the optimal 𝐺 with the mean of optimal regional parameters. 
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Association of model state variables 

We randomly selected one subject from the PNC dataset and evaluated the association of state variables 
within its optimal simulation across time points and nodes. The model state variables 𝑟!$", 𝐼!$" and 𝑆!$"/𝑆!$#  
were sampled every TR after the initial 30 seconds of the simulation was removed. Subsequently, as 
𝑆!$"/𝑆!$#  approximates infinity when 𝑆!$#  is close to zero, we excluded the data points at the top 2.5 
percentile of 𝑆!$"/𝑆!$# . Subsequently we used mixed effects models with or without a logarithmic linking 
function to test the linear or exponential associations of 𝐼!$" with 𝑟!$", 𝑆!$"/𝑆!$#  with 𝑟!$" and 𝑆!$"/𝑆!$#  with 𝐼!$", and 
reported the results of the model with lower Akaike information criterion. The mixed effects models 
included random intercepts and slopes and were implemented using lme4 R package131 and its Python 
interface in pymer4 package. 
 

Robustness analyses 

We performed the following robustness analyses on the PNC dataset: 

Inter-individual variability of structural connectome 

We assessed the potential effect of inter-individual variability of SCs in our findings by performing the 
following analyses: i) We studied the age effect of ⟨𝐼!"⟩ which was additionally controlled for the SC 
strength of each node, calculated as the row-wise sum of the SC. ii) We performed BNM simulation-
optimization using subject-specific functional data as the target, but with the template SC of MICs 
dataset determining the connectivity of model nodes, thereby eliminating the inter-individual 
variability of SCs as a potential source of variability in ⟨𝐼!"⟩. This higher-quality DWI data from an adult 
sample was chosen to additionally assess the robustness of our results to potential inaccuracies of 
subject-level SCs derived from relatively lower quality DWI data of the adolescent datasets. 

Parcellation, heterogeneity maps and inter-hemispheric connections 

In these robustness analyses, we performed the BNM simulation-optimization using alternative 
modeling choices, including: i) the Schaefer-200 parcellation, ii) using T1w/T2w and FC G1 as the 
heterogeneity maps, iii) using T1w/T2w, FC G1, NMDA and GABAA/BZ as the heterogeneity maps, 
and iv) including inter-hemispheric connections in the goodness-of-fit and cost calculations. To reduce 
the computational costs, these analyses were performed at the level of age groups by using age-group 
functional data and the template SC determining the connectivity of model nodes. Subsequently, we 
compared the goodness-of-fit measures as well as the ⟨𝐼!"⟩ age effect maps derived from these alternative 
models to the output of BNM simulation-optimization done with the default configurations on the 
same age-group-level data. 
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Effects of Gaussian noise seed and inter-regional conduction delay 

These analyses were performed at the level of individual subjects, by repeating the optimal simulation 
of each subject obtained in the main analyses with alternative configurations, including: i) using 50 
different randomization seeds for generating the Gaussian noise injected into the model (Eq. 5, 6), and 
ii) adding conduction delay in the signal transmission between the model nodes. For the latter, delay 
was calculated as SC edge length obtained from the tractography of each subject, divided by a 
conduction velocity. For each subject we performed six alternative simulations with variable 
conduction velocities in the range of {1, …, 6} m/s. Of note, in simulations with conduction delay a 
recent history of 𝑆!" in all nodes needs to be stored in memory, so that the input of node j to node i at 
time t can be determined based on 𝑆-" at 𝑑𝑒𝑙𝑎𝑦!- time points ago. Accordingly, to reduce memory needed 
for storing this history, we performed these simulations by updating the global input to each node at 
intervals of 1 millisecond, instead of 0.1 milliseconds used in the main analyses. Subsequently, we 
calculated the goodness-of-fit measures of the alternative simulations to the empirical data of each 
subject and compared them with the goodness-of-fit measures of the main simulation. In addition, we 
calculated the ICC of ⟨𝐼!"⟩ between the main simulation and each of the alternative simulations. In the 
case of Gaussian noise seeds, we combined the goodness-of-fit as well as ICC measures of the 50 
different seeds by taking their median. 

Data and code availability 
All the code used in this study for image processing, biophysical network modeling and the statistical 
analyses is available in a GitHub repository (https://github.com/amnsbr/eidev). Notably, while the 
main biophysical network modeling in this study were performed using 
https://github.com/amnsbr/bnm_cuda, we recommend and have included scripts to run the 
simulation-optimization using the cuBNM toolbox (https://github.com/amnsbr/cuBNM, 
https://cubnm.readthedocs.io), which we developed using a similar core code but with an improved 
interface. The adolescent datasets used in this study are restricted-access and cannot be shared openly. 
The neuroimaging and phenotypic data of Philadelphia Neurodevelopmental Cohort is available as 
part of the “Neurodevelopmental Genomics: Trajectories of Complex Phenotypes” study (dbGaP 
Study Accession: phs000607.v3.p2). Our access to this dataset was granted under accession number 
32685. The IMAGEN dataset is similarly available to researchers by submitting a data access 
application to https://imagen-project.org/the-imagen-dataset/. The MICs dataset is openly available 
at https://osf.io/j532r/.  
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