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AN APPROACH TO METRIC SPACE VALUED SOBOLEV MAPS

VIA WEAK* DERIVATIVES

PAUL CREUTZ AND NIKITA EVSEEV

Abstract. We give a characterization of metric space valued Sobolev maps
in terms of weak* derivatives. This corrects a previous result by Haj lasz and
Tyson.

1. Introduction

1.1. Objective. This article concerns possible definitions of the first-order Sobolev
space W 1,p(Ω;X) for an open subset Ω ⊂ Rn, a metric space X and a coefficient
p ∈ (1,∞). Since the early 1990’s several definitions of such Sobolev spaces have
been proposed in [24, 15, 25, 7, 27, 18, 2]. Many of these make sense when Ω is an
arbitrary metric measure space and, in such generality, the arising Sobolev space
may depend on the chosen definition. However, for bounded domains Ω ⊂ R

n, all
of these definitions are equivalent, see [26, 1, 22]. The mentioned characterizations
of W 1,p(Ω;X) take very different approaches that mostly involve slightly advanced
concepts such as energy, modulus of curve families or Poincaré inequalities. Hence,
from the point of view of classical analysis, all these characterizations might either
seem a bit complicated or at least not very straightforward. Another definition of
the Sobolev space W 1,p(Ω;X) was proposed in [20] which is more similar to the
traditional definition of classical Sobolev spaces in terms of weak derivatives. Our
first main result, Theorem 1.2 below, however shows that for technical reasons the
space W 1,p(Ω;X) as introduced in [20] is essentially empty. The main objective
of this article is then to propose a variation on the definition from [20] and show
that this new definition indeed gives an equivalent characterization of the Sobolev
spaces introduced in [24, 15, 25, 7, 27, 18, 2].

1.2. Definitions and main results. If X is a Riemannian manifold then, by
Nash’s theorem, there is a Riemannian isometric embedding ι : X → RN . In this
case W 1,p(Ω;X) can be defined as the set of those functions f : Ω → X for which
the composition ι ◦ f lies in the classical Sobolev space W 1,p(Ω;RN ). Similarly one
can embed any metric space X isometrically into some Banach space V as to force
a linear structure on the target space. For example every separable metric space
embeds isometrically into ℓ∞ by means of the Kuratowski embedding. Thus it is
natural to first define Sobolev functions with values in the Banach space V and
then W 1,p(Ω;X) as the subspace of those functions in W 1,p(Ω;V ) that take values
in X with respect to the fixed embedding. The following definition of Banach space
valued Sobolev functions goes back to [28].

The first named author was partially supported by the DFG-grant SFB/TRR 191 “Symplectic
structures in Geometry, Algebra and Dynamics.”.
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Definition 1.1. Let V be a Banach space and p ∈ [1,∞). The space Lp(Ω;V )
consists of those functions f : Ω → V that are measurable and essentially separably
valued, and for which the function x 7→ ||f(x)|| lies in Lp(Ω).
A function f lies in the Sobolev space W 1,p(Ω;V ) if f ∈ Lp(Ω;V ) and for every
j = 1, . . . , n there is a function fj ∈ Lp(Ω;V ) such that

∫

Ω

∂ϕ

∂xj
(x) · f(x) dx = −

∫

Ω

ϕ(x) · fj(x) dx for every ϕ ∈ C∞
0 (Ω)

in the sense of Bochner integrals.

It was claimed in [20] that if Y is separable then W 1,p(Ω;Y ∗) is equal to the
Reshetnyak-Sobolev space R1,p(Ω;Y ∗) introduced in [25]. This would imply that
the Sobolev space W 1,p(Ω;X), defined in terms of Definition 1.1 and the Kuratowski
embedding κ : X → ℓ∞, is the same as the Sobolev spaces introduced in [25, 24,
27, 15, 18, 7, 2]. Unfortunately, it has recently been observed in [6] that there
is a subtle measurability-related mistake in the proof of the equality and indeed
W 1,p(Ω;Y ∗) equals R1,p(Ω;Y ∗) only if Y ∗ has the Radon-Nikodým property. For
the sake of defining metric space valued Sobolev maps this is potentially problematic
because many spaces of geometric interest, such as the Heisenberg group or even S1

(equipped with the angular metric), do not isometrically embed into a Banach space
which has the Radon-Nikodým property, see [8] and [9, Remark 4.2]. Our first main
result shows that indeed W 1,p(Ω;X), as defined in [20] in terms of Definition 1.1
and the Kuratowski embedding, is always trivial, and hence W 1,p(Ω;X) is not equal
to R1,p(Ω;X) for any geometrically interesting space X .

Theorem 1.2. Let Ω ⊂ Rn be a bounded domain, X be a complete separable metric

space and p ∈ [1,∞). Then a function f : Ω → X lies in W 1,p(Ω;X) if and only if
it is almost everywhere constant.

There is a number of articles subsequent to [20] that have worked with this
definition of metric space valued Sobolev maps, see [16, 29, 17, 5, 4, 19, 10]. In
particular, important results such as [29, Theorem 1.2], [17, Theorem 1.4] or [19,
Theorem 1.9] are formally not correct as stated. To fix this technical problem,
instead of Definition 1.1, we suggest the following one.

Definition 1.3. Let V ∗ be a dual Banach space and p ∈ [1,∞). The space
L
p
∗(Ω;V ∗) consists of those functions f : Ω → V ∗ that are weak* measurable and

for which the function x 7→ ||f(x)|| lies in Lp(Ω).

A function f lies in the Sobolev space W
1,p
∗ (Ω;V ∗) if f ∈ Lp(Ω;V ∗) and for every

j = 1, . . . , n there is a function fj ∈ L
p
∗(Ω;V ∗) such that

∫

Ω

∂ϕ

∂xj
(x) · f(x) dx = −

∫

Ω

ϕ(x) · fj(x) dx for every ϕ ∈ C∞
0 (Ω)

in the sense of Gelfand integrals.

The main difference between W
1,p
∗ and W 1,p is that for W 1,p

∗ the weak derivatives
do not need to be measurable and instead one only assumes weak* measurability. In
particular, the functions fj in Definition 1.3 do not need to be Bochner integrable.

Our second main result shows that W
1,p
∗ indeed gives the right Sobolev space.

Theorem 1.4. Let Ω ⊂ Rn be open, Y be a separable Banach space, and p ∈ [1,∞).
Then

W 1,p
∗ (Ω;Y ∗) = R1,p(Ω;Y ∗).
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Thus, for a bounded Ω and a separable metric space X , one can define W 1,p
∗ (Ω;X)

as the set of those functions f : Ω → X such that κ ◦ f ∈ W
1,p
∗ (Ω; ℓ∞) and deduce

that

W 1,p
∗ (Ω;X) = R1,p(Ω;X).

We believe that essentially all results in the articles [20, 16, 29, 17, 5, 4, 19, 10]

become true if one respectively replaces W 1,p(Ω;X) by W
1,p
∗ (Ω;X) and that the

proofs apply up to straightforward adjustments.
An advantage of our definition of W 1,p

∗ (Ω;X) over the other equivalent definitions
of metric space valued Sobolev maps is that it gives a characterization in terms of
actual linear differentials and not just upper gradients, metric differential seminorms
or alike. It might seem that such linear differentials are somewhat artificial in
the context of general metric target spaces. However, indeed there are some nice
arguments and constructions that heavily rely on this sort of objects, see e.g. [17,
10, 3, 23].

1.3. Organization. First in Section 2 we will go through some auxiliary results
and definitions concerning the calculus of functions with values in Banach spaces.
More precisely, in Sections 2.1 and 2.2 we discuss different notions concerning mea-
surability and integrals of Banach space valued functions. Then in Section 2.3
we study some basic properties of the weak* derivatives of absolutely continuous
curves in dual-to-separable Banach spaces. Section 3 is dedicated to Sobolev maps
with values in Banach spaces and more particularly the proof of Theorem 1.4. To
this end we will consider an auxiliary space R

1,p
∗ (Ω;Y ∗) whose definition inter-

polates between the definitions of R1,p(Ω;Y ∗) and W
1,p
∗ (Ω;Y ∗). In Sections 3.1

and 3.2 we then respectively prove the equalities R
1,p
∗ = R1,p and R

1,p
∗ = W

1,p
∗ .

The more original part here is the proof of the equality R
1,p
∗ = R1,p since the proof

of R1,p
∗ = W

1,p
∗ is very much along the lines of the intended proof of W 1,p = R1,p

in [20]. In the final Section 4 we discuss Sobolev functions with values in a metric

space X . First in Section 4.1 we shortly introduce the Sobolev spaces W
1,p
∗ (Ω;X).

Then in Section 4.2 we focus on W 1,p(Ω;X) and prove Theorem 1.2. The proof
here is a slightly involved argument that exploits the strange analytic properties of
the Kuratowski embedding.

1.4. Acknowledgements and remarks. We want to thank Alexander Lytchak
and Elefterios Soultanis for helpful comments. Also we are grateful to Piotr Haj lasz
who has made the contact among the two of us and with the authors of [6]. In this
context we also learned that the authors of [6] are currently working on related
questions concerning Sobolev functions with values in Banach spaces.

2. Calculus of Banach space valued functions

During this section let E ⊂ R
n be Lebesgue measurable and V be a Banach

space.

2.1. Measurability of Banach space valued functions. We call a function
f : E → V measurable if it is measurable with respect to the Borel σ-algebra on V

and the σ-algebra of Lebesgue measurable subsets on E. It is called weakly mea-
surable if x 7→ 〈v∗, f(x)〉 defines a measurable function E → R for every v∗ ∈ V ∗

and essentially separably valued if there is a null set N ⊂ E such that f(E \ N)
is separable. Trivially measurability implies weak measurability. If additionally
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one assumes that f is essentially separably valued then, by Pettis’ measurability
theorem, also the converse implication holds, see e.g. [22, Section 3.1]. In gen-
eral however, weakly measurable functions do not need to be measurable, see [22,
Remark 3.1.3].

A function f : E → V is called approximately continuous at x ∈ E if for every
ε > 0 one has

lim
r↓0

Ln ({y ∈ B(x, r) ∩ E : ||f(y) − f(x)|| ≥ ε})

Ln (B(x, r))
= 0.

The following characterization of measurability will be important in the proof of
Theorem 1.2.

Theorem 2.1 ([13], Theorem 2.9.13). Let f : E → V be essentially separably val-
ued. Then f is measurable if and only if f is approximately continuous at a.e.

x ∈ E.

A function f : E → V ∗ is called weak* measurable if x 7→ 〈v, f(x)〉 defines a
measurable function E → R for every v ∈ V . We will need the following slight
strengthening of Pettis’ theorem.

Lemma 2.2. Let f : E → V ∗ be essentially separably valued. Then f is measurable

if and only if f is weak* measurable.

Proof. Clearly measurable functions are weak* measurable. So we only prove the
other implication. By assumption there is a null set N ⊂ E such that f(E \N) is
separable. Let D = {v∗1 , v∗2 , . . . } be a countable dense subset in f(E \ N). Then
D −D is a countable dense subset of the difference set f(E \ N) − f(E \N). By

definition of the dual norm for every i, j ∈ N there is a sequence (vijk )k∈N of unit
vectors in V such that

〈vijk , v∗i − v∗j 〉 → ||v∗i − v∗j || as k → ∞.

Thus, it follows from the weak* measurability of f that for every i ∈ N the function

x 7→ ||f(x) − v∗i || = sup
j,k∈N

〈vijk , v∗i − f(x)〉

is measurable. In particular, f−1(B) is measurable for every open ball B ⊂ V ∗

with center in D.
Let U ⊂ V ∗ be open. Then there is a countable collection (Bi)i∈N of balls in V ∗

with centers in D such that

f(E \N) ∩ U = f(E \N) ∩
(
⋃

i∈N

Bi

)

and hence

(1) f−1(U) ∪N =

(
⋃

i∈N

f−1(Bi)

)
∪N.

Since
⋃

i∈N
f−1(Bi) is Lebesgue measurable and N is a null set, (1) implies that

f−1(U) is Lebesgue measurable. The open subsets generate the Borel σ-algebra
of V , so we conclude that f is measurable. �



METRIC SPACE VALUED SOBOLEV MAPS VIA WEAK* DERIVATIVES 5

2.2. Integrals of Banach space valued functions. A function f : E → V is
called simple if there are measurable subsets E1, . . . , Ek of E and vectors v1, . . . , vk
in V such that f =

∑k
i=1 χEi

· vi. If f is simple and all the subsets Ei are of finite
Ln-measure, then f is called integrable and one defines the integral of f as

∫

E

f(x) dx :=
k∑

i=1

Ln(Ei) · vi.

A function f : E → V is called Bochner integrable if there are integrable simple
functions (fk : E → V )k∈N such that

lim
k→∞

∫

E

||fk(x) − f(x)|| dx = 0

The Bochner integral of such Bochner integrable function f is defined as
∫

E

f(x) dx := lim
k→∞

∫

E

fk(x) dx.

Indeed, a function f is Bochner integrable if and only it lies in the space L1(E;V )
introduced in Definition 1.1, see [22, Proposition 3.2.7]. Furthermore, if f is Bochner
integrable and v∗ ∈ V ∗ then x 7→ 〈v∗, f(x)〉 is integrable and

(2)

〈
v∗,

∫

E

f(x) dx

〉
=

∫

E

〈v∗, f(x)〉 dx.

The Bochner integral is arguably the most popular notion concerning integrals
of Banach space valued functions. However, its limitation to essentially separably
valued measurable functions is somewhat to rigid for our purposes. Instead we will
often work with the so-called Gelfand integral which is a weak* variant of the more
well-known Pettis integral that is defined for weakly measurable functions. It goes
back to [14] and can be defined in terms of the following lemma. See also [11, p. 53].

Lemma 2.3. Let f : E → V ∗ be a weak* measurable function such that for every
v ∈ V the function x 7→ 〈v, f(x)〉 lies in L1(E). Then there is a unique vector

v∗f ∈ V ∗ such that

〈v, v∗f 〉 =

∫

E

〈v, f(x)〉 dx for every v ∈ V.

Proof. First we claim that the operator T : V → L1(E) defined by Tv = 〈v, f〉 is
continuous. To this end let (vk, T vk)k∈N belong to the graph of T . Suppose that
vk → v in V and Tvk → g in L1(E). Then there is a subsequence (Tvkm

)m∈N which
converges a.e. on E to g. In particular

g(x) = lim
m→∞

Tvkm
(x) = lim

m→∞
〈vkm

, f(x)〉 = 〈v, f(x)〉 = (Tv)(x)

for a.e. x ∈ Ω. Hence the linear operator T has a closed graph and the closed graph
theorem implies that T is continuous.

Thus for every v ∈ V one has
∣∣∣∣
∫

E

〈v, f(x)〉 dx

∣∣∣∣ ≤ ‖Tv‖ ≤ ‖T ‖ · ‖v‖.

This shows that the functional v∗f given by v∗f (v) :=
∫
E〈v, f(x)〉 dx is continuous

and hence completes the proof. �
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Functions f : E → V ∗ that meet the assumptions of Lemma 2.3 are called
Gelfand integrable and for such f the arising functional v∗f is called the Gelfand

integral of f . By (2) and Lemma 2.3, if f : E → V ∗ is Bochner integrable then f is
Gelfand integrable and

∫
E f(x) dx = v∗f . Hence we will not create ambiguity when

we also denote Gelfand integrals by
∫
E f(x) dx instead of v∗f . Note that if Ω ⊂ Rn

is open and f ∈ L
p
∗(Ω;V ∗), then ϕ · f is Gelfand integrable for every ϕ ∈ C∞

0 (Ω)
and hence the Gelfand integrals that appear in Definition 1.3 are well-defined.

2.3. Absolutely continuous curves in Banach spaces. Recall that a function
f : [a, b] → R is called absolutely continuous when it satisfies the fundamental theo-
rem of calculus. That is when f is differentiable almost everywhere, the derivative
f ′ is Lebesgue integrable and

f(t) − f(a) =

∫ t

a

f ′(s) ds

for every t ∈ [a, b]. The length of a continuous curve γ : [a, b] → V is defined as

l(γ) := sup

n∑

i=1

||γ(ti) − γ(ti−1)||

where the supremum ranges over all n ∈ N and all a = t0 ≤ t1 ≤ · · · ≤ tn = b. The
curve γ is called rectifiable if l(γ) is finite. For a rectifiable curve γ we define its
length function sγ : [a, b] → [0, l(γ)] by

sγ(t) = l(γ|[a,t]).

The length function gives rise to a unique curve γ̄ : [0, l(γ)] → V such that

γ̄ ◦ sγ = γ.

The curve γ̄ is called the unit-speed parametrization of γ because one has for every
t ∈ [0, l(γ)] that

l(γ̄|[a,t]) = t− a.

A curve γ : [a, b] → V is called absolutely continuous if it is rectifiable and the
length function sγ is absolutely continuous. Absolutely continuous curves in a
Banach space V do not need to be differentiable almost everywhere unless V has the
Radon-Nikodým property. Nevertheless, if V is dual to a separable Banach space
then absolutely continuous curves in V are weak* differentiable almost everywhere
in the sense of the following lemma.

Lemma 2.4 ([20, Lemma 2.8]). Let Y be a separable Banach space. Then for every

absolutely continuous curve γ : [a, b] → Y ∗ there is a weak* measurable function

γ′ : [a, b] → Y ∗ such that for almost every t ∈ [a, b] and every y ∈ Y one has

(3)

〈
y,

γ(t + h) − γ(t)

h

〉
→ 〈y, γ′(t)〉 as h → 0.

If t ∈ [a, b] is such that (3) holds for every y ∈ Y then γ is called weak* differ-

entiable at t and γ′(t) is called the weak* derivative of γ at t. By the next two
lemmas weak* derivatives have desirable analytical and metric properties.
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Lemma 2.5. Let Y be a separable Banach space and γ : [a, b] → Y ∗ be absolutely

continuous. Then for every ϕ ∈ C∞
0 ((a, b)) one has

(4)

∫ b

a

∂ϕ

∂t
(t) · γ(t) dt = −

∫ b

a

ϕ(t) · γ′(t) dt

in the sense of Gelfand integrals.

Lemma 2.11 in [20] claims that the equality (4) holds in the sense of Bochner in-
tegrals. In general however, as the subsequent example shows, the weak* derivative
of an absolutely continuous curve in Y ∗ does not need to be essentially separably

valued and hence the Bochner integral
∫ b

a ϕ(t) · γ′(t) dt may not be defined.

Example 2.6. Consider the curve γ : [0, 1] → L∞([0, 1]) given by (γ(t))(s) = |t−s|.
Then γ is an isometric embedding and hence in particular absolutely continuous.
Further γ is weak* differentiable at every t ∈ [0, 1] with weak* derivative

γ′(t) = −χ(0,t) + χ(t,1).

Thus

||γ′(s) − γ′(t)||∞ = 2

for every t 6= s and hence γ′ : [0, 1] → L∞([0, 1]) cannot be essentially separably
valued.

Proof of Lemma 2.5. Let ϕ ∈ C∞
0 ((a, b)) and y ∈ Y . For t ∈ [a, b] we will denote

γy(t) := 〈y, γ(t)〉. Then γy : [a, b] → R is absolutely continuous and, by the classical
product rule,

(5)

∫ b

a

∂ϕ

∂t
(t) · γy(t) dt = −

∫ b

a

ϕ(t) · γ′
y(t) dt.

Furthermore by (3) for almost every t ∈ [a, b] one has

(6) 〈y, γ′(t)〉 = γ′
y(t).

By (5) and (6), and because y ∈ Y was arbitrary, we conclude equality (4). �

Lemma 2.7. Let Y be a separable Banach space. If γ : [a, b] → Y ∗ is absolutely

continuous then

||γ′(t)|| = lim
h→0

||γ(t + h) − γ(t)||
|h| = s′γ(t)

for almost every t ∈ [a, b].

Proof. Assume t ∈ [a, b] is such that sγ is differentiable at t and that γ is weak*
differentiable at t. Then for every y ∈ Y with ||y|| ≤ 1 one has

〈y, γ′(t)〉 = lim
h→0

〈
y,

γ(t + h) − γ(t)

h

〉
≤ lim inf

h→0

||γ(t + h) − γ(t)||
|h|

and hence

(7) ||γ′(t)|| ≤ lim inf
h→0

||γ(t + h) − γ(t)||
|h| .

Furthermore

(8) lim sup
h→0

||γ(t + h) − γ(t)||
|h| ≤ lim sup

h→0

l(γ|[t,t+h])

|h| = s′γ(t).
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To prove the reverse inequalities, let t, t̄ ∈ [a, b] with t < t̄. Then for every y ∈ Y

with ||y|| ≤ 1 one has

〈y, γ(t̄) − γ(t)〉 =

∫ t̄

t

〈y, γ′(r)〉 dr ≤
∫ t̄

t

||γ′(r)|| dr

and thus

||γ(t̄) − γ(t)|| ≤
∫ t̄

t

||γ′(r)|| dr.

Since t and t̄ were arbitrary, we conclude that

(9)

∫ b

a

s′γ(r) dr = l(γ) ≤
∫ b

a

||γ′(r)|| dr.

(7), (8) and (9) together imply the claim. �

3. Banach space valued Sobolev maps

Throughout this section let Ω ⊂ Rn be open, V be a Banach space, Y be a
separable Banach space and p ∈ [1,∞).

3.1. The Reshetnyak-Sobolev space. The following definition of first-order So-
bolev functions with values in Banach spaces goes back to [25].

Definition 3.1. The Reshetnyak–Sobolev space R1,p(Ω;V ) consists of those func-
tions f ∈ Lp(Ω;V ) such that:

(A) for every v∗ ∈ V ∗ the function x 7→ 〈v∗, f(x)〉 lies in the classical Sobolev space
W 1,p(Ω) := W 1,p(Ω;R);

(B) there is a function g ∈ Lp(Ω) such that for every v∗ ∈ V ∗ one has

|∇〈v∗, f(x)〉| ≤ ||v∗|| · g(x) for a.e. x ∈ Ω.

A function g as in (B) will be called a weak upper gradient of f . A seminorm is
defined on R1,p(Ω;V ) by

||f ||R1,p :=

(∫

Ω

||f(x)||p dx

)1/p

+ inf
g

||g||Lp

where g ranges over all weak upper gradients of f .

Indeed, Definition 3.1 is a variation on the original definition by Reshetnyak. The
reason for the present choice of definition is that, in contrast to the definition in [25],
it also allows for unbounded domains Ω. This extension is possible because we limit
ourselves here to maps with values in Banach spaces while Reshetnyak considers
general metric target spaces. In any case the two definitions are equivalent if Ω is
a bounded domain, see [20, Lemma 2.16] and [25, Theorem 5.1].

To prove that R1,p(Ω;Y ∗) equals W
1,p
∗ (Ω;Y ∗), we will work with the following

auxiliary definition that interpolates between the two spaces.

Definition 3.2. The space R
1,p
∗ (Ω;V ∗) consists of those functions f ∈ Lp(Ω;V ∗)

such that:

(A*) for every v ∈ V the function x 7→ 〈v, f(x)〉 lies in W 1,p(Ω);
(B*) there is a function g ∈ Lp(Ω) such that for every v ∈ V one has

|∇〈v, f(x)〉| ≤ ||v|| · g(x) for a.e. x ∈ Ω.
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A function g as in (B*) will be called a weak* upper gradient of f . A seminorm is

defined on R
1,p
∗ (Ω;V ∗) by

||f ||R1,p
∗

:=

(∫

Ω

||f(x)||p dx

)1/p

+ inf
g

||g||Lp

where g ranges over all weak* upper gradients of f .

We will denote by ACL(Ω) the collection of all functions f : Ω → R for which the
restriction of f to almost every compact line segment, that is contained in Ω and
parallel to some coordinate axis, is absolutely continuous. Recall that every real

valued Sobolev function in f ∈ W 1,p(Ω) has a representative f̃ ∈ ACL(Ω). The

following lemma shows that similar is true for functions in R
1,p
∗ (Ω;Y ∗).

Lemma 3.3. Let V be a Banach space and f ∈ R
1,p
∗ (Ω;V ∗). Then for every

j ∈ {1, . . . , n} the function f has a representative f̃ j that is absolutely continuous

on almost every compact line segment which is contained in Ω and parallel to the
xj-axis. Moreover, for every weak* upper gradient g of f one has

(10) lim
h→0

‖f̃ j(x + hej) − f̃ j(x)‖
|h| ≤ g(x) for a.e. x ∈ Ω.

Lemma 3.3 generalizes Lemma 2.13 in [20] from R1,p to R
1,p
∗ . A posteriori

Proposition 3.4 will show that this is not a proper generalization.

Proof. Fix j ∈ {1, . . . , n} and a weak* upper gradient g of f . Since f ∈ Lp(Ω;V ∗),
there is a nullset Σ0 ⊂ Ω such that f(Ω \ Σ0) is separable. Let (v∗i )i∈N be a dense
sequence in the difference set f(Ω \Σ0)− f(Ω \Σ0). For each i ∈ N let (vik)k∈N be
a sequence of unit vectors in V such that ‖v∗i ‖ = limk→∞〈vik, v∗i 〉. Then for every
i, k ∈ N one has 〈vik, f〉 ∈ W 1,p(Ω) and

(11) |∇〈vik, f(x)〉| ≤ g(x) for a.e. x ∈ Ω.

Denote by fik a representative of 〈vik, f〉 that is in ACL(Ω) and by Σik the null set
on which fik differs from 〈vik, f〉. Then for almost every line segment l : [a, b] → Ω
that is parallel to the xj-axis one has:

(i) g is integrable over l;
(ii) H1(l ∩ Σ) = 0 where Σ = Σ0 ∪

⋃
i,k Σik;

(iii) for every i, k ∈ N and every a ≤ s ≤ t ≤ b

|fik(l(t)) − fik(l(s))| ≤
∫ t

s

g(l(τ)) dτ.

The Fubini theorem ensures (i) and (ii), while (iii) follows by (11).
Let l : [a, b] → Ω be a line segment parallel to the xj-axis for which the properties

(i), (ii) and (iii) are satisfied. For given s, t ∈ l−1(Ω \ Σ) with s ≤ t there is a
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subsequence (v∗im) that converges to f(l(t)) − f(l(s)) in V ∗. Thus, we have

‖f(l(t)) − f(l(s))‖(12)

= lim
m→∞

‖v∗im‖ = lim
m→∞

lim
k→∞

〈vimk, v
∗
im〉

= lim sup
m→∞

lim sup
k→∞

(
〈vimk, v

∗
im − (f(l(t)) − f(l(s)))〉

+ 〈vimk, f(l(t)) − f(l(s))〉
)

≤ lim sup
m→∞

lim sup
k→∞

(
‖v∗im − (f(l(t)) − f(l(s)))‖

+ |fimk(l(t)) − fimk(l(s))|
)

≤
∫ t

s

g(l(τ)) dτ.

In particular, by properties (i) and (ii), and inequality (12) the restriction of f to
l has a unique H1-representative that is absolutely continuous. The uniqueness
implies that these representatives coincide where different line segments overlap.

Hence we conclude that f has a representative f̃ j that is absolutely continuous
on every compact line segment l that satisfies the properties (i), (ii) and (iii).
Furthermore, by (12) for every such l one has

‖f̃ j(l(t)) − f̃ j(l(s))‖ ≤
∫ t

s

g(l(τ)) dτ

and hence we conclude that (10) is satisfied. �

Given that in general W
1,p
∗ (Ω;V ∗) does not equal W 1,p(Ω;V ∗) the following

proposition might be a bit surprising.

Proposition 3.4. Let V be a Banach space. Then

R1,p
∗ (Ω;V ∗) = R1,p(Ω;V ∗)

with || · ||R1,p
∗

≤ || · ||R1,p ≤ √
n|| · ||R1,p

∗

.

Proof. Trivially R1,p(Ω;V ∗) ⊆ R
1,p
∗ (Ω;V ∗), and ||f ||R1,p

∗

≤ ||f ||R1,p for functions

f ∈ R1,p(Ω;V ∗). For the other inclusion let f ∈ R
1,p
∗ (Ω;V ∗) and g be a weak* upper

gradient of f . Since f ∈ Lp(Ω;V ∗), for v∗∗ ∈ V ∗∗ the function fv∗∗ = 〈v∗∗, f〉 lies

in Lp(Ω). For j ∈ {1, . . . , n} let f̃ j be a representative of f as in Lemma 3.3.

Then f̃
j
v∗∗ := 〈v∗∗, f̃ j〉 is a representative of fv∗∗ that is absolutely continuous on

almost every compact line segment parallel to the xj-axis. Thus f̃
j
v∗∗ is almost

everywhere partial differentiable in the xj-direction. By the product rule and the
Fubini theorem it follows that

∫

Ω

∂ϕ

∂xj
(x) · fv∗∗(x) dx =

∫

Ω

∂ϕ

∂xj
(x) · f̃ j

v∗∗(x) dx =

∫

Ω

ϕ(x) · ∂f̃
j
v∗∗

∂xj
(x) dx

for every ϕ ∈ C∞
0 (Ω). In particular

∂f̃j

v∗∗

∂xj
is a j-th weak partial derivative of fv∗∗ .

Furthermore, by Lemma 3.3 at almost every x ∈ Ω one has
∣∣∣∣∣
∂f̃

j
v∗∗

∂xj
(x)

∣∣∣∣∣ ≤ lim
h→0

‖f̃ j(x + hej) − f̃ j(x)‖
|h| ≤ g(x)
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and hence

|∇fv∗∗(x)| =




n∑

j=1

(
∂f̃

j
v∗∗

∂xj
(x)

)2



1/2

≤
√
n · g(x).

Since v∗∗ ∈ V ∗∗ and the weak* upper gradient g ∈ Lp(Ω) were arbitrary, we
conclude that f ∈ R1,p(Ω;V ∗) and

‖f‖R1,p ≤
√
n · ‖f‖R1,p

∗

.

This completes the proof. �

3.2. The Sobolev space W
1,p
∗ . Let f ∈ W

1,p
∗ (Ω;V ∗). We will denote by ∂jf the

function fj as in Definition 1.1 and call the vector ∇f(x) = (∂1f(x), . . . , ∂nf(x))
the weak* gradient of f at x ∈ Ω. Further we define

|∇f(x)| :=

(
n∑

i=0

||∂if(x)||2
)1/2

and a seminorm on W
1,p
∗ (Ω;V ) by

||f ||W 1,p
∗

:=

(∫

Ω

||f(x)||p dx

)1/p

+

(∫

Ω

|∇f(x)|p dx

)1/p

Proposition 3.5. Let Y be a separable Banach space. Then

W 1,p
∗ (Ω;Y ∗) = R1,p

∗ (Ω;Y ∗)

with || · ||R1,p
∗

≤ || · ||W 1,p
∗

≤ √
n|| · ||R1,p

∗

.

Proof. Let f ∈ W
1,p
∗ (Ω;Y ∗). Since f ∈ Lp(Ω;Y ∗) we know that for y ∈ Y the

function fy := 〈y, f〉 lies in Lp(Ω). Further, by definition of the Gelfand integral,
for j ∈ {1, . . . , n} the function 〈y, ∂jf〉 is a j-th weak partial derivative of fj . Hence

fy ∈ R
1,p
∗ (Ω;Y ∗) and

|∇fy(x)| =




n∑

j=1

〈y, ∂jf(x)〉2



1/2

≤




n∑

j=1

||∂jf(x)||2



1/2

= |∇f(x)|

for a.e. x ∈ Ω. In particular f ∈ R
1,p
∗ (Ω;Y ∗) and |∇f | is a weak* upper gradient

of f . The latter also implies ||f ||R1,p
∗

≤ ||f ||W 1,p
∗

.

Now, for the other inclusion, let f ∈ R
1,p
∗ (Ω;Y ∗) and g be a weak* upper gradient

of f . For j ∈ {1, . . . , n} let f̃ j be a representative of f as in Lemma 3.3. Define fj(x)

as the weak* partial derivative ∂f̃j

∂xj
(x), which is defined almost everywhere due to

Lemma 2.4. Then the function fj : Ω → Y ∗ is weak* measurable. Furthermore, by
Lemma 2.5 and the Fubini theorem, for every ϕ ∈ C∞

0 (Ω) one has

(13)

∫

Ω

∂ϕ

∂xj
(x) · f(x) dx =

∫

Ω

∂ϕ

∂xj
(x) · f̃ j(x) dx =

∫

Ω

ϕ(x) · fj(x) dx

in the sense of Gelfand integrals. Also, by Lemmas 2.7 and 3.3,

‖fj(x)‖ ≤ g(x) for a.e. x ∈ Ω.
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In particular, since g ∈ Lp(Ω), we conclude that fj ∈ L
p
∗(Ω;Y ∗) and hence by (13)

that f ∈ W 1,p(Ω;Y ∗) with

|∇f(x)| =




n∑

j=1

‖fj(x)‖2



1/2

≤
√
n · g(x)

for almost every x ∈ Ω. Since g was an arbitrary weak* upper gradient of f it also
follows that ||f ||W 1,p

∗

≤ √
n||f ||R1,p

∗

. �

Propositions 3.4 and 3.5 together imply the following quantitative version of
Theorem 1.4.

Theorem 3.6. Let Y be a separable Banach space. Then

W 1,p
∗ (Ω;Y ∗) = R1,p(Ω;Y ∗)

with 1√
n
|| · ||R1,p ≤ || · ||W 1,p

∗

≤ √
n|| · ||R1,p .

It has been shown in [6] (see also [12]) that W 1,p(Ω;V ) = R1,p(Ω;V ) if and only
if V has the Radon-Nikodým property. Concerning Theorem 3.6, it seems to be a
natural conjecture that conversely the equality W

1,p
∗ (Ω;V ∗) = R1,p(Ω;V ∗) implies

that V is separable.

4. Metric space valued Sobolev maps

Throughout this section let Ω ⊂ Rn be a bounded domain, X = (X, d) be a
complete metric space and p ∈ [1,∞).

4.1. The Sobolev space W
1,p
∗ (Ω;X). The Reshetnyak-Sobolev space can be de-

fined as

R1,p(Ω;X) := {f : Ω → X | ι ◦ f ∈ R1,p(Ω;V )}
where ι : X → V is any fixed isometric embedding of X into a Banach space V . By
the following example such embedding ι always exists.

Example 4.1. Let X be a metric space. Denote by ℓ∞(X) the Banach space of
bounded functions f : X → R with norm given by

||f ||∞ := sup
z∈X

|f(z)|.

Then for given z0 ∈ X the function κ̄ : X → ℓ∞(X) given by

(κ̄(z))(w) := d(z, w) − d(w, z0)

defines an isometric embedding, see e.g. [21, p. 5].

Furthermore, under the present assumption that Ω is bounded, the definition
of R1,p(Ω;X) does not depend on the chosen embedding ι and is equivalent to
the original definition by Reshetnyak, see [20, Lemma 2.16] and [25, Theorem 5.1].
Thus Theorem 1.4 has the following consequence.

Theorem 4.2. Let Ω ⊂ Rn be a bounded domain, X be a complete metric space,
Y be a separable Banach space and ι : X → Y ∗ be an isometric embedding. Then

R1,p(Ω;X) =
{
f : Ω → X | ι ◦ f ∈ W 1,p

∗ (Ω;Y ∗)
}
.
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Certainly not every metric space X isometrically embeds into the dual of a
separable Banach space. A simple obstruction is the cardinality of X which must
be bounded above by 22

ω

. For a separable metric space X however, due to the
following example, there is always an isometric embedding as in Theorem 4.2.

Example 4.3. Let X be a separable metric space and (zi)i∈N be a dense sequence
of points in X . Denote ℓ∞ := ℓ∞(N). Then ℓ∞ is the dual of the separable Banach
space ℓ1 := ℓ1(N). The function κ : X → ℓ∞ given by

κ(z) := (d(z, zi) − d(zi, z1))i∈N

is called the Kuratowski embedding of X . It is not hard to check that κ defines an
isometric embedding, see e.g. [21, p. 11].

Thus, for a bounded domain Ω and a complete separable metric space X , one
can define

(14) W 1,p
∗ (Ω;X) :=

{
f : Ω → X | κ ◦ f ∈ W 1,p

∗ (Ω; ℓ∞)
}

and deduce from Theorem 4.2 that W
1,p
∗ (Ω;X) = R1,p(Ω;X). The assumption

that Ω is bounded is needed to ensure that W
1,p
∗ (Ω;X) is well-defined by means of

(14) and does not depend on the concrete choice of Kuratowski embedding. For a

non-separable complete metric space X one can define W
1,p
∗ (Ω;X) as the union of

the spaces W
1,p
∗ (Ω;S) where S ranges over all separable closed subsets of X . Since

Sobolev functions are essentially separably valued, also for such non-separable X ,
Theorem 4.2 implies that W

1,p
∗ (Ω;X) ⊂ R1,p(Ω;X) and that every function in

R1,p(Ω;X) has a representative in W
1,p
∗ (Ω;X).

4.2. The Sobolev space W 1,p(Ω, X). The aim of this subsection is to prove The-
orem 1.2. To this end let X be a complete separable metric space, (xi)i∈N be a
dense sequence of points in X and κ : X → ℓ∞ be the corresponding Kuratowski
embedding. The key step for the proof is the following lemma.

Lemma 4.4. If γ : [a, b] → κ(X) ⊂ ℓ∞ is a non-constant absolutely continuous

curve then the weak* derivative γ′ : [a, b] → ℓ∞ is not essentially separably valued.

Proof. Since γ is non-constant we have l := l(γ) > 0. As in Section 2.3 we factorize
γ = γ̄ ◦ sγ where γ̄ : [0, l] → κ(X) is the unit-speed parametrization of γ and
sγ : [a, b] → [0, l] is the length function of γ. First we show that γ̄′ : [0, l] → ℓ∞ is
not essentially separably valued.

By Lemma 2.7 for a.e. t ∈ [0, l] one has that

(15) ||γ̄′(t)||∞ = lim
h→0

||γ̄(t + h) − γ̄(t)||∞
|h| = 1.

Let E be the set of points t0 ∈ (0, l) at which γ̄ is weak* differentiable and (15)
holds. By Theorem 2.1, to show that γ̄′ is not essentially separably valued, it
suffices to prove that γ̄′ is not approximately continuous at every t0 ∈ E.

So fix t0 ∈ E and let h0 > 0 be so small that for any h ∈ R with |h| ≤ h0 one
has

(16)
1

2
· |h| < ||γ(t0 + h) − γ(t0)||∞.

Further fix some arbitrary 0 < h < h0 and accordingly choose i ∈ N such that

(17) ||κ(xi) − γ(t0)||∞ ≤ 1

4
· h.
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By Lemma 2.4 for every point t ∈ [0, l] at which γ̄ is weak* differentiable one has

γ̄′(t) = (γ̄′
i(t))i∈N where γ̄(t) = (γ̄i(t))i∈N

is the coordinate representation of γ̄. From the fundamental theorem of calculus,
the definition of the Kuratowski embedding, (16) and (17) it follows that

∫ t0+h

t0

γ̄′
i(t) dt = γ̄i(t0 + h) − γ̄i(t0)

= ||γ̄(t0 + h) − κ(xi)||∞ − ||γ̄(t0) − κ(xi)||∞

≥ 1

4
· h

Since |γ̄′
i(t)| ≤ 1 for a.e. t, this implies that

(18) L1
(
F+
h

)
≥ 1

8
· h where F+

h :=

{
t ∈ (t0, t0 + h) : γ̄′

i(t) ≥
1

8

}
.

Similarly
∫ t0

t0−h

γ̄′
i(t) dt ≤ −1

4
· h

and hence

(19) L1
(
F−
h

)
≥ 1

8
· h where F−

h :=

{
t ∈ (t0 − h, t0) : γ̄′

i(t) ≤ −1

8

}
.

Note that for every t+ ∈ F+
h ∩E and t− ∈ F−

h ∩ E one has

(20) ||γ̄′(t+) − γ̄′(t−)||∞ ≥ |γ̄′
i(t

+) − γ̄′
i(t

−)| ≥ 1

4
.

Since 0 < h < h0 was arbitrary, (18), (19) and (20) together imply that γ̄′ cannot
be approximately continuous at t0. In turn, because t0 ∈ E was arbitrary, we
conclude from Theorem 2.1 that γ̄′ is not essentially separably valued.

Now let N ⊂ [a, b] be an arbitrary nullset. We need to show that γ′([a, b] \N) is
not separable. By Lemma 2.4, after possibly passing to a larger null set, we may
assume that for every t ∈ [a, b] \N the curve γ is weak* differentiable at t and the
function sγ is differentiable at t. Note that

(21) L1(sγ(A)) =

∫

A

s′γ(t) dt

for every measurable subset A ⊂ [a, b]. Thus, we may further assume that for every
t ∈ [a, b] \N either γ̄ is weak* differentiable at sγ(t) or s′γ(t) = 0. In particular, it
follows that

(22) (γ̄′ ◦ sγ)(t) · s′γ(t) = γ′(t)

on [a, b] \ N . By (21) one has that M := sγ(N) ∪ sγ({s′γ = 0}) is a null set and
hence γ̄′([0, l] \M) is not separable. On the other hand, sγ is surjective and hence
by (22) it follows that

γ̄′([0, l] \M) ⊂ 〈γ′([a, b] \N)〉R
where 〈γ′([a, b] \N)〉R denotes the linear span of γ′([a, b] \N) in ℓ∞. In particular,
the linear span of γ′([a, b] \N) is not separable and hence also γ′([a, b] \ N) itself
cannot be separable �
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Recall that we have defined

(23) W 1,p(Ω;X) := {f : Ω → X : κ ◦ f ∈ W 1,p(Ω; ℓ∞)}.

Proof of Theorem 1.2. Let f : Ω → X be almost everywhere constant. Then also
κ ◦ f is almost everywhere constant. Hence κ ◦ f is measurable and essentially
separably valued. Since Ω is bounded, one has that x 7→ ||f(x)||∞ lies in Lp(Ω).
Thus, choosing fj identically zero for each j, we conclude that κ ◦ f ∈ W 1,p(Ω; ℓ∞)
and hence that f ∈ W 1,p(Ω;X).

For the other inclusion let f ∈ W 1,p(Ω;X). Then, by definition, h := κ ◦ f

lies in W 1,p(Ω; ℓ∞). Trivially this implies that h ∈ W
1,p
∗ (Ω; ℓ∞) and that ∂jh

lies in Lp(Ω;X) ⊂ L
p
∗(Ω;X) for each j. Since W

1,p
∗ (Ω; ℓ∞) equals R

1,p
∗ (Ω; ℓ∞),

Lemma 3.3 implies that for each j the function h has a representative h̃j that is
absolutely continuous on almost every compact line segment parallel to the xj -axis.
In particular, there is a nullset N ⊂ Ω such that ∂jh(Ω\N) is separable for every j.
Note that, since X is complete, for almost every compact line segment l : [a, b] → Ω

parallel to the xj-axis the image h̃j ◦ l([a, b]) must be contained in κ(X). Further
the proof of Proposition 3.5 shows that, possibly enlarging N , we can assume that
for each j one has

∂jh(x) =
∂h̃j

∂xj
(x)

for every x ∈ Ω \N .
Assume f was not almost everywhere constant. Since Ω is connected, this implies

that there is some j such that not for almost every line segment parallel to the xj -
axis the restriction of f to the line segment is constant. Hence we can find a line
segment l : [a, b] → Ω such that

(i) H1(l([a, b] ∩N)) = 0,

(ii) h̃j ◦ l([a, b]) ⊂ κ(X), and

(iii) h̃j ◦ l is absolutely continuous and non-constant.

By Lemma 4.4, (h̃j ◦ l)′ : [a, b] → X cannot be essentially separably valued. This
gives a contradiction because

(h̃j ◦ l)′(t) = ∂jh(l(t))

for every t ∈ l([a, b]) \N and ∂jh(Ω \N) is separable. �

Note that, by Theorem 1.2, if X is a separable Banach space then the definition
of W 1,p(Ω;X) given in (23) is not compatible with the one given in Definition 1.1.
For example, most trivially, one may consider the case X = R where Definition 1.1
gives the classical Sobolev space W 1,p(Ω).
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