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2 Max Planck Institute for Biogeochemistry, Jena, Germany.
3 ELLIS Unit Jena

E-mail: kai.cohrs@uv.es

December 2023

Abstract. Hybrid modeling integrates machine learning with scientific knowledge to

enhance interpretability, generalization, and adherence to natural laws. Nevertheless,

equifinality and regularization biases pose challenges in hybrid modeling to achieve

these purposes. This paper introduces a novel approach to estimating hybrid models

via a causal inference framework, specifically employing Double Machine Learning

(DML) to estimate causal effects. We showcase its use for the Earth sciences on two

problems related to carbon dioxide fluxes. In the Q10 model, we demonstrate that

DML-based hybrid modeling is superior in estimating causal parameters over end-

to-end deep neural network (DNN) approaches, proving efficiency, robustness to bias

from regularization methods, and circumventing equifinality. Our approach, applied

to carbon flux partitioning, exhibits flexibility in accommodating heterogeneous causal

effects. The study emphasizes the necessity of explicitly defining causal graphs

and relationships, advocating for this as a general best practice. We encourage

the continued exploration of causality in hybrid models for more interpretable and

trustworthy results in knowledge-guided machine learning.

Keywords: Knowledge-guided machine learning, Hybrid modeling, Causal effect

estimation, Double machine learning, Temperature sensitivity, Carbon flux partitioning
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Causal hybrid modeling 2

1. Introduction

Machine learning (ML), specifically deep learning (DL), has proven to be effective in

identifying and modeling complex patterns from data sets. This led to unprecedented

progress in fields such as computer vision [1], natural language processing [2], and

speech recognition [3]. These data-driven models also increasingly complement or even

substitute mechanistic methods in science [4, 5].

In the Earth sciences, for instance, the common way to understand and model

the Earth’s properties, structure, and processes is using knowledge of first principles,

realized in mechanistic models based on functional equations [6]. These models allow

principled predictions of how the system under study would behave under different

conditions [7]. Nevertheless, they are not always sufficient to capture the complex and

usually not completely known relationships in the real world.

Computational constraints and missing understanding have led to simplified or

even missing representation of important processes in the current generation of climate

models [8]. Structural limitations often necessitate parameterizations to approximate

complex processes. Significant uncertainties include the representation of cloud

feedbacks [9], resolving ocean components at varying resolutions [10], surface energy

partitioning [11], representing key processes like vegetation response to CO2 [12],

and difficulties in representing functional structures across different biome types [13].

Addressing these challenges is essential for enhancing the accuracy and reliability of

Earth system models in projecting future climate change and weather extremes.

Integration of machine learning (ML) with abundant Earth data presents a

promising avenue to overcome the limitations of current Earth system models [14, 15].

Support vector machines [16], random forests (RFs) [17], or neural networks (NNs) [18]

are highly flexible, make little prior assumptions on the functional form and can integrate

the large datasets abundant in Earth and climate sciences.

The flexibility of ML models comes with some known downsides: (i) Many popular

machine learning models are black boxes, meaning that we do not understand the

internal reasoning behind the model’s predictions [19]. (ii) Often, ML models are not

robust and fail to generalize out of the domain of the data used for training [20, 21].

(iii) They violate physical properties and laws of nature, such as conservation laws,

symmetries, or equi- and invariances [14, 22]. These are crucial matters in Earth and

climate sciences, where a prime goal is to make realistic predictions on the Earth’s

system under a changing climate [23].

All these issues are gaining attention in ML and Earth system science literature.

Research in generalization and extrapolation aims at ensuring robustness outside of

the training domain [24–26]. Explainable artificial intelligence (XAI) tackles questions

on the explainability of black box models [27–29], which find growing usage in remote

sensing problems [30, 31]. At the same time, the general goal of explaining black boxes

is being challenged by advocates for glass box models, i.e., inherently interpretable

models [32, 33], and there is an ongoing debate on the evaluation and rigorousness of
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Causal hybrid modeling 3

XAI methods [34,35].

A flourishing area of research is science-aware or knowledge-guided machine learning

(KGML), which combines the knowledge-driven and data-driven worlds to overcome

inconsistencies [36]. These methods increasingly find their way into various domains

within Earth sciences [37–42]. One example is physics-informed neural networks

(PINNs) [43], where an additional term is added to the loss for training that punishes

deviations from physical laws encoded with ODEs or PDEs. Alternatively, ML models

can be trained on a combination of data and simulations from physical models to improve

consistency in the sparse observation regime [37].

Finally, hybrid modeling replaces some components of mechanistic models with

machine learning [44–46]. This constraint makes the models more interpretable and

serves as a regularizer for better generalization to unseen data. If we use deep

learning models as the machine learning component, the only requirement for fitting

these hybrid models is that the parametric components are differentiable [47]. Then,

gradient-based optimization allows joint optimization of the neural network (NN)

parameters and physical parameters of the mechanistic model and leads to seamless

data integration. In the following, we will refer to this as gradient-descent-based hybrid

modeling (GD-based HM). It serves as a baseline for our proposed method.

There are persisting challenges in hybrid modeling. Firstly, these models are prone

to equifinality, which denotes the existence of multiple models and sets of parameters

that describe the data similarly well. Already in the standard mechanistic modeling,

this is a well-known difficulty when not only model performance but also retrieving

meaningful parameters is the goal. In this setting, robust inference already poses a

challenge [48], which becomes even more difficult and prohibitively expensive in deep

learning [49, 50]. Ultimately, equifinality can jeopardize the interpretability of the

results. Second, regularization techniques in machine learning can introduce bias on

the physical parameters [45]. Finally, given the flexibility of non-parametric models

such as NNs, it is tempting to use different sets of variables for the model and choose

the ones that lead to the best overall performance. For a pure prediction task, that is a

sensible procedure [51]. For hybrid modeling, though, apart from equifinality, this can

lead to bias or different interpretations of the parameter of interest in the causal sense.

We might be right for the wrong reasons and imperil the desired interpretability of the

hybrid model (see Box 1 for an illustrative example).

In many instances, physical equations encode actual cause-effect relationships.

It is essential to capture the causal relationships between the variables to obtain

interpretable and more accurate models. Respecting the causal direction of time has

shown to be effective in training PINNs for chaotic systems where previous approaches

failed [52]. Furthermore, coupling causal discovery to identify the causal drivers in

climate models before applying deep learning algorithms improved performance and

interpretability [53, 54]. Causally constrained recurrent NNs more accurately reflect

underlying processes and were shown to enhance our understanding of methane in

wetlands [55]. Ultimately, causality aims at being right for the right reasons.
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Causal hybrid modeling 4

Therefore, we believe it is time for a causal hybrid modeling framework, where we

introduce an explicit physical prior by assuming a causal graph and framing the problem

as a causal effect estimation problem within the hybrid modeling framework. We will

show how this approach leads to well-defined problems, thus mitigating equifinality

and being robust to biases of training and regularization. As a first step, we propose a

method based on double machine learning (DML) [56]. DML is a causal effect estimation

technique developed in econometrics, where it is common to investigate the effect of

some proposed treatment on an outcome variable [57, 58]. It has recently been used

for effect estimation in the environmental sciences [59]. We suggest that this causal

effect estimation technique can be applied to a class of hybrid models where the effect

of some input driver on the output is encoded. We coin this method DML-based hybrid

modeling (DML-based HM).

Apart from the causal perspective, DML has favorable properties over naive fitting

approaches. Regularization of the estimators for the non-parametric part of the equation

can introduce substantial bias in estimating the parametric part of the equation. Using

DML, even for erroneous estimators, we can still obtain consistent estimators of the

causal effect coefficient. This is particularly useful if the confounding effects are

high-dimensional or are described by a complicated function that is hard to learn.

Furthermore, it enables us to make inferences, as the estimators are shown to be

approximately normally distributed, which yields confidence intervals [56].

Within the proposed framework based on DML, we can solve problems that can be

transformed into a regression problem of the form

Y = θ(X) · f(T ) + g(X,W ), (1)

where T is a one-dimensional input variable and X and W are further sets of predictors.

We assume that f is a known transformation of T , and our hybrid modeling goal is

to estimate the non-parametric functions θ and g. We will see relevant examples of

problems that fall into this class. This includes, in particular, the problems where θ

describes the effect of T on Y . This effect can be constant or depend on some other

predictors X.

We demonstrate the advantages of DML-based HM in two examples around carbon

fluxes:

(i) The temperature sensitivity Q10 model for ecosystem respiration [60–62] and,

(ii) the light-use efficiency model for carbon flux partitioning [63].

These two models are particularly relevant as they allow statements on the productivity

and respiration of plants under changing conditions.

Our contributions are as follows: In the case of synthetic data for Q10, DML

retrieves the Q10 temperature sensitivity parameter more robustly and efficiently than

the GD-based HM approach, especially in the low data regime and under regularization.
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Causal hybrid modeling 5

It retrieves Q10 values consistent with the literature on measured respiration data. We

show how equifinality can yield misleading results and how causal prior knowledge can

solve the problem without giving up flexibility. In the carbon flux partitioning problem,

we show how the method can be extended to the non-linear heterogeneous case, where

the hybrid modeling retrieves consistent fluxes and shows competitive performance to

the current state-of-the-art neural network.

In essence, we introduce DML-based HM as a novel approach to fitting hybrid

models and show that the obtained estimates are more efficient and robust than the

ones from GD-based HM. We describe a path to better pose problems with equifinality,

enforcing causal interpretability instead of hoping for it.
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Causal hybrid modeling 6

Box 1: Equifinality in hybrid modeling

Modeling the temperature dependence of ecosystem respiration Reco is a

fundamental step in better understanding biosphere evolution and responses

under global warming scenarios [64–66]. The functional relationship between

temperature and respiration has been classically represented via the Q10

respiration model:

Reco(X,TA) = Rb(X,TA) ·Q
(TA−T ref

A )/10
10 , (2)

where Q10 is the parameter describing temperature sensitivity, X is a set of

meteorological drivers and Rb describes the base respiration. Including air

temperature TA as a driver of Rb is an optional choice if we are to believe that

there are effects of temperature beyond the exponential dependency through Q10.

A common hybrid modeling approach amounts to using a NN as an estimator for

Rb, treating Q10 as a trainable parameter, and fitting everything end-to-end with

gradient descent, as it has been done in [45].

Equifinality in this problem can be shown by reformulating (2) for c > 0:

Reco(X,TA) = Rb(X,TA)c
(TA−T ref

A )/10 ·
(
Q10

c

)(TA−T ref
A )/10

. (3)

Thus, a flexible enough function estimator (e.g. a NN) could learn

Rb(X,TA)c
(TA−T ref

A )/10 and obtain Q10

c
as the temperature sensitivity. In this

case, we would obtain one of the solutions by chance and thus reach erroneous

conclusions about the temperature sensitivity.

In this example, equifinality arises because the problem is mathematically ill-

posed. It is less obvious, however, when introducing several non-parametric

models in more complicated physical equations. In practice, we will obtain

a distribution over the parameters mainly driven by inductive biases of the

learning algorithm or the network architecture [67] and which are not guided

by any physical knowledge. Additional explicit information can alleviate this

problem. These include the introduction of additional losses or adding prior

knowledge [68, 69]. Similarly, a regularization term can make the problem

identifiable. This has been formally proven for solving hybrid ODEs [70].

Regularization, however, is known to introduce bias on parameters of interest

in semi-parametric modeling problems [56].
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Causal hybrid modeling 7

T Y

X,W

θ(X)

Figure 1: Causal graph of treatment effect estimation of T on Y . Sets X and W can

enter both as confounders and mediators. Treatment effect θ can be heterogeneous and

dependent on X or constant.

2. Double machine learning for hybrid modeling – a causal perspective

Our setting considers problems that can be expressed as in (1), which can be studied

under a causal perspective, see Fig. 1. The parameter θ describes the direct effect of

some treatment variable T on the outcome variable Y . Moreover, we have access to

sets of predictors X and W that are confounding or mediating the effect of T on Y .

Confounders are common causes of T and Y , while mediators are variables through

which T indirectly affects Y . The inclusion of mediators has important implications for

the interpretation of the results. When we estimate the effect of T on Y with mediators,

we only obtain the direct effect by discounting the effects through these mediators. The

variables in X can further enter as effect modifiers by modulating the effect θ of T on

Y . Technically, we can use all mediators and confounders as effect modifiers when we

include them all in X, leaving W empty, or treat θ as a constant effect by instead leaving

X empty. At this point, we need to be careful with the choices of control variables X

and W as we need to assume that all relevant confounders are observed and included.

In particular, this means we need to be careful not to include mediators that have an

unobserved common cause with Y or that we introduce a common effect of T and Y .

Both cases would open a new path and substantially bias the estimation [71].

As per the DML framework, we must define an auxiliary equation that models

the confounding and mediating effects of X and W on T . Assuming, without loss of

generality, centered noise for both equations, we obtain

Y = θ(X) · f(T ) + g(X,W ) + ϵ E[ϵ|X,W ] = 0 (4)

f(T ) = m(X,W ) + η E[η|X,W ] = 0 (5)

E[η · ϵ|X,W ] = 0. (6)

Sometimes, the original problem formulation must be manipulated to fit our setting.

We will see examples of given transformations f , though the identity f(T ) = T could

also be used when the relationship is assumed linear in T . The causal effect θ is modeled

either as a constant coefficient or as a function of some covariates (heterogeneous effect).

We proceed according to the partialling out method in the DML framework [56]:

(i) Fit an estimator E[Y |X,W ] of Y on X and W ,
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Causal hybrid modeling 8

Causal frame

T Y

X,W

θ(X)

Y = θ(X) · f(T ) + g(X,W )

Double ML

Yres = Y − E[Y |X,W ]

f(T )res = f(T )− E[f(T )|X,W ]

θ̂ = argmin
θ∈Θ

En
[
(Yres − θ(X) · f(T )res)2

]

Estimate

(i) plug-in:

ĝ(X,W ) =E[Y |X,W ]

− θ̂(X)E[f(T )|X,W ]

(ii) refit:
build ĝ on residuals

Y − θ̂(X)f(T )

Combine

Ŷ (X,W, T ) =

θ̂(X)f(T ) + ĝ(X,T )

Figure 2: Schema of the proposed approach: (i) Frame the problem as a treatment

effect estimation problem and assume causal graph. (ii) Build estimators of Y and

f(T ) and deploy DML in the constant or heterogeneous treatment effect setting. (iii)

Estimate g with plug-in estimator or via a final fitting on the residuals. And finally,

(iv) Combine θ̂ and ĝ into a causally interpretable hybrid model.

(ii) fit an estimator E[f(T )|X,W ] of f(T ) on X and W ,

(iii) compute their residuals as Yres = Y − E[Y |X,W ] and f(T )res = f(T ) −
E[f(T )|X,W ] and

(iv) estimate θ̂ = arg minθ∈Θ En [(Yres − θ(X) · f(T )res)2].

We call the estimators in (i) and (ii) the first-stage estimators. The primary

benefit of the DML framework is that it yields fast estimation rates and, under certain

assumptions, asymptotic normality of θ. It is robust to errors in the first-stage estimators

due to overfitting or regularization bias. This robustness stems from the observation

that the moment equations corresponding to the final least squares loss in (iv) fulfill

Neyman orthogonality with respect to the first-stage estimators [56]: The gradient with

respect to the non-parametric estimators is zero in the optimum. This implies that

small deviations away from the optimal non-parametric models still keep the true θ0
as the optimal parameter of the score. This approach has been analyzed for a large

set of model classes [56, 72–75]. For example, any combination of linear regression,

decision trees, support vector machines, or NNs can be used to model the treatment

and/or the outcome models. Similarly, any of these or a combination of models could

be chosen to estimate the treatment effect. To maintain the theoretical guarantees of

the DML framework, it is important to split the data and perform the first two fitting

steps ((i),(ii)) on a different data subset than the last fitting step for the residuals (iv).

By doing cross-fitting, data efficiency can be maintained.

If the only object of the analysis is the interpretable treatment effect θ, the task is

completed by the above DML procedure. Nevertheless, as is usually the case in hybrid
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Causal hybrid modeling 9

modeling tasks, we are probably also interested in obtaining an estimator of g. For this,

we have two options:

(i) Use ĝ(X,W ) = E[Y |X,W ]− θ̂(X) · E[f(T )|X,W ] (plug-in) or

(ii) build an estimator on the residuals Y − θ̂(X) · f(T ) (refit).

The plug-in estimator (i) uses all estimators fitted in the previous steps and can be

obtained at no additional computational cost. A derivation of this estimator is given

in Section Appendix A.1. On the downside, in contrast to θ, there are no theoretical

guarantees on how well it describes g. Option (ii) adds a final supervised learning step,

with the advantage being that we are not limited to using the X and W to estimate θ.

Once θ has been estimated in a well-posed setting, we can now introduce, for example,

T as a driver in the estimation of g. We can combine all estimators to obtain the fitted

hybrid model for Eq. (1) (see Fig. 2 for a summary of the proposed procedure). By

separating the problem into a causal inference and a standard supervised learning step,

we have maintained its well-posedness. Next, we will explain how this technique can be

effectively applied in two use cases around carbon fluxes.

3. Case studies

Carbon fluxes are crucial in the global carbon cycle, a key component of the Earth’s

climate system [76]. Net ecosystem exchange NEE is the net carbon dioxide flux

measured using the eddy covariance (EC) technique [77]. The data for our studies is half-

hourly data from FLUXNET, a global network of EC towers that collect data on carbon

dioxide, energy fluxes, sensible heat fluxes, and water vapor exchange between the

atmosphere and the terrestrial biosphere [78]. It offers comprehensive measurements of

meteorological parameters and constitutes a crucial data source for ecosystem modeling

and climate research.

Different biogeochemical processes contribute to the carbon balance of the land [79].

In particular and as common, we split NEE as

NEE = −GPP +Reco, (7)

where gross primary production GPP describes the gross carbon uptake by the

environment and ecosystem respiration Reco denotes the carbon release of all organisms.

3.1. The Q10 model

A common parametrization of Reco is the Q10 respiration model [60–62]:

Reco(X,TA) = Rb(X) ·Q(TA−T ref
A )/10

10 . (8)

This model highlights temperature TA as a principle driver of respiration, with Q10

denoting the temperature sensitivity parameter. Furthermore, Rb describes the base

respiration, and X a set of meteorological drivers. Following the example of [45], we
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Causal hybrid modeling 10

use data from the EC tower in Neustift, Austria, available in the FLUXNET2015

dataset [80]. Based on this site, we extensively probe the DML-based HM in the

controlled setting of synthetic data and showcase its potential on measured data. As

the goal of this paper is not to provide a comprehensive analysis of global Q10 values,

we limit ourselves to this site for our first use case.

Data Synthetic data is generated from a Q10 model with seasonally varying base

respiration and measured air temperature TA, and with true constant Q10 set to 1.5

(for details, see Section Appendix B.1.1). We provide additional experiments for Q10

values of 1.25 and 1.75 to showcase the robustness of the results.

Ecosystem respiration is a latent flux not directly observed at flux towers during

the day. It can only be measured as nighttime NEE, as without photosynthesis, we

assume GPP to be zero or under controlled conditions like a sealed chamber [79]. We

use 2003 to 2007 for training and keep 2008 and 2009 for testing. Moreover, we consider

only measured observations, which amount to approximately 10% of the nighttime data

for training (4331 data points).

Applying DML-based HM Applying a log-transform to (8) and setting f(TA) = (TA −
T ref
A )/10 yields

log(Reco(X,TA)) = log(Rb(X)) + f(TA) · log(Q10). (9)

The resulting equation (9) describes a partially linear regression problem [81] equivalent

to (1). Here, log(Rb(·)) represents the non-parametric function g(·) as we do not know

the functional form of Rb. We aim to estimate the constant linear effect θ = log(Q10)

of the transformed temperature f(TA) on the log-transformed ecosystem respiration.

In this work, we employ and compare both NNs and RFs as examples for first-stage

estimators.

After obtaining the estimator Q̂10, we fit a NN on

Reco(X,TA)

Q̂
f(TA)
10

= NN(X,TA). (10)

We compare the causal DML-based HM to the standard GD-based HM as described

in [45]. We fit

Reco(X,TA) = NN(X) ·Q(TA−T ref
A )/10

10 , (11)

with a NN representing the base respiration Rb. The weights of the NN are optimized

together with Q10 using the Adam [82] optimizer.

We run the experiments with and without regularization for all involved NNs in both

hybrid modeling approaches. For this, we use dropout at a rate of 0.2. This technique

randomly drops nodes in a NN during training and was found to have a sparsifying

effect on the model [83]. We apply dropout to all hidden units in the network. We
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TA Reco

SW SM
POT,

SW SM,diff
POT

log(Q10)

(a) Synthetic data.

TA Reco

SW SM
POT,

SW SM,diff
POT

V PD

log(Q10)

(b) Real data.

Figure 3: Assumed causal graphs for the estimation with the causal hybrid modeling

approach in Q10 estimation.

provide additional experiments with weight decay [84], another common regularization

technique in deep learning at a rate of 0.1. To showcase the effect of equifinality, we

also introduce TA as an additional predictor in Rb. We will apply the same training

procedure and NN architectures for both hybrid modeling approaches for comparability

and to show robustness in the presence of biased estimators. We only drop the final

nonlinearity for the first-stage estimators in the DML-based HM. Details on the NNs

and their training can be found in Section Appendix B.3.

Causal graph of the Q10 model The causal graph we assume for the Q10 model is shown

in Fig. 3. The smooth potential radiation cycle given by SW SM
POT and SW SM,diff

POT represent

seasonality and, thus, has a confounding effect on temperature TA and Reco. For the

real data, we add V PD to the graph, representing humidity and water availability. This

variable enters as a mediator in the graph as temperature affects evaporation and how

much water the air can hold [85]. Furthermore, water availability also has a strong effect

on respiration [86]. However, the temperature-sensitivity Q10 should only describe the

immediate temperature effect [85]. We model the effects of water in the base respiration

factor Rb. Thus, assuming this graph, with our choices of variables, we estimate only

the direct, immediate effect and not the one mediated through water or confounded by

seasonality.

3.2. CO2 Flux partitioning

3.2.1. Problem formulation Direct measurements of GPP or Reco at the ecosystem

level are difficult to obtain [79]. Alternatively, partitioning methods estimate these

fluxes numerically from the measured NEE. Common approaches implement functional

relationships based on physiology and estimate the fluxes using data-driven models [87–

91]. Several hybrid-modeling approaches have recently been proposed modeling both
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Causal hybrid modeling 12

fluxes with NNs [38,68,92].

Separating a single signal into two additive signals is generally prone to equifinality

issues. [38] tried to break the symmetry between fluxes in the partition by enforcing

different sets of explanatory environmental covariates for the two fluxes and applying

a simple hybrid model. In particular, the authors combined NNs with the light-use-

efficiency model given by

NEE = −LUE · SW +Reco, (12)

where LUE models the linear efficiency of the incoming shortwaves SW on the resulting

GPP . In this form, GPP was modeled as the product of the incoming radiation and

LUE parametrized by a NN. [68] showed that with different random initializations, this

approach can lead to different resulting fluxes. The equifinality of the solution becomes

particularly evident in extreme conditions. The authors can reduce variability through

a multi-task learning approach. They introduce a second loss, forcing the network to

learn to predict solar-induced chlorophyll fluorescence (SIF) from the separated GPP

as both signals are known to be correlated under normal conditions.

Data As a proof of concept, we evaluate the proposed method on synthetically

generated data (see Section Appendix C.4). We only used measured NEE for the

real data and applied the hybrid modeling approach site-wise per year. For the data

selection of real data from FLUXNET2015 [80], we closely followed [38] to compare our

method to the neural network approach that imposes similar structural equations. We

chose the same set of 36 different FLUXNET2015 sites (see Section Appendix B.2) and

used the same quality criterion to select site-years, i.e., years of a specific site. This

implies that fitting is done year-wise per site, and only measured data is used. To have

enough high-quality data, only site-years for the analysis are selected where at least 80%

of the meteorological data and 10% of each daytime and nighttime NEE were measured.

As a target, similar to [38], we use the NEE obtained from the 50th percentile of the

CUT method [80]. For comparison, we use the respective partitioned Reco and GPP

fluxes obtained from the daytime [90] and nighttime [87] methods, already provided as

part of the FLUXNET2015 dataset. Moreover, we compare the partitions to the results

obtained with NNs from [38].

Applying DML-based HM We want to fit the following flux partitioning equation

NEE = −LUE(X) · f(SW ) +Reco(X,W ), (13)

where X and W are sets of meteorological drivers and f transforms the incoming

radiation to allow for more flexible light-response curves, leading to a potentially non-

linear light-use efficiency model. Here, Reco(·) and LUE(·) represent g(·) and θ(·) in the

equivalent problem (1), respectively. This time, we use the estimator of Reco obtained

from the first-stage estimators. As a proof of concept, we apply this method with f
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Causal hybrid modeling 13

being the identity function for linearly generated data over different noise levels (see

Section Appendix C.4).

For real data, the assumption of a linear relationship to SW is violated as GPP

saturates with increasing light. We will thus first fit a transformation f of the light

curve before applying the DML schema. In order to find f , we finally fit α and β in

NEE = − αβ SW

αSW + β
+ γ. (14)

with a moving window of 15 days, we always transform the 5 days in the center of

the fitting interval. This procedure is motivated by the daytime flux partitioning

method [90], which estimates a parameterized rectangular hyperbola over moving

windows to obtain GPP . This heuristic allows us to find a flexible, smoothly changing

light response curve. Other ways to obtain such a transformation can be envisaged. For

the synthetic data, we use inputs according to how the data was generated, i.e., vapor

pressure deficit V PD and temperature TA for X and the seasonal cycle of potential

radiation for W . On the real data, we use day of the year doy, V PD, temperature TA,

and soil water content SWC (for the sites where it is available) for X and leave W

empty (For the assumed causal graphs, see Section 3.2.1). We use gradient boosting

regressors [93], an ensemble method of multiple shallow decision trees for all involved

fitting steps.

Causal graph of the LUE model The causal graphs assumed for the LUE model are

shown in Fig. 4. As Reco is modeled similarly to the Q10 model, we keep the same

variables modeling the seasonal cycle. In addition to that, we include V PD and TA,

which were used to model GPP . The incoming radiation SW has an effect on the

temperature as well as on water vapor [85]. Thus, both variables enter as mediators on

the path to NEE. For the real data, we use the day of the year DOY to model the

seasonality, which continues to be a confounder. In addition to the V PD and TA, we

add soil water content, which also enters as a mediator when available. Consequently,

we estimate GPP as the direct effect of light on NEE, discounting the indirect effects

through temperature, V PD, and SW , which we allocate to RECO. Note that in this

setup, these three variables are still entered as modifiers on the effect of light on NEE,

affecting GPP . Table 1 summarizes the variables used for the different setups of the

use cases.

4. Results and Discussion

We show the applicability of our causal DML-based HM on two carbon flux modeling

problems. We estimate the temperature sensitivity parameter in the Q10 model to

showcase the robustness to regularization biases. We further illustrate the flexibility of

the method to tackle the carbon flux partitioning problem.
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Causal hybrid modeling 14

Table 1: Summary of variables for the experiments. The variables denote: outcome

variable Y , treatment T , control variables X and W , ecosystem Respiration Reco, air

temperature TA, smooth cycle of shortwave radiation and its derivative SW SM
POT and

SW SM,diff
POT , vapor pressure deficit V PD, net ecosystem exchange NEE, day of the year

DOY and soil water content SWC.

Use case Data Y T W X

Q10 model Synthetic log(Reco) TA SW SM
POT, SW

SM,diff
POT -

Measured log(Reco) TA SW SM
POT, SW

SM,diff
POT , -

V PD

CO2 Flux Synthetic NEE SW SW SM
POT, SW

SM,diff
POT V PD, TA

partitioning

Measured NEE SW DOY V PD, TA,

SWC

SW NEE

SW SM
POT,

SW SM,diff
POT

V PD, TA

LUE

(a) Synthetic data.

SW NEE

DOY

V PD,

TA, SWC

LUE

(b) Real data.

Figure 4: Assumed causal graphs for the estimation with the causal hybrid modeling

approach in flux partitioning.

4.1. Q10 ecosystem respiration model.

4.1.1. Overall improved estimation capabilities. We simulated ecosystem respiration

data from observations of FLUXNET. The true Q10 parameter was set to 1.5. We

sample 100 datasets of varying sample sizes to see how the methods perform in different

data regimes. We compare the GD-based HM approach using NNs to the proposed

causal DML-based HM framework in two possible instantiations, either using RFs or

NNs as first-stage estimators. Experiments are run with and without applying dropout

regularization and introducing TA as an additional predictor in base respiration.
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100 200 400 800 1600 3200 6400 12800 25600 51200
Sample size

1.1
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2.5

Q
10

GD-based HM without TA

GD-based HM with TA

DML-based HM with NNs
DML-based HM with RFs

(a) Without dropout.

100 200 400 800 1600 3200 6400 12800 25600 51200
Sample size

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

Q
10

GD-based HM without TA

GD-based HM with TA

DML-based HM with NNs

(b) With dropout.

Figure 5: Simulation study for Q10 estimation with the GD-based HM and the

DML-based HM over 100 sampled datasets at different sample sizes. The plots show

average and 95% CI for the estimated Q10 for different methods without (a) and with (b)

dropout applied as a regularizer in the NN regression models. The true Q10 parameter

has a value of 1.5. Introducing TA as a predictor in Rb leads to equifinality problems.

Dropout as a regularizer introduces bias on the estimation of Q10 in the GD-based HM

case, while the causal hybrid modeling approach performs satisfactorily in the absence

of equifinality.

The Q10 estimation results are shown in Fig. 5. First, Fig. 5a shows the results

where no dropout was applied to the NNs. In this case, the estimates of the

GD-based HM approach, where TA is included as a predictor for Rb, show values that

are, on average, between 2.1 and 2.3 over all sample sizes. They show a substantial

mismatch to the true value of 1.5 and a wide spread at each sample size. This illustrates

that equifinality expresses itself in the estimations as a wide range of values that hardly

decreases with increasing sample size. We are not obtaining the full range of R > 0

values, which is by (8) mathematically possible, but a range that is constraint alone

by the initial Q10 value, the network’s implicit biases and the first optimization steps

of the gradient descent algorithm. This can make us mistake this for a valid inference

of the method. Instead, methods that exclude TA as a predictor find good estimators

that converge with increasing data size. This is, in general, an encouraging result for

all hybrid modeling approaches in this setup. Over the whole range, the GD-based HM

shows wider spreads than the DML-based HM approaches, which converge notably faster

with increasing data size. At low data, they also have lower bias than the GD-based HM

approach. Remarkably, the random forest shows very little bias for solving this task over
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Causal hybrid modeling 16

the whole data regime. Experiments corresponding to Q10 values of 1.25 and 1.75 (see

Section Appendix C.3) exhibit minor variations in magnitude, proportional to the effect

parameter. However, they consistently affirm the findings obtained for Q10 = 1.5.

These results showcase the data efficiency of the DML-based approach. At the same

time, it is currently computationally less efficient. The causal DML-based HM involves

various fitting steps, which may seem uncomfortable compared to the usual end-to-end

learning with NNs. One may think of ways also to make DML end-to-end possible.

Here, one would apply NNs for all fitting steps and introduce a common loss over

all optimization problems optimized with gradient descent. By weighting these losses

adaptively, one can force this training to first fit the first stage estimators and then

the treatment effect variable similar to what has been done in fitting PINNs respecting

temporal and spatial causality [52]. Efforts would need to be put into parallelizing the

fitting of the first-stage estimators to make this approach computationally less costly.

4.1.2. Robustness against regularization bias. Dropout is commonly used in deep

learning for regularization [83] or uncertainty quantification [94]. Fig. 5b shows the

Q10 estimations where dropout is applied to all NNs of the GD-based HM approach

and the HM approach based on DML. With dropout, the GD-based HM approach

has a more challenging time finding a good solution. It substantially overestimates

the value of Q10 in the low data regime and only slowly gets more constrained and

closer to the true value at the upper end of the used sample sizes. While the GD-based

method got notably worse with the introduction of dropout, the DML shows robust

results for the estimations over the full data range. On average, the Q10 estimations

perform similarly to the experiments without dropout. In the low data regime, the

bias in the estimation even decreased further. When fitting the GD-based HM with

TA, the regularization with dropout has a positive effect. The estimated values for

Q10 are closer to the true value, and the spread reduces with more data points. The

regularization through dropout restricts the space of solutions and reduces equifinality

even though more data is necessary to overcome the stochasticity introduced through

dropout. In Section Appendix C.1, we show additional results with weight decay [84],

another common regularization technique. As it yields qualitatively similar results (see

Fig. C1), we conclude that the presented findings are not only inherent to dropout. In

Section Appendix C.2, we further test the robustness of the findings with 0.05, 0.1, and

0.3 as additional dropout rates and find that the introduced bias in estimating Q10 is

proportional to the magnitude of dropout. In all cases, the approach based on double

machine learning remains advantageous.

In light of the results, DML, in combination with dropout, can be effectively used

for a full probabilistic assessment of hybrid models with inference on the parameter

of interest and the non-parametric part, as dropout is also a common technique for

obtaining uncertainty estimates for NNs [94]. While the GD-based HM approach

suffered from the application of dropout, the DML approach was robust. Moreover, the

technique further yields confidence bands for the approximately normally distributed
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Causal hybrid modeling 17

estimators. By separating both estimations, we can obtain a distribution over the

estimated Q10 and safely obtain uncertainty estimates for Rb using dropout.

4.1.3. Results on real data As discussed in Section 3.1, we obtain measured

respiration data using nighttime NEE measurements. We apply GD-based HM and

DML-based HM with NNs and RFs without dropout to the data. We used the full

dataset of over 100 different random seeds. The obtained distributions of Q10 are shown

in Fig. 6. The GD-based HM approach finds a mean value of 1.322, with a skewed

distribution and estimated values ranging between 1 and 2. Including TA as a predictor

in the GD-based approach, the values lie in a completely different range between 2.5 and

3.5, with the mean being 2.816. The estimations based on DML yield a mean of 1.407

and 1.409 for the RFs and NNs, respectively, with similarly peaked distributions. The

results of the DML estimate agree fairly well with the results of [95] that after controlling

for seasonal confounding, find that Q10 takes values around 1.41± 0.1 independently of

mean-annual temperature and biome.

4.2. CO2 flux partitioning

We apply the causal DML-based HM to the problem of carbon flux partitioning as

defined in (7). In this scenario, we model the effect as a heterogeneous treatment

effect, a function of other predictors, parametrized with an ML model. We use gradient

boosting estimators for all three estimators involved. Moreover, we show that the plug-in

estimator for Reco obtained by combining the first-stage estimators yields useful values

without the need for an additional refit.

4.2.1. Consistent flux partitioning We use vapor pressure deficit V PD, air temperature

TA, and day of the year (for seasonality) as drivers over all sites. Where available, we

also included soil water content. Since we do not have access to the real partial fluxes,

we compare the retrieved fluxes to the ones obtained by the NN approach described

in [38] and by the established daytime and nighttime methods [87, 90]. The daytime

and nighttime methods are assumed to capture a simple cycle depending on a few

meteorological drivers. New methods may deviate but should show a similar pattern

overall. For the partitioned fluxes of two methods (xi)
N
i=1 and (yi)

N
i=1, we compute the

R2, the root-mean-square error (RMSE), given by

√∑N
i=1(xi−yi)2

N
, and the bias as the

difference between the sample means x̄ and ȳ. The results are reported in Table 2.

Overall the consistency of the method based on DML lies in a similar range of values

to the NN approach [38] when compared to the daytime and nighttime methods. The

estimated data uncertainty of the used NEE measurements is 1.53µmolCO2

m2s
. For almost

all compared fluxes, our method lies under this threshold in terms of RMSE. Only for

the GPP and NEE of the nighttime method, the values lie on average slightly above

with 1.97µmolCO2

m2s
and 1.92µmolCO2

m2s
, respectively. The nighttime method fits respiration

overnight and obtains GPP as the residuals between the estimated Reco and measured
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GD-based HM without TA
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Figure 6: Estimation of Q10 on real data. Both DML-based HM find on average a Q10

value of 1.401 and 1.411 for RFs and NNs, respectively. This agrees with values from the

literature that find a Q10 value around 1.41± 0.1 [95]. The value for the GD-based HM

is lower at 1.331 when leaving out TA as a predictor. With TA, problems of equifinality

show up again.

NEE. Thus, by construction, the NEE of the nighttime method corresponds to the

measured NEE. Hence, both NEE and GPP of the nighttime method are higher

in noise, and thus, a higher RMSE of our method is expected. When comparing

the bias between methods, the causal DML-based HM shows a slightly smaller bias

compared to both standard methods than these methods between them in almost all

cases. Furthermore, it lies in a similar range to the GD-based HM.

Overall, our method shows higher similarity to the daytime method, which is

expected due to the fitting of the rectangular hyperbola in the first step. The retrieved

GPP is similar to the daytime method as the NN approach, and the obtained NEE

is even closer. At the same time, the obtained Reco shows a larger deviation even to

the daytime method. This is because we used the plugin-in estimator for Reco obtained

from the first-stage DML estimators.

We could obtain a more sophisticated estimator by refitting another model on

the residuals, as done in the case of the Q10 model, where we could also employ
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Table 2: Cross consistency in terms of R2, RMSE and bias of retrieved GPP , RECO

and estimated NEE between the established daytime (DT) [90] and nighttime (NT) [87]

methods and the GD-based HM with neural networks (NN) [38] and DML-based HM

(DML), proposed in this work. The reported statistics are median and in brackets

0.25/0.75 quantiles over all site-years.

Flux Methods R2∗ RMSE∗(µmolCO2

m2s
) Bias(µmolCO2

m2s
)

RECO DT vs. DML 0.62(0.41/0.74) 1.18(0.75/1.46) 0.00(−0.20/0.14)

DT vs. NN 0.69(0.50/0.81) 0.98(0.70/1.29) 0.02(−0.12/0.18)

NT vs. DML 0.74(0.50/0.83) 0.89(0.57/1.15) 0.00(−0.11/0.10)

NT vs. NN 0.85(0.65/0.92) 0.68(0.47/0.84) 0.07(−0.02/0.16)

DT vs. NT 0.73(0.63/0.83) 0.95(0.64/1.21) 0.00(−0.22/0.16)

NN vs. DML 0.63(0.34/0.77) 0.99(0.66/1.24) −0.07(−0.22/0.10)

GPP DT vs. DML 0.96(0.93/0.97) 1.25(0.74/1.49) 0.00(−0.16/0.11)

DT vs. NN 0.96(0.93/0.97) 1.22(0.76/1.52) 0.04(−0.04/0.17)

NT vs. DML 0.90(0.84/0.92) 1.97(1.16/2.47) −0.02(−0.13/0.10)

NT vs. NN 0.93(0.89/0.95) 1.53(0.90/2.02) 0.07(−0.02/0.18)

DT vs. NT 0.89(0.82/0.92) 1.85(1.20/2.42) 0.02(−0.16/0.13)

NN vs. DML 0.95(0.92/0.97) 1.32(0.71/1.61) −0.08(−0.23/0.08)

NEE DT vs. DML 0.95(0.93/0.97) 1.07(0.71/1.29) −0.02(−0.11/0.07)

DT vs. NN 0.94(0.91/0.96) 1.13(0.76/1.36) −0.03(−0.12/0.03)

NT* vs. DML 0.87(0.81/0.89) 1.92(1.15/2.36) 0.01(−0.02/0.06)

NT* vs. NN 0.93(0.90/0.94) 1.29(0.79/1.82) 0.00(−0.01/0.01)

DT vs. NT* 0.86(0.79/0.90) 1.68(1.12/2.25) −0.03(−0.12/0.03)

NN vs. DML 0.94(0.91/0.96) 1.27(0.77/1.52) 0.01(−0.02/0.05)

∗The NT NEE value corresponds exactly to the measured NEE value.

SW as a predictor without experiencing equifinality. It would even allow using the

previously estimated GPP as a predictor of Reco. As an additional proof of concept, we

apply the method to synthetic data with different levels of heteroscedastic noise. The

method finds robust estimates even to high levels of noise. The results can be found in

Section Appendix C.4.

4.2.2. Learned functionalities The consistency tables served as a sanity check that

the methods produce reasonable estimations that contain similar trends over the day

and year. The next questions are: Where do they produce similar outputs? When

do the outputs differ? For this, we compare the retrieved fluxes on two different sites.

In Fig. 7, we see the retrieved GPP flux over a few days in July 2006 in France Le

Bray. We compare the DML-based HM to the GD-based HM, daytime and nighttime

methods. The retrieved GPP of the daytime and hybrid modeling methods show similar
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Figure 7: Retrieved GPP flux of daytime method, nighttime method and

DML-based HM in July 2006 in France Le-Bray. The DML-based HM retrieved a similar

flux to the daytime method that decreases with the increase of V PD.

Figure 8: Functional behavior of the learned LUE in the years 2005 to 2008 over V PD

and TA. The LUE shows a consistent functionality over the different years where an

increase in V PD, which marks lower water availability, reduces productivity. This is also

consistent with the functionality that the daytime method implements parametrically.

patterns. High V PD, which marks low water availability, reduces productivity. The

daytime method implements this functionality parametrically. The LUE function of the

DML-based HM approach learned a similar functionality that decreases with increasing

V PD and has preferred temperatures roughly between 15◦C and 30◦C (see Fig. 8). It

is consistent over the four consecutive years the method was applied to at this site. This

demonstrates that the causal hybrid modeling approach can learn a similar functional

relationship as the parametric daytime method in a non-parametric way. The nighttime

method shows a noisier but qualitatively similar pattern.

To highlight the differences between the methods, we look at a grassland site in
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Santa Rita (US) [96]. Fig. 9 shows the estimated Reco over few days in July 2010. The

selected time window was preceded by two months without rain, leading to low soil

water content and, in turn, reduced respiration activity [86]. During the shown period,

a rain event leads to a sudden increase in soil water content. Such an event is expected to

lead to a sudden increase in respiration as it stimulates microbial activity [86]. We find

that the daytime and nighttime methods cannot capture this sudden behavior as their

estimation is based on window fitting and cannot detect sudden changes in dynamics.

While Reco estimated with the nighttime method increases even before the event, the

daytime method yields slowly increasing respiration flux shortly after the event. Instead,

the fluxes estimated with the non-parametric hybrid modeling approaches show an

increase right at the event’s time, demonstrating that they can adapt to sudden changes

in dynamics. A difference between both hybrid modeling approaches shows that the

GD-based HM estimates a stronger respiration pulse but yields a noisier estimate from

the onset of the event.

Our approach offers unique advantages. While traditional daytime and nighttime

methods are fully interpretable, they struggle to capture rapid dynamic changes due

to their parametric nature. On the other hand, the end-to-end GD-based methods,

such as the approach by [38], may lack interpretability due to non-identifiability or

implicit functional constraints, relying on assumptions with unclear implications. In

contrast, our causal interpretation-based approach offers a middle ground, providing

reasonable estimates of fluxes while maintaining interpretability as it is grounded in

causal assumptions. By identifying GPP as the causal effect of light on NEE, our

method offers a clear and meaningful interpretation of the flux partitioning process.

While it may not match the predictive performance and flexibility of pure deep learning,

it offers a valuable alternative by combining interpretability with reasonable estimation

accuracy.

The analysis we carried out merely serves as a proof of concept toward a

causally meaningful flux partitioning method. To maintain comparability, we ran the

experiments on the same sites and years with similar quality filters as [38]. For both

DML-based HM as well as the GD-based HM approach with NNs, further research is

necessary before they can be employed at scale in the data processing pipelines of

FLUXNET sites. In particular, this would require a comprehensive analysis of the

performance over all FLUXNET sites to disentangle the effects of geographical region,

climate, vegetation, data quality, and data availability on the consistency of new flux

partitioning methods. This should ideally be accompanied by simulations of sets of land

surface models tailored for different land cover types to benchmark the adaptability of

data-driven methods. This is beyond the scope of this work, which aims at introducing a

causal approach to hybrid modeling. As for today, a benchmarking set and standardized

evaluation pipeline are not available but could become key in the future when more data-

driven flux partitioning models are developed. Understanding how these local factors

influence the data-driven methods is crucial as the flux partitioning products serve as

ground truth for downstream tasks such as upscaling from the site level to global fluxes
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Figure 9: RetrievedReco flux of daytime, nighttime, and both hybrid modeling methods

in July 2010 in Santa Rita in the US. The daytime and nighttime methods show slow

adaption to the change in dynamics caused by a rain pulse event that followed a long

drought. Both hybrid modeling approaches can retrieve the expected immediate increase

in respiration. The estimates of the GD-based HM are lower and less noisy.

as aimed for in the FLUXCOM project [97].

5. Conclusions

Machine learning is becoming a complementary tool to enhance scientific research and

discovery in all fields of science. Its limitations are evident: lack of transparency and

interpretability, weak generalizability to unseen data, and violation of governing laws.

Hybrid modeling aims to incorporate scientific knowledge to overcome these limitations.

However, this alone is insufficient to obtain the interpretability we hope for. Spurious

links between variables can lead to equifinality: many models describe the data similarly

well. Therefore, we must also teach these hybrid models what seems evident to us:

correlation is not causation. And it is causation that we want.

In this paper, we propose a first step in this direction. We split the fitting of hybrid

modeling involving treatment effects into subsequent steps, where we first estimated the

causal effect with DML and then estimated the remaining of the model. By separating

different estimation steps and being explicit about the underlying causal graph and

the causal effect, we were able to obtain a well-defined problem that, originally was

ill-posed and, in practice, suffering from equifinality. We applied this technique to two

problems of carbon flux estimation, namely, Q10 estimation in ecosystem respiration

and carbon flux partitioning. We demonstrated the superiority of DML in retrieving

parameters describing causal effects over end-to-end estimations with usual hybrid

Page 22 of 37AUTHOR SUBMITTED MANUSCRIPT - MLST-101827.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Causal hybrid modeling 23

modeling approaches using NNs. The estimation is shown to be efficient and robust and

effectively reduces bias through regularization techniques such as dropout and weight

decay. On real data, it could retrieve a value for Q10 consistent with the literature.

We further showed the flexibility of the method by transforming the treatment and

fitting a heterogeneous treatment effect of the LUE model for carbon flux partitioning

as a non-parametric function. The retrieved fluxes were consistent with the ones of

established methods, showed reasonable functional dependencies, and could improve on

known limitations stemming from the window fitting of these methods.

We note that to apply the method effectively, assuming a causal graph and being

explicit about the causal relationships of the involved variables is essential. This also

includes thinking about unobserved confounders, mediators, and correlations between

variables. We believe that this should be a general best practice. Our method encourages

machine learners and practitioners to do so. A remaining problem is that even though

we could show that it has broader applicability than the standard semi-linear regression

problem, its relevance is still limited to hybrid models of a particular form containing

parameters or non-parametric functions describing causal effects.

Integrating causality with hybrid modeling is crucial for achieving more

interpretable and reliable outcomes in knowledge-driven machine learning. Our work has

showcased this integration in two important problems in ecology through the application

of causal effect estimation. Our causal hybrid modeling framework holds promise

for enhancing interpretability and causal inference across diverse scientific fields that

demand more insightful machine learning models. Looking ahead, we encourage further

exploration and integration of causality concepts within hybrid modeling techniques.
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Appendix A. Method

Appendix A.1. Derivation of DML estimator for g

One way of obtaining an estimator for g instead of fitting it directly is by reusing all

estimators of DML. It is easy to see that

g(X,W ) = E[g(X,W )|X,W ]

= E[Y − θ(X)f(T )− ϵ|X,W ]

= E[Y |X,W ]− E[θ(X)f(T )|X,W ]− E[ϵ|X,W ]︸ ︷︷ ︸
=0

= E[Y |X,W ]− θ(X)E[f(T )|X,W ]

≈ E[Y |X,W ]− θ̂(X)E[f(T )|X,W ],

where E[Y |X,W ] represents the estimator of Y on X and W and E[f(T )|X,W ] the

estimator of f(T ) on X and W . From here, one can use an ensemble of the first-stage

estimators over all folds to obtain the estimator of E[Y |X,W ] and the estimator of

E[f(T )|X,W ]. The estimator θ̂(X) is a single estimator obtained as the result of DML.

Appendix B. Data

Appendix B.1. Synthetic data

Appendix B.1.1. Q10 model We use measured air temperature TA and potential

incoming radiation SWPOT for the synthetic data. Further, we compute

for Q10 ∈ {1.5, 1.25, 1.75}, (B.1)

Rsyn
eco = Rsyn

b ·Q0.1·(TA−15)
10 · (1 + ϵ), (B.2)

Rsyn
b = 0.75 · (R̃syn

b −min(R̃syn
b ) + 0.1 · π), (B.3)

R̃syn
b = 0.01 · SW SM

POT − 0.005 · SW SM,diff
POT , (B.4)

where Rsyn
b describes the base respiration, which we compute with a smooth daily

radiation cycle. The smooth incoming potential radiation SW SM
POT and its smoothed

difference quotient SW SM,diff
POT are computed by averaging moving windows of 10 days over

the incoming potential radiation SWPOT . We apply the computations in (B.3) to ensure

that Rsyn
b is always positive. We sample ϵ from a centered truncated normal distribution

with 0.2 standard deviation in the interval [−0.95, 0.95] to obtain heteroscedastic noise

over the observations.

Appendix B.1.2. LUE model The code for generating the data is taken from the work

of [45], where the authors approach the partitioning of fluxes with neural networks on

a synthetic dataset. Rsyn
eco is computed similarly as in the study on Q10. While, for
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generating GPP , we use the light-use efficiency model with LUE being a function of

V PD and temperature TA:

GPP syn = LUEsyn · SWin, (B.5)

LUEsyn = 0.5 · exp
(
−0.1 · (TA − 20))2

)
·min(1, exp(−0.1 · (V PD − 10))). (B.6)

Finally, we compute NEE following (7) with additional multiplicative heteroscedastic

noise:

NEEsyn = (−GPP syn +Rsyn
eco) · (1 + σε), (B.7)

where noise ε ∼ N (0, 1) is sampled from a standard Gaussian distribution and σ varies

in {0, 0.05, 0.1, 0.2, 0.4, 0.7, 1.0, 2.0}.

Appendix B.2. FLUXNET sites

The 36 FLUXNET sites used for the flux partitioning experiments are shown in

Table B1. The table further provides information on plant type, latitude, and longitude.

Appendix B.3. Details on the neural networks

The NNs used for the GD-based HM had two hidden layers with 16 units each. A

tanh nonlinearity was applied at the end of each hidden layer. A final softplus function

was applied to the output of the last layer to obtain non-negative results for the base

respiration. This function is a smooth approximation of the ReLU function. For the

case of regularization, dropout was applied to the outputs of the hidden layers at a

rate of 0.2. To probe other instances of regularization, we also used weight decay with

hyperparameter 0.1 instead of dropout. The initial Q10 is sampled from a Gaussian

with σ = 0.1 and µ = 1.5 (or 1.25, 1.75 for the respective experiments). For the

DML-based HM approach, we used the same network architecture without final softplus

for the first-stage estimators. For the estimation of Rb after obtaining Q10, we used the

same network again, but this time we included the softplus nonlinearity. We used

stochastic gradient descent with the Adam optimizer [82] for the training. We apply

exponential learning rate decay as a scheduler with a decay rate of 0.95 over 500 steps.

We trained the first stage estimators of the DML over 2000 iterations each. For the

GD-based HM and the final g estimator in the causal DML-based HM, we trained over

10000 iterations. To avoid overfitting, 20% of the data is always kept as validation data

for model selection.

Appendix C. Additional results

Appendix C.1. Regularization with weight decay

We reran the same setup with weight decay to show that the findings also apply to other

regularization techniques beyond dropout. We find qualitatively similar results, where
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Table B1: FLUXNET sites used for flux partitioning experiments with DML.

ID Site code IGBP Lat Lon Years available

1 AU-Cpr SAV -34,00 140,59 2010–2014

2 AU-DaP GRA -14,06 131,32 2007–2013

3 AU-Dry SAV -15,26 132,37 2008–2014

4 AU-How WSA -12,49 131,15 2001–2014

5 AU-Stp GRA -17,15 133,35 2008–2014

6 BE-Lon CRO 50,55 4,75 2004–2014

7 BE-Vie MF 50,31 6,00 1996–2014

8 CA-Qfo ENF 49,69 -74,34 2003–2010

9 DE-Geb CRO 51,10 10,91 2001–2014

10 DE-Gri GRA 50,95 13,51 2004–2014

11 DE-Kli CRO 50,89 13,52 2004–2014

12 DE-Obe ENF 50,79 13,72 2008–2014

13 DE-Tha ENF 50,96 13,57 1996–2014

14 DK-Sor DBF 55,49 11,64 1996–2014

15 FI-Hyy ENF 61,85 24,29 1996–2014

16 FR-LBr ENF 44,72 -0,77 1996–2008

17 GF-Guy EBF 5,28 -52,92 2004–2014

18 IT-BCi CRO 40,52 14,96 2004–2014

19 IT-Cp2 EBF 41,70 12,36 2012–2014

20 IT-Cpz EBF 41,71 12,38 1997–2009

21 IT-MBo GRA 46,01 11,05 2003–2013

22 IT-Noe CSH 40,61 8,15 2004–2014

23 IT-Ro1 DBF 42,41 11,93 2000–2008

24 IT-SRo ENF 43,73 10,28 1999–2012

25 NL-Loo ENF 52,17 5,74 1996–2014

26 RU-Fyo ENF 56,46 32,92 1998–2014

27 US-ARM CRO 36,61 -97,49 2003–2012

28 US-GLE ENF 41,37 -106,24 2004–2014

29 US-MMS DBF 39,32 -86,41 1999–2014

30 US-NR1 ENF 40,03 -105,55 1999–2014

31 US-SRG GRA 31,79 -110.83 2008–2014

32 US-SRM WSA 31,82 -110,87 2004–2014

33 US-UMB DBF 45,56 -84,71 2000–2014

34 US-Whs OSH 31,74 -110,05 2007–2014

35 US-Wkg GRA 31,74 -109,94 2004–2014

36 ZA-Kru SAV -25,02 31,50 2000–2013
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Figure C1: Additional simulation study for Q10 estimation with the GD-based HM

and the DML-based HM similar to Fig. 5. with weight decay. Here, weight decay with

a rate of 0.1 has been applied as regularization.

the DML-based HM converges robustly to the right Q10 values where the GD-based HM

converges much slower and remains biased (see Fig. C1).

Appendix C.2. Additional dropout rates

We ran the experiments with dropout rates of 0.05, 0.1, and 0.3. With increasing

dropout rates, all methods have increasing errors in estimating Q10. At a rate of 0.3, the

estimation with double machine learning has a constant bias as the first-stage estimators

do not converge sufficiently fast. Still, it stays robust with little data and outperforms

the baseline over the whole data range.

Appendix C.3. Additional Q10 values

We ran the experiments with and without dropout with 1.25 and 1.75 as two additional

Q10 values. We find that these setups affirm the observations for Q10 = 1.5. The

errors in estimating the Q10 values grow and shrink proportionally to the magnitude

of Q10. This is to be expected as we deploy multiplicative noise, and thus, with

higher Q10, the magnitude of respiration and, hence, the absolute noise level grows

(see Section Appendix C).

Appendix C.4. Retrievel of linear model

We generated synthetic data following [45], a partially linear LUE model with varying

coefficients. We used time series of measured meteorological forcings as inputs and
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(a) Dropout rate of 0.05.
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(b) Dropout rate of 0.1.
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(c) Dropout rate of 0.3.

Figure C2: Additional simulation study for Q10 estimation with the GD-based HM

and the DML-based HM similar to Fig. 5. We applied varying dropout rates to probe

the robustness of the method. An increasing dropout rate leads to an increase in bias.

The approach based on double machine learning consistently outperforms the neural

network baseline.

added heteroscedastic noise over different noise levels (see Section Appendix B.1.2 for

details).

To test the robustness of the approach to noise, we perform experiments with an

increasing level of heteroscedastic noise. The R2 and RMSE of the retrieved fluxes are

reported in Table C1 and Table C2. We note that the DML approach gives theoretical

guarantees for estimating GPP and not necessarily for Reco [72, 74]. Our proposed

method retrieves reasonable estimates ofGPP with a medium R2 of 0.997 in the no-noise

scenario. Even a heteroscedastic noise level of 0.4 does not yield any substantial drop in

performance. Beyond that, the method is still robust as it retrieves the correct GPP at

a noise level of 1.00 with a median value of 0.922. In flux partitioning, retrieving Reco

can be more challenging as it has a smaller magnitude than GPP , implying a smaller

signal-to-noise ratio. Moreover, even though there is no guarantee on the used plugin-in

estimator for Reco, which we obtain by recycling the estimators of the DML approach,

we still find it to yield useful results. The retrieved fluxes have a median R2 over all site-

years of 0.94. As expected, the effect of the noise on the retrieval of Reco is stronger, but

up to a σ of 0.4, the results are not strongly affected. When we combine both models,

we obtain a model of NEE. Even with strong noise, this estimator retrieves reasonable

estimates of the NEE signal.

Appendix D. Reproducibility

The data used to carry out experiments is available at https://fluxnet.org/data/

fluxnet2015-dataset/. All code is being made available at https://github.com/

KaiHCohrs/hybrid-q10-model-chm and https://github.com/KaiHCohrs/dml-4-fluxes-chm.
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(a) Q10 of 1.25 without dropout.
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(b) Q10 of 1.25 with dropout.
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(c) Q10 of 1.75 without dropout.
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(d) Q10 of 1.75 with dropout.

Figure C3: Additional simulation study for Q10 estimation with the GD-based HM

and the DML-based HM similar to Fig. 5 with different values for Q10 In a) and b) Q10

was set to 1.25 and in c) and d) to 1.75. The findings are qualitatively similar to the

case of 1.5. The magnitude of the errors grows with the magnitude of Q10.
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Table C1: Coefficient of determination R2 for generated data on all 36 flux sites with

different heteroscedastic noise levels between the GPP , RECO and NEE obtained

with the DML approach and the respective ground truth. For NEE, the noise-free

value is stated. The reported statistics are the median and in brackets, the 0.25 and

0.75 quantiles over all site-years.

σ GPP Reco NEEclean

0.00 0.997(0.994/0.998) 0.940(0.923/0.960) 0.978(0.973/0.983)

0.05 0.997(0.994/0.998) 0.940(0.923/0.959) 0.978(0.973/0.983)

0.10 0.997(0.993/0.998) 0.939(0.922/0.958) 0.978(0.973/0.982)

0.20 0.996(0.991/0.998) 0.936(0.917/0.956) 0.977(0.972/0.982)

0.40 0.993(0.985/0.996) 0.931(0.911/0.947) 0.975(0.969/0.979)

0.70 0.986(0.961/0.991) 0.914(0.888/0.929) 0.970(0.963/0.975)

1.00 0.977(0.930/0.985) 0.887(0.846/0.910) 0.964(0.955/0.970)

2.00 0.922(0.707/0.952) 0.751(0.617/0.813) 0.937(0.910/0.948)

Table C2: The RMSE (in µmolCO2

m2s
) for generated data on all 36 flux sites with different

heteroscedastic noise levels between the GPP , RECO and NEE obtained with the

DML approach and the respective ground truth. For NEE, the noise-free and noisy

values are stated. The reported statistics are the median and, in brackets, the 0.25 and

0.75 quantiles over all site-years.

σ GPP Reco NEEclean NEEnoisy

0.00 0.320(0.227/0.454) 0.861(0.770/1.104) 0.872(0.768/1.079) 0.872( 0.768/ 1.079)

0.05 0.330(0.234/0.467) 0.864(0.771/1.109) 0.873(0.770/1.083) 1.029( 0.827/ 1.311)

0.10 0.359(0.243/0.491) 0.878(0.778/1.136) 0.880(0.770/1.097) 1.197( 0.949/ 1.615)

0.20 0.401(0.284/0.600) 0.921(0.794/1.184) 0.898(0.781/1.128) 1.701( 1.346/ 2.573)

0.40 0.515(0.386/0.772) 0.973(0.825/1.335) 0.941(0.808/1.219) 2.977( 2.349/ 4.850)

0.70 0.758(0.543/1.152) 1.139(0.895/1.577) 1.025(0.862/1.358) 5.101( 3.965/ 8.434)

1.00 1.005(0.715/1.589) 1.285(0.971/1.872) 1.147(0.927/1.467) 7.162( 5.583/11.949)

2.00 1.804(1.268/2.972) 1.880(1.361/3.058) 1.500(1.196/2.186) 14.316(11.104/23.889)
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