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Abstract:We give a characterization of metric space-valued Sobolev maps in terms of weak* derivatives. More
precisely, we show that Sobolev maps with values in dual-to-separable Banach spaces can be defined in terms
of classical weak derivatives in a weak* sense. Since every separable metric space X embeds isometrically into
ℓ∞, we conclude that Sobolev maps with values in X can be characterized by postcomposition with such
embedding and the mentioned weak gradients. A slight variation on our definition was proposed previously by
Hajłasz and Tyson. However, we show that their definition does not work in the sense that for technical
reasons the arising Sobolev space is essentially empty.
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1 Introduction

1.1 Objective

This article concerns possible definitions of the first-order Sobolev space ( )W XΩ;p1, for an open subset
�⊂Ω n, a metric space X , and a coefficient ( )∈ ∞p 1, . Since the early 1990s several definitions of such

Sobolev spaces have been proposed in previous studies [2,7,16,19,25,26,28]. Many of these make sense when
Ω is an arbitrary metric measure space and, in such generality, the arising Sobolev space may depend on the
chosen definition. However, for bounded domains �⊂Ω n, all of these mentioned definitions are equivalent
[1,23,27]. The mentioned characterizations of ( )W XΩ;p1, take very different approaches that mostly involve
slightly advanced concepts such as energy, modulus of curve families, or Poincaré inequalities. Hence, from
the point of view of classical analysis, all these characterizations might either seem a bit complicated or at least
not very straightforward. Another definition of the Sobolev space ( )W XΩ;p1, was proposed in the study by
Hajłasz and Tyson [21], which is more similar to the traditional definition of classical Sobolev spaces in terms
of weak derivatives. Our first main result, Theorem 1.2, shows that for technical reasons the space ( )W XΩ;p1,

as introduced by Hajłasz and Tyson [21] is essentially empty. The main objective of this article is then to
propose a variation on the definition from the study by Hajłasz and Tyson [21] and show that this new
definition indeed gives an equivalent characterization of the Sobolev spaces introduced in previous studies
[2,7,16,19,25,26,28].
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1.2 Definitions and main results

If X is a Riemannian manifold then, by Nash’s theorem, there is a Riemannian isometric embedding
�→ι X: N . In this case, ( )W XΩ;p1, can be defined as the set of those functions →f X: Ω for which the

composition ∘ι f lies in the classical Sobolev space �( )W Ω;p N1, . Similarly one can embed any metric space
X isometrically into some Banach spaceV as to force a linear structure on the target space. For example, every
separable metric space embeds isometrically into ℓ∞ by means of the Kuratowski embedding. Thus, it is
natural to first define Sobolev functions with values in the Banach space V and then ( )W XΩ;p1, as the
subspace of those functions in ( )W VΩ;p1, that take values in X with respect to the fixed embedding. The
following definition of Banach space-valued Sobolev functions goes back to the study by Sobolev [29].

Definition 1.1. Let V be a Banach space and [ )∈ ∞p 1, . The space ( )L VΩ;p consists of those functions
→f V: Ω that are measurable and essentially separably valued, and for which the function ‖ ( )‖↦x f x lies

in ( )L Ωp .
A function f lies in the Sobolev space ( )W VΩ;p1, if ( )∈f L VΩ;p , and for every =j n1,…, , there is a

function ( )∈f L VΩ;
j

p such that

( ) ( ) ( ) ( ) ( )∫ ∫∂
∂

⋅ = − ⋅ ∈ ∞φ

x
x f x x φ x f x x φ Cd d for every Ω

j
j

Ω Ω

0

in the sense of Bochner integrals.

It was claimed by Hajłasz and Tyson [21] that ifY is separable, then ( )W YΩ; *
p1, is equal to the Reshetnyak-

Sobolev space ( )R YΩ; *
p1, introduced by Reshetnyak [26]. This would imply that the Sobolev space ( )W XΩ;p1, ,

defined in terms of Definition 1.1 and the Kuratowski embedding ℓ→ ∞κ X: , is the same as the Sobolev spaces
introduced in previous studies [2,7,16,19,25,26,28]. Unfortunately, it has recently been observed by Caamaño
et al. [6] that there is a subtle measurability-related mistake in the proof of the equality, and indeed,

( )W YΩ; *
p1, equals ( )R YΩ; *

p1, only if Y * has the Radon-Nikodým property. For the sake of defining metric
space-valued Sobolev maps, this is potentially problematic because many spaces of geometric interest, such as
the Heisenberg group or even�1 (equipped with the angular metric), do not isometrically embed into a Banach
space, which has the Radon-Nikodým property [8] and [9, Remark 4.2]. Our first main result shows that indeed

( )W XΩ;p1, , as defined in the study by Hajłasz and Tyson [21] in terms of Definition 1.1 and the Kuratowski
embedding, is always trivial, and hence, ( )W XΩ;p1, is not equal to ( )R XΩ;p1, for any geometrically interesting
space X .

Theorem 1.2. Let �⊂Ω n be a bounded domain, X be a complete separable metric space, and [ )∈ ∞p 1, . Denote
by ℓ→ ∞κ X: the Kuratowski embedding of X. Then every function in

( ) { ∣ ( ℓ )}≔ → ∘ ∈ ∞W X f X κ f WΩ; : Ω Ω;p p1, 1, (1.1)

is almost everywhere constant.

Note that, by Theorem 1.2, if X is a separable Banach space, then the definition of ( )W XΩ;p1, given in (1.1)
is not compatible with the one given in Definition 1.1. For example, most trivially, one may consider the case
�=X where Definition 1.1 gives the classical Sobolev space ( )W Ωp1, .
There is a number of articles subsequent to that by Hajłasz and Tyson [21] that have worked with (1.1)

as definition of metric space-valued Sobolev maps [4,5,11,17,18,20,30]. In particular, important results such as
[30, Theorem 1.2], [18, Theorem 1.4] and [20, Theorem 1.9] are formally not correct as stated. To fix this
technical problem, instead of Definition 1.1, we suggest the following one.

Definition 1.3. Let V * be a dual Banach space and [ )∈ ∞p 1, . The space ( )L V
*

Ω; *
p consists of those functions

→f V: Ω * that are weak* measurable and for which the function ‖ ( )‖↦x f x lies in ( )L Ωp .
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A function f lies in the Sobolev space ( )W V
*

Ω; *
p1, if ( )∈f L VΩ; *

p , and for every =j n1,…, , there is a
function ( )∈f L V

*
Ω; *

j

p such that

( ) ( ) ( ) ( ) ( )∫ ∫∂
∂

⋅ = − ⋅ ∈ ∞φ

x
x f x x φ x f x x φ Cd d for every Ω

j
j

Ω Ω

0

in the sense of Gelfand integrals.

The main difference between W
*

p1, and W p1, is that for W
*

p1, the weak derivatives do not need to be
measurable and instead one only assumes weak* measurability. In particular, the functions f

j
in Definition

1.3 do not need to be Bochner integrable. Our secondmain result shows thatW
*

p1, indeed gives the right Sobolev
space.

Theorem 1.4. Let �⊂Ω n be open, Y be a separable Banach space, and [ )∈ ∞p 1, . Then

( ) ( )=W Y R Y
*

Ω; * Ω; * .
p p1, 1,

Thus, for a bounded Ω and a separable metric space X , one can define ( )W X
*

Ω;
p1, as the set of those

functions →f X: Ω such that ( ℓ )∘ ∈ ∞κ f W
*

Ω;
p1, and deduce that

( ) ( )=W X R X
*

Ω; Ω; .
p p1, 1, (1.2)

Indeed, in our subsequent paper [10], we extend Theorem 1.4 to arbitrary Banach spacesY and hence deduce a
equality similar to (1.2) for all complete metric spaces X .

We believe that essentially all results in the previous studies [4,5,11,17,18,20,21,30] become true if one
respectively replaces ( )W XΩ;p1, by ( )W X

*
Ω;

p1, and that the proofs apply up to straightforward adjustments.
An advantage of our definition of ( )W X

*
Ω;

p1, over the other equivalent definitions of metric space-valued
Sobolev maps is that it gives a characterization in terms of actual linear differentials and not just upper
gradients, metric differential seminorms, or alike. It might seem that such linear differentials are somewhat
artificial in the context of general metric target spaces. However, indeed, there are some nice arguments and
constructions that heavily rely on this sort of objects [3,11,18,24].

1.3 Organization

First, in Section 2, we will go through some auxiliary results and definitions concerning the calculus of
functions with values in Banach spaces. More precisely, in Sections 2.1 and 2.2, we discuss different notions
concerning measurability and integrals of Banach space-valued functions. Then in Section 2.3 we study some
basic properties of the weak* derivatives of absolutely continuous curves in dual-to-separable Banach spaces.
Section 3 is dedicated to Sobolev maps with values in Banach spaces and more particularly the proof of
Theorem 1.4. To this end, we will consider an auxiliary space ( )R Y

*
Ω; *

p1, whose definition interpolates
between the definitions of ( )R YΩ; *

p1, and ( )W Y
*

Ω; *
p1, . In Sections 3.1 and 3.2, we then respectively prove

the equalities =R R
*

p p1, 1, and =R W
* *

p p1, 1, . The more original part here is the proof of the equality =R R
*

p p1, 1,

since the proof of =R W
* *

p p1, 1, is very much along the lines of the intended proof of =W Rp p1, 1, in the study by
Hajłasz and Tyson [21]. In Section 4, we discuss Sobolev functions with values in a metric space X . First, in
Section 4.1, we shortly introduce the Sobolev spaces ( )W X

*
Ω;

p1, . Then, in Section 4.2, we focus on ( )W XΩ;p1,

and prove Theorem 1.2. The proof here is a slightly involved argument that exploits the strange analytic
properties of the Kuratowski embedding.
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2 Calculus of Banach space-valued functions

During this section, let �⊂E n be Lebesgue measurable and V be a Banach space.

2.1 Measurability of Banach space-valued functions

We call a function →f E V: measurable if it is measurable with respect to the Borel σ -algebra on V and the
σ -algebra of Lebesgue measurable subsets on E . It is called weakly measurable if ⟨ ( )⟩↦x v f x*, defines a
measurable function �→E for every ∈v V* * and essentially separably valued if there is a null set ⊂N E such
that ( )f E N\ is separable. Trivially measurability implies weak measurability. If additionally one assumes that
f is essentially separably valued then, by Pettis’ measurability theorem, also the converse implication holds,
see [23, Section 3.1]. In general, however, weakly measurable functions do not need to be measurable, see [23,
Remark 3.1.3].

A function →f E V: is called approximately continuous at ∈x E if for every >ε 0 one has

�

�

({ ( ) ‖ ( ) ( )‖ })

( ( ))

∈ ∩ − ≥
=

↓

y B x r E f y f x ε

B x r
lim

, :

,
0.

r

n

n
0

The following characterization of measurability will be important in the proof of Theorem 1.2.

Theorem 2.1. ([14], Theorem 2.9.13) Let →f E V: be essentially separably valued. Then f is measurable if and
only if f is approximately continuous at a.e. ∈x E .

A function →f E V: * is called weak*measurable if ⟨ ( )⟩↦x v f x, defines a measurable function �→E for
every ∈v V . We will need the following slight strengthening of Pettis’ theorem.

Lemma 2.2. Let →f E V: * be essentially separably valued. Then f is measurable if and only if f is weak*
measurable.

Proof. Clearly measurable functions are weak* measurable. So we only prove the other implication. By
assumption, there is a null set ⊂N E such that ( )f E N\ is separable. Let { }=D v v*, *, …1 2 be a countable dense
subset in ( )f E N\ . Then −D D is a countable dense subset of the difference set ( ) ( )−f E N f E N\ \ . By definition

of the dual norm for every �∈i j, , there is a sequence �( ) ∈vk

ij

k of unit vectors in V such that

⟨ ⟩ ‖ ‖− → − → ∞v v v v v k, * * * * as .k

ij

i j i j

Thus, it follows from the weak* measurability of f that for every �∈i the function

�

‖ ( ) ‖ ⟨ ( )⟩↦ − = −
∈

x f x v v v f x* sup , *
i

j k

k

ij

i

,

is measurable. In particular, ( )−f B1 is measurable for every open ball ⊂B V * with center in D.
Let ⊂U V * be open. Then there is a countable collection �( ) ∈Bi i of balls in V * with centers in D such that

�

( ) ( ) ( )∩ = ∩ ⋃
∈

f E N U f E N B\ \ ,
i

i

and hence,

�

( ) ( ( ))∪ = ⋃ ∪−
∈

−f U N f B N .
i

i
1 1 (2.1)

Since � ( )⋃ ∈
−f Bi i

1 is Lebesgue measurable and N is a null set, (2.1) implies that ( )−f U1 is Lebesgue measurable.
The open subsets generate the Borel σ -algebra of V , so we conclude that f is measurable. □

4  Paul Creutz and Nikita Evseev



2.2 Integrals of Banach space-valued functions

A function →f E V: is called simple if there are measurable subsets E E,…, k1 of E and vectors v v,…, k1 in V

such that = ∑ ⋅=f χ vi

k

E i1 i
. If f is simple and all the subsets Ei are of finite�n-measure, then f is called integrable

and one defines the integral of f as follows:

�( ) ( )∫ ∑≔ ⋅
=

f x x E vd .

E
i

k

n
i i

1

A function →f E V: is called Bochner integrable if there are integrable simple functions �( )→ ∈f E V:
k k such

that

‖ ( ) ( )‖∫ − =
→∞

f x f x xlim d 0.
k

E

k

The Bochner integral of such Bochner integrable function f is defined as follows:

( ) ( )∫ ∫≔
→∞

f x x f x xd lim d .

E
k

E

k

Indeed, a function f is Bochner integrable if and only it lies in the space ( )L E V;1 introduced in Definition 1.1,
see [23, Proposition 3.2.7]. Furthermore, if f is Bochner integrable and ∈v V* *, then ⟨ ( )⟩↦x v f x*, is integr-
able and

⟨ ( ) ⟩ ⟨ ( )⟩∫ ∫=v f x x v f x x*, d *, d .

E E

(2.2)

The Bochner integral is arguably the most popular notion concerning integrals of Banach space-valued
functions. However, its limitation to essentially separably valued measurable functions is somewhat to rigid
for our purposes. Instead we will often work with the so-called Gelfand integral which is a weak* variant of the
more well-known Pettis integral that is defined for weakly measurable functions. It goes back to the study by
Gelfand [15] and can be defined in terms of the following lemma. See also the study by Diestel and Uhl [12,
p. 53].

Lemma 2.3. Let →f E V: * be a weak*measurable function such that for every ∈v V the function ⟨ ( )⟩↦x v f x,

lies in ( )L E1 . Then there is a unique vector ∈v V* *f such that

⟨ ⟩ ⟨ ( )⟩∫= ∈v v v f x x for every v V, * , d .f

E

Proof. First, we claim that the operator ( )→T V L E: 1 defined by ⟨ ⟩=Tv v f, is continuous. To this end, let
�( ) ∈v Tv,k k k belong to the graph of T . Suppose that →v vk in V and →Tv gk in ( )L E1 . Then there is a subse-

quence �( ) ∈Tvk mm
, which converges a.e. on E to g . In particular,

( ) ( ) ⟨ ( )⟩ ⟨ ( )⟩ ( )( )= = = =
→∞ →∞

g x Tv x v f x v f x Tv xlim lim , ,
m

k
m

km m

for a.e. ∈x Ω. Hence, the linear operator T has a closed graph and the closed graph theorem implies that T is
continuous.

Thus, for every ∈v V , one has

⟨ ( )⟩ ‖ ‖ ‖ ‖ ‖ ‖∫ ≤ ≤ ⋅v f x x Tv T v, d .

E
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This shows that the functional v*
f given by ( ) ⟨ ( )⟩∫≔v v v f x x* , df E

is continuous and hence completes the
proof. □

Functions →f E V: * that meet the assumptions of Lemma 2.3 are called Gelfand integrable, and for such
f , the arising functional v*

f is called the Gelfand integral of f . By (2.2) and Lemma 2.3, if →f E V: * is Bochner

integrable, then f is Gelfand integrable and ( )∫ =f x x vd *
E f . Hence, we will not create ambiguity when we also

denote Gelfand integrals by ( )∫ f x xd
E

instead of v*
f . Note that if �⊂Ω n is open and ( )∈f L V

*
Ω; *

p , then ⋅φ f is
Gelfand integrable for every ( )∈ ∞

φ C Ω0 , and hence, the Gelfand integrals that appear in Definition 1.3 are well-
defined.

2.3 Absolutely continuous curves in Banach spaces

Recall that a function �[ ] →f a b: , is called absolutely continuous when it satisfies the fundamental theorem
of calculus. That is when f is differentiable almost everywhere, the derivative ′f is Lebesgue integrable and

( ) ( ) ( )∫− = ′f t f a f s sd

a

t

for every [ ]∈t a b, . The length of a continuous curve [ ] →γ a b V: , is defined as follows:

( ) ‖ ( ) ( )‖∑≔ −
=

−l γ γ t γ tsup

i

n

i i

1

1

where the supremum ranges over all �∈n and all = ≤ ≤⋯≤ =a t t t bn0 1 . The curve γ is called rectifiable if
( )l γ is finite. For a rectifiable curve γ, we define its length function [ ] [ ( )]→s a b l γ: , 0,γ by

( ) ( ∣ )[ ]=s t l γ .γ a t,

The length function gives rise to a unique curve [ ( )] →γ l γ V¯ : 0, such that

∘ =γ s γ¯ .γ

The curve γ̄ is called the unit-speed parametrization of γ because one has for every [ ( )]∈t l γ0, that

( ∣ )[ ] = −l γ t a¯ .a t,

A curve [ ] →γ a b V: , is called absolutely continuous if it is rectifiable and the length function sγ is
absolutely continuous. Absolutely continuous curves in a Banach space V do not need to be differentiable
almost everywhere unlessV has the Radon-Nikodým property. Nevertheless, ifV is dual to a separable Banach
space then absolutely continuous curves in V are weak* differentiable almost everywhere in the sense of the
following lemma.

Lemma 2.4. [21, Lemma 2.8] Let Y be a separable Banach space. Then for every absolutely continuous curve
[ ] →γ a b Y: , *, there is a weak* measurable function [ ]′ →γ a b Y: , * such that for almost every [ ]∈t a b, and

every ∈y Y , one has

( ) ( )
⟨ ( )⟩

+ −
→ ′ →y

γ t h γ t

h
y γ t as h, , 0. (2.3)

If [ ]∈t a b, is such that (2.3) holds for every ∈y Y , then γ is called weak* differentiable at t and ( )′γ t is
called the weak* derivative of γ at t. By the next two lemmas, weak* derivatives have desirable analytical and
metric properties.
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Lemma 2.5. Let Y be a separable Banach space and [ ] →γ a b Y: , * be absolutely continuous. Then for every
(( ))∈ ∞

φ C a b,0 , one has

( ) ( ) ( ) ( )∫ ∫∂
∂

⋅ = − ⋅ ′
φ

t
t γ t t φ t γ t td d

a

b

a

b

(2.4)

in the sense of Gelfand integrals.

Lemma 2.11 in the study by Hajłasz and Tyson [21] claims that equality (2.4) holds in the sense of Bochner
integrals. In general, however, as the subsequent example shows, the weak* derivative of an absolutely
continuous curve in Y * does not need to be essentially separably valued, and hence, the Bochner integral

( ) ( )∫ ⋅ ′φ t γ t td
a

b

may not be defined.

Example 2.6. Consider the curve [ ] ([ ])→ ∞γ L: 0, 1 0, 1 given by ( ( ))( ) ∣ ∣= −γ t s t s . Then γ is an isometric
embedding and hence in particular absolutely continuous. Further, γ is weak* differentiable at every

[ ]∈t 0, 1 with weak* derivative
( )

( ) ( )
′ = − +γ t χ χ .

t t0, ,1

Thus,

‖ ( ) ( )‖′ − ′ =∞γ s γ t 2

for every ≠t s, and hence, [ ] ([ ])′ → ∞γ L: 0, 1 0, 1 cannot be essentially separably valued.

Proof of Lemma 2.5. Let (( ))∈ ∞
φ C a b,0 and ∈y Y . For [ ]∈t a b, , we will denote ( ) ⟨ ( )⟩≔γ t y γ t,

y
. Then

�[ ] →γ a b: ,
y

is absolutely continuous and, by the classical product rule,

( ) ( ) ( ) ( )∫ ∫∂
∂

⋅ = − ⋅ ′
φ

t
t γ t t φ t γ t td d .

a

b

y

a

b

(2.5)

Furthermore by (2.3) for almost every [ ]∈t a b, , one has

⟨ ( )⟩ ( )′ = ′y γ t γ t, . (2.6)

By (2.5) and (2.6), and because ∈y Y was arbitrary, we conclude equality (2.4). □

Lemma 2.7. Let Y be a separable Banach space. If [ ] →γ a b Y: , * is absolutely continuous, then

‖ ( )‖
‖ ( ) ( )‖

∣ ∣
( )′ =

+ −
= ′

→
γ t

γ t h γ t

h
s tlim

h
γ

0

for almost every [ ]∈t a b, .

Proof. Assume [ ]∈t a b, is such that sγ is differentiable at t and that γ is weak* differentiable at t. Then for
every ∈y Y with ‖ ‖ ≤y 1, one has

⟨ ( )⟩
( ) ( ) ‖ ( ) ( )‖

∣ ∣
′ =

+ −
≤

+ −
→ →

y γ t y
γ t h γ t

h

γ t h γ t

h
, lim , liminf ,

h h0 0

and hence,

‖ ( )‖
‖ ( ) ( )‖

∣ ∣
′ ≤

+ −
→

γ t
γ t h γ t

h
liminf .

h 0

(2.7)

Furthermore,

‖ ( ) ( )‖

∣ ∣

( ∣ )

∣ ∣
( )

[ ]+ −
≤ = ′

→ →

+γ t h γ t

h

l γ

h
s tlimsup limsup .

h h

t t h

γ

0 0

, (2.8)
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To prove the reverse inequalities, let [ ]∈t t a b, ¯ , with <t t̄ . Then for every ∈y Y with ‖ ‖ ≤y 1, one has

⟨ ( ) ( )⟩ ⟨ ( )⟩ ‖ ( )‖∫ ∫− = ′ ≤ ′y γ t γ t y γ r r γ r r, ¯ , d d ,

t

t

t

t¯ ¯

and thus,

‖ ( ) ( )‖ ‖ ( )‖∫− ≤ ′γ t γ t γ r r¯ d .

t

t̄

Since t and t̄ were arbitrary, we conclude that

( ) ( ) ‖ ( )‖∫ ∫′ = ≤ ′s r r l γ γ r rd d .

a

b

γ

a

b

(2.9)

Equations (2.7), (2.8), and (2.9) together imply the claim. □

3 Banach space-valued Sobolev maps

Throughout this section, let �⊂Ω n be open, V be a Banach space, Y be a separable Banach space,
and [ )∈ ∞p 1, .

3.1 The Reshetnyak-Sobolev space

The following definition of first-order Sobolev functions with values in Banach spaces goes back to the study by
Reshetnyak [26].

Definition 3.1. The Reshetnyak-Sobolev space ( )R VΩ;p1, consists of those functions ( )∈f L VΩ;p such that:
(A) for every ∈v V* * the function ⟨ ( )⟩↦x v f x*, lies in the classical Sobolev space �( ) ( )≔W WΩ Ω;p p1, 1, ;
(B) there is a function ( )∈g L Ωp such that for every ∈v V* *, one has

∣ ⟨ ( )⟩∣ ‖ ‖ ( )∇ ≤ ⋅ ∈v f x v g x x*, * for a.e. Ω.

A function g as in (B) will be called a weak upper gradient of f . A seminorm is defined on ( )R VΩ;p1, by

‖ ‖ ‖ ( )‖ ‖ ‖∫≔
⎛

⎝
⎜

⎞

⎠
⎟ +

∕

f f x x gd inf ,R
p

p

g
L

Ω

1

p p1,

where g ranges over all weak upper gradients of f .

Indeed, Definition 3.1 is a variation on the original definition by Reshetnyak. The reason for the present
choice of definition is that, in contrast to the definition in [26], it also allows for unbounded domains Ω. This
extension is possible because we limit ourselves here to map with values in Banach spaces, while Reshetnyak
considers general metric target spaces. In any case, the two definitions are equivalent if Ω is a bounded
domain, see [21, Lemma 2.16] and [26, Theorem 5.1].

To prove that ( )R YΩ; *
p1, equals ( )W Y

*
Ω; *

p1, , we will work with the following auxiliary definition that
interpolates between the two spaces.

Definition 3.2. The space ( )R V
*

Ω; *
p1, consists of those functions ( )∈f L VΩ; *

p such that:
(A*) for every ∈v V the function ⟨ ( )⟩↦x v f x, lies in ( )W Ωp1, ;
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(B*) there is a function ( )∈g L Ωp , such that for every ∈v V , one has

∣ ⟨ ( )⟩∣ ‖ ‖ ( )∇ ≤ ⋅ ∈v f x v g x x, for a.e. Ω.

A function g as in (B*) will be called a weak* upper gradient of f . A seminorm is defined on ( )R V
*

Ω; *
p1, by

‖ ‖ ‖ ( )‖ ‖ ‖∫≔
⎛

⎝
⎜

⎞

⎠
⎟ +

∕

f f x x gd inf ,R
p

p

g
L

Ω

1

*

p p1,

where g ranges over all weak* upper gradients of f .

We will denote by ( )ACL Ω the collection of all functions �→f : Ω for which the restriction of f to almost
every compact line segment, that is contained in Ω and parallel to some coordinate axis, is absolutely con-
tinuous. Recall that every real-valued Sobolev function in ( )∈f W Ωp1, has a representative ( )͠ ∈f ACL Ω . The
following lemma shows that similar is true for functions in ( )R Y

*
Ω; *

p1, .

Lemma 3.3. Let V be a Banach space and ( )∈f R V
*

Ω; *
p1, . Then for every { }∈j n1, …, , the function f has a

representative f͠
j that is absolutely continuous on almost every compact line segment which is contained in Ω

and parallel to the xj-axis. Moreover, for every weak* upper gradient g of f, one has

‖ ( ) ( )‖

∣ ∣
( )

+ −
≤ ∈

→

f x he f x

h
g x for a e xlim

˜ ˜

. . Ω.
h

j

j

j

0

(3.1)

Lemma 3.3 generalizes Lemma 2.13 in the study by Hajłasz and Tyson [21] from R p1, to R
*

p1, . A posteriori
Proposition 3.4 will show that this is not a proper generalization.

Proof. Fix { }∈j n1, …, and a weak* upper gradient g of f . Since ( )∈f L VΩ; *
p , there is a nullset ⊂Σ Ω0 such

that ( )f Ω\Σ0 is separable. Let �( ) ∈v*
i i be a dense sequence in the difference set ( ) ( )−f fΩ\Σ Ω\Σ0 0 . For each

�∈i , let �( ) ∈vik k be a sequence of unit vectors in V such that ‖ ‖ ⟨ ⟩= →∞v v v* lim , *
i k ik i . Then for every �∈i k, ,

one has ⟨ ⟩ ( )∈v f W, Ωik
p1, and

∣ ⟨ ( )⟩∣ ( )∇ ≤ ∈v f x g x x, for a.e. Ω.ik (3.2)

Denote by f
ik
a representative of ⟨ ⟩v f,ik that is in ( )ACL Ω and by Σik the null set on which f

ik
differs from

⟨ ⟩v f,ik . Then for almost every line segment [ ] →l a b: , Ω that is parallel to the xj-axis, one has:
(i) g is integrable over l;
(ii) � ( )∩ =l Σ 01 where = ∪ ⋃Σ Σ Σi k ik0 , ;
(iii) for every �∈i k, and every ≤ ≤ ≤a s t b

∣ ( ( )) ( ( ))∣ ( ( ))∫− ≤f l t f l s g l τ τd .
ik ik

s

t

The Fubini theorem ensures (i) and (ii), while (iii) follows by (3.2).
Let [ ] →l a b: , Ω be a line segment parallel to the xj-axis for which the properties (i), (ii), and (iii) are

satisfied. For given ( )∈ −s t l, Ω\Σ1 with ≤s t, there is a subsequence ( )v *
im

that converges to ( ( )) ( ( ))−f l t f l s in
V *. Thus, we have

‖ ( ( )) ( ( ))‖ ‖ ‖ ⟨ ⟩

(⟨ ( ( ( )) ( ( )))⟩ ⟨ ( ( )) ( ( ))⟩)

(‖ ( ( ( )) ( ( )))‖ ∣ ( ( )) ( ( ))∣)

( ( ))∫

− = =

= − − + −

≤ − − + −

≤

→∞ →∞ →∞

→∞ →∞

→∞ →∞

f l t f l s v v v

v v f l t f l s v f l t f l s

v f l t f l s f l t f l s

g l τ τ

lim * lim lim , *

limsup limsup , * ,

limsup limsup *

d .

m
i

m k
i k i

m k

i k i i k

m k

i i k i k

s

t

m m m

m m m

m m m
(3.3)
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In particular, by properties (i) and (ii), and inequality (3.3), the restriction of f to l has a unique � 1-repre-
sentative that is absolutely continuous. The uniqueness implies that these representatives coincide where
different line segments overlap. Hence, we conclude that f has a representative f͠

j that is absolutely con-
tinuous on every compact line segment l that satisfies the properties (i), (ii), and (iii). Furthermore, by (3.3) for
every such l, one has

‖ ( ( )) ( ( ))‖ ( ( ))͠ ͠ ∫− ≤f l t f l s g l τ τd ,
j j

s

t

and hence, we conclude that (3.1) is satisfied. □

Given that in general ( )W V
*

Ω; *
p1, does not equal ( )W VΩ; *

p1, , the following proposition might be a bit
surprising.

Proposition 3.4. Let V be a Banach space. Then

( ) ( )=R V R V
*

Ω; * Ω; *
p p1, 1,

with ‖ ‖ ‖ ‖ ‖ ‖⋅ ≤ ⋅ ≤ ⋅nR R R
* *

p p p1, 1, 1, .

Proof. Trivially ( ) ( )⊆R V R VΩ; *
*

Ω; *
p p1, 1, , and ‖ ‖ ‖ ‖≤f fR R

*

p p1, 1, for functions ( )∈f R VΩ; *
p1, . For the other

inclusion, let ( )∈f R V
*

Ω; *
p1, and g be a weak* upper gradient of f . Since ( )∈f L VΩ; *

p , for ∈v V** **,

the function ⟨ ⟩=f v f**,**v
lies in ( )L Ωp . For { }∈j n1, …, let f͠

j be a representative of f as in Lemma 3.3.

Then ⟨ ⟩͠ ͠≔f v f**,
**v

j j is a representative of f **v
that is absolutely continuous on almost every compact line

segment parallel to the xj-axis. Thus, f͠
**v

j

is almost everywhere partial differentiable in the xj-direction. By the
product rule and the Fubini theorem, it follows that

( ) ( ) ( ) ( ) ( ) ( )͠

͠

∫ ∫ ∫∂
∂

⋅ =
∂
∂

⋅ = ⋅
∂
∂

φ

x
x f x x

φ

x
x f x x φ x

f

x
x xd d d** **

**

j
v

j
v

j v

j

j
Ω Ω Ω

for every ( )∈ ∞
φ C Ω0 . In particular,

͠∂
∂
f

x

v

j

j

** is a j-th weak partial derivative of f **v
. Furthermore, by Lemma 3.3, at

almost every ∈x Ω, one has

( )
‖ ( ) ( )‖

∣ ∣
( )

͠∂
∂

≤
+ −

≤
→

f

x
x

f x he f x

h
g xlim

˜ ˜
**v

j

j h

j

j

j

0

and hence,

∣ ( )∣ ( ) ( )

͠

∑∇ =
⎛

⎝
⎜⎜

⎛

⎝
⎜
∂
∂

⎞

⎠
⎟

⎞

⎠
⎟⎟ ≤ ⋅

=

∕

f x

f

x
x n g x .**

**

v

j

n

v

j

j1

2 1 2

Since ∈v V** ** and the weak* upper gradient ( )∈g L Ωp were arbitrary, we conclude that ( )∈f R VΩ; *
p1, and

‖ ‖ ‖ ‖≤ ⋅f n f .R R
*

p p1, 1,

This completes the proof. □

3.2 The Sobolev space W
*

p1,

Let ( )∈f W V
*

Ω; *
p1, . We will denote by ∂ fj the function f

j
as in Definition 1.3 and call the vector

( ) ( ( ) ( ))∇ = ∂ ∂f x f x f x, …, n1 the weak* gradient of f at ∈x Ω. Further, we define
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∣ ( )∣ ‖ ( )‖∑⎜ ⎟∇ ≔
⎛
⎝

∂
⎞
⎠=

∕

f x f x

i

n

i

1

2

1 2

and a seminorm on ( )W V
*

Ω;
p1, by

‖ ‖ ‖ ( )‖ ∣ ( )∣∫ ∫≔
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜ ∇

⎞

⎠
⎟

∕ ∕

f f x x f x xd dW
p

p

p

p

Ω

1

Ω

1

*

p1,

Proposition 3.5. Let Y be a separable Banach space. Then

( ) ( )=W Y R Y
*

Ω; *
*

Ω; *
p p1, 1,

with ‖ ‖ ‖ ‖ ‖ ‖⋅ ≤ ⋅ ≤ ⋅nR W R
* * *

p p p1, 1, 1, .

Proof. Let ( )∈f W Y
*

Ω; *
p1, . Since ( )∈f L YΩ; *

p , we know that for ∈y Y the function ⟨ ⟩≔f y f,
y

lies in ( )L Ωp .
Further, by definition of the Gelfand integral, for { }∈j n1, …, , the function ⟨ ⟩∂y f, j is a jth weak partial
derivative of f

y
. Hence, ( )∈f W Ω

y

p1, and

∣ ( )∣ ⟨ ( )⟩ ‖ ( )‖ ‖ ‖ ∣ ( )∣ ‖ ‖∑ ∑∇ =
⎛

⎝
⎜ ∂

⎞

⎠
⎟ ≤

⎛

⎝
⎜ ∂ ⋅

⎞

⎠
⎟ = ∇ ⋅

=

∕

=

∕

f x y f x f x y f x y,
y

j

n

j

j

n

j

1

2

1 2

1

2 2

1 2

for a.e. ∈x Ω. In particular, ( )∈f R Y
*

Ω; *
p1, and ∣ ∣∇f is a weak* upper gradient of f . The latter also

implies ‖ ‖ ‖ ‖≤f fR W
* *

p p1, 1, .
Now, for the other inclusion, let ( )∈f R Y

*
Ω; *

p1, and g be a weak* upper gradient of f . For { }∈j n1, …, , let

f͠
j be a representative of f as in Lemma 3.3. Define ( )f x

j
as the weak* partial derivative ( )

͠∂
∂ x
f

x

j

j

, which is

defined almost everywhere due to Lemma 2.4. Then the function →f Y: Ω *
j

is weak* measurable. Further-
more, by Lemma 2.5 and the Fubini theorem, for every ( )∈ ∞

φ C Ω0 , one has

( ) ( ) ( ) ( ) ( ) ( )͠∫ ∫ ∫∂
∂

⋅ =
∂
∂

⋅ = − ⋅
φ

x
x f x x

φ

x
x f x x φ x f x xd d d

j j

j

j

Ω Ω Ω

(3.4)

in the sense of Gelfand integrals. Also, by Lemmas 2.7 and 3.3,

‖ ( )‖ ( )≤ ∈f x g x xfor a.e. Ω.
j

In particular, since ( )∈g L Ωp , we conclude that ( )∈f L Y
*

Ω; *
j

p and hence by (3.4) that ( )∈f W Y
*

Ω; *
p1, with

∣ ( )∣ ‖ ( )‖ ( )∑∇ =
⎛

⎝
⎜

⎞

⎠
⎟ ≤ ⋅

=

∕

f x f x n g x

j

n

j

1

2

1 2

for almost every ∈x Ω. Since g was an arbitraryweak* upper gradient of f , it also follows that‖ ‖ ‖ ‖≤f n fW R
* *

p p1, 1, . □

Propositions 3.4 and 3.5 together imply the following quantitative version of Theorem 1.4.

Theorem 3.6. Let Y be a separable Banach space. Then

( ) ( )=W Y R Y
*

Ω; * Ω; *
p p1, 1,

with ‖ ‖ ‖ ‖ ‖ ‖⋅ ≤ ⋅ ≤ ⋅n
n R W R

1

*

p p p1, 1, 1, .

It has been shown by Caamaño et al. [6] (see also [13]) that ( ) ( )=W V R VΩ; Ω;p p1, 1, if and only ifV has the
Radon-Nikodým property. Concerning Theorem 3.6, it seemed to be a natural conjecture that conversely the
equality ( ) ( )=W V R V

*
Ω; * Ω; *

p p1, 1, implies that V is separable. However, in our subsequent article [10], we
show that ( ) ( )=W V R V

*
Ω; * Ω; *

p p1, 1, for every Banach space V .
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4 Metric space-valued Sobolev maps

Throughout this section, let �⊂Ω n be a bounded domain, ( )=X X d, be a complete metric space and
[ )∈ ∞p 1, .

4.1 The Sobolev space (( ))W X
*

Ω;
p1,

The Reshetnyak-Sobolev space can be defined as follows:

( ) { ∣ ( )}≔ → ∘ ∈R X f X ι f R VΩ; : Ω Ω; ,p p1, 1,

where →ι X V: is any fixed isometric embedding of X into a Banach spaceV . By the following example, such
embedding ι always exists.

Example 4.1. Let X be a metric space. Denote by ℓ ( )∞ X the Banach space of bounded functions �→f X: with
norm given by

‖ ‖ ∣ ( )∣≔∞
∈

f f zsup .

z X

Then for given ∈z X0 the function ℓ ( )→ ∞κ X X¯ : given by

( ( ))( ) ( ) ( )≔ −κ z w d z w d w z¯ , , 0

defines an isometric embedding [22, p. 5].

Furthermore, under the present assumption that Ω is bounded, the definition of ( )R XΩ;p1, does not
depend on the chosen embedding ι and is equivalent to the original definition by Reshetnyak, see [21, Lemma
2.16] and [26, Theorem 5.1]. Thus, Theorem 1.4 has the following consequence.

Theorem 4.2. Let �⊂Ω n be a bounded domain, X be a complete metric space, Y be a separable Banach space,
and →ι X Y: * be an isometric embedding. Then

( ) { ∣ ( )}= → ∘ ∈R X f X ι f W YΩ; : Ω
*

Ω; * .p p1, 1,

Certainly not every metric space X isometrically embeds into the dual of a separable Banach space. A
simple obstruction is the cardinality of X , which must be bounded above by 22

ω

. For a separable metric space
X , however, due to the following example, there is always an isometric embedding as in Theorem 4.2.

Example 4.3. Let X be a separable metric space and �( ) ∈zi i be a dense sequence of points in X . Denote
�ℓ ℓ ( )≔∞ ∞ . Then ℓ∞ is the dual of the separable Banach space �ℓ ℓ ( )≔1 1 . The function ℓ→ ∞κ X: given by

�( ) ( ( ) ( ))≔ − ∈κ z d z z d z z, ,i i i1

is called the Kuratowski embedding of X . It is not hard to check that κ defines an isometric embedding
[22, p. 11].

Thus, for a bounded domain Ω and a complete separable metric space X , one can define

( ) { ∣ ( ℓ )}≔ → ∘ ∈ ∞W X f X κ f W
*

Ω; : Ω
*

Ω;
p p1, 1, (4.1)

and deduce from Theorem 4.2 that ( ) ( )=W X R X
*

Ω; Ω;
p p1, 1, . The assumption that Ω is bounded is needed to

ensure that ( )W X
*

Ω;
p1, is well-defined by means of (4.1) and does not depend on the concrete choice of

Kuratowski embedding. For a nonseparable complete metric space X , one can define ( )W X
*

Ω;
p1, as the union

of the spaces ( )W S
*

Ω;
p1, , where S ranges over all separable closed subsets of X . Since Sobolev functions are

essentially separably valued, also for such nonseparable X , Theorem 4.2 implies that ( ) ( )⊂W X R X
*

Ω; Ω;
p p1, 1,

and that every function in ( )R XΩ;p1, has a representative in ( )W X
*

Ω;
p1, .

12  Paul Creutz and Nikita Evseev



4.2 The Sobolev space (( ))W XΩ,
p1,

The aim of this subsection is to prove Theorem 1.2. To this end, let X be a complete separable metric space,
�( ) ∈xi i be a dense sequence of points in X and ℓ→ ∞κ X: be the corresponding Kuratowski embedding. The

key step for the proof is the following lemma.

Lemma 4.4. If [ ] ( ) ℓ→ ⊂ ∞γ a b κ X: , is a nonconstant absolutely continuous curve, then the weak* derivative
[ ] ℓ′ → ∞γ a b: , is not essentially separably valued.

Proof. Since γ is nonconstant we have ( )≔ >l l γ 0. As in Section 2.3, we factorize = ∘γ γ s¯ γ where
[ ] ( )→γ l κ X¯ : 0, is the unit-speed parametrization of γ and [ ] [ ]→s a b l: , 0,γ is the length function of γ. First,

we show that [ ] ℓ′ → ∞γ l¯ : 0, is not essentially separably valued.
By Lemma 2.7, for a.e. [ ]∈t l0, , one has that

‖ ( )‖
‖ ( ) ( )‖

∣ ∣
′ =

+ −
=∞

→

∞
γ t

γ t h γ t

h
¯ lim

¯ ¯
1.

h 0

(4.2)

Let E be the set of points ( )∈t l0,0 at which γ̄ is weak* differentiable and (4.2) holds. By Theorem 2.1, to show
that ′γ̄ is not essentially separably valued, it suffices to prove that ′γ̄ is not approximately continuous at
every ∈t E0 .

So fix ∈t E0 and let >h 00 be so small that for any �∈h with ∣ ∣ ≤h h0, one has

∣ ∣ ‖ ( ) ( )‖⋅ < + − ∞h γ t h γ t
1

2
¯ ¯ .0 0

(4.3)

Further, fix some arbitrary < <h h0 0 and accordingly choose �∈i such that

‖ ( ) ( )‖− ≤ ⋅∞κ x γ t h¯
1

8
.i 0

(4.4)

By Lemma 2.4 for every point [ ]∈t l0, at which γ̄ is weak* differentiable, one has

� �( ) ( ( )) ( ) ( ( ))′ = ′ =∈ ∈γ t γ t γ t γ t¯ ¯ where ¯ ¯i i i i

is the coordinate representation of γ̄ . From the fundamental theorem of calculus, the definition of the
Kuratowski embedding, (4.3) and (4.4), it follows that

( ) ( ) ( )

‖ ( ) ( )‖ ‖ ( ) ( )‖

∫ ′ = + −

= + − − −

≥ ⋅

+

∞ ∞

γ t t γ t h γ t

γ t h κ x γ t κ x

h

¯ d ¯ ¯

¯ ¯

1

4
.

t

t h

i i i

i i

0 0

0 0

0

0

Since ∣ ( )∣′ ≤γ t¯ 1
i

for a.e. t , this implies that

� ( ) ( ) ( )≥ ⋅ ≔
⎧
⎨
⎩

∈ + ′ ≥
⎫
⎬
⎭

+ +
F h F t t t h γ t

1

8
where , : ¯

1

8
.h h i

1
0 0

(4.5)

Similarly,

( )∫ ′ ≤ − ⋅
−

γ t t h¯ d
1

4
t h

t

i

0

0

and hence,

� ( ) ( ) ( )≥ ⋅ ≔
⎧
⎨
⎩

∈ − ′ ≤ −
⎫
⎬
⎭

− −
F h F t t h t γ t

1

8
, where , : ¯

1

8
.h h i

1
0 0 (4.6)
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Note that for every ∈ ∩+ +
t F Eh and ∈ ∩− −

t F Eh , one has

‖ ( ) ( )‖ ∣ ( ) ( )∣′ − ′ ≥ ′ − ′ ≥+ −
∞

+ −γ t γ t γ t γ t¯ ¯ ¯ ¯
1

4
.

i i
(4.7)

Since < <h h0 0 was arbitrary, (4.5), (4.6), and (4.7) together imply that ′γ̄ cannot be approximately continuous
at t0. In turn, because ∈t E0 was arbitrary, we conclude from Theorem 2.1 that ′γ̄ is not essentially separably
valued.

Now let [ ]⊂N a b, be an arbitrary nullset. We need to show that ([ ] )′γ a b N, \ is not separable. By Lemma
2.4, after possibly passing to a larger null set, we may assume that for every [ ]∈t a b N, \ , the curve γ is weak*
differentiable at t and the function sγ is differentiable at t . Note that

� ( ( )) ( )∫= ′s A s t tdγ

A

γ
1 (4.8)

for every measurable subset [ ]⊂A a b, . Thus, we may further assume that for every [ ]∈t a b N, \ , either γ̄ is
weak* differentiable at ( )s tγ or ( )′ =s t 0γ . In particular, it follows that

( )( ) ( ) ( )′ ∘ ⋅ ′ = ′γ s t s t γ t¯ γ γ (4.9)

on [ ]a b N, \ . By (4.8), one has that ( ) ({ })≔ ∪ ′ =M s N s s 0γ γ γ is a null set, and hence, ([ ] )′γ l M¯ 0, \ is not separable.
On the other hand, sγ is surjective, and hence, by (4.9) it follows that

�([ ] ) ⟨ ([ ] )⟩′ ⊂ ′γ l M γ a b N¯ 0, \ , \ ,

where �⟨ ([ ] )⟩′γ a b N, \ denotes the linear span of ([ ] )′γ a b N, \ in ℓ∞. In particular, the linear span of ([ ] )′γ a b N, \

is not separable, and hence, also ([ ] )′γ a b N, \ itself cannot be separable. □

Proof of Theorem 1.2. Let ( )∈f W XΩ;p1, . Then, by definition, ≔ ∘h κ f lies in ( ℓ )∞W Ω;p1, . Trivially, this
implies that ( ℓ )∈ ∞h W

*
Ω;

p1, and that ∂ hj lies in ( ) ( )⊂L X L XΩ;
*

Ω;p p for each j . Since ( ℓ )∞W
*

Ω;
p1, equals

( ℓ )∞R Ω;p1, , Lemma 3.3 implies that for each j , the function h has a representative h͠
j that is absolutely

continuous on almost every compact line segment parallel to the xj-axis. In particular, there is a null set
⊂N Ω such that ( )∂ h NΩ\j is separable for every j . Note that, since X is complete, for almost every compact line

segment [ ] →l a b: , Ω parallel to the xj-axis, the image ([ ])͠ ∘h l a b,
j must be contained in ( )κ X . Further, the

proof of Proposition 3.5 shows that, possibly enlarging N , we can assume that for each j , one has

( ) ( )

͠

∂ =
∂
∂

h x
h

x
xj

j

j

for every ∈x NΩ\ .
Assume f was not almost everywhere constant. SinceΩ is connected, this implies that there is some j such

that not for almost every line segment parallel to the xj-axis, the restriction of f to the line segment is constant.
Hence, we can find a line segment [ ] →l a b: , Ω such that
(i) � ( ([ ] ))∩ =l a b N, 01 ,

(ii) ([ ]) ( )͠ ∘ ⊂h l a b κ X,
j , and

(iii) ͠ ∘h l
j is absolutely continuous and nonconstant.

By Lemma 4.4, ( ) [ ] ℓ͠ ∘ ′ → ∞h l a b: ,
j cannot be essentially separably valued. This gives a contradiction because

( ) ( ) ( ( ))͠ ∘ ′ = ∂h l t h l t
j

j

for every ([ ])∈t l a b N, \ and ( )∂ h NΩ\j is separable. □
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