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A P P L I E D  P H Y S I C S

Quantum effects in the interaction of low-energy 
electrons with light
Adamantios P. Synanidis1, P. A. D. Gonçalves1, Claus Ropers2,3, F. Javier García de Abajo1,4*

The interaction between free electrons and optical fields constitutes a unique platform to investigate ultrafast 
processes in matter and explore fundamental quantum phenomena. Specifically, optically modulated electrons in 
ultrafast electron microscopy act as noninvasive probes that push space–time–energy resolution to the picometer– 
attosecond–microelectronvolt range. Electron energies well above the involved photon energies are commonly 
used, rendering a low electron–light coupling and, thus, only providing limited access to the wealth of quantum 
nonlinear phenomena underlying the dynamical response of nanostructures. Here, we theoretically investigate 
electron–light interactions between photons and electrons of comparable energies, revealing quantum and recoil 
effects that include a nonvanishing coupling of surface-scattered electrons to light plane waves, inelastic electron 
backscattering from confined optical fields, and strong electron–light coupling under grazing electron diffraction 
by an illuminated crystal surface. Our exploration of electron–light–matter interactions holds potential for appli-
cations in ultrafast electron microscopy.

INTRODUCTION
The synergetic relation between short light pulses and free electron 
beams (e-beams) underlies several recent advances in ultrafast elec-
tron microscopy toward a combined subnanometer–subfemtosecond–
submillielectronvolt spatiotemporal and spectral resolution, rapidly 
progressing toward the goal of mapping atomic-scale spatial fea-
tures and their evolution over unprecedentedly small timescales 
(1–8). A prominent example is photon-induced near-field electron 
microscopy (PINEM) (1, 9, 10), which is based on the synchronous 
arrival of laser and electron femtosecond pulses at a sampled nano-
structure, thus enabling optical-pump/electron-probe spectrosco-
py to be performed with a nanoscale spatial resolution inherited 
from the use of state-of-the-art electron optics setups. This approach 
has been applied to image optical near fields in nanophotonics 
(11–14), the subcycle evolution of those fields (15–17), and the 
nanoscale-resolved fluctuations of the light with which the electron 
has interacted (18–20). PINEM can be regarded as a specific appli-
cation of the more general concept of stimulated inelastic electron–light 
scattering (SIELS). The latter has been leveraged to gain control over 
the free-electron wave function by customizing its interaction with 
light, including the generation of trains of attosecond electron pulses 
(3, 21–23) and the shaping of the transverse e-beam profile (24–28). 
Laser-assisted photoemission (29, 30) constitutes another example of 
SIELS that can be used to probe the ultrafast dynamics of condensed-
matter systems (31) and produces interesting effects in the strong-
field limit (32, 33).

Many of these advances have been accomplished in transmission 
electron microscopes operating with relatively high e-beam energies 
(≳30  keV), orders of magnitude larger than those of the used pho-
tons (typically in the electronvolt range) and, consequently, render-
ing the probability that a single electron interacts with a single 

photon (e.g., one quantum of a confined optical mode) much small-
er than unity. Such a weak electron–light interaction limits applica-
tions in metrology, imaging of atomic-scale excitations, and the 
study of nonlinear phenomena. For robust structures, the problem 
is circumvented in SIELS by using intense laser pulses (11–13), but 
this approach cannot be extended to sensitive specimens such as 
biological materials. Phase matching between the electron excita-
tion and the light field can also boost the interaction (34–38), al-
though this strategy is only practical in specialized structures that 
host modes with evanescent optical fields in vacuum.

Unexpectedly, in the linear electron–photon interaction regime, 
describing electrons as classical point-like charges produces the 
same results as a quantum-mechanical treatment in which electron 
recoil is ignored (6). Notice, however, that recoil has been theoreti-
cally (39, 40) (on kinematic grounds) and experimentally (40) (at 
kiloelectronvolt emission energy) shown to produce discernible ef-
fects in the energy–angle distribution of Smith–Purcell radiation 
emission produced by electron interaction with a grating. Likewise, 
the wave function of energetic electrons in PINEM, and more gen-
erally in SIELS, is modified by a global factor that encapsulates the 
interaction with light through a single complex parameter that de-
pends linearly on the optical field (3, 6, 9, 10, 41, 42) and is therefore 
unsuited to access the subcycle nonlinear dynamics of a specimen in 
general. Consequently, it is highly desirable to achieve strong inter-
action between single electrons and atomic-scale excitations as a 
way to access their ultrafast nonlinear dynamics. In this context, the 
use of low-energy electrons with kinetic energies comparable to 
those of the quanta associated with the used optical fields opens a 
plausible avenue to overcome these challenges. The electron–light 
coupling strength increases when the electron energy is reduced, 
while a deviation from a classical-probe behavior is introduced by 
electron recoil (43–45). Low-energy electrons thus hold the poten-
tial to reveal new phenomena during their interaction with localized 
optical fields, a possibility that demands the exploration of physi-
cally relevant configurations.

Here, we reveal a wealth of previously unexplored quantum and 
recoil effects taking place during electron–light–matter interac-
tions when the electron and photon energies are comparable. 
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Considering realistic frameworks that admit rigorous semi-analytical 
treatments, we theoretically explore electron–light interactions 
mediated by the scattering of light, electrons, or both at planar in-
terfaces (Fig. 1). We adopt optical fields in the form of either exter-
nally incident plane waves or surface polaritons. Surface scattering 
leads to symmetry breaking that enhances the electron–light cou-
pling, even allowing otherwise forbidden electron–photon inter-
actions. In particular, we show that low-energy electrons can be 
inelastically scattered solely due to an evanescent optical field prop-
agating along an electron-transparent surface (Fig. 1, A to C), in-
cluding the emergence of a back-reflected electron signal (Fig. 1B). 
In addition, we demonstrate that a plane wave electron reflected 
on a light-transparent surface can produce inelastically reflected 
electrons because of the nonvanishing electron–photon coupling 
originating from translational symmetry breaking of the out-of-plane 
electron wave function (Fig.  1, D and E). The resulting reflected-
electron spectrum exhibits substantial recoil effects (Fig.  1E). We 
further report on the possibility of reaching the strong electron–
light coupling regime with moderate light intensities through Bragg 
scattering at planar atomic lattices, whereby the interaction is boost-
ed under Rayleigh anomaly conditions (46, 47) dominated by lattice 
resonances (48), such that the interaction strength can diverge in 
analogy to lattice resonances when the lateral extension of the atom-
ic lattice and the lateral coherence of electron and light beams are 
made arbitrarily large. Besides its interest from a fundamental 
viewpoint, the present study unveils exciting opportunities for 

improved microscopy and metrology in the regime of low-energy 
electrons exposed to optical fields of comparable photon energy. 
Our results are particularly relevant to the exploration of the rich 
phase and electronic-structure phenomenology exhibited by mate-
rial surfaces, which are cornerstones in many technological ap-
plications.

RESULTS AND DISCUSSION
Theoretical framework for the interaction of low-energy 
electrons with light
We first consider a planar material acting through a one-dimensional 
(1D) potential V (z) on the electron, while a generalization to lat-
erally corrugated atomic lattices is presented further below. To 
study electron scattering by the planar structure in the pres-
ence of a classical optical field (e.g., light plane waves or surface 
polaritons), we write the Hamiltonian ̂0(r) + ̂1(r, t) , where 
�0(r) = −ℏ2∇2∕2me + V (z) describes the electron–material system 
and �1(r, t) = −(ieℏ∕mec) A(r, t) ⋅∇ accounts for the electron–light 
interaction. The latter arises from the minimal coupling prescription 
applied to a classical vector potential A(r, t) after neglecting A2 terms 
and adopting a gauge in which the scalar potential is zero.

We focus on monochromatic fields of frequency ω and in-plane 
wave vector k∥ = (kx , ky), characterized by a vector potential A(r, t) =  
A(z) eik∥⋅R−iωt + c. c., where the notation R = (x, y) is adopted. Also, 
in the absence of illumination, the electron wave function is taken to 

A D

B C E

Fig. 1. Electron–light–matter interaction and recoil effects with low-energy electrons. (A) Illustration of inelastic electron scattering by the evanescent optical field 
associated with propagating surface polaritons. (B and C) Transmission (B) and reflection (C) electron spectra in the configuration of (A) for electrons of incident energy 
ℏε0 = 10  eV and angle θe = 45° combined with polaritons of electric-field amplitude E0 = 6 × 108  V/m, effective refractive index neff = 50, and energy ℏω = 1  eV. For read-
ability, spectral peaks are broadened with a Lorentzian of 0.1 full width at half maximum (FWHM) in Δε/ω, with Δε = ε − ε0. (D) Nonvanishing interaction between a plane 
wave of light and an electron reflected on a light-transparent surface. (E) Despite the small coupling in (D) (P1 < 2%), strong recoil effects are observed for ε0 ∼ ω in the 
asymmetry factor (P1 − P−1)/(P1 + P−1), which vanishes in the classical regime (ε0 ≫ ω); we take E0 = 8 × 107  V/m, θe = 45°, θl = 90°, and ℏω = 1  eV.
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be a solution of the ̂0(r) Hamiltonian, namely, ψ0(r, t) = φ00(z)

eiq0∥⋅R−iε0t, having a well-defined energy ℏε0 and in-plane wave vec-
tor  q0∥(⊥�z) . Now, in-plane translation symmetry and energy con-
servation allow us to write the perturbation series

where n runs over scattering orders, while ℓ denotes the net 
number of exchanged photons (i.e., absorbed or emitted by the 
electron for ℓ > 0 and ℓ < 0, respectively). In addition, ψ(r, t) 
satisfies the Lippmann–Schwinger equation ψ(r, t)=ψ0(r, t)+

� d
3
r� � dt� 0(r, r

�, t− t�) ̂1(r
�, t�) ψ(r�, t�), where the Green func-

t ion 0(r, r
�, t− t�)  is defined by [ �0(r)− iℏ𝜕t]0(r, r

�, t− t�)=  
−δ(r−r�)δ(t− t�) . Combining these elements, we obtain the recur-
rence relation

for n > 0, where 0(z, z
�, ε⊥

�

) is the frequency-domain 1D Green function 
satisfying 0(r, r

�, t− t�)= (2π)−3�d2q∥�dε0(z, z
�, ε) eiq∥⋅(R−R

�)−iε(t−t�), 
and we define ε⊥

�

= ε0 + �ω − ℏ∣q0∥ +� k∥∣
2∕2me , such that ℏε⊥

�

 is the 
out-of-plane electron energy after the exchange of a net number of 
photons ℓ (see section S1 for a self-contained derivation).

We consider planar structures of negligible thickness and expand 
the electron wave function components in Eq. 1 using the ansatz

within the regions above (s = +) and below (s = −) the material. 
Here, j labels contributions that can be either evanescent 
( Re{ζj±

n�
} ≠ 0 ) or propagating (imaginary ζj±

n�
 ). Inserting Eq. 3 into 

Eq. 2, we find a recursive expression with a unique solution for the 
coefficients αj±

n�
 and ζj±

n�
 , which automatically satisfy the physical 

conditions Re{ζj+
n�
} ≤ 0 and Re{ζj−

n�
} ≥ 0 (see the Supplementary 

Materials). In addition, the purely propagating components have ex-
ponential coefficients ζ

j±

n�
= ±iq

�z (i.e., imaginary and independent 

of n and j), where q
�z =

√
2meε

⊥

�

∕ℏ is determined by energy con-
servation for a net number of photon exchanges ℓ. Finally, the frac-
tions of ℓ-resolved electrons scattered along the upward (+) and 
downward (−) directions are given by

where the primed sum indicates that it is restricted to purely propa-
gating waves.

Recoil and quantum effects in surface-scattered electrons
Fully electron-reflecting surface
As a tutorial configuration, we first consider an electron with energy 
ℏε0 and incident angle θe (with respect to the surface normal) that 

undergoes total reflection at a planar surface supporting a surface 
polariton with in-plane wave vector k∥ = ∣k∥∣ = neffk, where k = ω/c 
is the light wave vector and neff > 1 is an effective index of refrac-
tion. For a thin metallic film of permittivity ϵ < 0 and thickness d 
embedded in a medium of permittivity ϵs > 1, we have neff = ϵsλ/
[π(1 − ϵ)d] at a light wavelength λ, so thin films favor large values 
of neff [e.g., neff = 40 for λ = 500 nm in currently available (49) 
10-monolayer crystalline Ag(111) films deposited on Si]. Higher 
values of neff ∼ 100’s are displayed by infrared graphene plasmons 
(50, 51) and phonon polaritons in few-layer hexagonal boron nitride 
(hBN) (52, 53).

For simplicity, we take the electron and the surface polariton to 
share the same in-plane direction of incidence with q0∥ ∥ k∥ ∥ x̂ , 
such that the associated vector potential can be written as 
A(r)= (E0∕k) (κ

2+k
2
∥
)−1∕2 (κ x̂+ i k∥ sign {z} ẑ) eik∥x−κ∣z∣ , where E0 

is a global electric-field amplitude (see the Supplementary Mate-
rials). In addition, the electron–surface interaction is assumed to 
be elastic, and thus, any inelastic electron signal stems from 
surface-polariton emission and absorption processes by the 
electron. In this scenario, we can set the z component of the 
zeroth-order electron wave function as φ00(z)= [e−iq0z z−eiq0z z]Θ(z), 
while the Green function in Eq.  2 reduces to 0(z, z

�, ε⊥
�

)= 
(ime∕ℏ

2
q
�z
)[eiq�z (z+z

�)−eiq�z ∣z−z
�∣]Θ(z)Θ(z�) (see section S1). Insert-

ing these elements into Eq. 2 and noticing that only reflected com-
ponents need to be considered, we find a set of analytical coefficients 
α
j+

n�
 and ζj+

n�
 , from which the reflection probability P

�
≡ P+

�

 for a 
given ℓ  channel is obtained via Eq. 4.

It is instructive to examine the ε0 ≫ ω limit, where recoil ef-
fects should play a minor role. As a direct generalization of 
the result obtained for an electron moving with constant veloc-
ity along a straight-line trajectory (6), we approximate the 
ℓ-dependent inelastic probability as P

�
= J2

�

(2 ∣β∣) , where β =
(ie∕ℏc) ∫ dt ṙe(t) ⋅ A[re(t)] e

−iωt is an electron–light coupling pa-
rameter obtained by integrating over time the vector potential com-
ponent parallel to the velocity ṙe(t) and evaluated at the electron 
position re(t). Taking a specularly reflected trajectory with the 
surface-polariton field given above, we obtain

For reference, we note that the prefactor eE0c/ℏω2 takes a value of ≈2 
for E0 = 107 V/m and ℏω = 1 eV. This mode energy is characteristic 
of surface plasmons in ultrathin metal films (49) and exciton polari-
tons in transition-metal dichalcogenides (54, 55), while polaritons 
of lower energy [e.g., ℏω ∼ 0.1 eV in graphene (50, 51) and hBN (52, 
53)] should produce larger coupling for the same field amplitude in 
accordance to the scaling β ∝ 1/ω2. Equation 5 reveals the important 
role of confinement in enhancing the electron–polariton coupling: 
Given a certain electron velocity v, the denominator reaches its min-
imum value under the condition

(i.e., when the surface-polariton phase velocity matches the in-plane 
projection of the electron velocity). In addition, Eq. 5 illustrates the 
well-known linear scaling of the coupling coefficient with the ap-
plied electric-field amplitude E0.

ψ(r, t)=

∞∑

n=0

n∑

𝓁=−n

φ
n𝓁
(z) ei(q0∥+𝓁 k∥)⋅R−i(ε0+𝓁ω)t (1)

φ
n𝓁
(z)=

ℏe

mec �
dz� 0(z, z

�, ε⊥
𝓁

)

×
{
A(z�) ⋅ [q0∥ + (𝓁−1) k∥ − i�z 𝜕

z�
] φ

n−1,𝓁−1(z
�)

+A
∗(z�) ⋅ [q0∥ + (𝓁+1) k∥ − i�z 𝜕z� ] φn−1,𝓁+1(z

�)
}

(2)

φ
n�
(z) =

∑

s=±

∑

j

α
js

n�
eζ

js

n�
z Θ(sz) (3)

P
±
�

=
q
�z

q0z

|
|||||

∑�

nj

α
j±

n�

|
|||||

2

(4)

β=
2 i

√
2n2

eff
−1

eE0c

ℏω2

(neff c∕v− sinθe) cosθe

(c∕v−neff sinθe)
2+ (n2

eff
−1)cos2θe (5)

c∕neff = v sinθe (6)
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Incidentally, we consider relatively high optical electric-field am-
plitudes (up to E ∼ 108 V/m, corresponding to intensities cE2/2π > 
1014 W/m2), which are commonly used in ultrafast electron micros-
copy experiments during illumination with laser pulses of ∼100-fs 
duration (3, 56), such that the pulse fluence is below the damage 
threshold of the sampled nanostructures.

Figure 2 highlights the importance of recoil effects in the interac-
tion between a low-energy electron and a strongly confined surface 
polariton by contrasting the classical nonrecoil PINEM theory 
(Fig. 2, A to D based on Eq. 5) with the rigorous quantum formalism 
introduced above (Fig. 2, E to H, and Eq. 4). For clarity, we stress 
that nonrecoil calculations are obtained by assuming a prescribed 
classical electron trajectory reflected at the surface with constant ve-
locity, whereas recoil calculations involve a full quantum treatment 
of the system, including the change in electron velocity and non-
specular direction of reflection produced by polariton exchanges. As 
a first observation, the classical treatment in Eq. 5 provides the nec-
essary conditions to reach a large electron–light coupling translated 
into substantial inelastic probabilities (Fig. 2, A to D). Focusing for 
concreteness on the ℓ = ±1 channels (see the Supplementary Mate-
rials for more sidebands), the parameter space for which electron–
light coupling is maximized is well captured by the classical 
framework, and it corresponds to the phase-matching condition in 
Eq. 6 (i.e., ℏε0 ≈ mec

2 ∕2n2
eff
∼ 4 eV with θe = 90°), for which the 

coupling diverges as β ∝ 1/ cos θe near θe = 90°. However, both the 
intensity profile in the (ε0, θe) phase space and the magnitude of 
the electron–light coupling strength are markedly different in the non-
recoil and recoil theories. Specifically, the incorporation of recoil in 
the latter leads to asymmetric loss–gain spectra (i.e., P−ℓ ≠ Pℓ) and 
abrupt thresholds in Pℓ (Fig. 2, E to G). These observations can be 
interpreted by noting that energy–momentum conservation im-

poses the condition q
�z =q0

√
1+�ω∕ε0 −∣ sinθe+�k∥∕q0 ∣

2  , and 

thus, not only the emission (ℓ < 0) and absorption (ℓ > 0) probabil-
ities are rendered different but also the inelastic signal vanishes 
whenever 1 + ℓω/ε0 < ∣sin θe + ℓk∥/q0∣2, since q�z becomes purely 

imaginary (i.e., the corresponding electron wave is evanescent; see 
also fig. S1). Another notable consequence of recoil is the redistribu-
tion of probability to neighboring ℓ’s near the aforementioned 
thresholds (see Fig. 2H), in contrast to the symmetric spectrum pro-
duced by the classical description (Fig.  2D). This behavior is less 
pronounced at lower values of θe (see fig. S2).

It should be noted that recoil imposes classical kinematic con-
straints relating incident and scattered electrons. In the present con-
text, these constraints imply a change in the direction of motion 
and velocity of the electron when absorbing or emitting a certain 
number of photons. We remark that the resulting kinematic rela-
tions associated with recoil emerge naturally in our formalism, 
from which the associated probabilities Pℓ are calculated following 
a self-contained quantum treatment of the system.
Partially electron-reflecting surface
We expect partial transmission and reflection when the electron is 
scattered by an atomically thin two-dimensional (2D) material, 
which we describe through a surface potential V(z) = U0  δ(z). The 
parameter U0 has units of energy times length, and arguing that an 
atomic monolayer can be described by a barrier of finite thickness 
d ≲ 1 nm and internal potential V0 in the electronvolt range, we ex-
pect U0 ≈ V0d in the eV × nm range. We also assume the material to 
support long-lived polaritonic modes [e.g., phonon polaritons in 
hBN (52) or plasmons in doped graphene (51)], so that they are 
characterized by a real effective index neff. The calculation of the 
probabilities associated with the electron wave functions involved 
in the net exchange of ℓ polariton quanta follows the same steps 
as in the above scenario of full reflection, but now both reflect-
ed and transmitted electron components are produced. For an 
electron prepared with an incident −q0z wave vector in the out-
of-plane direction, the wave function in the absence of illumi-
nation is given by φ00(z)= [e−iq0z z+ r0 e

iq0z z]Θ(z)+ t0 e
−iq0z zΘ(−z), 

where we use the transmission and reflection coefficients 
t
�
= (1+ imeU0∕ℏ

2q
�z)

−1 and r
�
= t

�
−1, respectively. We use this 

result together with the Green function 0(z, z
�, ε⊥

�

)=

− (ime∕ℏ
2
q
�z
)[eiq�z ∣z−z

�∣ + r
�
eiq�z (∣z∣+∣z

�∣)] (see section S1) to obtain 

A B C D

E F G H

Fig. 2. Inelastic scattering of low-energy electrons upon total reflection at a polariton-supporting surface. (A to C and E to G) Probabilities corresponding to a net 
exchange of ℓ = 0, ±1 quanta calculated without [(A) to (C)] and with [(E) to (G)] inclusion of quantum recoil as a function of electron incidence angle θe. (D and H) Electron 
spectra for θe = 86.2° obtained without (D) and with (H) recoil. We consider a polaritonic electric-field amplitude E0 = 5 × 106  V/m, effective refractive index neff = 250, and 
energy ℏω = 0.2  eV.
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the reflected and transmitted ℓ-resolved probabilities P±
�

 from 
Eq. 4 following the formalism developed above. The results are plot-
ted as a function of electric-field amplitude for different electron 
energies and U0 = 1 eV nm in Fig. 3 (see fig. S3 for U0 = 0 results). 
Again, we find recoil effects emerging through strong asymmetries 
in the electron spectra, which, as anticipated, become more sym-
metric as the electron energy is increased toward the ε0 ≫ ω regime. 
However, strong asymmetries persist at high orders ℓ, and particu-
larly Fig. 3 (G and H), which shows ∣Pℓ − P−ℓ∣/(Pℓ + P−ℓ) as a func-
tion of incident electron energy for ℓ = 1 − 10, reveals substantial 
asymmetries up to relatively high electron energies for values of ℓ 
increasing with ε0. These results are qualitatively correct even when 
more involved z-dependent potentials are considered (e.g., finite-
thickness films) because the Green function outside the material 
retains the same expression as above (57), with reflection and trans-
mission coefficients depending on the details of the potential.

Nonvanishing interaction of surface-scattered electrons and 
unscattered light plane waves
An interesting scenario is presented when a thin film is illuminated 
from the far field, and the scattered optical components are com-
paratively negligible, so that the electron mainly sees an external 
light plane wave. Here, electron–light coupling can still take place 
under this configuration because the free-space energy–momentum 
mismatch is broken by the fact that the electron is scattered by the 
material. We regard this situation as the complementary of electron 
shaping mediated by PINEM interaction [i.e., SIELS assisted by 
electron-transparent, light-reflecting plates, in which the kinematic 
electron–photon free-space coupling mismatch is circumvented 
by having light half-plane waves instead of full plane waves (56)]. 
We note that 2D monolayers (e.g., graphene and hBN) are nearly 

transparent to light [e.g., ∼2.3% absorption by graphene over a wide 
spectral range (58, 59)] and can thus be regarded as good candidates 
to explore the interaction of light plane waves with surface-reflected 
low-energy electrons (i.e., when light scattering and absorption by 
the material is negligible, but the electron is partially reflected).

We explore this idea in Fig. 4, where the incident electron is con-
sidered to be fully reflected by the film, and it interacts with a freely 
propagating (i.e., negligibly scattered by the film) p-polarized light 
plane wave (i.e., with the optical magnetic field oriented parallel to 
the surface). The theoretical analysis of this configuration is analo-
gous to that in Fig. 2 but using a plane-wave optical field instead of 
a surface mode. For simplicity, we limit the calculations to first order 
in the electron–light interaction under the assumption of low-
enough optical-field intensities, thus generating ℓ = ±1 sidebands 
only. Specifically, we present in Fig.  4 the resulting probabilities 
P±
�=±1

 as a function of light and electron incidence angles, compar-
ing nonrecoil and recoil (Eq. 4) descriptions. Incidentally, the cou-
pling parameter in the former is given by

where E0 is the light-plane-wave amplitude. We find again that recoil 
leads to asymmetric inelastic electron signals, as well as regions of 
the (θl, θe) parameter space in which electron–light coupling be-
comes kinematically allowed or forbidden, accompanied by a trans-
fer of probability to the symmetric (ℓ → −ℓ) channel. In contrast to 
the interaction with surface polaritons, where phase matching at 
grazing incidence produced the strongest interaction, now phase 
matching is forbidden (i.e., the in-plane optical wave vector is al-
ways smaller than the in-plane electron wave vector), rendering the 

β =
2eE0c

ℏω2

cosθe(sinθl c∕v − sinθe)

(c∕v− sinθl sinθe)
2 − cos2θl cos

2θe

Fig. 3. Inelastic scattering of low-energy electrons upon partial reflection at a polariton-supporting thin film. (A to F) We show transmitted [(A) to (C)] and reflected 
[(D) to (F)] electron spectra as a function of polaritonic electric-field amplitude E0 for fixed effective refractive index (neff = 50) and energy (ℏω = 1  eV). Selected incident 
electron energies ℏε0 are considered, while the incidence angle is fixed at θe = 45°. Spectral features are broadened by a Lorentzian of 0.1 eV FWHM. (G and H) Asymmetry 
parameter associated with the exchange of ℓ photons, ∣Pℓ − P−ℓ∣/(Pℓ + P−ℓ), as a function of electron energy for a field amplitude E0 = 2 × 108  V/m in the transmitted (G) 
and reflected (H) electron components. Electron-surface scattering is modeled through a δ-function potential of amplitude U0 = 1  eV nm in all cases.
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coupling smaller. The maximum coupling is observed at grazing 
light incidence (θl = ±90°) and normal electron incidence (θe = 0°), 
which is consistent with the angular scaling of the classical coupling 
coefficient as β ∝ sin θl cos θe for v ≪ c. These conditions guarantee 

maximum overlap of the light electric field along the electron 
trajectory.

Light-assisted low-energy electron diffraction
Low-energy electrons with energies ∼10 to 500 eV are commonly 
used to study the atomic structure of crystal surfaces in low-energy 
electron diffraction (LEED) (60–62) because they penetrate only a 
few atomic layers and have de Broglie wavelengths commensurate 
with the atomic spacings. In a related context, energy-resolved in-
elastic low-energy electron surface scattering is also used to probe 
surface modes (63–65), while ultrafast LEED grants one access to 
time-resolved structural dynamics (66, 67). Here, we theoretically 
study the interaction of surface-diffracted electrons with light 
plane waves and show the important role played by recoil in the 
underlying electron–light coupling, including the presence of lat-
tice resonances that boost the interaction under Rayleigh anomaly 
conditions (46).

To illustrate electron–light–matter interactions in the presence 
of Bragg diffraction, we consider a low-energy electron normally 
impinging on an illuminated monolayer of gold atoms arranged in a 
(111) triangular lattice with an Au─Au bond distance of 0.288  nm 
(Fig.  5A). In the absence of external illumination, the diffracted 
electron wave function consists of components with wave vectors 
given by q±

G0
= G ±

√
q2
0
− G2 ẑ , where G are 2D reciprocal lattice 

vectors, while the + (−) sign corresponds to upward (downward) 

A

C

B

D

Fig. 4. Inelastic interaction between a light plane wave and surface-scattered 
electrons. We plot the probability associated with ℓ = ± 1 net photon exchanges as 
a function of the electron (θe) and photon (θ1) incidence angles without (A and B) 
and with (C and D) inclusion of recoil for an electron-opaque, light-transparent sur-

face. We assume total electron reflection and take ℏε0 = 2 eV, E0 = 8 × 107 V/m, and 

ℏω = 1eV. In (D), kinematically forbidden regions are shaded in gray.

A

B

C D E

F G H

I J K

Fig. 5. Recoil effects in the interaction of light with lattice-diffracted electrons. (A) We consider a normally incident electron undergoing diffraction by an Au(111) 
monolayer (Au–Au distance d ≈ 0.2884 nm, with atomic bonds along y) under grazing plane-wave light irradiation along x ( k∥∥ x̂ ) with linear polarization in the y-z plane 
as indicated by the angle ϕp. Each of the electron Bragg diffraction orders (see yellow arrows for one of them) splits in energy and direction of reflection/transmission upon 
exchange of a net number of photons ℓ. (B) Electron isoenergy contours after exchanging ℓ = −1, 0, and 1 photons (blue, black, and red circles), superimposed on the 
reciprocal lattice of the atomic monolayer ( 4π∕

√
3d distance between sites). We consider 71.4-eV incident electrons and 1-eV photons. (C to H) Intensity of transmitted 

[(C) to (E)] and reflected [(F) to (H)] Bragg peaks for three different incident electron energies {see labels above [(C) and (F)], [(D) and (G)], and [(E) and (H)]} upon exchange 
of ℓ = −1, 0, or 1 photons (1-eV energy). The light wave vector k∥ is indicated in (C), and the electric-field amplitude is E0 = 2.5 × 108 V/m with polarization set by ϕp = 45°. 
The area of the circles gives the fraction of electrons in each Bragg peak (see log scale legend). (I to K) Same as (E), but for varying polarization angles ϕp (see top labels).
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electron motion relative to the atomic plane. Lattice scattering is 
elastic, so all of these wave vectors have a magnitude q0 =

√
2meε0 ∕ℏ 

determined by the incident electron energy ℏε0. Diffracted electron 
plane waves with G < q0 generate observable LEED spots, as deter-
mined by an Ewald sphere construction (see Fig. 5), whereas waves 
with G > q0 are evanescent. The latter do not explicitly contribute to 
the far-field electron scattering probability, but they have to be re-
tained in the description of dynamical electron diffraction by the 
atomic layer (60–62). Starting from a normally incident electron, 
the wave function associated with the incident and scattered waves 
in the absence of illumination takes the form

where B±
G

 are scattering amplitudes.
Upon interaction with an incident light plane wave of wave vector 

k, every diffraction order (either propagating or evanescent) can ex-
change energy with the light field in multiples of the photon energy 
and in-plane wave vector (i.e., ℓℏω, and ℓk∥, respectively), giving rise 
to diffracted components with wave vectors q±

G�
= G + �k∥ ± q

G�z
ẑ , 

where qG�z =
√

2me(ε0+�ω)∕ℏ−∣G+�k∥ ∣
2  , labeled by the direc-

tion of motion (+/− for upward/downward scattering) and the net 
lattice and photon momentum exchanges (ℏG and ℓℏk∥). The total 
electron wave function takes the form

where the amplitudes C±
G�

 are self-consistently determined from an 
extension of LEED theory to incorporate the interaction with both 
the atomic lattice and the optical field (see the section S2 for details, 
including analytical expressions for the coefficients B±

G
 and C±

G�
 in 

Eqs. 7A and 7B, respectively). For simplicity, we limit our analysis to 
first order in the electron–light interaction, but we incorporate the 
interaction with the lattice to all orders.

As the electron energy increases, the number of diffracted spots 
also increases because more points are inside the Ewald sphere. In 
the elastic part (ℓ = 0), a given diffraction order G is observed in the 
LEED pattern when the electron energy exceeds a threshold energy 
ℏ2G2/2me. However, in the inelastic components, the changes in 
electron energy and momentum enter the condition for far-field 
propagation. For example, after exchanging ℓ photons, a previously 
evanescent order may become propagating if ℏ∣G + ℓk∥∣2/2me < ε0 + 
ℓω, and likewise, a propagating Bragg-diffracted beam may be-
come evanescent (Fig. 5B). These effects are more relevant when 
ε0 ∼ ℏG2/2me. In addition, electrons scattered at the onset of a diffraction 
order move under grazing conditions, so they spend more time near 
the surface and, therefore, undergo a stronger interaction with light. 
Consequently, by choosing the electron energy close to the threshold 
of one of the G beams, we expect to increase the coupling of diffracted 
electrons to light, emphasizing the importance of recoil (see below).

This phenomenology is illustrated in the calculations presented 
in Fig. 5 (C to H) for three different incident electron energies (in 
separate columns) near the threshold of the (1,1) and its symmetry-
equivalent diffraction spots. We show the intensities of transmitted 
(Fig. 5, C to E) and reflected (Fig. 5, F to H) beams. Following the 
conditions under which a maximum electron–light interaction was 
observed in Fig. 4, we take the electron to be normally impinging on 

the atomic plane, while a light plane wave is incident parallel to 
the x surface direction with linear polarization as indicated in 
Fig. 5A. The atomic lattice is oriented with Au–Au bonds along y. 
Upon inspection of our numerical results, we estimate an overall 
inelastic scattering probability of ∼10 to 20% for incident electron 
energies up to 50 eV and optical electric-field strengths E0 ∼ 2.5 × 
108 V/m. In addition, we find that the waves corresponding to ℓ = 
±1 typically have comparable intensities to the transmitted ℓ = 0 
beam. In contrast to the amplitude found when adopting the nonre-
coil approximation, which only depends on the amplitude of each 
G-dependent LEED spot and its multiplexing into different energy 
sidebands according to the corresponding electron–light coupling 
coefficient β (i.e., considering the time integral of the field along the 
classical incoming and Bragg-reflected electron paths), a full quan-
tum treatment including recoil reveals that all diffraction orders 
(propagating and evanescent) can contribute.

The onset of a new diffraction order during the scattering of 
waves by a periodic structure causes an anomaly consisting of the 
depletion of the specularly reflected and directly transmitted beams, 
as pointed out by Lord Rayleigh in the context of light diffraction by 
periodic gratings (46–48). In light-assisted inelastic electron diffrac-
tion, a related anomaly takes place when a scattered beam becomes 
grazing (i.e., a vanishing out-of-plane wave vector component qGε

�
z = 

0 for a combination of reciprocal lattice vector G and sideband or-
der ℓ or, equivalently, ℏε0 + ℓℏω = (ℏ2/2me)∣G + ℓk∥∣2 under normal 
electron-incidence conditions). Upon examination of the corre-
sponding coefficients C±

G�
 in Eq. 7B (see section S2), considering  

q
Gε

�
z ≈ 0 and taking the field amplitude E0⊥�z for simplicity, we can 

approximate

and consequently, the probability ∣C±
G,�

∣2 diverges as 1∕q2
Gε

�
z
 . An 

illustrative example is presented in Fig. 6 when varying either the 
electron energy (Fig. 6A) or the photon energy (Fig. 6B) around the 
conditions for the grazing emission of an inelastic electron beam. A 
divergence in the probability calculated to the first order of interac-
tion with the light is observed, leading to unphysical values above 
unity. This indicates that the system enters into the nonpertubative 
regime, not only requiring higher orders of interaction to describe 
the system but also revealing that strong electron–light coupling can 
be reached even for small light intensities. Such a strong interaction 
results from in-phase scattering by a large number of atoms in the 
planar lattice, which demands the use of sufficiently wide electron 
and light beams (along lateral directions) that can be regarded as 
coherent plane waves over a large surface area. This divergence is 
well captured by Eq. 8 (Fig. 6, dashed-blue curves), in reasonable 
agreement with our rigorous first-order results (Fig.  6, solid-blue 
curves, obtained from eq. S23). We note that, in addition to the ex-
plicit 1/ω factor in Eq. 8, the inelastic scattering coefficient C±

G,�
 is 

dominated by a 1/(qGε
�
z
− q

Gε0z
) term in eq. S23, thus resulting in an 

overall ∝1/ω4 scaling of the probability with decreasing photon fre-
quency ω, as indicated in Fig. 6B.

Concluding remarks
In summary, based on a comprehensive theoretical treatment of the 
quantum-mechanical interaction between low-energy free electrons 

ψ0(r, t)=

[

e−iq0z+
∑

±

B±
G
eiq

±
G0
⋅rΘ(±z)

]

e−iε0t (7A)

ψ(r, t)=

[

e−iq0z+
∑

±

C±
G𝓁
eiq

±
G𝓁

⋅r−i𝓁ωtΘ(±z)

]

e−iε0t (7B)

C
±
G,𝓁

≈
i𝓁e

ℏω

E0 ⋅G

q
Gε

𝓁
z
q
Gε0z

(
B
+
G
+B

−
G

)
(8)
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and optical fields with comparable photon energies, we have identi-
fied a plethora of recoil and quantum effects emerging in the form of 
substantial modifications in the energy and angular distribution of 
electrons undergoing elastic surface scattering and inelastic interac-
tion with optical fields associated with either surface polaritons or 
propagating light. In particular, we have shown that free electrons 
interacting with evanescent optical fields can undergo classically 
forbidden backscattering for a fully electron-transparent film. Fur-
thermore, the interaction between surface-scattered electrons and 
unscattered light plane waves renders a nonzero electron–light cou-
pling due to the breaking of translational symmetry in the electron 
wave function; we propose that suspended atomically thin layers 
may provide suitable conditions (high transparency to light and 
large electron scattering) to observe this effect.

As a common element in the interaction between free electrons 
and crystal surfaces, we have incorporated Bragg diffraction, which 
leads to an interplay between scattering by the atomic lattice and 
inelastic photon exchanges. The latter can transform propagating 

diffraction orders into evanescent or the other way around. Strong 
electron–light coupling is predicted at the onset of an inelastically 
scattering electron beam, capitalizing on the in-phase interaction 
with many atoms in the structure. By strong coupling we refer to the 
fact that, for a given light intensity, the probability that the electron 
undergoes inelastic scattering can be made arbitrarily high, provided 
we are close enough to a lattice resonance, and the light and electron 
beams have a sufficiently large degree of lateral coherence. In prac-
tice, imperfections in the atomic lattice and atomic vibrations can 
reduce the strength of the divergence, so future work is needed to 
determine the ultimate limits of interaction boosted by lattice diver-
gences and whether the strong-coupling regime can be reached 
down to the single-electron–single-photon level. This effect could 
be leveraged to optically shape free electrons using moderate light 
intensities, potentially operating in the continuous-wave regime 
without damaging the scattering material.

Although we have focused on planar surfaces, the concept of 
combining elastic scattering of low-energy electrons by a material 
structure and the inelastic interaction with light of comparably low 
photon energy is more general and could involve the use of nonpe-
riodic nanostructures such as holes, tips, and other curved elements 
to guide and reshape the electron wave function and also increase or 
spatially modulate its interaction with specific optical modes. In a 
related context, electron interaction with illuminated atoms in the 
gas phase has a long tradition [42, 68–70], which could be revisited 
as a platform to optically modulate electrons and explore new physics. 
The novel directions opened by the presented theory and simula-
tions could be experimentally explored in currently available low-
energy electron-microscope setups.
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