Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

New Nanocomposites Derived from Cation-Nonstoichiometric Bax(Co, Fe, Zr, Y)O3-δ as Efficient Electrocatalysts for Water Oxidation in Alkaline Solution

MPG-Autoren
/persons/resource/persons126666

Hu,  Zhiwei
Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Abdelghafar, F., Xu, X., Guan, D., Lin, Z., Hu, Z., Ni, M., et al. (2024). New Nanocomposites Derived from Cation-Nonstoichiometric Bax(Co, Fe, Zr, Y)O3-δ as Efficient Electrocatalysts for Water Oxidation in Alkaline Solution. Accounts of Materials Research, 6(7), 2985-2994. doi:10.1021/acsmaterialslett.4c00789.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-7B21-2
Zusammenfassung
Perovskite oxides are promising electrocatalysts due to their rich composition, facile synthesis, and favorable stability under oxidizing conditions. Despite extensive research on doping strategies, the impact of cation nonstoichiometry on electrocatalytic performance is less understood. Here, we reveal that A-site cation nonstoichiometry significantly influences the phase evolution of B- x (Co, Fe, Zr, Y)O3-delta, transitioning from a single cubic perovskite (x = 1) to a nanocomposite comprising a major cubic perovskite phase and a minor hexagonal swedenborgite phase (0.80 <= x <= 0.95). The nanocomposite with a nominal chemical composition of Ba0.80Co0.7Fe0.1Zr0.1Y0.1O3-delta showed markedly enhanced electrocatalytic performance for the oxygen evolution reaction (OER) in alkaline solutions due to the synergistic effect of the two strongly interacting phases, promoting a lattice-oxygen-participating OER pathway. Further optimizing cation nonstoichiometry allowed the design of nanocomposites with controlled phase concentrations. The optimal candidate, with an increased content of the swedenborgite phase, demonstrated further boosted OER performance.