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Abstract

Brassica vegetable and oilseed crops are attacked by several different flea bee-
tle species (Chrysomelidae: Alticini). Over the past decades, most research
has focused on two Phyllotreta species, Phyllotreta striolata and Phyllotreta
cruciferae, which are major pests of oilseed rape in North America. More re-
cently, and especially after the ban of neonicotinoids in the EuropeanUnion,
the cabbage stem flea beetle, Psylliodes chrysocephala, has become greatly im-
portant and is now considered to be the major pest of winter oilseed rape
in Europe. The major challenges to flea beetle control are the prediction of
population dynamics in the field, differential susceptibility to insecticides,
and the lack of resistant plant cultivars and other economically viable alter-
native management strategies. At the same time, many fundamental aspects
of flea beetle biology and ecology, which may be relevant for the develop-
ment of sustainable control strategies, are not well understood. This review
focuses on the interactions between flea beetles and plants and summarizes
the literature on current management strategies with an emphasis on the
potential for biological control in flea beetle management.

199

mailto:lizhenyu@gdaas.cn
mailto:Ale.Costamagna@umanitoba.ca
mailto:franziska.beran@uni-jena.de
mailto:msyou@fafu.edu.cn
https://doi.org/10.1146/annurev-ento-033023-015753
https://doi.org/10.1146/annurev-ento-033023-015753
https://www.annualreviews.org/doi/full/10.1146/annurev-ento-033023-015753
https://creativecommons.org/licenses/by/4.0/


EN69CH11_Li ARjats.cls December 10, 2023 15:14

INTRODUCTION

Flea beetles (Chrysomelidae: Galerucinae: Alticini) of the genera Phyllotreta and Psylliodes are
major pests of Brassica crops worldwide. Research has focused primarily on three species, the
striped flea beetle (SFB),Phyllotreta striolata (F.); the crucifer flea beetle (CFB),Phyllotreta cruciferae
(Goeze); and the cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Figure 1). All of
them are considered Palearctic species, with SFB and CFB thought to have been introduced to
North America (91, 112). However, recent molecular phylogenetic analyses indicate that SFB is
in fact a Holarctic species (7).

SFB and CFB are major pests of spring oilseed rape (SOSR) in North America and occur sym-
patrically in most regions (113, 118). In Europe, several additional Phyllotreta spp. attack SOSR
and other Brassica crops,whereas CSFB is themajor flea beetle pest of winter oilseed rape (WOSR)
(85, 99). In many regions of Southeast Asia, SFB is the dominant flea beetle pest of Brassica
vegetables, although in some regions, other Phyllotreta species may be more important (7).

Flea beetle control relies mainly on conventional methods, with available insecticides having
limited efficacy due to the development of resistance in flea beetle populations (121, 140). In
addition, the complex biology and ecology of flea beetles make the development of alternative
management methods difficult. For example, adult flea beetles are highly mobile and can thus
not only move quickly from plant to plant but also escape from natural enemies (54). Phyllotreta
flea beetles additionally possess an effective host plant–derived chemical defense, which might
explain why some biological control agents are not effective (19, 122).Many aspects of flea beetle–
plant interactions, such as factors influencing host plant preference and performance, are not well
understood, despite their importance in the selection or development of flea beetle–resistant cul-
tivars. With a focus on the three key species introduced above and their impact on oilseed rape,
this review provides an overview of our current understanding of flea beetle–plant interactions
and management and identifies specific gaps in the current literature that are important for the
development of sustainable control strategies.

FLEA BEETLE DAMAGE IN OILSEED RAPE CROPS

The greatest economic damage in SOSR by Phyllotreta spp. is usually inflicted at the seedling stage
by adult feeding on cotyledons, stems, and leaves (29, 45, 84).Depending on the level of infestation,
flea beetle damage can cause uneven plant growth, delayed development, reduced yield, or even
seedling death (73). SOSR losses from Phyllotreta flea beetle damage are recurrent and result in
extensive use of insecticidal seed treatments in the Canadian prairies (113, 118), with an estimated
average of 10% yield losses per year and damage costs that may exceed $300 million annually in
North America (77).

In the case of CSFB, both adults and larvae can cause significant damage inWOSR, depending
on the immigration time and beetle density (99). Similar to Phyllotreta adults, intense CSFB adult
feeding can destroy seedlings, especially in dry conditions when plants are not able to compensate
for feeding damage. Greater economic importance is usually attributed to the feeding damage of
larvae, which mine in petioles and stems and may destroy the shoot apical meristem (99, 143).

FLEA BEETLE–PLANT INTERACTIONS

Host Plant Range

All three flea beetle species are specialists with a host plant range restricted to the Brassicaceae
family and a few species from closely related plant families of the order Brassicales (16, 49, 101).
Within Brassicales, flea beetles clearly discriminate among different plant species, with feeding
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a   Phyllotreta cruciferae (CFB)

b   Phyllotreta striolata (SFB)

c   Psylliodes chrysocephala (CSFB)
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Figure 1

Distribution of the
crucifer flea beetle
(CFB), Phyllotreta
cruciferae; the striped
flea beetle (SFB),
Phyllotreta striolata; and
the cabbage stem flea
beetle (CSFB),
Psylliodes chrysocephala,
based on the CABI
Digital Library
(https://www.
cabidigitallibrary.org)
and the EPPO Global
Database (https://gd.
eppo.int/).
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preferences depending additionally on plant developmental stage and beetle life stage, among
other factors (16, 59, 101, 137). Studies with CFB and SFB populations from North America sug-
gest that both species have similar host preferences, with CFB possibly being less discriminating
than SFB (76, 101).

Host plants of flea beetles containmustard-oil glucosides (glucosinolates),which, together with
plant β-thioglucosidase enzymes (myrosinases), form a two-component defense system charac-
teristic of Brassicales (21). Upon herbivory, glucosinolates are hydrolyzed by myrosinases to an
unstable aglucone intermediate from which different toxic and deterrent end products can arise.
Isothiocyanates are particularly harmful for nonadapted herbivores because they impair nutrition
and redox homeostasis (68, 69). Although specialist flea beetles are obviously adapted to this chem-
ical plant defense, there is evidence that high levels of myrosinase activity can negatively influence
CFB feeding in field conditions (93).

Flea Beetle Adaptations to the Glucosinolate–Myrosinase System

Recent research has demonstrated that Phyllotreta actively accumulate (sequester) ingested glu-
cosinolates up to 2% of their body weight. Additionally, they possess endogenous myrosinase
activity, which likely enables them to use sequestered glucosinolates for their own protection (19).
The closely related horseradish flea beetle (Phyllotreta armoraciae) also possesses a glucosinolate–
myrosinase system that was shown to protect larvae against a generalist predator (122). The
sequestration of ingested glucosinolates is presumably facilitated by a rapid glucosinolate uptake
mechanism and manipulation of plant myrosinase activity in the beetle gut, which may at least
partially prevent glucosinolate hydrolysis by plant myrosinases (123, 151).

CSFB adults and larvae can also sequester ingested glucosinolates, but glucosinolate levels
in this species are much lower than in Phyllotreta. Furthermore, there was no evidence for en-
dogenous myrosinase activity in CSFB, which is therefore unlikely to benefit from sequestered
glucosinolates as do Phyllotreta spp. (20). In addition to sequestration, CSFB adults are able to
detoxify glucosinolates by enzymatic desulfation, whereas no glucosinolate sulfatase activity was
detectable in Phyllotreta spp. (2, 19, 20). Although CSFB can prevent glucosinolate hydrolysis by
plant myrosinases through sequestration and desulfation, some ingested glucosinolates are still
hydrolyzed in the beetle gut, exposing adults to reactive isothiocyanates and other hydrolysis prod-
ucts. Isothiocyanates are mainly detoxified via the conservedmercapturic acid pathway, but the gut
microbiota can also contribute to isothiocyanate detoxification (20, 114).

Impact of Glucosinolates on Flea Beetle–Plant Interactions

Both glucosinolates and their hydrolysis products play additional roles in flea beetle ecology.
Glucosinolates stimulate flea beetle feeding (15, 63, 95) and are thus likely involved in host
plant recognition and acceptance. Volatile glucosinolate hydrolysis products are known to at-
tract Phyllotreta flea beetles and CSFB (49, 108). However, the doses of hydrolysis products
required to attract high flea beetle numbers greatly exceed those emitted by individual or small
groups of plants under natural conditions (108), making it unlikely that glucosinolate hydrolysis
products released by intact or damaged host plants are important cues for host finding.Neverthe-
less, isothiocyanate-baited traps are still useful for monitoring flea beetle abundance in the field
(139).

Several studies have investigated the impact of glucosinolates on host preference of flea bee-
tles, but their findings are inconsistent.While field experiments with different Brassica napus lines
revealed a positive correlation between CSFB feeding damage and total glucosinolate content in
leaves (56), laboratory bioassays found no relationship between glucosinolate content in B. napus

202 Li et al.



EN69CH11_Li ARjats.cls December 10, 2023 15:14

cotyledons and CSFB feeding (14). Moreover, the performance of CSFB larvae did not correlate
with total glucosinolate levels in different brassicaceous plants (43). For CFB adults, Brassica rapa
lines with intermediate glucosinolate contents showed the highest feeding damage in the field
(115), whereas Brassica juncea lines differing in glucosinolate contents by up to 17-fold showed
similar feeding damage (25). In addition, CFB adults did not discriminate between wild-type
Arabidopsis thaliana and a transgenic line with fourfold higher glucosinolate content (96).

Other Plant Defenses

Several other classes of secondary metabolites are known to influence flea beetle feeding behavior.
Cucurbitacins, cardiac glycosides, and saponins have been proposed to act as feeding deterrents
and to be responsible for antixenosis resistance of several plant species, including Iberis amara,
Erysimum spp., Lunaria annua, Thlaspi arvense, and Capsella bursa-pastoris (16, 49, 88, 95, 129).
There is also evidence that flavonoids play a role in flea beetle feeding (59, 78, 98). In tests with
commercially available flavonoid aglycones, some compounds deterred flea beetle feeding, while
others stimulated feeding (98).

Several plant species, including Crambe abyssinicaHochst, Camelina sativa L., and some Sinapis
alba L. cultivars, are not preferred by Phyllotreta flea beetles (5, 53, 64, 101, 107, 117), but the
traits that are responsible for antixenosis resistance have not yet been identified. Analyses of the
prefeeding behavior of CFB adults on host and nonhost plants suggest that volatile compounds
deter feeding on S. alba, whereas nonvolatile compounds deter feeding on C. abyssinica (61). In
a screening of 308 S. alba × B. napus hybrid lines obtained via embryo rescue, one line showed
increased resistance against flea beetle feeding (53), indicating that S. alba is a promising resource
for introgressing resistance into Brassica crops.

Leaf epicuticular waxes and trichomes are other traits that influence the susceptibility of plants
to flea beetle herbivory (24, 100, 121). Thick and continuous layers of wax on the leaf make it
difficult for the beetles to adhere to the surface and hinder access to nutritious leaf tissue (24, 46).
Similarly, the presence of trichomes on the leaf surface can act as a physical barrier (100, 121). In
laboratory and field experiments, CFB adults fed less on transgenic B. napus expressing Arabidopsis
GL3 with elevated trichome density on stems, petioles, and first and second true leaves than on
the corresponding wild type (61, 121). Simultaneous knockdown of the regulatory gene BnTTG1
resulted in a hairy B. napus line with yields that were comparable to those of the wild type in the
field (3).

In addition to constitutive plant resistance, plants may also induce a defense response, which
can deter herbivory or negatively affect herbivore performance. In Brassicaceae, the levels of
induced resistance were shown to vary considerably between different plant species and even be-
tween different trials. For example, induced resistance was observed in S. alba, but not in B. rapa
and B. juncea (23, 26, 102). In experiments using the same B. napus cultivar, two studies found
reduced CFB feeding on damaged seedlings (23, 26), whereas a third study found no significant
effects on damaged seedlings (102). In Brassica nigra, induced responses did not influence the feed-
ing rate of CFB adults but did result in higher mortality of CFB adults compared to control plants
(132). In addition, a weak negative impact on beetle growth was observed in one out of two mater-
nal families (132). In a field study with wild radish,Raphanus raphanistrum, induced plants suffered
increased flea beetle herbivory, suggesting that induced responses do not protect this plant against
flea beetles (1).

Aggregation Behavior

Phyllotreta flea beetles are known to aggregate on host plants, a behavior that is mediated by a
male-produced aggregation pheromone that attracts both males and females (18, 106). Beetle
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aggregations facilitate mate finding but may also be important in host plant location (51, 141).
In addition, a role in host plant utilization has been proposed based on the observation that CFB
adults feeding in groups consumed significantly more plant tissue per beetle compared to adults
feeding individually (107). The underlying mechanism is still unknown, but suppression of plant
defense responses could be one possible explanation.

Headspace analyses revealed that feeding males emit species-specific blends of sesquiterpenes
that may function as aggregation pheromone components (12, 13, 17, 18, 130). For example,
CFB males emit six different compounds (12), three of which elicited electrophysiological re-
sponses from beetle antennae (131). Synthetic blends comprising five out of six male-specific
compounds attractedmale and female CFB adults in field-trapping experiments inNorth America
(119), while studies with different subsets of these five compounds indicated that one of them,
(6R,7S)-himachala-9,11-diene, constitutes the major aggregation pheromone component of a
European CFB population (131). The male-specific sesquiterpene blends of CFB and SFB males
differ strongly, and there is additional evidence for minor differences between Asian and North
American SFB populations (13, 17). The major sesquiterpene produced by SFB males, (6R,7S)-
10-hydroxyhimachalan-9-one (hydroxyketone below), is unique to this species (12, 13) and is
likely biosynthetically derived from (6R,7S)-himachala-9,11-diene, the second-most abundant
compound found in headspace samples from SFB males (13, 17). Both compounds elicited elec-
trophysiological responses from SFB adult antennae and were behaviorally active in laboratory
and field experiments (13, 17, 139). SFB adults from an Asian population preferred a blend of
(6R,7S)-himachala-9,11-diene and hydroxyketone over the individual compounds in two-choice
assays, suggesting that the blend of both components constitutes the aggregation pheromone (17).
A series of field trials in different locations in the United States suggested the hydroxyketone to
be the major aggregation pheromone compounds of North American SFB populations and found
a location-specific impact of (6R,7S)-himachala-9,11-diene on flea beetle responses (139).

Although there is clear evidence for a function of male-produced sesquiterpenes in aggre-
gation behavior, synthetic blends of these compounds were often only marginally attractive in
field-trapping experiments or even required combination with high doses of allyl isothiocyanate
or 3-butenyl isothiocyanate to attract flea beetles (17, 119, 130, 131, 139). It is thus likely that at-
traction to the sesquiterpene aggregation pheromone requires the presence of additional currently
unknown volatile compounds. Possible candidates are the green leaf volatiles Z-3-hexen-1-ol and
1-hexanol and the monoterpenes (+)-sabinene and E-β-ocimene, which attracted CFB adults in
olfactometer studies (57).

Population Ecology

Several studies investigated the influence of habitat properties and patch size on the abundance
of Phyllotreta flea beetles on host plants (32, 71, 125). A hallmark study published in 1972 demon-
strated a higher abundance of CFB adults on Brassica oleracea (common cabbage) plants grown
in monocultures than on B. oleracea grown in more diverse plant communities (125). In addition,
monocultures were shown to be colonized more rapidly and suffer from higher feeding damage.
The associational resistance of B. oleracea growing in complex plant communities was attributed
primarily to odors from nonhost plants that interfered with host colonization, whereas natural en-
emies appeared to have a negligible influence on the differential abundance of flea beetles (125).
In agreement with these findings, the cocultivation of some nonhost plant species with Brassica
crops significantly reduced numbers of adult SFB and CFB on the main crop in field trials, which
demonstrates the potential of nonhost plants in mixed cropping systems to control of Phyllotreta
spp. (79).
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Flea beetle abundance on host plants is influenced not only by colonization rates, but also
by emigration rates. SFB and CFB adults that were released in single-plant patches were much
less likely to stay on the plant than adults that were released on groups of plants, suggesting that
Phyllotreta spp. require a critical patch size to establish a population (71). The impact of habitat
and patch size on flea beetle abundance is consistent with the resource concentration hypothesis
according to which “herbivores are more likely to find and remain on hosts that are growing in
dense or nearly pure stands” (111, p. 95).

Besides the spatial distribution of host plants, feeding by other herbivores also influences den-
sities of Phyllotreta spp. on host plants. For example, higher densities of Phyllotreta undulata and
Phyllotreta atra were recorded on B. oleracea plants that had been induced early in the season by
feeding of Pieris brassicae L. (Lepidoptera: Pieridae) caterpillars than on undamaged plants (32).
In contrast, significantly fewer adults of P. undulata and Phyllotreta diademata were recorded on
B. nigra plants infested with the root herbivore Delia radicum (the cabbage root fly, Diptera: An-
thomyiidae) than on uninfested plants (116). Which plant responses underlie the preference of
Phyllotreta spp. for damaged or undamaged host plants is unknown.

MANAGEMENT OF FLEA BEETLES

Flea beetles are controlled mainly by using insecticides (85, 99, 118). Adult flea beetle damage to
oilseed rape (OSR) is very fast and difficult to monitor in large fields (120), and there is currently a
lack of forecasting models that allow growers to predict economically damaging populations that
require treatment (99, 113). Therefore, farmers in North America and Europe traditionally used
prophylactic applications of in-furrow granules or seed-coated systemic insecticides to control
flea beetles in OSR (72, 74, 85, 118, 120, 134). Since the mid-1990s, nearly all OSR seeds planted
in Canada have been treated with systemic neonicotinoid insecticides, which are effective in re-
ducing flea beetle damage to seedlings, usually for up to three weeks (72, 113). Thus, protection
against late-emerging flea beetles often requires 2–3 foliar insecticide applications or replanting
of the field (72, 113). In China, seed treatments began after 2000 and are preferred by local grow-
ers over conventional foliar sprays because they provide extended protection of SOSR seedlings
over three weeks and reduce labor costs (40). In Europe, neonicotinoid seed treatments were also
the main method used to control adult CSFB in OSR until they were banned in 2013 (66, 99).
Since then, farmers have opted to grow alternative crops due to severe infestations by CSFB, and
the area planted with OSR has drastically decreased in several countries (6, 42), although in oth-
ers, such as Sweden, the planted area has not changed (85). In this country, where Phyllotreta flea
beetles are major pests in SOSR, a shift toWOSRmaintained the total OSR production at similar
levels as before the ban (85). However, shifting from SOSR to WOSR is more difficult in other
regions with colder winters.

Economic thresholds are used in various crops to trigger foliar sprays of insecticide against flea
beetles. When prophylactic seed insecticide treatments fail, a nominal threshold of 25% defolia-
tion before the four-leaf stage of SOSR is used for foliar sprays against Phyllotreta flea beetles in
North America (35); however, recent experiments suggest reducing this threshold to 15–20% de-
foliation (126). Similarly, an economic injury level of 11% defoliation has been recently proposed
for Sweden, mainly based on the low price of pyrethroid insecticides (84). In Europe, economic
thresholds for CSFB in OSR vary per country, in part due to variable resistance to insecticides,
and are separate for adult and larval stages (99). For adult control, the most common economic
thresholds used are 2 (range 1–3) adults/m2, 0.5 adults per linear meter, 15 adults per day or
50 adults every 3 weeks in yellow water traps, 10% defoliation before the four-leaf stage, and 50%
(range 25–80%) of plants damaged (99). For larval control, targeting newly emerged larvae or early
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stages moving between petioles, the most common economic thresholds are 2–3 larvae per plant,
7 out of 10 plants with larvae, and 50–100 adults every 3 weeks in yellow water traps (99). These
thresholds are mainly based on insecticide costs and yield returns, with little knowledge on how
OSR can compensate for CSFB damage and on the impact on natural enemies and pollinators (99).

Insecticide Resistance

Flea beetles were historically managed with seed dressings, granular applications, and foliar sprays
of organochlorine, organophosphorus, and carbamate insecticides in Asia, Europe, and North
America (82, 134, 142). However, due to the repeated use of these insecticides, which led to the
development of resistance in various species (134, 147), and the high toxicity of some products,
which led to their banning (99, 142), there was a shift toward the use of neonicotinoids, especially
for seed treatments, and pyrethroids, especially for foliar applications, in most crops (99, 113).

More recently, the overuse of prophylactic controls of various pests in OSR, especially pollen
beetle, lead to the development of pyrethroid resistance in CSFB in Europe (60, 66, 143). Resis-
tance to pyrethroids was first reported in Germany in 2008, with a 81-fold resistance ratio for
CSFB (60). Since 2013, neonicotinoid insecticides have been banned in Europe due to their al-
leged harmful effects on bees, which, along with the lack of effective alternative insecticides, has
led to exacerbated resistance to pyrethroid insecticides (66, 143). CSFB resistance to pyrethroids
has also been found in Denmark, the United Kingdom, France, and the Czech Republic (66, 99,
124). Today, despite multiple records of resistance, pyrethroids are the only class of insecticides
whose use is permitted for chemical control of flea beetles in most European countries (85, 99,
143). Resistance of CSFB to pyrethroids is due to the L1014F kdr (knockdown resistance) muta-
tion in the voltage-gated sodium channel (143, 153). Additionally, metabolic resistance, probably
due to cytochrome P450 enzymes (66, 143), and resistance due to the L952I superkdr mutation
(143) have been recently reported.

Despite mounting evidence of potential environmental issues associated with their persistence,
high leaching and runoff potential, and toxicity to invertebrates (38, 94), neonicotinoids contin-
ued to be widely used in Canada as prophylactic systemic seed treatments against CFB and SFB
(113, 118), resulting in a strong selection pressure on flea beetles. Laboratory studies have demon-
strated that SFB has lower mortality and causes more damage to SOSR than CFB when exposed
to the neonicotinoids thiametoxan and clothianidin, suggesting the development of tolerance to
neonicotinoids in SFB (127, 128). Indeed, SFB has increased in frequency in various regions of the
Canadian prairies that were previously dominated by CFB. This suggests that this tolerance may
give it a competitive advantage over CFB and potentially reduce the effectiveness of neonicotinoid
seed treatments to reduce flea beetle damage in OSR (118, 128). Additionally, tolerance of CSFB
to the neonicotinoid thiacloprid has been shown in the Czech Republic (124). Alternative seed
treatments, such as diamide and sulfoxamine, are currently available as seed treatments in Canada
(85) and may contribute to reducing selection pressure on resistance to neonicotinoids.

Sustainable Control Strategies

Numerous studies have investigated sustainable management strategies to reduce the damage of
flea beetles, including the development of resistant cultivars; alteration of seeding rates, planting
dates, row spacing, and tillage regimes; mixed cropping; and use of natural enemies. Despite these
efforts, most flea beetle species are managed using insecticides, with more sustainable techniques
playing only a minor role in current integrated pest management (IPM) programs. In this section,
we discuss some of the potential sustainable management methods that have received the most
attention, including cultural controls and the use of biological control agents.
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Cultural control.The development of resistant cultivars against flea beetle damage has been ex-
amined in OSR and related species. Early research has shown both antixenosis and tolerance in
S. alba, antixenosis in Brassica carinata and some lines of OSR, and tolerance in B. juncea against
CFB (28, 53, 75, 103, 117). As mentioned above, morphological traits such as trichomes and leaf
epicuticular wax affect the behavior of flea beetles and reduce their feeding (24, 121). Transgenic
SOSR expressing elevated hairiness (hairy canola) resulted in lower Phyllotreta damage than con-
trols in both laboratory and field trials and could be used in the development of future resistant
cultivars (3, 121). Despite the potential of resistant traits present in Brassica crops, no commercial
cultivars of OSR with flea beetle resistance are currently available (62).

Higher seeding rates of OSR reduced Phyllotreta damage per plant in Canada (44, 45) and
showed a similar trend in Sweden (86). In Europe, CSFB damage and abundance was reduced in
fields with increased plant densities of OSR (99). This reduction in damage has been attributed
to a dilution effect of more plants present per unit of area (45, 99). Although doubling seeding
rates of untreated seed had produced the same yield as normal seeding rates with seed insecticidal
treatments (45), the high cost of the seed, the potential for lodging and susceptibility to disease,
and the potential increase of CSFB larvae are currently barriers to fully adopting this technique
(86, 99).

Varying the planting date affects damage caused by flea beetles in various ways. In general,
earlier SOSR planting dates resulted in lower flea beetle abundance in Manitoba, Canada (73)
and a reduction in damage in southern Alberta, Canada (36) and in Sweden, even with measurable
yield gains (86, 87). However, more flea beetles (90) and higher damage were observed with early
planting dates in North Dakota (72) and in central and northern Alberta (36). These variable
effects have been attributed to different species assemblages among regions, which could result in
different responses to environmental conditions that affect flea beetle feeding and plant growth
(36, 87). WOSR has the advantage that it grows very quickly in spring and typically receives less
Phyllotreta damage (36, 45); however, the high risk of mortality due to harsh winters limits the use
of this technique in much of the OSR planted area (87). Early planting of WOSR allows better
crop establishment and reduces damage by adult CSFB but also increases susceptibility to larval
damage, and more research is required before this technique can be adopted by farmers (99).

Zero-tillage regimes effectively reduced flea beetle abundance and damage in SOSR in North
America (44, 81, 90) and Sweden (83) but did not affect yield (81, 83). Reduced tillage decreased
abundance of CSFB in WOSR in France (136) but did not reduce flea beetle damage in SOSR
in Sweden (87). Zero-tillage regimes may have more crop residues than reduced-tillage or con-
ventional tillage regimes, which may interfere with the location of seedlings by flea beetles, and
create a more humid and cooler environment, which limits flea beetle activity and increases pop-
ulations of natural enemies (83, 99). Although studies of zero-tillage regimes show that they have
great promise in reducing flea beetles in OSR, the adoption of this technique is limited by other
agronomic factors, including negative effects on crop germination or emergence and yield, higher
herbicide requirements, and increased potential for diseases (81, 83). Wider row spacing, both in
zero-tillage regimes and conventional tillage, led to less flea beetle damage in Alberta, but the
potential mechanisms behind this pattern remain unclear (44).

The use of nonhost plants (Vicia faba L., Vicia villosa Roth, Allium fistulosum L., Solanum me-
longena L., Hordeum vulgare L., Artemisia abrotanum L., Artemisia absinthium L., and Tanacetum
vulgare L.) and wild hosts (Sinapis arvensis L.) on field borders or in intercropping practices re-
duced the abundance and damage of Phyllotreta flea beetles on vegetable Brassica crops (4, 52, 79).
In addition, fields under mixed-crop regimes had higher abundance of natural enemies and higher
evenness and diversity of the arthropod community (146). However, another study showed that,
in cases of high flea beetle abundance and despite reduced damage, collards mixed with other

www.annualreviews.org • Flea Beetles in Brassica Crops 207



EN69CH11_Li ARjats.cls December 10, 2023 15:14

vegetable crops showed a yield reduction compared to monocultures, probably due to competi-
tion between crops (80). Mixed-cropping of spring OSR with field peas or wheat failed to reduce
flea beetle abundance and reduced OSR yield compared to monocultures in North America (140).
By contrast, faba bean (V. faba) and grass pea (Lathyrus sativus) mixed with WOSR reduced CSFB
larval abundance in Switzerland (30).

The use of B. rapa as a trap crop tomanage flea beetles showed potential in several studies. Field
experiments in the United Kingdom showed that a B. rapa border trap crop reduced the abun-
dance of CSFB in OSR (11) and damage by Phyllotreta flea beetles on B. oleracea var. Lateman
(55). In North America, trap crops mixing B. juncea, B. napus, and B. rapa improved yield of
B. oleracea var. italica by changing the behavior but not the density of CFB (104). Similarly,mixtures
of trap crops that remain attractive throughout the field season have been proposed to manage
Phyllotreta flea beetles in SOSR in Estonia (B. juncea, B. nigra, Eruca sativa Mill., and Raphanus
sativus L.) (89) and in B. oleracea convar. capitata in Slovenia (S. alba, B. napus, and R. sativus) (27).

Biological control.The overall reliance on insecticides to manage flea beetles in most crops
resulted in relatively few studies on incorporating biological control agents into their IPM
programs. Recent efforts have focused on using entomopathogenic nematodes (EPNs) and
entomopathogenic fungi (EPFs), which can more easily be combined with current manage-
ment techniques. Other microorganisms do not seem to be effective biological control agents.
Bacillus thuringiensis subspecies tenebrionis caused low mortality on CSFB (99) and does not seem
to be promising (65), although several strains have been patented against CFB in the United States
(105). No effective protozoans have been reported against CSFB (99) or other flea beetles (47).

Commercially available EPNs in the genera Steinernema (Rhabditida: Steinernematidae) and
Heterorhabditis (Rhabditida: Heterorhabditidae) have shown promising results against Phyllotreta
spp. and CSFB. Steinernema feltiae reduced damage and protected SOSR yield against CFB when
combined with a polymer gel in Montana (10, 31). This species also caused mortality of Phyllotreta
flea beetles in laboratory trials in Slovenia (133) and in field trials in Estonia and Finland (67) and
reduced CSFB numbers in field trials in the United Kingdom and Sweden (67). In Montana,
Steinernema carpocapsae reduced CFB damage in some studies (110) but not in others (10). This
species was also effective in controlling SFB numbers in laboratory experiments (148) and in field
plots with cabbage (B. rapa and Brassica campestris) in China (149) and with radish in Japan and
Thailand (65, 97).However, it failed to control SFB larvae and adults in plots with B. campestris in a
more recent study (150). Additionally, Steinernema pakistanense suppressed SFB in both laboratory
(148) and field conditions in China (150), and Steinernema siamkayai suppressed SFB in Thailand
(97). Heterorhabditis indica increased mortality of SFB in the laboratory (97, 148) and reduced
SFB abundance and damage in the field on Brassica crops in China (149, 150) and Thailand (97).
Finally, both Heterorhabditis bacteriophage and Heterorhabditis megidis showed potential to control
Phyllotreta spp. in laboratory studies (133). Although there is clear potential for using EPNs to
control flea beetles, more studies are needed to assess how they interact with insecticides and
fungicides, other biological control agents, and abiotic factors before farmers can implement them
into IPM programs (65).

Relatively few studies have explored the potential of EPFs against flea beetles. A laboratory
study showed 50–90% mortality of CFB exposed to Beauveria bassiana (Balsamo) Vuillemin (92),
but mortality was below 40% in other laboratory studies (8), and no reduction of OSR damage
was found in field studies in Montana using the commercial form of B. bassiana, BotaniGard ES
(Emerald BioAgriculture Corp., Lansing, Michigan) (9). However, a follow-up field study found
that two sprays with combined B. bassiana and Metarhizium brunneum (Metchnikov) reduced
CFB damage and protected OSR from yield loss (110). The fungi Isaria javanica (IsjaHN3002),
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Aspergillus spp., Fusarium falciforme, Lecanicillium spp., Metarhizium spp., and Talaromyces spp.
showed pathogenicity against SFB in China (152). Isaria javanica caused the highest mortality and
has the highest potential as a biocontrol agent (152). Two isolates ofM. anisopliae s. l. (brunneum)
(Metchnikov) also caused high mortality in CSFB (73–88% mortality) in laboratory studies (34),
and further studies are in progress with additional EPF isolates and species (99).

Parasitoids and predators are not currently incorporated into any management system for flea
beetles. Six species of parasitoids were found in Europe attacking CSFB (70, 135). The most abun-
dant one, Tersilochus microgaster (Szépligeti) (Hymenoptera: Ichneumonidae), had a strong spatial
association with CSFB (50) and resulted in up to 57% parasitism across Europe (135). Other
species, including the ichneumonid Aneuclis melanaria (Holmgren), the braconids Diospilus moro-
sus (Reinhardt) and Diospilus oleraceus (Haliday), and the pteromalid Trichomalus lucidus (Walker),
caused negligible parasitism (135). More recently, the braconidMicroctonus brassicae (Haeselbarth)
resulted in 44% parasitism on CSFB in laboratory conditions and shows promise as a potential
biological control agent for this pest in OSR in the United Kingdom (70). In North America,
several parasitoid species attack flea beetles, including the braconids Townesilitus psylliodis (Loan)
andMicroctonus punctulatae sp. n., which attack Psylliodes punctualataMelsh, andMicroctonus pusillae
Muesebeck andMicroctonus brevipetiolatus (Thomson), which attack CFB, SFB, and Phyllotreta con-
junctaGent (145). InCanada, themost common parasitoid ofPhyllotreta flea beetles in SOSR isMi-
croctonus brevipetiolatus (previouslyMicroctonus vittataeMuesebeck; 109), but this species typically
causes only <5% parasitism (144, 145). The braconid Townesilitus bicolor (Wesmael) parasitizes up
to 50% of Phyllotreta flea beetles in Europe but failed to establish in North America (144).

Little is known about predators attacking flea beetles. Using molecular methods, Ekbom et al.
(48) found that 19.4% of the spiders Pardosa spp. (Aranae: Lycosidae) and 10% of the spiders
Phylloneta impressa (Koch) (Aranae: Theridiidae) were positive for Phyllotreta spp. DNA in OSR in
Sweden. The carabids Trechus quadristriatus (Schrank) and Pterostichus madidus (Fabricius) showed
strong spatial associations with CSFB larvae in OSR in the United Kingdom, and T. quadristriatus
consumed CSFB eggs in the laboratory (138). In North America, field observations indicate pre-
dation of flea beetles by big-eyed bugs, lacewings, nabids and pentatomids, and crickets (33, 41).
In addition, the activity density and evenness of noninvasive ground predators (predatory beetles,
spiders, and ants) have negative associations with the abundance of CFB in organic broccoli crops
in North America (22). Agronomic activities, such as tillage, crop rotation, and high insecticide
use, are likely the main factors associated with the low impact of parasitoids and predators on flea
beetle populations (70, 99). Further studies are needed on the integration of natural enemies into
IPM programs, especially within conservation biological control strategies.

CONCLUSIONS AND OUTLOOK

In this article, we review many significant advances in our understanding of plant–flea beetle in-
teractions and of sustainable agricultural practices that can be used to reduce flea beetle damage
to crops. However, more research on how to incorporate this knowledge into IPM programs for
Brassica crops is warranted. For example, management strategies such as mixed-cropping systems
have only been tried in vegetable Brassica crops, and other techniques, such as cover crops, have
not yet been investigated. First, more research on the molecular genetics and neurotoxicology of
flea beetles is needed to elucidate the molecular mechanism of resistance of flea beetles to insecti-
cides and to lay the theoretical foundation for developing newmethods of resistance management.
Second,more efforts should be allocated to using our extensive understanding of flea beetle–plant
interactions to develop resistant varieties that reduce flea beetle damage to Brassica crops. Cur-
rently, although morphological traits have been found to reduce feeding by flea beetles in OSR,
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these are not yet available in commercial cultivars. Third, more research is needed into incorpo-
rating natural enemies, including of EPNs and EPFs, into IPM programs and the role of habitat
management in conservation biological control programs at local and landscape scales. Fourth,
emerging technologies such as RNA interference, based on lethal genes found in SFB (39, 58)
and CSFB (37), should be explored to develop more specific biopesticides. Fifth, effective control
of flea beetles requires the establishment of a comprehensive prediction and forecasting system.
In terms of field monitoring and early warning, modern information technology such as big data
analysis, cloud computing, and machine learning can be used to support the improvement of pre-
diction accuracy and, combined with sustainable control methods, decrease the current reliance
on prophylactic insecticidal controls.
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