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Figure S1. Biological heterogeneity maps. The Z-scored maps shown were used to determine regional 
heterogeneity of local recurrent excitatory 𝑤!"" and excitatory-to-inhibitory 𝑤!"" connectivity weights within the 
simulations. 
T1w/T2w: T1-weighted to T2-weighted ratio, FC G1: principal gradient of functional connectivity, Gene PC1: principal axis 
of Allen Human Brain Atlas gene expression data, NMDA: N-methyl-D-aspartate receptor density, GABAA/BZ: γ-
aminobutyric acid type A/Bz receptor density. 
  



 

 

 
Figure S2. Goodness-of-fit measures in the PNC dataset. (a) Distribution of the goodness-of-fit measures. The 
coupling (correlation) of structural connectome (SC) and empirical functional connectome (FC) is independent of 
the simulations, and is shown as a reference for FC correlation of simulated and empirical data. (b) Pearson 
correlation of goodness-of-fit measures with age. 
FCD: functional connectivity dynamics matrix, KS: Kolmogorov-Smirnov distance. 
 
 
  



 

 

 
Figure S3. Goodness-of-fit measures in the IMAGEN dataset. Distribution of goodness-of-fit measures in the 
baseline (14 y) and follow-up (19 y) imaging sessions are shown. The goodness-of-fit measures were compared 
between the two sessions using paired T-test. The coupling of structural connectome (SC) and empirical 
functional connectome (FC) is independent of the simulations, and is shown as a reference for FC correlation of 
simulated and empirical data. 
FCD: functional connectivity dynamics matrix, KS: Kolmogorov-Smirnov distance. 
 
 
  



 

 

 
Figure S4. Longitudinal effect of age on excitation-inhibition balance during adolescence based on session-
specific structural connectomes. (a) Linear effect of age on ⟨𝐼!"⟩ in a mixed effects model with random intercepts 
for each subject, after removing outliers and controlling for goodness-of-fit, sex, in-scanner rs-fMRI motion and 
site, corrected for multiple comparisons using false discovery rate (FDR). (b) Unthresholded effect of age on ⟨𝐼!"⟩. 
(c) Spatial correlation of longitudinal effects of age on ⟨𝐼!"⟩ using session-specific structural connectomes (SCs) 
compared to the age effects when the SC of follow-up session was used in the modeling of both sessions.  
  



 

 

 
Figure S5. Effect of age on excitation-inhibition balance across the conjunction mask of significant age effects 
across datasets. The effect of age on mean ⟨𝐼!"⟩ across 33 regions showing significant replicable decreases of ⟨𝐼!"⟩ in 
the PNC and IMAGEN (Figure 3c) was investigated controlled for sex, goodness-of-fit, in-scanner rs-fMRI 
motion, and in IMAGEN, site. Points in both plots represent the residual of mean ⟨𝐼!"⟩ within the conjunction mask 
after removing confounds for each individual subject and session. The thick line in PNC shows best linear fit and 
in IMAGEN connects the average of the two sessions across all subjects. Thin lines in IMAGEN show longitudinal 
changes of this measure during follow-up in each subject. 
  



 

 

 
Figure S6. Multimodal maps of sensorimotor-association cortical axis. The map of sensorimotor-association 
(SA) axis proposed in Sydnor et al.1 and the features it was composed of are shown. See Table S1 for the sources 
of each map. 
T1w/T2w: T1-weighted to T2-weighted ratio, FC G1: principal gradient of functional connectivity, Evo.: evolutionary, CMR: 
cerebral metabolic rate, Glu.: glucose, CBF: cerebral blood flow, Gene PC1: principal axis of Allen Human Brain Atlas gene 
expression data, NeuroSynth PC1: Principal component of NeuroSynth meta-analytical maps, LTC G1: principal gradient of 
laminar thickness covariance.  



 

 

 
Figure S7. Embedding of the excitation-inhibition developmental pattern in the IMAGEN dataset along the 
sensorimotor-association axis. (a) Spatial correlation of ⟨𝐼!"⟩ age effect in the IMAGEN dataset with maps of 
sensorimotor-association cortical axis based on Sydnor et al.1 (Figure S6). Colored diamonds show statistically 
significant (pspin < 0.05) positive (red) and negative (blue) spatial correlations. (b) Distribution of ⟨𝐼!"⟩ age effects 

across the canonical resting-state networks2 (F = 14.57, pspin < 0.001). Post-hoc tests (Bonferroni-corrected) showed 
significantly more positive age effects in visual (VIS) and somatomotor (SMN) compared to limbic (LIM), dorsal 
attention (DAN) and default mode networks (DMN) in addition to more positive age effects in SMN compared 
to ventral attention (VAN) and frontoparietal (FPN) networks. (c) top: Meta-analytical maps with significant spin 
correlation to the ⟨𝐼!"⟩ age effect map. Double asterisks denote associations that were significant after false 
discovery rate (FDR) adjustment. bottom: Word clouds of meta-analytical maps negatively (blue) or positively 
(red) correlated with the ⟨𝐼!"⟩ age effect map. Size of the words is weighted by their correlation coefficient. (d) left: 
Mean expression of the top 500 genes associated with the ⟨𝐼!"⟩ age effect map split into sets of negatively- (N = 216, 
blue) and positively-associated (N = 284, red) genes. right: Specific expression analysis of the two sets of genes 
across developmental stages in the cortex. Y-axis shows the negative log of uncorrected p-values. Asterisks 
denote significantly enriched developmental stages after FDR adjustment. 
SA: sensorimotor-association, T1w/T2w: T1-weighted to T2-weighted ratio, FC G1: principal gradient of functional 
connectivity, Evo.: evolutionary, CMR: cerebral metabolic rate, Glu.: glucose, CBF: cerebral blood flow, Gene PC1: principal 



 

 

axis of Allen Human Brain Atlas gene expression data, NeuroSynth PC1: Principal component of NeuroSynth meta-analytical 
maps, LTC G1: principal gradient of laminar thickness covariance.  



 

 

 

 
Figure S8. Robustness of the findings to the effect of inter-individual variability of structural connectome. (a) 
left: Effect of age on ⟨𝐼!"⟩ controlled for age, sex, goodness-of-fit, and in-scanner motion, in addition to node-wise 
structural connectome (SC) strength, that is, row-wise sum of the SC matrix, and corrected for multiple 
comparisons using false discovery rate (FDR). right: Spatial correlation of unthresholded ⟨𝐼!"⟩ age effect maps with 
and without controlling for SC strength. (b) top left: Effect of age on ⟨𝐼!"⟩ using a fixed template SC in the models, 
corrected using FDR. top right: Spatial correlation of unthresholded ⟨𝐼!"⟩ age effect maps based on models using 
subject-specific versus template SCs. bottom: Comparison of goodness-of-fit measures and coupling of SC and 
empirical functional connectome (FC) between models based on subject-specific versus template SCs. T- and p-
values resulted from paired T-tests are reported. 
  



 

 

 
Figure S9. Effect of age on excitation-inhibition balance in age groups. left: Effect of age on ⟨𝐼!"⟩ in age groups 
(N = 30 including 25-27 subject each) using the template SC, after FDR correction. right: Spatial correlation of 
unthresholded ⟨𝐼!"⟩ age effect maps observed using the template SC at the levels of age groups with the effects 
observed at the level of subjects (Figure 5a). 
  



 

 

 
Figure S10. Robustness of the findings to the effect of parcellation. (a) Comparison of goodness-of-fit measures 
and coupling of structural connectome (SC) and empirical functional connectome (FC) between models based on 
Schaefer-100 and Schaefer-200 parcellations. T- and p-values resulted from paired T-tests are reported. (b) left: 
Effect of age on ⟨𝐼!"⟩ in age groups (N = 30) using Schaefer-200 parcellation, after FDR correction. right: Spatial 
correlation of unthresholded ⟨𝐼!"⟩ age effect maps between models using Schaefer-100 and Schaefer-200 
parcellations. 
  



 

 

 
Figure S11. Robustness of the findings to the effect of heterogeneity maps. (a) Comparison of goodness-of-fit 
measures between models based on two, four and six heterogeneity maps. T- and p-values resulted from paired 
T-tests are reported. (b) left: Effect of age on ⟨𝐼!"⟩ in age groups (N = 30) using two heterogeneity maps including 
T1-weighted to T2-weighted ratio and principal gradient of functional connectivity, after FDR correction. right: 
Spatial correlation of unthresholded ⟨𝐼!"⟩ age effect maps between models using two and six heterogeneity maps. 
(c) left: Effect of age on ⟨𝐼!"⟩ in age groups (N = 30) using four heterogeneity maps including T1-weighted to T2-
weighted ratio, principal gradient of functional connectivity, N-methyl-D-aspartate receptor density and γ-
aminobutyric acid type A/Bz receptor density, after FDR correction. right: Spatial correlation of unthresholded 
⟨𝐼!"⟩ age effect maps between models using four and six heterogeneity maps.   



 

 

 
Figure S12. Robustness of the findings to the inclusion of inter-hemispheric connections in the cost function. 
(a) Comparison of goodness-of-fit measures and coupling of structural connectome (SC) and empirical functional 
connectome (FC) between models fit with the inter-hemispheric connections included or excluded from the cost 
function. T- and p-values resulted from paired T-tests are reported. (b) left: Effect of age on ⟨𝐼!"⟩ in age groups (N 
= 30) with inter-hemispheric connections included in the cost function, after FDR correction. right: Spatial 
correlation of unthresholded ⟨𝐼!"⟩ age effect maps between models with the inter-hemispheric connections 
included or excluded from the cost function.  



 

 

 

 
Figure S13. Effect of conduction delay on goodness-of-fit and ⟨𝑰𝒊𝑬⟩. (a) Variation of goodness-of-fit and its 
components with conduction velocity. The delayed-conduction simulations showed small but significant 
decreases in GOF, with a mean difference of -0.030±0.020 (T = -41.88, p < 0.001) using a velocity of 1 m/s to a 
mean difference of -0.003±0.003 (T = -27.76, p < 0.001) using a velocity of 6 m/s. (b) Distribution of median 
absolute deviation intraclass correlation coefficient of ⟨𝐼!"⟩ between non-delayed-conduction and delayed-
conduction simulations across nodes as a function of conduction velocity.  



 

 

 
Figure S14. Effect of Gaussian noise random seed on goodness-of-fit and ⟨𝑰𝒊𝑬⟩. (a) Comparison of goodness-of-
fit measures between the original simulation and the median of 50 simulations (per subject) using alternative 
random seeds for the Gaussian noise. T- and p-values resulted from paired T-tests are reported. (b) Median of 
node-wise median absolute deviation intraclass correlation coefficient (ICC) of ⟨𝐼!"⟩ between the original 
simulation and the 50 simulations using alternative random seeds for the Gaussian noise. 
  



 

 

 
Figure S15. Effect of optimization seeds on goodness-of-fit and ⟨𝑰𝒊𝑬⟩. (a) Comparison of goodness-of-fit measures 
between the two optimization runs with different random seeds. (b) Node-wise median absolute deviation 
intraclass correlation coefficient (ICC) of ⟨𝐼!"⟩ between the two runs. 
  



 

 

 
Figure S16. Association of 𝒓𝑬, 𝑰𝑬 and 𝑺𝑬/𝑺𝑰 time series in the optimal simulation of an example subject. (a) Time 
series of 𝑟", 𝐼" and 𝑆"/𝑆& in three randomly selected nodes. (b) top: Association of 𝑟" with 𝐼" (left) and 𝑆"/𝑆& (right) 
across all nodes and time points based on a mixed generalized linear model with an exponential fitting function 
and random intercepts and slopes per node. Mixed generalized linear model prediction (red) and the observed 
simulation data (grey) are shown. Note that given 𝑆"/𝑆& is a ratio and approximates infinity in some data points, 
we excluded the data points at the top 2.5 percentile of 𝑆"/𝑆&. bottom: Model prediction (red) and observed data 
(grey) for all 100 nodes are shown.  



 

 

 
Figure S17. Effect of model parameters perturbations on ⟨𝑰𝒊𝑬⟩ and ⟨𝑺𝒊𝑬⟩/⟨𝑺𝒊𝑰⟩. (a) Effect of 10% increase in each of 
the parameters on ⟨𝐼!"⟩ and ⟨𝑆!"⟩/⟨𝑆!&⟩ based on the optimal simulation of an example subject (‘original’ simulation). 
Paired T-test was used to compare ⟨𝐼!"⟩ and ⟨𝑆!"⟩/⟨𝑆!&⟩ across nodes between ‘original’ and ‘perturbed’ simulations. 
(b) Paired T statistics comparing ⟨𝐼!"⟩ (grey) and ⟨𝑆!"⟩/⟨𝑆!&⟩ (red) between ‘original’ and ‘perturbed’ simulations for 
40 randomly selected subjects are shown in response to a 10% increase or decrease of each parameter. 
  



 

 

 

 
Figure S18. Effect of age on ⟨𝑺𝒊𝑬⟩/⟨𝑺𝒊𝑰⟩ and its robustness across different configurations in the PNC dataset. The 
unthresholded effect of age on ⟨𝑆!"⟩/⟨𝑆!&⟩ observed in the PNC dataset using the default configurations at subject 
level (a) or age-group level using template SC (b) compared to age effects observed using alternative 
configurations, including: (c, left) additionally controlled for the node-wise structural connectome (SC) strength, 
that is, row-wise sum of the SC matrix, (c, right) using a fixed template SC based on the MICs dataset, (d) 
definition of nodes based on a Schaefer parcellation with higher granularity of 200 nodes, (e) using two (left; T1-
weighted to T2-weighted ratio, principal gradient of functional connectivity) and four (right; T1-weighted to T2-
weighted ratio, principal gradient of functional connectivity, N-methyl-D-aspartate receptor density, γ-
aminobutyric acid type A/Bz receptor density) maps to determine the heterogeneity of regional parameters, and 
(f) by including the inter-hemispheric connections in the goodness-of-fit. In all the panels the statistics indicate 
spatial correlation of each map with the ⟨𝑆!"⟩/⟨𝑆!&⟩ age effect observed using the default configurations at subject 
level (panel c correlated with panel a) or age-group level (panels d-f correlated with panel b). 
  



 

 

Table S1. Multimodal maps of sensorimotor-association cortical axis. 
 

Map Reference 

Sensorimotor-association axis Sydnor et al.1 

T1-weighted to T2-weighted ratio Glasser et al.3,4 

Principal gradient of functional connectivity Margulies et al.5 

Evolutionary expansion Hill et al.6 

Allometric scaling Reardon et al.7 

Oxygen cerebral metabolic rate Vaishnavi et al.8 

Glucose cerebral metabolic rate Vaishnavi et al.8 

Cerebral blood flow Satterthwaite et al.9 

Principal component of gene expression data Hawrylycz et al.10, Markello et al.11 

Principal component of NeuroSynth Yarkoni et al.12, Poldrack et al.13 

Principal gradient of laminar thickness covariancea Saberi et al.14 

Cortical thickness Glasser et al.15 
a Substituted instead of externopyramidization map from Paquola et al.16. This map was obtained from Saberi et 
al. while other maps were obtained from neuromaps package17. 
  



 

 

Table S2. Cognitive and behavioral terms. Meta-analytical terms of cognitive and behavioral processes based 
on Hansen et al.18. 
 
action empathy listening response selection visual perception 
adaptation encoding localization retention word recognition 
addiction episodic memory loss retrieval working memory 
anticipation expectancy maintenance reward anticipation  
anxiety expertise manipulation rhythm  
arousal extinction meaning risk  
association face recognition memory rule  
attention facial expression memory retrieval salience  
autobiographical memory familiarity mental imagery search  
balance fear monitoring selective attention  
belief fixation mood semantic memory  
categorization focus morphology sentence comprehension  
cognitive control gaze motor control skill  
communication goal movement sleep  
competition hyperactivity multisensory social cognition  
concept imagery naming spatial attention  
consciousness impulsivity navigation speech perception  
consolidation induction object recognition speech production  
context inference pain strategy  
coordination inhibition perception strength  
decision insight planning stress  
decision making integration priming sustained attention  
detection intelligence psychosis task difficulty  
discrimination intention reading thought  
distraction interference reasoning uncertainty  
eating judgment recall updating  
efficiency knowledge recognition utility  
effort language rehearsal valence  
emotion language comprehension reinforcement learning verbal fluency  
emotion regulation learning response inhibition visual attention  
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