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Abstract
This paper is a generalization of the topic handled in Bogner et al. (Oper Theory
1(1):55–95, 2007a, Oper Theory 1(2):235–278, 2007b) where the Schur–Potapov
algorithm (SP-algorithm) was handled in the context of non-degenerate p × q Schur
sequences and non-degenerate p × q Schur functions. In particular, the interplay
between both types of algorithmswas intensively studied there. This was itself a gener-
alization of the classical Schur algorithm (Schur in J Reine AngewMath 148:122–145,
1918) to the non-degenerate matrix case. In treating the matrix case a result due to
Potapov (Potapov in TrudyMoskovMat Obšč 4:125–236, 1955) concerning particular
linear fractional transformations of contractive p × q matrices was used. For this rea-
son, the notation SP-algorithmwas already chosen in Dubovoj et al. (Matricial version
of the classical Schur problem, volume 129 of Teubner-Texte zurMathematik [Teubner
Texts in Mathematics], B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992). We
are going to introduce both types of SP-algorithms as well for arbitrary p × q Schur
sequences as for arbitrary p × q Schur functions. Again we will intensively discuss
the interplay between both types of algorithms. Applying the SP-algorithm, a com-
plete treatment of the matricial Schur problem in the most general case is established.
A one-step extension problem for finite p × q Schur sequences is considered. Central
p × q Schur sequences are studied under the view of SP-parameters.
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1 Introduction

In this paper, a topic will be studied again, which was studied in the former work on
Schur analysis methods by the first three authors (see [11, 12, 14]). In the background
of these considerations was the discussion of a matricial version of the classical Schur
problem. The most complete result could be achieved in that time for the so-called
non-degenerate case. The main goal of this paper is a treatment of the general matrix
case by an appropriate adaption of the classical algorithm due to I. Schur [28, 29]
and its matricial generalization going back to ideas of V. P. Potapov [27]. We are
guided by our former investigations on matricial versions of truncated power moment
problems. The essential feature of this concept can be described as a detailed study
of the structure of the sequence of moment matrices using Schur type algorithms on
the one side combined with the construction of concordant Schur type algorithms for
various classes of holomorphic matrix-valued functions in several domains which are
determined by the choice of the moment problem under consideration. This method
enabled a simultaneous treatment of both non-degenerate and degenerate cases of
the moment or interpolation problem under consideration. By a careful analysis of
the interplay between two versions of Schur algorithm a complete description of the
solution set of the moment problem via Stieltjes transformation could be achieved.
Roughly speaking, some features of this approach are already contained in the famous
landmark papers [28, 29] by I. Schur who more concentrated on the function-theoretic
version of the algorithm named after him, however also sketched some ideas on the
algebraic version. In the non-degenerate case, a first systematic treatment of both
types of Schur algorithms and their interplay was established in [6, 7]. It should be
mentioned that the matricial version of the Schur algorithm for strict Schur functions
was also considered inCedzich [8, formulas (4.1), (4.2)] under the viewof generalizing
fundamental relations found in the scalar case by S. V. Khrushchev (see [24–26]) to
the matrix case.

The main goal of this paper is to extend these methods for arbitrary matricial
Schur functions defined on the open unit disk D of the complex plane C. Roughly
speaking, the content of this paper can be summarized as follows. In Sect. 2, we
introduce some notation. In particular, we state some facts on matricial p × q Schur
sequences and matricial Schur functions. In Sect. 3, we define a Schur–Potapov trans-
form (shortly SP-transform) for arbitrary sequences of complex p × q matrices. As in
[6, 7], we consider first as well a right as a left version of the SP-transform. Although
we will prove later that both versions coincide (see Proposition 3.19), both represen-
tations prove to be useful. An essential aspect is that the SP-transform transforms
p × q Schur sequences into p × q Schur sequences (see Proposition 3.24). This will
be used in Sect. 4 in order to iterate the SP-transform of p × q Schur sequences.
This leads us to a SP-algorithm for p × q Schur sequences. Intimately connected with
this SP-algorithm is the explicitly constructed sequence (e j )

κ
j=0 of SP-parameters

of a p × q Schur sequence (A j )
κ
j=0 (see Definition 4.7). In Sect. 5, we discuss an

inverse SP-transform for sequences of complex matrices. We consider again first a left
version and right version of inverse SP-transforms before we see that both versions
coincide (see Proposition 5.9). Observe that both representations prove to be useful
for further considerations. The inverse SP-transform maps p × q Schur sequences
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into p × q Schur sequences (see Proposition 5.11). Section 6 is aimed to work out a
convenient parametrization of finite matricial Schur sequences (see Theorem 6.20).
In Sect. 7, we introduce the SP-transform for matricial Schur functions. Section 8 is
aimed to recognize the concordance between SP-transforms of matricial Schur func-
tions and SP-transforms ofmatricial Schur sequences (see Theorem 8.6). In Sect. 9, we
introduce a SP-algorithm for p × q Schur functions. We show that the SP-parameter
sequences of a p × q Schur functions and the SP-parameter sequences of its Taylor
coefficient sequence coincide (see Proposition 9.7). In Sect. 10 we discuss the inverse
SP-transform for Schur functions. In Sect. 11, we prove that there is a complete con-
cordance of the inverse SP-transform of p × q Schur functions and of the inverse
SP-transform of infinite p × q Schur sequences (see Propositions 11.2 and 11.4). In
Sects. 12 and 13, we apply the preceding considerations on the SP-algorithm to the
matricial Schur problem in order to parametrize the solution set of this interpolation
problem (see Theorem 12.7). We rewrite the description of the solution set of the
matricial Schur problem in terms of linear fractional transformations of matrices (see
Theorems 13.3 and 13.5). In Sect. 14, we express the Taylor coefficients of a p × q
Schur functions only in terms of its SP-parameters. In Sect. 15, we turn our attention
to the extension problem for finite p × q Schur sequences. In [11, 14], we described
the solution set of this problem as a closed matrix ball which is given in terms of
Taylor coefficients. Now we obtain a description of the solution set as a closed matrix
ball which is written with the aid of the SP-parameter sequences (see Theorem 15.23).
In Theorem 16.3 we present explicit formulas between the SP-parameters and the
choice sequence (see Definition 15.4) corresponding to a p × q Schur sequence. The
final Sects. 17 and 18 are dedicated to the characterization of central and completely
degenerate matricial Schur functions and sequences, respectively, in terms of their
SP-parameters.

At the end of the paper some appendices on several results about matrices, linear
subspaces, and linear fractional transformations of matrices are given.

2 Preliminaries

Throughout this paper, let p and q be positive integers. We will useC, Z,N0, andN to
denote the set of all complex numbers, the set of all integers, the set of all non-negative
integers, and the set of all positive integers, respectively. Further, letD be the open unit
disk of the complex plane, i. e., D := {z ∈ C : |z| < 1}. If υ, ω ∈ Z∪ {−∞,∞}, then
Zυ,ω designates the set of all integers n which fulfill υ ≤ n ≤ ω. If X is a non-empty
set, then Xp×q denotes the set of all p × q matrices each entry of which belongs to
X. The notation Op×q stands for the null matrix which belongs to the set Cp×q of
all complex p × q matrices and the identity matrix which belongs to C

q×q will be
designated by Iq . If the size of an identity matrix or a null matrix is obvious, then we
will omit the indices. Let Cq×q

H (resp., Cq×q
� ) be the set of all Hermitian (resp., non-

negative Hermitian) complex q × q matrices. As usual, we write A � B or B � A if
A and B are Hermitian complex q × q matrices fulfilling A − B ∈ C

q×q
� . For each

A ∈ C
p×q , letR(A) be the range of A, letN (A) be the null space of A, let rank(A) be
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the rank of A, let ‖A‖ be the operator norm of A, and let ‖A‖E be the Euclidean norm
(or Frobenius norm) of A. A complex p × q matrix A is said to be contractive (resp.,
strictly contractive) if ‖A‖ ≤ 1 (resp., ‖A‖ < 1) holds true. Observe that a complex
p × q matrix A is contractive (resp., strictly contractive) if and only if I − A∗A is
non-negative Hermitian (resp., positive Hermitian). We use Kp×q (resp., Dp×q ) to
denote the set of all contractive (resp., strictly contractive) complex p × q matrices.
If A ∈ C

q×q , then det A stands for the determinant of A. For each matrix A ∈ C
p×q ,

let A† be the Moore–Penrose inverse of A, i. e., the unique complex q × p matrix X ,
satisfying the four equations

AX A = A, X AX = X , (AX)∗ = AX , and (X A)∗ = X A. (2.1)

For all x, y ∈ C
q , by 〈x, y〉E we denote the (left-hand side) Euclidean inner product

of x and y, i. e., we have 〈x, y〉E := y∗x . If M is a non-empty subset of Cq , then let
M⊥ be the set of all vectors inCq which are orthogonal toM (with respect to 〈., .〉E).
If U is a linear subspace of Cq , then let PU be the orthogonal projection matrix onto
U (see also Remark A.3).

Throughout this paper, let κ ∈ N0 ∪ {∞}. Considering an arbitrary sequence
(A j )

κ
j=0 of complex p × q matrices, we use some further notation: We associate

with (A j )
κ
j=0 a collection of matrices. For each n ∈ Z0,κ , we define

Sn :=

⎡
⎢⎢⎢⎣

A0 O . . . O
A1 A0 . . . O
...

...
. . .

...

An An−1 . . . A0

⎤
⎥⎥⎥⎦ and S̊n :=

[
Op×(n+1)q Op×q

Sn O(n+1)p×q

]

(2.2)

as well as the left and right defect matrices corresponding to Sn , namely

Ln := I(n+1)p − SnS∗
n and Rn := I(n+1)q − S∗

nSn . (2.3)

Further, let

m−1 := Op×q , m0 := Op×q , (2.4)

let

l−1 := Ip, l0 := Ip − A0A
∗
0, r−1 := Iq , r0 := Iq − A∗

0A0, (2.5)

and, if κ ≥ 1, let

yn :=

⎡
⎢⎢⎢⎣

A1
A2
...

An

⎤
⎥⎥⎥⎦ , zn := [An, An−1, . . . , A1], (2.6)
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let

mn := − znS∗
n−1L

†
n−1yn, (2.7)

and let

ln := Ip − A0A
∗
0 − zn R

†
n−1z

∗
n, rn := Iq − A∗

0A0 − y∗
n L

†
n−1yn . (2.8)

In view of (2.2), (2.3), and (2.5), we have S0 = A0 as well as

L0 = Ip − A0A
∗
0 = l0 and R0 = Iq − A∗

0A0 = r0. (2.9)

Let

P0 := Ip − l0l
†
0 and Q0 := Iq − r†0r0. (2.10)

The matrices P0 and Q0 are orthoprojections. Indeed, because of Remarks A.6, A.4
and A.2, we have

P0 = PR(l0)⊥ and Q0 = PN (r0). (2.11)

A finite sequence (A j )
n
j=0 of complex p × q matrices with some n ∈ N0 is said

to be a p × q Schur sequence (resp., non-degenerate p × q Schur sequence) if
the block Toeplitz matrix Sn given by (2.2) is contractive (resp., strictly contrac-
tive). Obviously, if n ∈ N0 and if (A j )

n
j=0 is a p × q Schur sequence (resp.,

non-degenerate p × q Schur sequence), then (A j )
k
j=0 is a p × q Schur sequence

(resp., non-degenerate p × q Schur sequence) for all k ∈ Z0,n as well. A sequence
(A j )

∞
j=0 of complex p × q matrices is said to be a p × q Schur sequence (resp., non-

degenerate p × q Schur sequence) if for every non-negative integer n the sequence
(A j )

n
j=0 is a p × q Schur sequence (resp., non-degenerate p × q Schur sequence).

We will use Sp×q;κ to denote the set of all p × q Schur sequences (A j )
κ
j=0. From

Lemma A.15 one can see obviously that, if (A j )
κ
j=0 ∈ Sp×q;κ , then Ln � O and

Rn � O for all n ∈ Z0,κ . Conversely, Lemma A.15 also yields that if m ∈ N0 and
if (A j )

m
j=0 is such that Lm � O or Rm � O , then (A j )

m
j=0 belongs to Sp×q;m . If

(A j )
κ
j=0 is a sequence of complex p × qmatrices then it is easily checked that (A j )

κ
j=0

is a p × q Schur sequence (resp., non-degenerate p × q Schur sequence) if and only
if (A∗

j )
κ
j=0 is a q × p Schur sequence (resp., non-degenerate q × p Schur sequence).

A function F whose domain is a region G of C and whose values lie in Cp×q is called
p × q Schur function (in G) if F is a holomorphic matrix-valued function the values
of which are contractive p × q matrices. The class of all p × q Schur functions (in
G) is denoted by Sp×q(G). We mainly consider the particular domain G = D, where
D := {w ∈ C : |w| < 1} is the open unit disk of C. In particular, we consider func-
tions belonging to [H(D)]p×q where H(D) is the set of all holomorphic functions
f : D → C. If F(w) =∑∞

j=0 w j A j for all w ∈ D is the Taylor series representation
of a function F ∈ [H(D)]p×q , then we call (A j )

∞
j=0 the Taylor coefficient sequence

of F .
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There is an intimate connection between p × q Schur sequences (A j )
∞
j=0 and the

p × q Schur class Sp×q(D). More precisely, note that a function F : D → C
p×q

which is holomorphic in D with Taylor series representation F(w) = ∑∞
j=0 w j A j

for all w ∈ D belongs to Sp×q(D) if and only if (A j )
∞
j=0 is a p × q Schur sequence

(see, e. g., [11, Thm. 3.1.1]). Let f : D → C
p×q . Then f ∈ Sp×q(D) if and only

if f ∨ ∈ Sq×p(D), where f ∨ : D → C
q×p is defined by f ∨(w) := [ f (w)]∗. The

matricial version of the classical Schur problem can be formulated as follows:

Let n ∈ N0 and let (A j )
n
j=0 be a sequence of complex p × q matrices.

Parametrize the set Sp×q [D; (A j )
n
j=0] of all p × q Schur functions F (in D)

such that ( j !)−1F ( j)(0) = A j is satisfied for all j ∈ Z0,n , where F ( j)(0) is the
j-th derivative of F at the point w = 0.

It is well known that if n ∈ N0 and if (A j )
n
j=0 is a sequence of complex p × q matri-

ces, then the set Sp×q [D; (A j )
n
j=0] is non-empty if and only if (A j )

n
j=0 is a

p × q Schur sequence (see, e. g., [11, Thm. 3.5.2]). In the case of a given non-
degenerate p × q Schur sequence (A j )

n
j=0, i. e., that the block Toeplitz matrix Sn

given by (2.2) is even strictly contractive, there are various parametrizations of
Sp×q [D; (A j )

n
j=0] via appropriately constructed linear fractional transformations

(see, e. g., [2, 3, 13] or [11, Theorems 3.9.1 and 5.3.2]). The study of the degenerate
case where the associated block Pick matrix is non-negative Hermitian and singular
was started in [12]. The main goal of [18] was to present an approach to the matricial
version of the classical Schur problem in both non-degenerate and degenerate cases
where an explicit representation of the central matrix-valued Schur function associ-
ated with a finite p × q Schur sequence (see [15]) was used as reference function for
a proof by mathematical induction. This strategy was already applied in the case of
the matricial version of the classical Carathéodory problem (see [16, 17]). In [6, 7]
a SP-algorithm for sequences of complex p × q matrices was constructed which is
directed to later applications to non-degenerate p × q Schur sequences. In this paper,
we are going to extend the construction of [6, 7] to broader classes of sequences of
complex p × q matrices which include arbitrary p × q Schur sequences. The main
results of this paper present a generalization of the classical Schur algorithm [28],
which provides in particular parametrizations of the setSp×q [D; (A j )

n
j=0] in the case

of an arbitrarily given p × q Schur sequence (A j )
n
j=0.

3 The SP-transform for Sequences of Complex p × qmatrices

In order to generalize the SP-algorithm for non-degenerate p × q Schur sequences,
which was constructed in [6, 7] to classes of sequences of complex p × q matrices
including p × q Schur sequences, we first discuss which classes of sequences of com-
plex p × q matrices we have in mind. Since we are going to treat simultaneously both
the non-degenerate and the degenerate cases of the considered interpolation problem,
a whole series of technical considerations arise. For this reason, it is convenient to
work out results for special classes of matrix sequences.
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Notation 3.1 Let Kp×q;κ be the set of all sequences (A j )
κ
j=0 with A0 ∈ Kp×q , let

KR p×q;0 :=Kp×q;0, and letKNp×q;0 :=Kp×q;0. If κ ≥ 1, then letKR p×q;κ be the
set of all sequences (A j )

κ
j=0 ∈ Kp×q;κ fulfilling

∑κ
j=1R(A j ) ⊆ R(l0), whereas we

useKNp×q;κ to denote the set of all sequences (A j )
κ
j=0 ∈ Kp×q;κ such thatN (r0) ⊆⋂κ

j=1N (A j ) holds true. Furthermore, letKRNp×q;κ :=KR p×q;κ ∩KNp×q;κ and
let Dp×q;κ be the set of all sequences (A j )

κ
j=0 of complex p × q matrices such that∑κ

j=0 R(A j ) ⊆ R(A0) and N (A0) ⊆⋂κ
j=0 N (A j ) hold true.

Remark 3.2 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ and let j ∈ Z1,κ . Then

l0 − A j A
∗
j � Ip −

j∑
�=0

A�A
∗
� = [Op×np, Ip]L j [Op×np, Ip]∗ � Op×p

and, consequently, Op×p � A j A∗
j � l0, R(A j ) ⊆ R(l0), and N (l0) ⊆ N (A∗

j ).
Analogously, one gets Oq×q � A∗

j A j � r0,R(A∗
j ) ⊆ R(r0), and N (r0) ⊆ N (A j ).

The classes introduced in Notation 3.1 will play an important role in our further
considerations. This is caused by the following simple observations.

Remark 3.3 Remark 3.2 and Notation 3.1 imply the inclusions Sp×q;κ
⊆ KRNp×q;κ ⊆ KR p×q;κ ∪ KNp×q;κ ⊆ Kp×q;κ .

We recall now the definition of the reciprocal sequence corresponding to a given
sequence (A j )

κ
j=0 of complex p × q matrices (see [22]). If (A j )

κ
j=0 is a sequence of

complex p × q matrices, then the sequence (A�
j )

κ
j=0 recursively defined by

A�
0 := A†

0 and A�
j := − A†

0

j−1∑
�=0

A j−�A
�
� for all j ∈ Z1,κ (3.1)

is said to be the reciprocal sequence corresponding to (A j )
κ
j=0. For each (block)

matrix X built from the sequence (A j )
κ
j=0, we denote by X � the corresponding matrix

built from the reciprocal sequence (A�
j )

κ
j=0 corresponding to (A j )

κ
j=0 instead of the

sequence (A j )
κ
j=0. To emphasize that a certain (block) matrix Xn is built from a

sequence (A j )
κ
j=0, we sometimes write XA;n for Xn . If n ∈ N0 and if (A j )

n
j=0 is a

sequence of complex p × q matrices, then (A j )
n
j=0 is called invertible if there is a

sequence (Bj )
n
j=0 of complex q × p matrices such that S†A;n = SB;n . In this case,

S†A;m = SB;m for all m ∈ Z0,n . A sequence (A j )
∞
j=0 of complex p × q matrices is

said to be invertible if there is a sequence (Bj )
∞
j=0 of complex q × p matrices such

that S†A;m = SB;m for allm ∈ N0.Wewill useIp×q;κ to denote the set of all invertible
sequences (A j )

κ
j=0 of complex p × q matrices. One can easily see that if (A j )

κ
j=0 ∈

Ip×q;κ , then there is a unique sequence (Bj )
κ
j=0 of complex q × p matrices such

that S†A;m = SB;m for all m ∈ Z0,κ , the so-called inverse sequence corresponding
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to (A j )
κ
j=0. In [22], one can find several results on invertible sequences of complex

p × q matrices. In particular,Ip×q;κ = Dp×q;κ is proved and, moreover, if (A j )
κ
j=0

belongs to Ip×q;κ , then one obtains that (A�
j )

κ
j=0 is the unique sequence (Bj )

κ
j=0

of complex q × p matrices which fulfills SB;m = S†A;m for all m ∈ Z0,κ (see [22,
Thm. 4.21, Rem. 2.3]).

We introduce now one of the central objects of this paper. This object has two forms,
namely a left one and a right one. At the end of this section (see Proposition 3.19),
for sequences belonging toKRNp×q;κ , we will see that both forms indeed coincide,
a result which will be proved to be essential for our considerations.

Definition 3.4 Suppose (A j )
κ
j=0 ∈ Kp×q;κ . Let WA;0 := √

l0 and let YA;0 :=√
r0. If

κ ≥ 1, then:

(a) Let WA; j := − A j A∗
0

√
l0
†
for all j ∈ Z1,κ and let XA; j := A j+1

√
r0

† for all

j ∈ Z0,κ−1. Then the sequence (A(1)
j )κ−1

j=0 defined by

A(1)
j :=

j∑
�=0

W �

A; j−�
XA;�

is called the left SP-transform of (A j )
κ
j=0.

(b) Let YA; j := − √
r0

†A∗
0A j for all j ∈ Z1,κ and let ZA; j := √

l0
†
A j+1 for all

j ∈ Z0,κ−1. Then the sequence (A[1]
j )κ−1

j=0 defined by

A[1]
j :=

j∑
�=0

ZA;�Y �

A; j−�

is called the right SP-transform of (A j )
κ
j=0.

Observe that Definition 3.4 is a natural generalization of [6, Def. 3.1] for sequences
(A j )

κ
j=0 that only satisfy ‖A0‖ ≤ 1 instead of ‖A0‖ < 1, by replacing inverses with

Moore–Penrose inverses.
For each matrix X built from the sequence (A j )

κ
j=0, we denote (if possible) by X (1)

(resp., X [1]) the corresponding matrix built from the left (resp., right) SP-transform
(A(1)

j )κ−1
j=0 (resp., (A

[1]
j )κ−1

j=0) of (A j )
κ
j=0 instead of (A j )

κ
j=0.

Remark 3.5 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Kp×q;κ , let (A(1)

j )κ−1
j=0 (resp., (A[1]

j )κ−1
j=0)

be the left (resp., right) SP-transform of (A j )
κ
j=0. For each n ∈ Z1,κ , then one can

easily see that (A j )
n
j=0 belongs toKp×q;n and that (A(1)

j )n−1
j=0 (resp., (A

[1]
j )n−1

j=0) is the
left (resp., right) SP-transform of (A j )

n
j=0.

Example 3.6 Suppose κ ≥ 1. Let E ∈ Kp×q and let (A j )
κ
j=0 be defined by A0 := E

and, for all j ∈ Z1,κ by A j := Op×q . Then (A j )
κ
j=0 ∈ Sp×q;κ and A[1]

j = Op×q for
all j ∈ Z0,κ−1.
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Lemma 3.7 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Kp×q;κ with left SP-transform (Bj )

κ−1
j=0

and right SP-transform (C j )
κ−1
j=0. Then (A∗

j )
κ
j=0 belongs to Kq×p;κ and has left SP-

transform (C∗
j )

κ−1
j=0 and right SP-transform (B∗

j )
κ−1
j=0.

Proof Lemma A.15 shows A∗
0 ∈ Kq×p, so that (A∗

j )
κ
j=0 ∈ Kq×p;κ . Denote

by (� j )
κ
j=0 and (ϒ j )

κ
j=0 the reciprocal sequence corresponding to (WA; j )κj=0

and (YA; j )κj=0, respectively. According to Definition 3.4, we have then Bj =∑ j
�=0 � j−�XA;� and C j = ∑ j

�=0 ZA;�ϒ j−� for all j ∈ Z0,κ−1. Let (	 j )
κ
j=0 and

(
 j )
κ
j=0 be definedby	 j :=W ∗

A; j and
 j := Y ∗
A; j , respectively. From [20, Prop. 3.13]

we can infer (�∗
j )

κ
j=0 = (	

�
j )

κ
j=0 and (ϒ∗

j )
κ
j=0 = (


�
j )

κ
j=0, so that

B∗
j =

j∑
�=0

X∗
A;�	

�
j−� and C∗

j =
j∑

�=0



�
j−�Z

∗
A;�

for all j ∈ Z0,κ−1 follow. Let (Tj )
κ
j=0 be defined by Tj := A∗

j . By virtue of Def-

inition 3.4 and (2.5), we have W ∗
A;0 = √

Ip − A0A∗
0 = √

Ip − T ∗
0 T0 = YT ;0 and

Y ∗
A;0 = √

Iq − A∗
0A0 = √

Iq − T0T ∗
0 = WT ;0. Using Remark A.8, in view of

Definition 3.4, we obtain then W ∗
A; j = −(W ∗

A;0)
†A0A∗

j = −Y †
T ;0T

∗
0 Tj = YT ; j

and Y ∗
A; j = −A∗

j A0(Y ∗
A;0)

† = −Tj T ∗
0 W

†
T ;0 = WT ; j for all j ∈ Z1,κ as well

as X∗
A; j = (Y ∗

A;0)
†A∗

j+1 = W †
T ;0Tj+1 = ZT ; j and Z∗

A; j = A∗
j+1(W

∗
A;0)

† =
Tj+1Y

†
T ;0 = XT ; j for all j ∈ Z0,κ−1. In particular, we have shown that (YT ; j )κj=0 =

(	 j )
κ
j=0 and (WT ; j )κj=0 = (
 j )

κ
j=0. Taking additionally into account Defini-

tion 3.4, we get then T (1)
j = ∑ j

�=0 W
�

T ; j−�
XT ;� = ∑ j

�=0 

�
j−�Z

∗
A;� = C∗

j and

T [1]
j =∑ j

�=0 ZT ;�Y �

T ; j−�
=∑ j

�=0 X
∗
A;�	

�
j−� = B∗

j for all j ∈ Z0,κ−1.

Notation 3.8 Let (A j )
κ
j=0 ∈ Kp×q;κ . Then, for all n ∈ Z0,κ , let Wn :=SWA;n and

Yn :=SYA;n as well as W�
n :=S

W �
A;n and Y�

n := S
Y �
A;n . Furthermore, if κ ≥ 1, then,

for all n ∈ Z0,κ−1, let Xn :=SXA;n and Zn := SZA;n as well as X̊n := S̊XA;n and
Z̊n := S̊ZA;n .

Given an arbitrary n ∈ N and arbitrary rectangular complex matrices A1, A2, . . . ,

An , we use diag((A j )
n
j=1) or diag(A1, A2, . . . , An) to denote the block diago-

nal matrix with diagonal blocks A1, A2, . . . , An . Furthermore, for arbitrarily given
A ∈ C

p×q and m ∈ N0, we write

〈〈A〉〉m := diag((A)mj=0). (3.2)

Nowwe give some identities, which can be easily checked by virtue of Remark A.7
and Lemma A.16(e).

Remark 3.9 Let (A j )
κ
j=0 be a sequence of complex p × q matrices.
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(a) Suppose (A j )
κ
j=0 ∈ KR p×q;κ . For each n ∈ Z0,κ , then

〈〈l0l†0〉〉nSn = Sn − 〈〈P0A0〉〉n, S∗
n〈〈l0l†0〉〉nSn = S∗

nSn − 〈〈Q0〉〉n,

and

〈〈r†0r0〉〉n − S∗
n〈〈l0l†0〉〉nSn = Rn . (3.3)

(b) Suppose (A j )
κ
j=0 ∈ KNp×q;κ . For each n ∈ Z0,κ , then

Sn〈〈r†0r0〉〉n = Sn − 〈〈A0Q0〉〉n, Sn〈〈r†0r0〉〉nS∗
n = SnS∗

n − 〈〈P0〉〉n,

and

〈〈l0l†0〉〉n − Sn〈〈r†0r0〉〉nS∗
n = Ln . (3.4)

Remark 3.10 Let (A j )
κ
j=0 ∈ Kp×q;κ . In view of (2.5) and Remark A.10(d), for all

n ∈ Z0,κ , then Wn = [I(n+1)p − Sn〈〈A∗
0〉〉n]〈〈

√
l0
†〉〉n and Yn = 〈〈√r0

†〉〉n[I(n+1)q −
〈〈A∗

0〉〉nSn].
Remark 3.11 Suppose κ ≥ 1. Let (A j )

κ
j=0 ∈ Kp×q;κ . For each n ∈ Z1,κ , then X̊n−1 =

[Sn − 〈〈A0〉〉n]〈〈√r0
†〉〉n and S(1)

n−1 = W�
n−1Xn−1 as well as Z̊n−1 = 〈〈√l0

†〉〉n[Sn −
〈〈A0〉〉n] and S[1]

n−1 = Zn−1Y
�
n−1.

Using Remarks A.9 and A.10(a), we can obtain the following result:

Remark 3.12 If (A j )
κ
j=0 ∈ KR p×q;κ , then (WA; j )κj=0 ∈ Dp×p;κ . Moreover, if

(A j )
κ
j=0 ∈ KNp×q;κ , then (YA; j )κj=0 ∈ Dq×q;κ .

Remark 3.13 Let (A j )
κ
j=0 ∈ KR p×q;κ . In view of Remark 3.12 and [22, Prop. 4.20],

for all n ∈ Z0,κ , then W�
n = W†

n . Moreover, if κ ≥ 1, then Remark 3.12 and [22,

Lem. 4.18] show that W†
n =

[ ∗ Op×np

∗ W†
n−1

]
is valid for all n ∈ Z1,κ .

Remark 3.14 Let (A j )
κ
j=0 ∈ KNp×q;κ . In view of Remark 3.12 and [22, Prop. 4.20],

for all n ∈ Z0,κ , then Y�
n = Y†

n . Moreover, if κ ≥ 1, then Remark 3.12 and [22,

Lem. 4.18] show that Y†
n =

[
Y†
n−1 Onq×q∗ ∗

]
is valid for all n ∈ Z1,κ .

Remark 3.15 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Kp×q;κ . In view of Remarks A.9 and

A.10(a), then
∑κ−1

j=0 R(ZA; j ) ⊆ R(l0). Moreover, if (A j )
κ
j=0 ∈ KR p×q;κ , then∑κ−1

j=0 R(XA; j ) ⊆ R(l0).

Remark 3.16 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Kp×q;κ . In view of Remarks A.10(a)

and A.9, then N (r0) ⊆ ⋂κ−1
j=0 N (XA; j ). Moreover, if (A j )

κ
j=0 ∈ KNp×q;κ , then

N (r0) ⊆⋂κ−1
j=0 N (ZA; j ).
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Using Remark 3.12, [22, Thm. 4.21(a), Lem. 3.6], and Remark A.10(c), we can
obtain the following result:

Remark 3.17 If (A j )
κ
j=0 ∈ KR p×q;κ then

WnW†
n = 〈〈l0l†0〉〉n = 〈〈√l0

√
l0
†〉〉n = 〈〈√l0†

√
l0〉〉n = 〈〈l†0l0〉〉n = W†

nWn (3.5)

for all n ∈ Z0,κ . Moreover if (A j )
κ
j=0 ∈ KNp×q;κ , then

YnY†
n = 〈〈r0r†0 〉〉n = 〈〈√r0

√
r0

†〉〉n = 〈〈√r0
†√r0〉〉n = 〈〈r†0r0〉〉n = Y†

nYn (3.6)

for all n ∈ Z0,κ .

The following result plays an important role in the proof of Proposition 3.19.

Lemma 3.18 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KRNp×q;κ and let n ∈ Z1,κ . Then

Xn−1Yn−1 = Wn−1Zn−1. (3.7)

Proof Remarks 3.11 and 3.10 yield

X̊n−1Yn = [Sn − 〈〈A0〉〉n]〈〈r†0 〉〉n[I(n+1)q − 〈〈A∗
0〉〉nSn]

= Sn〈〈r†0 〉〉n − Sn〈〈r†0 A∗
0〉〉nSn − 〈〈A0r

†
0 〉〉n + 〈〈A0r

†
0 A

∗
0〉〉nSn (3.8)

and, analogously,

WnZ̊n−1 = 〈〈l†0〉〉nSn − 〈〈l†0 A0〉〉n − Sn〈〈A∗
0l

†
0〉〉nSn + Sn〈〈A∗

0l
†
0 A0〉〉n . (3.9)

According to parts , (c), (b), (a) and (d) of Lemma (A.16), we have r†0 −A∗
0l

†
0 A0 = r†0r0

and l†0 − A0r
†
0 A

∗
0 = l0l

†
0 as well as A∗

0l
†
0 = r†0 A

∗
0, l

†
0 A0 = A0r

†
0 and P0A0 = A0Q0.

Using (3.8), (3.9), Remark 3.9, and (2.10), we can conclude then

X̊n−1Yn − WnZ̊n−1

= Sn〈〈r†0 − A∗
0l

†
0 A0〉〉n − Sn〈〈r†0 A∗

0 − A∗
0l

†
0〉〉nSn

− 〈〈A0r
†
0 − l†0 A0〉〉n + 〈〈A0r

†
0 A

∗
0 − l†0〉〉nSn

= Sn〈〈r†0r0〉〉n − 〈〈l0l†0〉〉nSn = Sn − 〈〈A0Q0〉〉n − [Sn − 〈〈P0A0〉〉n]
= 〈〈P0A0 − A0Q0〉〉n = O.
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Regarding Notation 3.8 and (2.2), this implies finally

O(n+1)p×(n+1)q = X̊n−1Yn − WnZ̊n−1

=
[
Op×nq Op×q

Xn−1 Onp×q

] [
Yn−1 Onq×q

∗ ∗
]

−
[∗ Op×np

∗ Wn−1

] [
Op×nq Op×q

Zn−1 Onp×q

]

=
[

Op×nq Op×q

Xn−1Yn−1 − Wn−1Zn−1 Onp×q

]
.

Now we obtain that the left and the right SP-transforms coincide.

Proposition 3.19 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KRNp×q;κ . Then (A(1)

j )κ−1
j=0 =

(A[1]
j )κ−1

j=0.

Proof We consider an arbitrary n ∈ Z1,κ . First we observe that Remarks 3.11 and
3.13 yield S(1)

n−1 = W�
n−1Xn−1 = W†

n−1Xn−1. Similarly, Remarks 3.11 and 3.14 yield

S[1]
n−1 = Zn−1Y

�
n−1 = Zn−1Y

†
n−1. For each j ∈ Z0,κ−1, by virtue of Remarks 3.15

and 3.16, we have R(ZA; j ) ⊆ R(l0) and N (r0) ⊆ N (XA; j ), which, because of

RemarkA.7, implies l0l
†
0 ZA; j = ZA; j and XA; j r†0r0 = XA; j . RegardingNotation 3.8,

(2.2), and (3.2), hence 〈〈l0l†0〉〉nZn−1 = Zn−1 and Xn−1〈〈r†0r0〉〉n = Xn−1 follow. Thus,

combining the obtained equations, we get S(1)
n−1 = W†

n−1Xn−1〈〈r†0r0〉〉n and S[1]
n−1 =

〈〈l0l†0〉〉nZn−1Y
†
n−1. Because of Remark 3.17, then

S(1)
n−1 = W†

n−1Xn−1Yn−1Y
†
n−1 and S[1]

n−1 = W†
n−1Wn−1Zn−1Y

†
n−1 (3.10)

follow. Lemma 3.18 gives (3.7). Thus, summarizing (3.10) and (3.7), we get finally
S(1)
n−1 = S[1]

n−1.

Remark 3.20 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KR p×q;κ . Taking into account

Remarks 3.13 and 3.11, for all n ∈ Z1,κ , then

W†
nX̊n−1 =

[∗ Op×np

∗ W†
n−1

] [
Op×nq Op×q

Xn−1 Onp×q

]
= S̊

(1)
n−1. (3.11)

Remark 3.21 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Kp×q;κ . Because of Definition 3.4 and

Remarks 3.15 and 3.16, then
∑κ−1

j=0 R(A[1]
j ) ⊆ R(l0) and N (r0) ⊆⋂κ−1

j=0 N (A(1)
j ).

Remark 3.22 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KRNp×q;κ . In view of Proposition 3.19

and Remark 3.21, then
∑κ−1

j=0 R(A(1)
j ) ⊆ R(l0) and N (r0) ⊆⋂κ−1

j=0 N (A[1]
j ).

Proposition 3.23 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KRNp×q;κ and let n ∈ Z1,κ . Then

Ln = Wn · diag(Ip, L [1]
n−1) · W∗

n and

diag(Ip, L
[1]
n−1) = 〈〈P0〉〉n + W†

nLn(W†
n)

∗. (3.12)
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Proof One can easily check that

I(n+1)p − S̊
(1)
n−1(S̊

(1)
n−1)

∗ = diag(Ip, L
(1)
n−1). (3.13)

Remark 3.20 yields (3.11). From Remark 3.15 and Remark A.7(a) we can infer
l0l

†
0XA; j = XA; j for all j ∈ Z0,κ−1. Taking into account Remark 3.17, (3.2),

Notation 3.8, and (2.2), then WnW†
nX̊n−1 = 〈〈l0l†0〉〉nX̊n−1 = X̊n−1 follows. Using

additionally (3.11), we obtain consequently

Wn S̊
(1)
n−1(S̊

(1)
n−1)

∗W∗
n = X̊n−1X̊

∗
n−1. (3.14)

By virtue of Remark A.10(b), we have moreover 〈〈√l0
†〉〉n〈〈√l0

†〉〉∗n = 〈〈l†0〉〉n and
〈〈√r0

†〉〉n
〈〈√r0

†〉〉∗n = 〈〈r†0 〉〉n . Applying Remark 3.10, we get then

WnW∗
n = (I(n+1)p − Sn〈〈A∗

0〉〉n)〈〈l†0〉〉n(I(n+1)p − 〈〈A0〉〉nS∗
n)

= 〈〈l†0〉〉n − 〈〈l†0 A0〉〉nS∗
n − Sn〈〈A∗

0l
†
0〉〉n + Sn〈〈A∗

0l
†
0 A0〉〉nS∗

n . (3.15)

Similarly, from Remark 3.11 we conclude

X̊n−1X̊
∗
n−1 = Sn〈〈r†0 〉〉nS∗

n − Sn〈〈r†0 A∗
0〉〉n − 〈〈A0r

†
0 〉〉nS∗

n + 〈〈A0r
†
0 A

∗
0〉〉n . (3.16)

Parts (a), (b), and (c) of Lemma A.16 yield l†0 A0 = A0r
†
0 and A∗

0l
†
0 = r†0 A

∗
0 as well as

l†0 − A0r
†
0 A

∗
0 = l0l

†
0 and r†0 − A∗

0l
†
0 A0 = r†0r0. Remark 3.9(b) provides (3.4). Using

(3.13), (3.14), (3.15), (3.16), and (3.4), we get then

Wn · diag(Ip, L(1)
n−1) · W∗

n = WnW∗
n − Wn S̊

(1)
n−1(S̊

(1)
n−1)

∗W∗
n

= WnW∗
n − X̊n−1X̊

∗
n−1

= 〈〈l†0〉〉n − 〈〈l†0 A0〉〉nS∗
n − Sn〈〈A∗

0l
†
0〉〉n + Sn〈〈A∗

0l
†
0 A0〉〉nS∗

n

−Sn〈〈r†0 〉〉nS∗
n + Sn〈〈r†0 A∗

0〉〉n + 〈〈A0r
†
0 〉〉nS∗

n − 〈〈A0r
†
0 A

∗
0〉〉n

= 〈〈l†0 − A0r
†
0 A

∗
0〉〉n + Sn〈〈A∗

0l
†
0 A0 − r†0 〉〉nS∗

n

= 〈〈l0l†0〉〉n − Sn〈〈r†0r0〉〉nS∗
n = Ln . (3.17)

By virtue of Proposition 3.19, thus Ln = Wn · diag(Ip, L [1]
n−1) · W∗

n follows.

Remarks 3.22 and A.7(a) yield l0l
†
0 A

(1)
j = A(1)

j for all j ∈ Z0,κ−1. Regarding (3.2)

and (2.2), hence 〈〈l0l†0〉〉n S̊
(1)
n−1 = S̊

(1)
n−1. Using (3.17), (3.5), (3.13), Remark A.24(b),
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and (2.1), we get then

W†
nLn(W†

n)
∗ = W†

nWn · diag(Ip, L(1)
n−1) · (W†

nWn)
∗

= 〈〈l0l†0〉〉n[I(n+1)p − S̊
(1)
n−1(S̊

(1)
n−1)

∗]〈〈l0l†0〉〉∗n
= 〈〈l0l†0(l0l†0)∗〉〉n − 〈〈l0l†0〉〉n S̊

(1)
n−1(S̊

(1)
n−1)

∗〈〈l0l†0〉〉∗n = 〈〈l0l†0〉〉n − S̊
(1)
n−1(S̊

(1)
n−1)

∗

and, in view of (3.2), (2.10) and (3.13), consequently

〈〈P0〉〉n + W†
nLn(W†

n)
∗ = I(n+1)p − 〈〈l0l†0〉〉n + W†

nLn(W†
n)

∗

= I(n+1)p − S̊
(1)
n−1(S̊

(1)
n−1)

∗ = diag(Ip, L
(1)
n−1).

By virtue of Proposition 3.19, thus (3.12) follows.

The next result contains the essential observation that the SP-transform maps the
classSp×q;κ into the classSp×q;κ−1.

Proposition 3.24 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ . Then (A[1]

j )κ−1
j=0 ∈

Sp×q;κ−1.

Proof We consider an arbitrary n ∈ Z1,κ . Remark 3.3 provides (A j )
κ
j=0 ∈

KRNp×q;κ . Thus, Proposition 3.23 yields (3.12). Regarding (2.11), fromRemarkA.4
we can infer P0 ∈ C

p×p
� . In view of (3.2), then 〈〈P0〉〉n � O follows. Since

(A j )
κ
j=0 belongs to Sp×q;κ , we also have Ln � O . Thus, from (3.12) we see

that diag(Ip, L
[1]
n−1) � O and, consequently, that L [1]

n−1 � O . Hence, (A[1]
j )κ−1

j=0 ∈
Sp×q;κ−1.

Now we are going to derive a right version of Proposition 3.23. For this we need a
little preparation.

Remark 3.25 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KNp×q;κ . Taking into account

Remarks 3.14 and 3.11, for all n ∈ Z1,κ , then

Z̊n−1Y†
n =

[
Op×nq Op×q

Zn−1 Onp×q

] [
Y†
n−1 Onq×q

∗ ∗
]

= S̊
[1]
n−1. (3.18)

Proposition 3.26 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KRNp×q;κ and let n ∈ Z1,κ . Then

Rn = Y∗
n · diag(R[1]

n−1, Iq) · Yn (3.19)

and

diag(R[1]
n−1, Iq) = 〈〈Q0〉〉n + (Y†

n)
∗RnY†

n .
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Proof. One can easily check that

I(n+1)q − (S̊
[1]
n−1)

∗S̊[1]
n−1 = diag(R[1]

n−1, Iq). (3.20)

Remark 3.25 yields (3.18). From Remark 3.16 and Remark A.7(b) we can infer
ZA; j r†0r0 = ZA; j for all j ∈ Z0,κ−1. Taking into account Remark 3.17, Notation 3.8,

(2.2), and (3.2), then Z̊n−1Y†
nYn = Z̊n−1〈〈r†0r0〉〉n = Z̊n−1 follows. Using additionally

(3.18), we obtain consequently

Y∗
n(S̊

[1]
n−1)

∗S̊[1]
n−1Yn = Z̊

∗
n−1Z̊n−1. (3.21)

By virtue of Remark A.10(b), we have moreover 〈〈√r0
†〉〉∗n〈〈√r0

†〉〉n = 〈〈r†0 〉〉n and

〈〈√l0
†〉〉∗n

〈〈√l0
†〉〉n = 〈〈l†0〉〉n . Applying Remark 3.10, we get then

Y∗
nYn = (I(n+1)q − S∗

n〈〈A0〉〉n)〈〈r†0 〉〉n[I(n+1)q − 〈〈A∗
0〉〉nSn]

= 〈〈r†0 〉〉n − 〈〈r†0 A∗
0〉〉nSn − S∗

n〈〈A0r
†
0 〉〉n + S∗

n〈〈A0r
†
0 A

∗
0〉〉nSn . (3.22)

Similarly, from Remark 3.11 we conclude

Z̊
∗
n−1Z̊n−1 = S∗

n〈〈l†0〉〉nSn − S∗
n〈〈l†0 A0〉〉n − 〈〈A∗

0l
†
0〉〉nSn + 〈〈A∗

0l
†
0 A0〉〉n . (3.23)

Parts (b), (a), and (c) of Lemma A.16 yield A∗
0l

†
0 = r†0 A

∗
0 and l

†
0 A0 = A0r

†
0 as well as

r†0 − A∗
0l

†
0 A0 = r†0r0 and l

†
0 − A0r

†
0 A

∗
0 = l0l

†
0 . Remark 3.9(a) provides (3.3). Applying

(3.20), (3.21), (3.22), (3.23), and (3.3), we get then

Y∗
n · diag(R[1]

n−1, Iq) · Yn = Y∗
n[In+1 − (S̊

[1]
n−1)

∗S̊[1]
n−1]Yn

= Y∗
nYn − Z̊

∗
n−1Z̊n−1

= 〈〈r†0 〉〉n − 〈〈r†0 A∗
0〉〉nSn − S∗

n〈〈A0r
†
0 〉〉n + S∗

n〈〈A0r
†
0 A

∗
0〉〉nSn

− S∗
n〈〈l†0〉〉nSn + S∗

n〈〈l†0 A0〉〉n + 〈〈A∗
0l

†
0〉〉nSn − 〈〈A∗

0l
†
0 A0〉〉n

= 〈〈r†0 − A∗
0l

†
0 A0〉〉n + S∗

n〈〈A0r
†
0 A

∗
0 − l†0〉〉nSn

= 〈〈r†0r0〉〉n − S∗
n〈〈l0l†0〉〉nSn = Rn,

i. e., (3.19). Remarks 3.22 and A.7(b) yield A[1]
j r†0r0 = A[1]

j for all j ∈ Z0,κ−1.

Regarding (2.2) and (3.2), hence S̊
[1]
n−1〈〈r†0r0〉〉n = S̊

[1]
n−1. Using (3.19), (3.6), (3.20),
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Remark A.24(b), and (2.1), we get then

(Y†
n)

∗RnY†
n = (YnY†

n)
∗ diag(R[1]

n−1, Iq)YnY†
n

= 〈〈r†0r0〉〉∗n[I(n+1)q − (S̊
[1]
n−1)

∗S̊[1]
n−1]〈〈r†0r0〉〉n

= 〈〈(r†0r0)∗r†0r0〉〉n − 〈〈r†0r0〉〉∗n(S̊
[1]
n−1)

∗S̊[1]
n−1〈〈r†0r0〉〉n

= 〈〈r†0r0〉〉n − (S̊
[1]
n−1)

∗S̊[1]
n−1

and, in view of (3.2), (2.10) and (3.20), consequently

〈〈Q0〉〉n + (Y†
n)

∗RnY†
n = I(n+1)p − 〈〈r†0r0〉〉n + (Y†

n)
∗RnY†

n

= I(n+1)p − (S̊
[1]
n−1)

∗S̊[1]
n−1 = diag(R[1]

n−1, Iq).

4 The SP-Algorithm for p × q Schur sequences

Regarding Propositions 3.24 and 3.19, we are able to generalize the notions of the left
and the right SP-transforms of a sequence of complex p × q matrices, introduced in
Definition 3.4 (see also Remark 4.2 below).

Definition 4.1 Let (A j )
κ
j=0 ∈ Sp×q;κ . Then let the sequence (A(0)

j )κj=0 (resp.,

(A[0]
j )κj=0) be defined by A(0)

j := A j (resp., A
[0]
j := A j ) for all j ∈ Z0,κ . Furthermore,

if κ ≥ 1, for all k ∈ Z1,κ , let the sequence (A(k)
j )κ−k

j=0 (resp., (A
[k]
j )κ−k

j=0) be recursively

defined to be the left SP-transform of (A(k−1)
j )

κ−(k−1)
j=0 (resp., right SP-transform of

(A[k−1]
j )

κ−(k−1)
j=0 ). For all k ∈ Z0,κ , then the sequence (A(k)

j )κ−k
j=0 (resp., (A[k]

j )κ−k
j=0)

is called the k-th left SP-transform of (A j )
κ
j=0. (resp., k-th right SP-transform of

(A j )
κ
j=0).

Remark 4.2 Let (A j )
κ
j=0 ∈ Sp×q;κ .We emphasize explicitly that, inDefinition 4.1,we

usedSp×q;κ ⊆ Kp×q;κ and the following:By virtue of Propositions 3.24 and 3.19, one
can easily verify by induction that (A(k)

j )κ−k
j=0 ∈ Sp×q;κ−k and (A[k]

j )κ−k
j=0 ∈ Sp×q;κ−k

for all k ∈ Z0,κ .

Now we obtain that the left and the right SP-transforms coincide.

Proposition 4.3 Let (A j )
κ
j=0 ∈ Sp×q;κ . Then A(k)

j = A[k]
j for every choice of k ∈ Z0,κ

and j ∈ Z0,κ−k .

Proof In view of Definition 4.1, there is anm ∈ Z0,κ such that (A(k)
j )κ−k

j=0 = (A[k]
j )κ−k

j=0

for all k ∈ Z0,m . Consequently, Remark 3.3 provides (A[m]
j )κ−m

j=0 ∈ KRNp×q;κ−m .
If m < κ , then, in view of Definition 4.1, the application of Proposition 3.19 yields
(A(m+1)

j )
κ−(m+1)
j=0 = (A[m+1]

j )
κ−(m+1)
j=0 .
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Remark 4.4 Let (A j )
κ
j=0 ∈ Sp×q;κ and, for each k ∈ Z0,κ , let (A(k)

j )κ−k
j=0 (resp.,

(A[k]
j )κ−k

j=0) be the k-th left (resp., right) SP-transform of (A j )
κ
j=0. For every choice of

n ∈ Z0,κ and k ∈ Z0,n , one can see then fromDefinition 4.1, Remarks 4.2 and 3.5, and
Proposition 4.3 that (A j )

n
j=0 belongs to Sp×q;n and that (A(k)

j )n−k
j=0 (resp., (A

[k]
j )n−k

j=0)
is the k-th left (resp., right) SP-transform of (A j )

n
j=0.

Example 4.5 Let (A j )
κ
j=0 be given by A j := Op×q . From Example 3.6 and Defini-

tion 4.1 one can easily see then that (A j )
κ
j=0 ∈ Sp×q;κ and A[k]

j = Op×q for every
choice of k ∈ Z0,κ and j ∈ Z0,κ−k .

Lemma 4.6 Let (A j )
κ
j=0 ∈ Sp×q;κ . Then (Tj )

κ
j=0 defined by Tj := A∗

j belongs to
Sq×p;κ and, for all k ∈ Z0,κ , the k-th right SP-transform of (Tj )

κ
j=0 coincides with

(B∗
j )

κ−k
j=0 , where (Bj )

κ−k
j=0 denotes the k-th right SP-transform of (A j )

κ
j=0.

Proof Clearly, (Tj )
κ
j=0 ∈ Sq×p;κ . Denote by (C j )

κ
j=0 the 0-th right SP-transform of

(A j )
κ
j=0. In view of Definition 4.1, then (C j )

κ
j=0 = (A j )

κ
j=0 and hence (T [0]

j )κj=0 =
(Tj )

κ
j=0 = (A∗

j )
κ
j=0 = (C∗

j )
κ
j=0. In the case κ = 0, the proof is complete. Now

suppose κ ≥ 1. Now denote by (C j )
κ−1
j=0 the first right SP-transform of (A j )

κ
j=0.

In view of Remark 3.3, we can apply Proposition 3.19 to get (T (1)
j )κ−1

j=0 = (T [1]
j )κ−1

j=0.

RegardingRemark 3.3 again,we can applyLemma3.7 to obtain (T (1)
j )κ−1

j=0 = (C∗
j )

κ−1
j=0.

Summarizing, we have (T [1]
j )κ−1

j=0 = (C∗
j )

κ−1
j=0. In the case κ = 1, the proof is complete.

Now suppose κ ≥ 2. Then there exists an n ∈ Z1,κ−1 such that for all k ∈ Z1,n the
following statement holds true:

(I)k (T [k]
j )κ−k

j=0 = (B∗
j )

κ−k
j=0, where (Bj )

κ−k
j=0 denotes the k-th right SP-transform of

(A j )
κ
j=0.

Let (S j )
κ−n
j=0 be defined by S j := T [n]

j . According to Remark 4.2, then (S j )
κ−n
j=0 ∈

Sq×p;κ−n . In view of Remark 3.3, we can thus apply Proposition 3.19 to get

(S(1)
j )

(κ−n)−1
j=0 = (S[1]

j )
(κ−n)−1
j=0 . According to Remark 4.2, the n-th right SP-transform

(Dj )
κ−n
j=0 of (A j )

κ
j=0 belongs toSp×q;κ−n . Now denote by (C j )

(κ−n)−1
j=0 the first right

SP-transform of (Dj )
κ−n
j=0 . Regarding Remark 3.3 and that (I)k for k = n shows

(S j )
κ−n
j=0 = (D∗

j )
κ−n
j=0 , we can apply Lemma 3.7 to the sequence (Dj )

κ−n
j=0 to obtain

(S(1)
j )

(κ−n)−1
j=0 = (C∗

j )
(κ−n)−1
j=0 . Taking additionally into account Definition 4.1, we

obtain (T [n+1]
j )

κ−(n+1)
j=0 = (S[1]

j )
(κ−n)−1
j=0 = (S(1)

j )
(κ−n)−1
j=0 = (C∗

j )
(κ−n)−1
j=0 . Since Def-

inition 4.1 implies that (C j )
κ−(n+1)
j=0 is the (n + 1)-th right SP-transform of (A j )

κ
j=0,

thus (I)k holds true for k = n + 1. Therefore, the assertion is inductively proved.

Definition 4.7 Let (A j )
κ
j=0 ∈ Sp×q;κ . Then the sequence (e j )

κ
j=0 given by e j := A[ j]

0
for all j ∈ Z0,κ is called the sequence of Schur–Potapov parameters (short SP-
parameter sequence) of (A j )

κ
j=0.

One can easily convince oneself that in the scalar case p = q = 1 (see [28]) the
parameters given in Definition 4.7 are exactly the classical Schur parameters .



  109 Page 18 of 91 V. K. Dubovoy et al.

Remark 4.8 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For all k ∈

Z0,κ , according to Remark 4.2 and Definitions 4.1 and 4.7, then (A[k]
j )κ−k

j=0 belongs to

Sp×q;κ−k and has SP-parameter sequence (e j+k)
κ−k
j=0.

Remark 4.9 Let (A j )
κ
j=0 ∈ Sp×q;κ and let n ∈ Z0,κ . In view of Definition 4.7 and

Remark 4.4, then (A j )
n
j=0 belongs toSp×q;n and has SP-parameter sequence (e j )

n
j=0.

Lemma 4.10 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. Then

(A∗
j )

κ
j=0 belongs toSq×p;κ and has SP-parameter sequence (e∗j )κj=0.

Proof Regarding Definition 4.7, this follows from Lemma 4.6.

Notation 4.11 Let (e j )
κ
j=0 be a sequence of complex p × q matrices. For each j ∈

Z0,κ , then let l j := Ip − e j e
∗
j and r j := Iq − e∗j e j .

Remark 4.12 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For each

j ∈ Z0,κ , in viewofRemark 4.2, then e j ∈ Kp×q andhence l j ∈ C
p×p
� and r j ∈ C

q×q
� .

Notation 4.13 Let (A j )
κ
j=0 ∈ Sp×q;κ and let k ∈ Z0,κ . For each matrix X built from

the sequence (A j )
κ
j=0, we denote (if possible) by X [k] the corresponding matrix built

from the k-th right SP-transform (A[k]
j )κ−k

j=0 of (A j )
κ
j=0 instead of (A j )

κ
j=0.

Remark 4.14 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. In view of

Notation 4.13, (2.5), Definition 4.7, and Notation 4.11, then l[ j]0 = l j and r [ j]
0 = r j

for all j ∈ Z0,κ . In particular, l0 = l0 and r0 = r0.

5 The Inverse SP-Transformation for Sequences of ComplexMatrices

The main goal of this section is to generalize the notion of the inverse SP-transform
of a sequence of complex p × q matrices with respect to a given contractive complex
p × q matrix E . In [6, Def. 3.4], such considerations are carried out for the special
case that the matrix E is strictly contractive. Taking into account the nature of the
objects under consideration, we start again by considering a left and a right version of
the inverse SP-transform of a sequence (A j )

κ
j=0 with respect to a given E ∈ Kp×q .

For each E ∈ C
p×q , let

l := Ip − EE∗ and r := Iq − E∗E (5.1)

as well as

P := Ip − ll† and Q := Iq − r†r . (5.2)

Because of Remarks A.6, A.4 and A.2, we have then

P = PR(l)⊥ and Q = PN (r). (5.3)
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If E ∈ Kp×q , in view of Remark A.10(c), furthermore

P = Ip − √
l
√
l
†

and Q = Iq − √
r
†√

r . (5.4)

Definition 5.1 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matri-

ces. Then:

(a) Let RE,A;0 := E and TE,A;0 := Ip, and, for all j ∈ Z1,κ+1, let RE,A; j :=
√
l A j−1√

r† and TE,A; j := RE,A; j E∗. Then the sequence (A(−1;E)
j )κ+1

j=0 defined by

A(−1;E)
j :=

j∑
�=0

T �

E,A; j−�
RE,A;�

is called the left E-inverse SP-transform of (A j )
κ
j=0.

(b) Let UE,A;0 := E and VE,A;0 := Iq , and, for all j ∈ Z1,κ+1, moreover let

UE,A; j :=
√
l
†
A j−1

√
r andVE,A; j := E∗UE,A; j . Then the sequence (A[−1;E]

j )κ+1
j=0

defined by

A[−1;E]
j :=

j∑
�=0

UE,A;�V �

E,A; j−�

is called the right E-inverse SP-transform of (A j )
κ
j=0.

Definition 5.1 is a generalization of [6, Definitions 3.4 and 3.10]. We will establish
(see Proposition 5.9) that the left and right inverse SP-transform indeed coincide.

For each matrix X built from the sequence (A j )
κ
j=0, we denote (if possible) by

X (−1;E) (resp., X [−1;E]) the corresponding matrix built from the left (resp., right)
E-inverse SP-transform (A(−1;E)

j )κ+1
j=0 (resp., (A[−1;E]

j )κ+1
j=0) of (A j )

κ
j=0 instead of

(A j )
κ
j=0.

Remark 5.2 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices.

In view of Definition 5.1 and (3.1), we have A(−1;E)
0 = E and A[−1;E]

0 = E .

Remark 5.3 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices.

For each k ∈ Z0,κ , then the sequence (A(−1;E)
j )k+1

j=0 (resp., (A[−1;E]
j )k+1

j=0) is the left

(resp., right) E-inverse SP-transform of (A j )
k
j=0.

Lemma 5.4 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices

with left E-inverse SP-transform (Bj )
κ+1
j=0 and right E-inverse SP-transform (C j )

κ+1
j=0.

Then E∗ ∈ Kq×p and (A∗
j )

κ
j=0 has left E

∗-inverse SP-transform (C∗
j )

κ+1
j=0 and right

E∗-inverse SP-transform (B∗
j )

κ+1
j=0.
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Proof Lemma A.15 shows E∗ ∈ Kq×p. Denote by (� j )
κ+1
j=0 and (ϒ j )

κ+1
j=0 the recipro-

cal sequence corresponding to (TE,A; j )κ+1
j=0 and (VE,A; j )κ+1

j=0, respectively. According

toDefinition 5.1, we have then Bj =∑ j
�=0 � j−�RE,A;� andC j =∑ j

�=0UE,A;�ϒ j−�

for all j ∈ Z0,κ+1. Let (	 j )
κ+1
j=0 and (
 j )

κ+1
j=0 be defined by 	 j := T ∗

E,A; j and


 j := V ∗
E,A; j , respectively. From [20, Prop. 3.13] we can infer (�∗

j )
κ+1
j=0 = (	

�
j )

κ+1
j=0

and (ϒ∗
j )

κ+1
j=0 = (


�
j )

κ+1
j=0, so that

B∗
j =

j∑
�=0

R∗
E,A;�	

�
j−� and C∗

j =
j∑

�=0



�
j−�U

∗
E,A;�

for all j ∈ Z0,κ+1 follow. Let F := E∗ and let (S j )
κ
j=0 be defined by S j := A∗

j .
By virtue of Definition 5.1, we have R∗

E,A;0 = E∗ = F = UF,S;0 and U∗
E,A;0 =

E∗ = F = RF,S;0 as well as T ∗
E,A;0 = Ip = VF,S;0 and V ∗

E,A;0 = Iq = TF,S;0.
Using Remark A.8, we obtain, for all j ∈ Z1,κ+1, in view of (5.1) and Defini-

tion 5.1, furthermore R∗
E,A; j = √

r†A∗
j−1

√
l = √

Iq − FF∗†S j−1
√
Ip − F∗F =

UF,S; j and U∗
E,A; j = √

r A∗
j−1

√
l
† = √

Iq − FF∗S j−1
√
Ip − F∗F† = RF,S; j as

well as T ∗
E,A; j = ER∗

E,A; j = F∗UF,S; j = VF,S; j and V ∗
E,A; j = U∗

E,A; j E =
RF,S; j F∗ = TF,S; j . In particular, we have shown that (VF,S; j )κ+1

j=0 = (	 j )
κ+1
j=0

and (TF,S; j )κ+1
j=0 = (
 j )

κ+1
j=0. Taking additionally into account Definition 5.1, we

get then S(−1;F)
j =∑ j

�=0 T
�

F,S; j−�
RF,S;� =∑ j

�=0 

�
j−�U

∗
E,A;� = C∗

j and S[−1;F]
j =∑ j

�=0UF,S;�V �

F,S; j−�
=∑ j

�=0 R
∗
E,A;�	

�
j−� = B∗

j for all j ∈ Z0,κ+1.

Notation 5.5 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matri-

ces. Then, for all n ∈ Z0,κ+1, let Rn :=SRE,A;n and Un :=SUE,A;n as well as

Tn :=STE,A;n and Vn :=SVE,A;n and furthermore T�
n :=S

T �
E,A;n and V�

n := S
V �
E,A;n .

Remark 5.6 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices.

Then

Rn = 〈〈√l〉〉n S̊n−1〈〈
√
r
†〉〉n + 〈〈E〉〉n, Tn = 〈〈√l〉〉n S̊n−1〈〈

√
r
†
E∗〉〉n + I(n+1)p,

Un = 〈〈√l
†〉〉n S̊n−1〈〈

√
r〉〉n + 〈〈E〉〉n, Vn = 〈〈E∗√l

†〉〉n S̊n−1〈〈
√
r〉〉n + I(n+1)q

for all n ∈ Z1,κ+1 as well as S
(−1;E)
n = T�

nRn and S[−1;E]
n = UnV

�
n for all n ∈ Z0,κ+1

can be checked by straightforward calculation.

Now we use the notation introduced in Notation A.18.

Lemma 5.7 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices.

Then (TE,A; j )κ+1
j=0 ∈ Dp×p;κ+1 and (VE,A; j )κ+1

j=0 ∈ Dq×q;κ+1. For each n ∈ Z0,κ+1,

moreover, Tn ∈ Lp,n and Vn ∈ Lq,n. In particular, detTn = 1 and T�
n = T−1

n as

well as detVn = 1 and V�
n = V−1

n for all n ∈ Z0,κ+1.
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Proof First observe that TE,A;0 = Ip and VE,A;0 = Iq . Consequently, (TE,A; j )κ+1
j=0 ∈

Dp×p;κ+1 and (VE,A; j )κ+1
j=0 ∈ Dq×q;κ+1 follow. Now we consider an arbitrary n ∈

Z0,κ+1. Regarding Notations A.18 and 5.5 and (2.2), then Tn ∈ Lp,n andVn ∈ Lq,n .
In particular, detTn = 1 and detVn = 1. According to [22, Prop. 4.20], furthermore
T�
n = T−1

n and V�
n = V−1

n .

Lemma 5.8 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices.

For each n ∈ Z0,κ+1, then RnVn = TnUn.

Proof We have R0V0 = E · Iq = Ip · E = T0U0. Now suppose κ ≥ 1 and consider
an arbitrary n ∈ Z1,κ+1. Remarks 5.6 and A.24(b) yield

RnVn =
[
〈〈√l〉〉n S̊n−1〈〈

√
r
†〉〉n + 〈〈E〉〉n

][
〈〈E∗√l

†〉〉n S̊n−1〈〈
√
r〉〉n + I(n+1)q

]

= 〈〈√l〉〉n S̊n−1〈〈
√
r
†
E∗√l

†〉〉n S̊n−1〈〈
√
r〉〉n + 〈〈√l〉〉n S̊n−1〈〈

√
r
†〉〉n

+ 〈〈EE∗√l
†〉〉n S̊n−1〈〈

√
r〉〉n + 〈〈E〉〉n

and

TnUn =
[
〈〈√l〉〉n S̊n−1〈〈

√
r
†
E∗〉〉n + I(n+1)p

][
〈〈√l

†〉〉n S̊n−1〈〈
√
r〉〉n + 〈〈E〉〉n

]

= 〈〈√l〉〉n S̊n−1〈〈
√
r
†
E∗√l

†〉〉n S̊n−1〈〈
√
r〉〉n + 〈〈√l〉〉n S̊n−1〈〈

√
r
†
E∗E〉〉n

+ 〈〈√l
†〉〉n S̊n−1〈〈

√
r〉〉n + 〈〈E〉〉n .

Remark A.17(a) shows l ∈ C
p×p
� and r ∈ C

q×q
� . We can thus apply Remark A.10(d)

to obtain with (5.1) then

√
r
† − √

r
†
E∗E = √

r
†
(Iq − E∗E) = √

r
†
r = √

r (5.5)

and

√
l
† − EE∗√l

† = (Ip − EE∗)
√
l
† = l

√
l
† = √

l. (5.6)

Using additionally Remark A.24(b), we can conclude then RnVn − TnUn =
〈〈√l〉〉n S̊n−1〈〈√r† − √

r†E∗E〉〉n + 〈〈EE∗√l
† − √

l
†〉〉n S̊n−1〈〈√r〉〉n = O .

Now we are able to verify that, for each matrix E ∈ Kp×q , the left and right
E-inverse SP-transforms of a sequence (A j )

κ
j=0 from C

p×q coincide. This is a gen-
eralization of [6, Prop. 3.11].

Proposition 5.9 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matri-

ces. Then (A(−1;E)
j )κ+1

j=0 = (A[−1;E]
j )κ+1

j=0.
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Proof. We consider an arbitrary n ∈ Z0,κ+1. Remark 5.6 shows S(−1;E)
n = T�

nRn and
S[−1;E]
n = UnV

�
n . Lemma 5.7 yields detTn �= 0 and T�

n = T−1
n as well as detVn �= 0

and V�
n = V−1

n . Using additionally Lemma 5.8, we obtain

S(−1;E)
n − S[−1;E]

n = T�
nRn − UnV�

n = T−1
n Rn − UnV−1

n

= T−1
n (RnVn − TnUn)V−1

n = O.

In order to show that the inverse SP-transform with respect to given E ∈ Kp×q

maps the classSp×q;κ into the classSp×q;κ+1, we prove the following result.

Lemma 5.10 Let E ∈ Kp×q , let (A j )
κ
j=0 be a sequence of complex p × q matrices,

and let n ∈ Z1,κ+1. Then detVn �= 0 and

R[−1;E]
n = V−∗

n diag(〈〈√r〉〉n−1(Inq − S∗
n−1〈〈ll†〉〉n−1Sn−1)〈〈

√
r〉〉n−1, r)V−1

n .

Proof Remark 5.6 shows S[−1;E]
n = UnV

�
n . Lemma 5.7 provides detVn �= 0 and

V�
n = V−1

n . Regarding (2.3), we can infer then

R[−1;E]
n = I(n+1)q − (S[−1;E]

n )∗S[−1;E]
n = V−∗

n (V∗
nVn − U∗

nUn)V−1
n .

Remark A.17(a) shows l ∈ C
p×p
� and r ∈ C

q×q
� . Remarks 5.6 and A.24 yield

V∗
nVn =

[
〈〈√r〉〉n S̊∗

n−1〈〈
√
l
†
E〉〉n + I(n+1)q

][
〈〈E∗√l

†〉〉n S̊n−1〈〈
√
r〉〉n + I(n+1)q

]

= 〈〈√r〉〉n S̊∗
n−1〈〈

√
l
†
EE∗√l

†〉〉n S̊n−1〈〈
√
r〉〉n + 〈〈√r〉〉n S̊∗

n−1〈〈
√
l
†
E〉〉n

+ 〈〈E∗√l
†〉〉n S̊n−1〈〈

√
r〉〉n + I(n+1)q

and

U∗
nUn =

[
〈〈√r〉〉n S̊∗

n−1〈〈
√
l
†〉〉n + 〈〈E∗〉〉n

][
〈〈√l

†〉〉n S̊n−1〈〈
√
r〉〉n + 〈〈E〉〉n

]

= 〈〈√r〉〉n S̊∗
n−1〈〈

√
l
†√

l
†〉〉n S̊n−1〈〈

√
r〉〉n + 〈〈√r〉〉n S̊∗

n−1〈〈
√
l
†
E〉〉n

+ 〈〈E∗√l
†〉〉n S̊n−1〈〈

√
r〉〉n + 〈〈E∗E〉〉n .

Using (5.1) and Remark A.10(e), we get

√
l
†√

l
† − √

l
†
EE∗√l

† = √
l
†
(Ip − EE∗)

√
l
† = √

l
†
l
√
l
† = ll†. (5.7)
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Taking additionally into account Remark A.24(b), (3.2), (5.1), and (2.2), we can con-
clude then

V∗
nVn − U∗

nUn

= 〈〈√r〉〉n S̊∗
n−1〈〈

√
l
†
EE∗√l

† − √
l
†√

l
†〉〉n S̊n−1〈〈

√
r〉〉n + 〈〈Iq − E∗E〉〉n

= 〈〈r〉〉n − 〈〈√r〉〉n S̊∗
n−1〈〈ll†〉〉n S̊n−1〈〈

√
r〉〉n

= diag(〈〈r〉〉n−1 − 〈〈√r〉〉n−1S∗
n−1〈〈ll†〉〉n−1Sn−1〈〈

√
r〉〉n−1, r)

= diag(〈〈√r〉〉n−1(Inq − S∗
n−1〈〈ll†〉〉n−1Sn−1)〈〈

√
r〉〉n−1, r),

which completes the proof.

Now we are able to verify the result announced above, which is a generalization of
[6, Prop. 3.6(d)].

Proposition 5.11 Let E ∈ Kp×q and let (A j )
κ
j=0 ∈ Sp×q;κ . Then (A[−1;E]

j )κ+1
j=0 ∈

Sp×q;κ+1.

Proof We consider an arbitrary n ∈ Z1,κ+1. Then Rn−1 � O . From Remarks A.6
and A.4 we can infer ll† � Ip. In view of (3.2), then 〈〈ll†〉〉n−1 � Inp follows,
implying S∗

n−1〈〈ll†〉〉n−1Sn−1 � S∗
n−1Sn−1. Taking additionally into account (2.3),

we thus obtain Inq − S∗
n−1〈〈ll†〉〉n−1Sn−1 � Inq − S∗

n−1Sn−1 = Rn−1 � O . Since

Remark A.17(a) shows r ∈ C
q×q
� , we can conclude from Lemma 5.10 then R[−1;E]

n �
O . Hence, (A[−1;E]

j )κ+1
j=0 ∈ Sp×q;κ+1.

The goal of our next considerations is to explain why we have chosen the terminol-
ogy “inverse SP-transform”. For this we still need some preparation.

Remark 5.12 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × qmatrices.

In viewofDefinition 5.1 andRemarksA.10(a) andA.9, then
∑κ+1

j=1 R(RE,A; j ) ⊆ R(l)

and N (r) ⊆ ⋂κ+1
j=1 N (RE,A; j ) as well as

∑κ+1
j=1 R(UE,A; j ) ⊆ R(l) and N (r) ⊆⋂κ+1

j=1 N (UE,A; j ).

Lemma 5.13 Let L ∈ C
p×p, let R ∈ C

q×p, and let (Mj )
κ+1
j=1 be a sequence of complex

p × q matrices. Let the sequence (C j )
κ+1
j=0 be defined by C0 := Ip and C j := LMj R

for all j ∈ Z1,κ+1. Then C�
0 = Ip and, for all j ∈ Z1,κ+1, there exists a matrix

N j ∈ C
p×q such that C�

j = LN j R.

Proof Obviously, C†
0 = Ip. Using [20, Thm. 3.9], we obtain then C�

0 = Ip and, for all

j ∈ Z1,κ+1, furthermore C�
j = ∑ j

�=1(−1)�
∑

(k1,k2,...,k�)∈G�, j
Ck1Ck2 · · ·Ck�

, where

G�, j := {[k1, k2, . . . , k�] ∈ N
1×� : k1 + k2 +· · ·+ k� = j}. The assertion now follows

from this representation, since C j = LMj R for all j ∈ Z1,κ+1.

Regarding Definition 5.1, from Lemma 5.13 we can infer the following:
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Remark 5.14 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × qmatrices.

Then T �

E,A;0 = Ip and V
�

E,A;0 = Iq . Furthermore, for all j ∈ Z1,κ+1, there exist matri-

ces Mj , N j ∈ C
p×q such that T �

E,A; j = √
lM j

√
r†E∗ and V �

E,A; j = E∗√l
†
N j

√
r .

Lemma 5.15 Let E ∈ Kp×q and let (A j )
κ
j=0 be a sequence of complex p × q matrices.

Then
∑κ+1

j=1 R(A[−1;E]
j ) ⊆ R(l) and N (r) ⊆⋂κ+1

j=1 N (A[−1;E]
j ).

Proof We consider an arbitrary j ∈ Z1,κ+1. According to Remark 5.14, there
exist matrices Mj , N j ∈ C

p×q such that T �

E,A; j = √
lM j

√
r†E∗ and V �

E,A; j =
E∗√l

†
N j

√
r . By virtue of Definition 5.1, then UE,A;0V �

E,A; j = EE∗√l
†
N j

√
r and

T �

E,A; j RE,A;0 = √
lM j

√
r†E∗E , so that

A[−1;E]
j = EE∗√l

†
N j

√
r +

j∑
�=1

UE,A;�V �

E,A; j−�

and

A(−1;E)
j = √

lM j
√
r
†
E∗E +

j∑
�=1

T �

E,A; j−�
RE,A;�.

Using parts (a) and (b) of Lemma A.16, we can infer ll†EE∗ = EE∗ll† and
E∗Er†r = r†r E∗E . Regarding Remark A.17(a), we can apply Remark A.10(c) to

obtain ll† = √
l
†√

l and r†r = √
r
√
r†. Taking additionally into account (2.1), then

ll†EE∗√l
† = EE∗√l

†
and

√
r†E∗Er†r = √

r†E∗E follow. For each � ∈ Z1, j ,
by virtue of Remark 5.12, furthermore R(UE,A;�) ⊆ R(l) and N (r) ⊆ N (RE,A;�),
which, because of RemarkA.7, implies ll†UE,A;� = UE,A;� and RE,A;�r†r = RE,A;�.
Summarizing, we can infer that ll†A[−1;E]

j = A[−1;E]
j and A(−1;E)

j r†r = A(−1;E)
j .

Consequently, R(A[−1;E]
j ) ⊆ R(l) and N (r) ⊆ N (A(−1;E)

j ) follow. By virtue of
Proposition 5.9, the proof is complete.

Lemma 5.16 Let E ∈ Kp×q , let (A j )
κ
j=0 be a sequence of complex p × q matrices,

and letM be a linear subspace ofCp such thatR(E) ⊆ M and
∑κ

j=0 R(A j ) ⊆ M.

Then
∑κ+1

j=0 R(A[−1;E]
j ) ⊆ M.

Proof We consider an arbitrary j ∈ Z0,κ+1. The assumption
∑κ

j=0 R(A j ) ⊆ M
implies R(A�−1

√
r) ⊆ M for all � ∈ Z1,κ+1. Taking additionally into account the

assumptionR(E) ⊆ M, we can thus apply Lemma B.8 to getR(
√
l
†
A�−1

√
r) ⊆ M

for all � ∈ Z1,κ+1. Regarding Definition 5.1(b) and again R(E) ⊆ M, we hence get
R(UE,A;�) ⊆ M for all � ∈ Z0,κ+1, so that R(A[−1;E]

j ) ⊆ M follows.

Lemma 5.17 Let E ∈ Kp×q , let (A j )
κ
j=0 be a sequence of complex p × q matrices,

and let Q be a linear subspace of Cq such that Q ⊆ N (E) and Q ⊆ ⋂κ
j=0 N (A j ).

Then Q ⊆⋂κ+1
j=0 N (A[−1;E]

j ).
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Proof We consider an arbitrary j ∈ Z0,κ+1. The assumption Q ⊆ ⋂κ
j=0 N (A j )

implies Q ⊆ N (
√
l A�−1) for all � ∈ Z1,κ+1. Taking additionally into account the

assumptionQ ⊆ N (E), we can thus apply Lemma B.13 to getQ ⊆ N (
√
l A�−1

√
r†)

for all � ∈ Z1,κ+1. Regarding Definition 5.1(a) and again Q ⊆ N (E), we hence get
Q ⊆ N (RE,A;�) for all � ∈ Z0,κ+1, so that Q ⊆ N (A(−1;E)

j ) follows. By virtue of
Proposition 5.9, the proof is complete.

Lemma 5.18 Let E ∈ Kp×q , let (A j )
κ
j=0 be a sequence of complex p × q matrices,

and let n ∈ Z1,κ+1. Then

Un〈〈
√
r
† + Q〉〉n = 〈〈√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈E(
√
r
† + Q)〉〉n

and

Vn〈〈
√
r
† + Q〉〉n = 〈〈E∗√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈√r
† + Q〉〉n . (5.8)

Proof Regarding Remark A.17(a), we can apply Remark A.10(c) to obtain
√
r
√
r† =

r†r . Taking into account (5.4) and (2.1), we get then

√
r(

√
r
† + Q) = √

r
√
r
† + √

r Q = r†r + √
r(Iq − √

r
†√

r) = r†r . (5.9)

By virtue of Remark A.24(b), we can thus conclude

S̊n−1〈〈
√
r〉〉n〈〈

√
r
† + Q〉〉n = S̊n−1〈〈

√
r(

√
r
† + Q)〉〉n = S̊n−1〈〈r†r〉〉n .

Consequently, using Remark 5.6 and again Remark A.24(b), we get finally

Un〈〈
√
r
† + Q〉〉n =

[
〈〈√l

†〉〉n S̊n−1〈〈
√
r〉〉n + 〈〈E〉〉n

]
〈〈√r

† + Q〉〉n
= 〈〈√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈E(
√
r
† + Q)〉〉n

and, analogously, (5.8).

Lemma 5.19 Let E ∈ Kp×q . Then (
√
r + Q)(

√
r† + Q) = Iq , where Q is given in

(5.2).

Proof First observe that Remark A.17(a) shows r ∈ C
q×q
� . Thus, we can apply

Remark A.10(c) to obtain
√
r
√
r† = √

r†
√
r . In view of (5.4) and (2.1), we have√

r Q = √
r − √

r
√
r†

√
r = O and Q

√
r† = √

r† − √
r†

√
r
√
r† = O . Regarding

(5.3) and Remark A.3, we see Q2 = Q. Taking again into account (5.4), we finally
conclude (

√
r + Q)(

√
r† + Q) = √

r†
√
r + Q = Iq .
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Lemma 5.20 Let E ∈ Kp×q , let (A j )
κ
j=0 be a sequence of complex p × q matrices,

and let n ∈ Z1,κ+1. Then det(〈〈E∗√l
†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈√r† + Q〉〉n) �= 0 and

S[−1;E]
n =

[
〈〈√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈E(
√
r
† + Q)〉〉n

]

×
[
〈〈E∗√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈√r
† + Q〉〉n

]−1
.

Proof. Remark 5.6 shows S[−1;E]
n = UnV

�
n . Lemma 5.7 yields detVn �= 0

and V�
n = V−1

n . From Lemma 5.19 we infer det(
√
r† + Q) �= 0. Regard-

ing (3.2), then det〈〈√r† + Q〉〉n �= 0 follows. Taking additionally into account

Lemma 5.18, we can conclude det(〈〈E∗√l
†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈√r† + Q〉〉n) �= 0

and [〈〈E∗√l
†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈√r† + Q〉〉n]−1 = 〈〈√r† + Q〉〉−1

n V−1
n . Using again

Lemma 5.18, we finally get

[
〈〈√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈E(
√
r
† + Q)〉〉n

]

×
[
〈〈E∗√l

†〉〉n S̊n−1〈〈r†r〉〉n + 〈〈√r
† + Q〉〉n

]−1

= Un〈〈
√
r
† + Q〉〉n〈〈

√
r
† + Q〉〉−1

n V−1
n = UnV−1

n = UnV�
n = S[−1;E]

n .

Lemma 5.21 Let (A j )
κ
j=0 ∈ KNp×q;κ and let n ∈ Z0,κ . Then R(Yn) = R(〈〈r0〉〉n)

andN (Yn) = N (〈〈r0〉〉n) as well as det(−〈〈√r0
†A∗

0〉〉nSn + 〈〈√r0
† + Q0〉〉n) �= 0 and

Y†
n + 〈〈Q0〉〉n = [−〈〈√r0

†A∗
0〉〉nSn + 〈〈√r0

† + Q0〉〉n]−1.

Proof Using Remarks 3.17 and A.24, we get YnY†
n = 〈〈r0r†0 〉〉n = 〈〈r0〉〉n〈〈r0〉〉†n and

Y†
nYn = 〈〈r†0r0〉〉n = 〈〈r0〉〉†n〈〈r0〉〉n as well as YnY†

n = Y†
nYn . From Remark A.6 we

can infer then PR(〈〈r0〉〉n) = PR(Yn) = PR(Y∗
n)

= PR(〈〈r0〉〉∗n), implying R(〈〈r0〉〉n) =
R(Yn) and R(Yn) = R(〈〈r0〉〉∗n) = R(Y∗

n). By virtue of Remark A.2, then also
N (〈〈r0〉〉n) = N (Yn) follows. Furthermore, we can apply Lemma A.11 to obtain
det(Yn + PN (〈〈r0〉〉n)) �= 0 and

Y†
n = (Yn + PN (〈〈r0〉〉n))

−1 − PN (〈〈r0〉〉n).

According to Remark A.2, we have N (〈〈r0〉〉n)⊥ = R(〈〈r0〉〉∗n). Using Remarks A.4,
A.6 and A.24, (3.2), and (2.10), we obtain then

PN (〈〈r0〉〉n) = I(n+1)q − PR(〈〈r0〉〉∗n) = I(n+1)q − 〈〈r0〉〉†n〈〈r0〉〉n = 〈〈Q0〉〉n .

Remark 3.10 shows Yn = 〈〈√r0
†〉〉n[I(n+1)q − 〈〈A∗

0〉〉nSn]. Taking into account
Remark A.24(b), we can conclude then

Yn + PN (〈〈r0〉〉n) = 〈〈√r0
†〉〉n − 〈〈√r0

†〉〉n〈〈A∗
0〉〉nSn + 〈〈Q0〉〉n

= −〈〈√r0
†A∗

0〉〉nSn + 〈〈√r0
† + Q0〉〉n .
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Thus, the remaining assertions follow.

Lemma 5.22 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KNp×q;κ and let n ∈ Z1,κ . Then

det(−〈〈√r0
†A∗

0〉〉nSn + 〈〈√r0
† + Q0〉〉n) �= 0 and

S̊
[1]
n−1 =

[
〈〈√l0†〉〉nSn − 〈〈√l0†A0〉〉n

][
−〈〈√r0

†A∗
0〉〉nSn + 〈〈√r0

† + Q0〉〉n
]−1

.

Proof From Remark 3.16 and Remark A.7(b) we can infer ZA; j r†0r0 = ZA; j for all
j ∈ Z0,κ−1. Regarding Notation 3.8, (2.2), (2.10), and (3.2), then Zn−1〈〈Q0〉〉n−1 =
Zn−1〈〈Iq − r†0r0〉〉n = Onp×nq follows. Taking additionally into account Remark 3.25,
Notation 3.8, (2.2), and (3.2), we thus get

Z̊n−1[Y†
n + 〈〈Q0〉〉n] = Z̊n−1Y†

n + Z̊n−1〈〈Q0〉〉n
= S̊

[1]
n−1 +

[
Op×nq Op×q

Zn−1〈〈Q0〉〉n−1 Onp×q

]
= S̊

[1]
n−1.

Using Remarks A.24(b) and 3.11 then Z̊n−1 = 〈〈√l0
†〉〉nSn − 〈〈√l0

†
A0〉〉n follows.

Consequently, by virtue of Lemma 5.21, the proof is complete.

The next result provides a key observation for the realization of our aim formulated
before Remark 5.12.

Lemma 5.23 Let E ∈ Kp×q and let (Bj )
κ
j=0 be a sequence of complex p × q matrices.

Denote by (A j )
κ+1
j=0 the right E-inverse SP-transform of (Bj )

κ
j=0. Then A0 = E and

A[1]
j = ll†Bjr†r for all j ∈ Z0,κ .

Proof First observe that Remark A.17(a) shows l ∈ C
p×p
� and r ∈ C

q×q
� . According

to Remark 5.2, we have A0 = E . In particular, A0 ∈ Kp×q . Regarding (2.5) and
(5.1), furthermore l0 = l and r0 = r . By virtue of (2.10) and (5.2), hence P0 = P
and Q0 = Q follow. We now consider an arbitrary n ∈ Z1,κ+1. Lemma 5.15 provides
then N (r0) ⊆ ⋂κ+1

j=1 N (A j ). Consequently, (A j )
κ+1
j=0 ∈ KNp×q;κ+1. Thus, we can

apply Lemma 5.22 to obtain det(−〈〈√r†E∗〉〉nSn + 〈〈√r† + Q〉〉n) �= 0 and

S̊
[1]
n−1 =

[
〈〈√l

†〉〉nSn − 〈〈√l
†
E〉〉n

][
−〈〈√r

†
E∗〉〉nSn + 〈〈√r

† + Q〉〉n
]−1

.

LetCn :=SUE,B ;n andDn :=SVE,B ;n as well asD�
n :=S

V �
E,B ;n . RegardingNotation 5.5,

then Remark 5.6 shows

Cn = 〈〈√l
†〉〉n S̊B;n−1〈〈

√
r〉〉n + 〈〈E〉〉n, Dn = 〈〈E∗√l

†〉〉n S̊B;n−1〈〈
√
r〉〉n + I(n+1)q ,
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and Sn = CnD
�
n . Lemma 5.7 yields detDn �= 0 andD�

n = D−1
n . Summarizing, we can

infer det(−〈〈√r†E∗〉〉nCn + 〈〈√r† + Q〉〉nDn) �= 0 and

S̊
[1]
n−1 =

[
〈〈√l

†〉〉nCnD�
n − 〈〈√l

†
E〉〉n

][
−〈〈√r

†
E∗〉〉nCnD�

n + 〈〈√r
† + Q〉〉n

]−1

=
[
〈〈√l

†〉〉nCn − 〈〈√l
†
E〉〉nDn

][
−〈〈√r

†
E∗〉〉nCn + 〈〈√r

† + Q〉〉nDn

]−1
.

Using Remark A.24(b), we get

〈〈√l
†〉〉nCn = 〈〈√l

†√
l
†〉〉n S̊B;n−1〈〈

√
r〉〉n + 〈〈√l

†
E〉〉n,

〈〈√r
†
E∗〉〉nCn = 〈〈√r

†
E∗√l

†〉〉n S̊B;n−1〈〈
√
r〉〉n + 〈〈√r

†
E∗E〉〉n

and

〈〈√l
†
E〉〉nDn = 〈〈√l

†
EE∗√l

†〉〉n S̊B;n−1〈〈
√
r〉〉n + 〈〈√l

†
E〉〉n,

〈〈√r
† + Q〉〉nDn = 〈〈(√r

† + Q)E∗√l
†〉〉n S̊B;n−1〈〈

√
r〉〉n + 〈〈√r

† + Q〉〉n .

From (5.1) and parts (e) and (d) of Remark A.10 we obtain

√
l
†√

l
† − √

l
†
EE∗√l

† = √
l
†
(Ip − EE∗)

√
l
† = √

l
†
l
√
l
† = ll† (5.10)

and

√
r
†
(Iq − E∗E) = √

r
†
r = √

r . (5.11)

Using Remark A.17(c), (5.4), and (2.1), we get furthermore

QE∗√l
† = Q

√
r
†
E∗ = (Iq − √

r
†√

r)
√
r
†
E∗ = O. (5.12)

Taking additionally into account Remark A.24(b), then

〈〈√l
†〉〉nCn − 〈〈√l

†
E〉〉nDn = 〈〈√l

†√
l
† − √

l
†
EE∗√l

†〉〉n S̊B;n−1〈〈
√
r〉〉n

= 〈〈ll†〉〉n S̊B;n−1〈〈
√
r〉〉n

and

− 〈〈√r
†
E∗〉〉nCn + 〈〈√r

† + Q〉〉nDn

= 〈〈−√
r
†
E∗√l

† + (
√
r
† + Q)E∗√l

†〉〉n S̊B;n−1〈〈
√
r〉〉n

+ 〈〈−√
r
†
E∗E + √

r
† + Q〉〉n

= 〈〈QE∗√l
†〉〉n S̊B;n−1〈〈

√
r〉〉n + 〈〈√r

†
(Iq − E∗E) + Q〉〉n = 〈〈√r + Q〉〉n
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follow. Consequently, we have det〈〈√r + Q〉〉n �= 0 and S̊
[1]
n−1 = 〈〈ll†〉〉n S̊B;n−1〈〈√r〉〉n

〈〈√r + Q〉〉−1
n . Regarding (3.2), then in particular, det(

√
r + Q) �= 0. Using

Remark A.10(c), (5.4), and (2.1), we conclude

r†r(
√
r + Q) = r†r

√
r + r†r Q = √

r
√
r
†√

r + √
r
†√

r(Iq − √
r
†√

r) = √
r ,

so that
√
r(

√
r+Q)−1 = r†r . Regarding Remark A.24, hence 〈〈√r〉〉n〈〈√r+Q〉〉−1

n =
〈〈r†r〉〉n follows. Thus, we obtain S̊

[1]
n−1 = 〈〈ll†〉〉n S̊B;n−1〈〈r†r〉〉n . Taking into account

(2.2) and (3.2), therefore S[1]
n−1 = 〈〈ll†〉〉n−1SB;n−1〈〈r†r〉〉n−1 and, in particular, A

[1]
n−1 =

ll†Bn−1r†r . Since n ∈ Z1,κ+1 was arbitrarily chosen, the proof is complete.

Proposition 5.24 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ KRNp×q;κ and let E := A0. Denote

by (Bj )
κ−1
j=0 the right SP-transform of (A j )

κ
j=0. Then B[−1;E]

j = A j for all j ∈ Z0,κ .

Proof First observe that E ∈ Kp×q , so that Remark A.17(a) shows l ∈ C
p×p
� and

r ∈ C
q×q
� . Regarding (2.5) and (5.1), we see that l0 = l and r0 = r . By virtue of (2.10)

and (5.2), hence P0 = P and Q0 = Q follow. Denote by (C j )
κ
j=0 the right E-inverse

SP-transform of (Bj )
κ−1
j=0. According to Remark 5.2, we have then C0 = E = A0. We

now consider an arbitrary n ∈ Z1,κ . Then S̊B;n−1 = S̊
[1]
n−1, so that Lemma 5.20 shows

the inequality det(〈〈E∗√l
†〉〉n S̊[1]

n−1〈〈r†r〉〉n + 〈〈√r† + Q〉〉n) �= 0 and

SC;n =
[
〈〈√l

†〉〉n S̊[1]
n−1〈〈r†r〉〉n + 〈〈E(

√
r
† + Q)〉〉n

]

×
[
〈〈E∗√l

†〉〉n S̊[1]
n−1〈〈r†r〉〉n + 〈〈√r

† + Q〉〉n
]−1

.

Remarks 3.22 and A.7(b) yield A[1]
j r†r = A[1]

j for all j ∈ Z0,κ−1. Regarding (2.2)

and (3.2), hence S̊
[1]
n−1〈〈r†r〉〉n = S̊

[1]
n−1. Setting

Fn := 〈〈√l
†〉〉nSn − 〈〈√l

†
E〉〉n, Gn := − 〈〈√r

†
E∗〉〉nSn + 〈〈√r

† + Q〉〉n,

we can furthermore apply Lemma 5.22 to obtain detGn �= 0 and S̊
[1]
n−1 = FnG−1

n .
Summarizing, we infer

SC;n

=
[
〈〈√l

†〉〉nFnG−1
n + 〈〈E(

√
r
† + Q)〉〉n

][
〈〈E∗√l

†〉〉nFnG−1
n + 〈〈√r

† + Q〉〉n
]−1

=
[
〈〈√l

†〉〉nFn + 〈〈E(
√
r
† + Q)〉〉nGn

][
〈〈E∗√l

†〉〉nFn + 〈〈√r
† + Q〉〉nGn

]−1
.

Using Remark A.24(b), we get

〈〈√l
†〉〉nFn = 〈〈√l

†√
l
†〉〉nSn − 〈〈√l

†√
l
†
E〉〉n,
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〈〈E∗√l
†〉〉nFn = 〈〈E∗√l

†√
l
†〉〉nSn − 〈〈E∗√l

†√
l
†
E〉〉n

and

〈〈E(
√
r
† + Q)〉〉nGn = −〈〈E(

√
r
† + Q)

√
r
†
E∗〉〉nSn + 〈〈E(

√
r
† + Q)2〉〉n,

〈〈√r
† + Q〉〉nGn = −〈〈(√r

† + Q)
√
r
†
E∗〉〉nSn + 〈〈(√r

† + Q)2〉〉n .
Furthermore, we can use parts (b) and (c) of Remark A.10 to obtain

√
l
†√

l
† = l†,

√
r
†√

r
† = r†, and

√
r
†√

r = √
r
√
r
†
.

In view of (5.4) and (2.1), we thus obtain

√
r
†
Q = √

r
†
(Iq − √

r
√
r
†
) = O, Q

√
r
† = (Iq − √

r
†√

r)
√
r
† = O.

Regarding (5.3) and Remark A.3, we see Q2 = Q. Hence, we can conclude

(
√
r
† + Q)2 = √

r
†√

r
† + √

r
†
Q + Q

√
r
† + Q2 = r† + Q.

Using parts (c), (a), and (b) of Lemma A.16 as well as (5.2), we get then

√
l
†√

l
† − E(

√
r
† + Q)

√
r
†
E∗ = l† − E

√
r
†√

r
†
E∗ = l† − Er†E∗ = ll†,

(5.13)

E(
√
r
† + Q)2 − √

l
†√

l
†
E = E(r† + Q) − l†E = EQ, (5.14)

E∗√l
†√

l
† − (

√
r
† + Q)

√
r
†
E∗ = E∗l† − √

r
†√

r
†
E∗ = E∗l† − r†E∗ = O,

(5.15)

and

(
√
r
† + Q)2 − E∗√l

†√
l
†
E = r† + Q − E∗l†E = r†r + Q = Iq . (5.16)

Taking additionally into account Remark A.24(b) and (3.2), then

〈〈√l
†〉〉nFn + 〈〈E(

√
r
† + Q)〉〉nGn

= 〈〈√l
†√

l
† − E(

√
r
† + Q)

√
r
†
E∗〉〉nSn + 〈〈E(

√
r
† + Q)2 − √

l
†√

l
†
E〉〉n

= 〈〈ll†〉〉nSn + 〈〈EQ〉〉n
and

〈〈E∗√l
†〉〉nFn + 〈〈√r

† + Q〉〉nGn

= 〈〈E∗√l
†√

l
† − (

√
r
† + Q)

√
r
†
E∗〉〉nSn + 〈〈(√r

† + Q)2 − E∗√l
†√

l
†
E〉〉n

= 〈〈Oq×p〉〉nSn + 〈〈Iq〉〉n = I(n+1)q
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follow. Consequently, we have SC;n = 〈〈ll†〉〉nSn + 〈〈EQ〉〉n . The assumption
(A j )

κ
j=0 ∈ KRNp×q;κ and Remark A.7(a) yield ll†A j = A j for all j ∈ Z1,κ .

Regarding (2.2), (3.2) and n ≥ 1, therefore Cn = ll†An = An . Since n ∈ Z1,κ was
arbitrarily chosen, the proof is complete.

Proposition 5.24 yields immediately a generalization of [6, Prop. 3.7].

Corollary 5.25 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ . Denote by (Bj )

κ−1
j=0 the right

SP-transform of (A j )
κ
j=0 and let E := A0. Then B[−1;E]

j = A j for all j ∈ Z0,κ .

Proof Remark 3.3 yields Sp×q;κ ⊆ KRNp×q;κ . Consequently, applying Proposi-
tion 5.24 completes the proof.

Lemma 5.26 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×p;κ with right SP-transform (Bj )

κ−1
j=0.

Then the following statements are equivalent:

(i) A∗
0 = A0 and (B∗

j )
κ−1
j=0 = (Bj )

κ−1
j=0

(ii) (A∗
j )

κ
j=0 = (A j )

κ
j=0.

Proof “(i) ⇒ (ii)”: The assumption (A j )
κ
j=0 ∈ Sp×q;κ implies that E := A0 belongs

toKp×q . Corollary 5.25 shows (B[−1;E]
j )κj=0 = (A j )

κ
j=0. Applying Lemma 5.4 to the

sequence (Bj )
κ−1
j=0 yields that F := E∗ belongs to Kq×p and that (S j )

κ−1
j=0 defined by

S j := B∗
j has left F-inverse SP-transform (A∗

j )
κ
j=0, i. e. (A∗

j )
κ
j=0 = (S(−1;F)

j )κj=0.

Because of (i), we have (S(−1;F)
j )κj=0 = (B(−1;E)

j )κj=0. Proposition 5.9 yields

(B(−1;E)
j )κj=0 = (B[−1;E]

j )κj=0. Consequently, (ii) holds true.

“(ii) ⇒ (i)”: Regarding Remark 3.3, we can apply Lemma 3.7 to see that (Tj )
κ
j=0

defined by Tj := A∗
j belongs to Kq×p;κ and has left SP-transform (B∗

j )
κ−1
j=0, i. e.

(B∗
j )

κ−1
j=0 = (T (1)

j )κ−1
j=0. Because of (ii), we have A∗

0 = A0 and (Tj )
κ
j=0 = (A j )

κ
j=0,

implying (T (1)
j )κ−1

j=0 = (A(1)
j )κ−1

j=0. In view of Remark 3.3, we can apply Proposi-

tion 3.19 to get (A(1)
j )κ−1

j=0 = (Bj )
κ−1
j=0. Consequently, (i) holds true.

6 Parametrization of the ClassSp×q;�

In this section, we are going to determine which sequences (e j )
κ
j=0 occur really as

SP-parameter sequence of a sequence (A j )
κ
j=0 ∈ Sp×q;κ . First we introduce two

sequences of linear subspaces which will turn out to be essential for our further con-
siderations.

Notation 6.1 Let (e j )
κ
j=0 be a sequence of complex p × q matrices. Then let

M−1 :=C
p and Q−1 := {Oq×1}. Furthermore, in view of Notation 4.11, for all

j ∈ Z0,κ , let M j := ⋂ j
�=0 R(l�) and Q j := ∑ j

�=0 N (r�).

The set introduced in the following notation will turn out as one of the most impor-
tant objects occurring in this paper.
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Notation 6.2 LetEp×q;κ be the set of all sequences (e j )
κ
j=0 of complex p × q matrices

which, for all j ∈ Z0,κ , fulfill e j ∈ Kp×q as well as R(e j ) ⊆ M j−1 and Q j−1 ⊆
N (e j ).

The following observation corresponds to the description of all SP-parameter
sequences of non-degenerate p × q Schur sequences.

Remark 6.3 Let (e j )κj=0 be a sequence from Dp×q . In view of Notations 6.1 and 4.11,
then M j = C

p and Q j = {Oq×1} for all j ∈ Z−1,κ , so that (e j )κj=0 ∈ Ep×q;κ .

Notation 6.4 Let (e j )κj=0 be a sequence of contractive complex p × q matrices. Then
letM−1 := Ip and Q−1 := Iq . Furthermore, using Notation 4.11, for all j ∈ Z0,κ , let

M j :=
√
l j
†√

l j−1

†
· · ·
√
l0
†

and Q j :=√
r0

†√
r1

† · · ·√r j
†.

Remark 6.5 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For each j ∈

Z0,κ , then R(M j ) = √l j
†R(M j−1) and N (Q j ) = {v ∈ C

q : √
r j

†v ∈ N (Q j−1)}.
Now we will see that the matrices introduced in Notation 6.4 are closely related to

the SP-algorithm for a p × q Schur sequence (A j )
κ
j=0.

Proposition 6.6 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For

every choice of k ∈ Z0,κ and j ∈ Z0,κ−k , then

R(A[k]
j ) ⊆ R(Mk−1) and N (Qk−1) ⊆ N (A[k]

j ). (6.1)

Proof RegardingNotation 6.4,we see that the assertion holds true obviously in the case
k = 0. Now we work inductively and assume that κ ≥ 1, that m ∈ Z0,κ−1, and that
(6.1) is valid for every choice of k ∈ Z0,m and j ∈ Z0,κ−k . Denote by (C j )

κ−m
j=0 them-th

right SP-transform of (A j )
κ
j=0. Remark 4.2 yields then (C j )

κ−m
j=0 ∈ Sp×q;κ−m , which,

by virtue of Remark 3.3, implies (C j )
κ−m
j=0 ∈ KRNp×q;κ−m . In view of Definition 3.4

and Remark 4.14, we have then

XC;� = C�+1
√
rm

† and ZC;� = √lm
†
C�+1 for all � ∈ Z0,κ−m−1. (6.2)

Consider now an arbitrary v ∈ N (Qm). Remark 6.5 yields then
√
rm

†
v ∈ N (Qm−1).

Since we assume that (6.1) is valid for k = m and all j ∈ Z0,κ−m , we get then√
rm

†
v ∈ N (C j ) for all j ∈ Z0,κ−m and, by virtue of (6.2), consequently, XC;�v = O

for all � ∈ Z0,κ−m−1. Hence,

N (Qm) ⊆ N (XC;�) for all � ∈ Z0,κ−m−1 (6.3)

is proved. Analogously, using (6.2), the assumption that (6.1) holds true for k = m
and all j ∈ Z0,κ−m , and Remark 6.5, we can infer

R(ZC;�) ⊆ R(Mm) for all � ∈ Z0,κ−m−1. (6.4)
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In view of Proposition 3.19 and Definition 4.1, we have C (1)
j = C [1]

j = A[m+1]
j for all

j ∈ Z0,κ−m−1. Taking additionally into account Definition 3.4, for all j ∈ Z0,κ−m−1,
from (6.3) we can conclude

N (Qm) ⊆ N

⎛
⎝

j∑
�=0

W �

C; j−�
XC;�

⎞
⎠ = N (C (1)

j ) = N (A[m+1]
j )

and from (6.4) moreover

R(A[m+1]
j ) = R(C [1]

j ) = R

⎛
⎝

j∑
�=0

ZC;�Y �

C; j−�

⎞
⎠ ⊆ R(Mm).

Thus, (6.1) is valid for k = m+1 and all j ∈ Z0,κ−(m+1). Consequently, the assertion
is proved inductively.

Corollary 6.7 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For each

j ∈ Z0,κ , then there exists a matrix M j ∈ C
p×q such that e j = M j−1MjQ j−1.

Proof We consider an arbitrary j ∈ Z0,κ . According to Definition 4.7, we have
e j = A[ j]

0 . Proposition 6.6 yields R(A[ j]
0 ) ⊆ R(M j−1) and N (Q j−1) ⊆ N (A[ j]

0 ).
Consequently, R(e j ) ⊆ R(M j−1) and N (Q j−1) ⊆ N (e j ). The application of
Remark A.7 completes the proof.

Nowwe are going to show that the SP-parameter sequence of a sequence (A j )
κ
j=0 ∈

Sp×q;κ belongs to Ep×q;κ . This requires some preparations.

Lemma 6.8 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For each

j ∈ Z0,κ , then R(Ip −√l j
†
) ⊆ R(M j−1) and N (Q j−1) ⊆ N (Iq − √

r j
†).

Proof We consider an arbitrary j ∈ Z0,κ . Remark 4.12 shows l j ∈ C
p×p
� and r j ∈

C
q×q
� . Because of Corollary 6.7, there exists a matrix Mj ∈ C

p×q such that e j =
M j−1MjQ j−1. Consequently, e∗j = Q∗

j−1M
∗
jM

∗
j−1. We consider an arbitrary x ∈

N (M∗
j−1). Then e∗j x = O . Thus, in view of Notation 4.11, we obtain l j x = x .

Using Remark A.13, we conclude
√
l j x = x . Remark A.12 provides then

√
l j
†
x = x .

Consequently, x ∈ N (Ip − √
l j
†
). Thus, N (M∗

j−1) ⊆ N (Ip − √
l j
†
) is proved.

Applying Remarks A.8 and A.2, we get then

R(Ip −
√
l j
†
) = R((Ip −

√
l j
†
)∗) = N (Ip −

√
l j
†
)⊥ ⊆ N (M∗

j−1)
⊥ = R(M j−1).

Now we consider an arbitrary y ∈ N (Q j−1). From e j = M j−1MjQ j−1 we see
then that e j y = O . Thus, in view of Notation 4.11, we obtain r j y = y. Using
Remark A.13, we conclude

√
r j y = y. Remark A.12 provides then

√
r j

†y = y.
Consequently, y ∈ N (Iq − √

r j
†). Thus, N (Q j−1) ⊆ N (Iq − √

r j
†) is checked as

well.
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The following observation plays a key role in proving that the SP-parameter
sequence of an arbitrary sequence (A j )

κ
j=0 ∈ Sp×q;κ belongs to Ep×q;κ . For our

considerations, it is essential that the spaces on the left sides of the equations in (6.5)
below can be represented via the spaces on the right sides.

Lemma 6.9 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For each

j ∈ Z−1,κ , then

R(M j ) = M j and N (Q j ) = Q j . (6.5)

Proof Our proof works inductively. According to Notations 6.4 and 6.1, we have
R(M−1) = C

p = M−1 and N (Q−1) = {Oq×1} = Q−1. Now assume that
m ∈ Z−1,κ−1 and that (6.5) is valid for all j ∈ Z−1,m . From Lemma 6.8 we

know that R(Ip − √lm+1
†
) ⊆ R(Mm) and N (Qm) ⊆ N (Iq − √

rm+1
†). Apply-

ing Lemma B.3, we get then R(
√
lm+1

†
) ∩ R(Mm) = R(

√
lm+1

†
Mm), whereas

Lemma B.2 yields N (Qm) + N (
√
rm+1

†) = N (Qm
√
rm+1

†). Using Remarks A.9

and A.10(a), we can infer R(
√
lm+1

†
) = R(lm+1) and N (

√
rm+1

†) = N (rm+1).
Thus, since (6.5) holds true for j = m, from Notations 6.4 and 6.1 we can conclude

R(Mm+1) = R(
√
lm+1

†
Mm) = R(

√
lm+1

†
)∩R(Mm) = R(lm+1)∩Mm = Mm+1

and N (Qm+1) = N (Qm
√
rm+1

†) = N (Qm) + N (
√
rm+1

†) = Qm + N (rm+1) =
Qm+1. Thus, the assertion is inductively proved.

Proposition 6.10 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. Then

(e j )
κ
j=0 ∈ Ep×q;κ .

Proof We consider an arbitrary j ∈ Z0,κ . Remark 4.12 shows e j ∈ Kp×q . Propo-

sition 6.6 provides R(A[ j]
0 ) ⊆ R(M j−1) and N (Q j−1) ⊆ N (A[ j]

0 ), whereas
Lemma 6.9 yields R(M j−1) = M j−1 and N (Q j−1) = Q j−1. Taking additionally
into account Definition 4.7, we can infer then R(e j ) ⊆ M j−1 and Q j−1 ⊆ N (e j ).
Thus, by virtue of Notation 6.2, we get (e j )κj=0 ∈ Ep×q;κ .

Remark 6.11 In view of Proposition 6.10, the mapping φp×q;κ : Sp×q;κ → Ep×q;κ
defined by φp×q;κ((A j )

κ
j=0) := (e j )

κ
j=0, where (e j )

κ
j=0 is the SP-parameter sequence

of (A j )
κ
j=0, is well defined.

Now we are going to prove that the mapping φp×q;n defined in Remark 6.11 is
even a bijection betweenSp×q;n and Ep×q;n . In particular, we have to show that each
sequence (e j )

κ
j=0 ∈ Ep×q;κ is indeed the SP-parameter sequence of some p × q Schur

sequence (A j )
κ
j=0.

Notation 6.12 Let (e j )κj=0 be a sequence of contractive complex p × q matrices and

let n ∈ Z0,κ . For each k ∈ Z0,n , then let (Dn,k; j )kj=0 be defined recursively by
Dn,0;0 := en and, for all k ∈ Z1,n , by

(Dn,k; j )kj=0 := (D[−1;en−k ]
n,k−1; j )kj=0.
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Remark 6.13 Let (e j )κj=0 be a sequence of contractive complex p × q matrices and let
n ∈ Z0,κ . Regarding Notation 6.12, from Remark 5.2 we get immediately Dn,k;0 =
en−k for all k ∈ Z0,n .

Proposition 6.14 Let n ∈ N0 and let (e j )
n
j=0 be a sequence of contractive complex

p × q matrices. For each k ∈ Z0,n, then (Dn,k; j )kj=0 belongs toSp×q;k .

Proof Regarding Notation 6.12 and en ∈ Kp×q , we have (Dn,0; j )0j=0 ∈ Sp×q;0.
Now we work inductively and assume that n ≥ 1, that m ∈ Z1,n , and that
(Dn,k; j )kj=0 ∈ Sp×q;k is valid for all k ∈ Z0,m−1. Taking into account en−m ∈ Kp×q

and Notation 6.12, then Proposition 5.11 yields (Dn,m; j )mj=0 ∈ Sp×q;m . Thus, the
assertion is proved inductively.

Corollary 6.15 Let n∈N0. Thenχp×q;n :Ep×q;n →Sp×q;n definedbyχp×q;n((e j )nj=0)

:= (Dn,n; j )nj=0, where (Dn,n; j )nj=0 is given via Notation 6.12, is well defined.

Proof Use Notation 6.2 and apply Proposition 6.14.

Lemma 6.16 Let (e j )κj=0 ∈ Ep×q;κ and let n ∈ Z0,κ . For each k ∈ Z0,n, then

R(Dn,k;�) ⊆ Mn−k−1 and Qn−k−1 ⊆ N (Dn,k;�) for all � ∈ Z0,k . (6.6)

Proof First observe that Notation 6.2 implies e j ∈ Kp×q for all j ∈ Z0,κ . Our proof
works inductively. In view of Notation 6.1, the case n = 0 is trivial. Suppose now
κ ≥ 1 and n ≥ 1 and assume that m ∈ Z0,n−1 is such that (6.6) is fulfilled for
all k ∈ Z0,m . We consider an arbitrary � ∈ Z0,m+1. According to Notation 6.2, we
have R(en−m−1) ⊆ Mn−m−2 and Qn−m−2 ⊆ N (en−m−1). From Notation 6.1 we
can infer Mn−m−1 ⊆ Mn−m−2 and Qn−m−2 ⊆ Qn−m−1. Taking additionally into
account that (6.6) holds true for k = m, thenR(Dn,m; j ) ⊆ Mn−m−2 andQn−m−2 ⊆
N (Dn,m; j ) for all j ∈ Z0,m follow.Thus,we can applyLemmas5.16 and5.17 to obtain

R(D[−1;en−m−1]
n,m;� ) ⊆ Mn−m−2 and Qn−m−2 ⊆ N (D[−1;en−m−1]

n,m;� ). Since Notation 6.12

shows D[−1;en−m−1]
n,m;� = Dn,m+1;� and � ∈ Z0,m+1 was arbitrarily chosen, hence (6.6)

is valid for k = m + 1. Consequently, the assertion is proved inductively.

Lemma 6.17 Suppose κ ≥ 1. Let (e j )κj=0 ∈ Ep×q;κ and let n ∈ Z1,κ . Then

(D[1]
n,k; j )

k−1
j=0 = (Dn,k−1; j )k−1

j=0 for all k ∈ Z1,n . (6.7)

Proof First observe that Notation 6.2 implies e j ∈ Kp×q for all j ∈ Z0,κ . We con-
sider an arbitrary k ∈ Z1,n . From Notation 6.12 we see, that (Dn,k; j )kj=0 is the right

en−k-inverse SP-transform of (Dn,k−1; j )k−1
j=0. Regarding (5.1) and Notation 4.11, the

application of Lemma 5.23 yields then

D[1]
n,k; j = ln−k l

†
n−k Dn,k−1; j r†n−krn−k for all j ∈ Z0,k−1. (6.8)
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Because of Lemma 6.16, we have R(Dn,k−1; j ) ⊆ Mn−k and Qn−k ⊆ N (Dn,k−1; j )
for all j ∈ Z0,k−1. By virtue of Notation 6.1, we see that Mn−k ⊆ R(ln−k) and
N (rn−k) ⊆ Qn−k . For each j ∈ Z0,k−1, thusR(Dn,k−1; j ) ⊆ R(ln−k) andN (rn−k) ⊆
N (Dn,k−1; j ) follow. Consequently, the application of Remark A.7 to (6.8) completes
the proof.

Lemma 6.18 Let (e j )
κ
j=0 ∈ Ep×q;κ and let n ∈ Z0,κ . For each m ∈ Z0,n, then

(D[m]
n,n; j )

n−m
j=0 = (Dn,n−m; j )n−m

j=0 and, in particular, D[m]
n,n;0 = em.

Proof First observe that Notation 6.2 implies e j ∈ Kp×q for all j ∈ Z0,κ . Since
Lemma 6.17 yields (6.7) provided that κ ≥ 1 and n ≥ 1, we can, in view of Def-
inition 4.1, infer inductively (D[m]

n,n; j )
n−m
j=0 = (Dn,n−m; j )n−m

j=0 for all m ∈ Z0,n . In

particular, D[m]
n,n;0 = Dn,n−m;0 for all m ∈ Z0,n . Furthermore, from Remark 6.13 we

can infer finally Dn,n−m;0 = em for all m ∈ Z0,n .

Proposition 6.19 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0 and let

n ∈ Z0,κ . For each k ∈ Z0,n, then

(Dn,k; j )kj=0 = (A[n−k]
j )kj=0. (6.9)

Proof First observe that Proposition 6.10 and Notation 6.2 imply e j ∈ Kp×q for
all j ∈ Z0,κ . Taking into account Notation 6.12 and Definition 4.7, we have
Dn,0;0 = en = A[n]

0 , i. e., (6.9) holds true for k = 0. Now suppose κ ≥ 1
and n ≥ 1 and assume that m ∈ Z1,n is such that (6.9) is fulfilled for all
k ∈ Z0,m−1. Denote by (C j )

m
j=0 the (n − m)-th right SP-transform of (A j )

n
j=0

and by (Bj )
m−1
j=0 the right SP-transform of (C j )

m
j=0. According to Definition 4.1,

we have then (A[(n−m)+1]
j )m−1

j=0 = (Bj )
m−1
j=0 . Since (6.9) is assumed to be valid for

k = m − 1, thus (Dn,m−1; j )m−1
j=0 = (Bj )

m−1
j=0 follows. In view of Definition 4.7, we

have en−m = A[n−m]
0 = C0. Since Remark 4.2 shows (C j )

m
j=0 ∈ Sp×q;m , we can

apply Corollary 5.25 to get (B[−1;C0]
j )mj=0 = (C j )

m
j=0. Thus, Notation 6.12 and our

foregoing consideration provide

(Dn,m; j )mj=0 = (D[−1;en−m ]
n,m−1; j )mj=0 = (B[−1;C0]

j )mj=0 = (C j )
m
j=0 = (A[n−m]

j )mj=0,

i. e., equation (6.9) is fulfilled for k = m as well. Consequently, (6.9) is inductively
proved all k ∈ Z0,n .

In particular, the next theorem contains an explicit description of the set of all
possible sequences of Schur parameters.

Theorem 6.20 Let n ∈ N0, let φp×q;n : Sp×q;n → Ep×q;n be defined by φp×q;n
((A j )

n
j=0) := (e j )

n
j=0, where (e j )

n
j=0 is the SP-parameter sequence of (A j )

n
j=0, and

let χp×q;n : Ep×q;n → Sp×q;n be defined by χp×q;n((e j )nj=0) := (Dn,n; j )nj=0, where
(Dn,n; j )nj=0 is given via Notation 6.12. Then φp×q;n and χp×q;n are well-defined,
bijective, and mutual inverses.
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Proof According to Remark 6.11 andCorollary 6.15, themappingsφp×q;n andχp×q;n
are well defined. In the following, our proof is divided into two parts.
Part 1: In order to check that χp×q;n ◦ φp×q;n = idSp×q;n , we consider an arbi-
trary sequence (A j )

n
j=0 ∈ Sp×q;n . Denote by (e j )

n
j=0 the SP-parameter sequence of

(A j )
n
j=0. Observe that Proposition 6.10 yields (e j )

n
j=0 ∈ Ep×q;n , so that Notation 6.2

implies e j ∈ Kp×q for all j ∈ Z0,n . Proposition 6.19 yields (6.9) for all k ∈ Z0,n .

Regarding Definition 4.1, we have in particular (Dn,n; j )nj=0 = (A[0]
j )nj=0 = (A j )

n
j=0.

Therefore, we conclude

χp×q;n
(
φp×q;n

(
(A j )

n
j=0

)) = χp×q;n
(
(e j )

n
j=0

) = (Dn,n; j )nj=0 = (A j )
n
j=0

and, consequently, χp×q;n ◦ φp×q;n = idSp×q;n .
Part 2: In order to check that φp×q;n ◦ χp×q;n = idEp×q;n , we consider an arbitrary
sequence (e j )

n
j=0 ∈ Ep×q;n . Observe that Notation 6.2 implies e j ∈ Kp×q for all j ∈

Z0,n , so that Proposition 6.14 yields (Dn,n; j )nj=0 ∈ Sp×q;n . Because of Remark 6.13,
we get Dn, j;0 = en− j for all j ∈ Z0,n . Regarding Definition 4.7, we have then

φp×q;n((Dn,n; j )nj=0) = (D[ j]
n,n;0)

n
j=0. From Lemma 6.18, we get D[m]

n,n;0 = em for all
m ∈ Z0,n . Consequently, we obtain

φp×q;n
(
χp×q;n

(
(e j )

n
j=0

)) = φp×q;n
(
(Dn,n; j )nj=0

) = (D[ j]
n,n;0)

n
j=0 = (e j )

n
j=0.

Thus, φp×q;n ◦ χp×q;n = idEp×q;n is proved as well.

7 The SP-transform for Matricial Schur Functions

In [6, Sec. 7], we discussed the SP-transformation for functions F belonging to
Sp×q,0(D) := {F ∈ Sp×q(D) : ‖F(0)‖ < 1}. In particular, right and left versions of
the SP-transform for functions fromSp×q,0(D)were introduced. There is verified that
the right and left versions of SP-transforms for functions from Sp×q,0(D) coincide
(see [6, Prop. 7.6]). In this section, we want to extend the notion of SP-transform to
arbitrary functions belonging toSp×q(D). Similar as in [6], we consider first as well
a right version as a left version. In Proposition 7.11 below, we show then that both
versions coincide. Let us turn our attention to the right SP-transform for matricial
Schur functions. We later will generalize the classical Schur algorithm (see [28]) for
contractive complex-valued functions holomorphic in the open unit disk D to the case
of contractive matrix-valued functions holomorphic in D. We first consider the first
step.

Let ε : D → C be defined by ε(z) := z.

Definition 7.1 Let F ∈ Sp×q(D) and let

� := √
l
†
(F − E) and � := √

r
†
(Iq − E∗F), (7.1)
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where E := F(0). Then

F�1� := 1

ε
��†

is called the right SP-transform of F .

In the following, we continue to use the notations introduced in Definition 7.1.

Observe that E ∈ Kp×q and that, because of �(0) = √
l
†[F(0) − E] = Op×q , the

matrix-valued function 1
ε
� belongs to [H(D)]p×q .

Lemma 7.2 Let F ∈ Sp×q(D) and let S := ��†. For all z ∈ D, then

[�(z)]∗�(z) − [�(z)]∗�(z) = Iq − [F(z)]∗F(z) (7.2)

as well as

Iq − [S(z)]∗S(z) =
(
Iq − �(z)[�(z)]†

)
+
(
[�(z)]†

)∗
(Iq − [F(z)]∗F(z))[�(z)]†

and, in particular, Iq − [S(z)]∗S(z) ∈ C
q×q
� .

Proof We consider an arbitrary z ∈ D. First observe that E := F(0) belongs toKp×q .

RegardingRemarkA.17(a), we can thus applyRemarkA.10(b) to obtain (
√
l
†
)∗

√
l
† =

l† and (
√
r†)∗

√
r† = r†. In view of (7.1), we get then

[�(z)]∗�(z) − [�(z)]∗�(z)

= r† − r†E∗F(z) − [F(z)]∗Er† + [F(z)]∗Er†E∗F(z)

− ([F(z)]∗l†F(z) − [F(z)]∗l†E − E∗l†F(z) + E∗l†E)

= (r† − E∗l†E) − (r†E∗ − E∗l†)F(z)

− [F(z)]∗(Er† − l†E) + [F(z)]∗(Er†E∗ − l†)F(z).

Parts (b) and (a) of Lemma A.16 show E∗l† = r†E∗ and l†E = Er†. Using addition-
ally Lemmas A.16(c) and D.3(b), we conclude

[�(z)]∗�(z) − [�(z)]∗�(z) = (r† − E∗l†E) + [F(z)]∗(Er†E∗ − l†)F(z)

= r†r − [F(z)]∗ll†F(z) = Iq − [F(z)]∗F(z),

i. e., (7.2). By virtue of (2.1), we see

�(z)[�(z)]† =
(
�(z)[�(z)]†

)∗
�(z)[�(z)]† =

(
[�(z)]†

)∗[�(z)]∗�(z)[�(z)]†.



The Schur–Potapov Algorithm in the General Matrix... Page 39 of 91   109 

Thus, taking additionally into account (7.2), we get

Iq − [S(z)]∗S(z) = Iq −
(
[�(z)]†

)∗[�(z)]∗�(z)[�(z)]†

= Iq − �(z)[�(z)]† +
(
[�(z)]†

)∗
([�(z)]∗�(z) − [�(z)]∗�(z))[�(z)]†

=
(
Iq − �(z)[�(z)]†

)
+
(
[�(z)]†

)∗
(Iq − [F(z)]∗F(z))[�(z)]†.

From Remarks A.6 and A.4, we can infer Iq − �(z)[�(z)]† ∈ C
q×q
� . Regarding

F ∈ Sp×q(D), Lemma A.15 implies Iq − [F(z)]∗F(z) ∈ C
q×q
� . Consequently,

Iq − [S(z)]∗S(z) ∈ C
q×q
� follows.

Lemma 7.3 Let F ∈ Sp×q(D) and let E := F(0). For all z ∈ D, then R(�(z)) ⊆
R(l) and N (r) ⊆ N (�(z)) as well asR(�(z)) = R(r) and N (�(z)) = N (r).

Proof We consider an arbitrary z ∈ D. First observe that E ∈ Kp×q . Regarding
Remark A.17(a), we can thus apply Remark A.10(a) to obtain R(

√
l) = R(l) and

R(
√
r) = R(r). Taking additionally into account (7.1) and Remark A.9, we then

conclude R(�(z)) ⊆ R(
√
l
†
) ⊆ R(l) and R(�(z)) ⊆ R(

√
r†) ⊆ R(r). From

Lemma D.3(a) and (7.1) we see that N (r) ⊆ N (F(z) − E) ⊆ N (�(z)). For each
w ∈ D, let F(w) = ∑∞

j=0 w j A j be the Taylor series representation of F . Then
A0 = E , so that r0 = r by (2.5) and (5.1). Theorem D.2 yields (A j )

∞
j=0 ∈ Sp×q;∞.

Lemma D.1 provides Iq − E∗F(z) = r0 −∑∞
j=1 z

j A∗
0A j . For all j ∈ N, Remark 3.2

showsN (r0) ⊆ N (A j ), so thatN (r0) ⊆ N (Iq − E∗F(z)) follows. Consequently, in
view of r0 = r and (7.1), we get N (r) ⊆ N (Iq − E∗F(z)) ⊆ N (�(z)). Lemma 7.2
yields (7.2), which implies

[�(z)]∗�(z) − (Iq − [F(z)]∗F(z)) = [�(z)]∗�(z) ∈ C
q×q
� .

Taking additionally into account F ∈ Sp×q(D) and Lemma A.15, we can con-
clude then [�(z)]∗�(z) � Iq − [F(z)]∗F(z) � Oq×q . Remark A.14 then provides
N ([�(z)]∗�(z)) ⊆ N (Iq − [F(z)]∗F(z)). Since N ([�(z)]∗�(z)) = N (�(z))
and Lemma D.4 shows N (Iq − [F(z)]∗F(z)) = N (r), we thus get N (�(z)) ⊆
N (r). Therefore, N (�(z)) = N (r) is proved. In particular, we see dimR(r) =
q − dimN (r) = q − dimN (�(z)) = dimR(�(z)) < ∞. Using additionally
R(�(z)) ⊆ R(r), we finally get R(�(z)) = R(r).

Now we want to rewrite the function S introduced in Lemma 7.2 in form of a linear
fractional transformation of matrices.

Proposition 7.4 Let F ∈ Sp×q(D) and let S := ��†. If Q is given in (5.2), then

�• :=� + Q (7.3)

fulfills det�•(z) �= 0 and S(z) = �(z)[�•(z)]−1 for all z ∈ D.
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Proof Consider an arbitrary z ∈ D. First observe that E := F(0) belongs to Kp×q ,
so that Remark A.17(a) yields r∗ = r . Lemma 7.3 provides R(�(z)) = R(r) and
N (�(z)) = N (r). UsingRemarkA.2, thenR([�(z)]∗) = R(r∗) follows. Summariz-
ing, we getR(�(z)) = R(r∗) = R([�(z)]∗). Regarding (7.3) and (5.3), we can thus
apply Lemma A.11 to obtain det�•(z) �= 0 and [�(z)]† = [�•(z)]−1 −PN (r). Since
Lemma 7.3 yields N (r) ⊆ N (�(z)), we have �(z)PN (r) = Op×q . Consequently,
S(z) = �(z)[�(z)]† = �(z)([�•(z)]−1 − PN (r)) = �(z)[�•(z)]−1 follows.

Remark 7.5 Let F ∈ Sp×q(D). In view of Definition 7.1 and Proposition 7.4, then
det�•(z) �= 0 for all z ∈ D and F�1� = 1

ε
��−1• .

Notation 7.6 If E ∈ Kp×q , then let WE : D → C
(p+q)×(p+q) be defined by

WE (z) :=
⎡
⎣

√
l
† −√

l
†
E

−z
√
r†E∗ z(

√
r† + Q)

⎤
⎦ .

The preceding considerations provide us the following representation of F�1� in
form of a usual linear fractional transformation of matrices.

Proposition 7.7 Let F ∈ Sp×q(D) and let E := F(0). Denote by
[
a b
c d

]
the block

representation of WE with p × p block a. For all z ∈ D \ {0}, then det(c(z)F(z) +
d(z)) �= 0 and F�1�(z) = [a(z)F(z) + b(z)][c(z)F(z) + d(z)]−1.

Proof We consider an arbitrary z ∈ D \ {0}. In view of (7.1), (7.3), and Notation 7.6,
we have �(z) = a(z)F(z) + b(z) and z�•(z) = c(z)F(z) + d(z). Regarding z �= 0,
from Remark 7.5 we can conclude then det(c(z)F(z) + d(z)) = zq det�•(z) �= 0
and [a(z)F(z)+b(z)][c(z)F(z)+d(z)]−1 = �(z)[z�•(z)]−1 = 1

z�(z)[�•(z)]−1 =
F�1�(z).

Now we carry out analogous considerations for the left SP-transform for functions
fromSp×q(D).

Definition 7.8 Let F ∈ Sp×q(D) and let


 := (F − E)
√
r
†

and � := (Ip − FE∗)
√
l
†
, (7.4)

where E := F(0). Then

F ((1)) := 1

ε
�†


is called the left SP-transform of F .

Observe that E ∈ Kp×q and that, because of 
(0) = [F(0) − E]√r† = Op×q ,
the matrix-valued function 1

ε

 belongs to [H(D)]p×q .
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Proposition 7.9 Let F ∈ Sp×q(D) and let S := �†
. If P is given in (5.2), then

�• := � + P (7.5)

fulfills det�•(z) �= 0 and S(z) = [�•(z)]−1
(z) for all z ∈ D.

Proof This can be proved analogous to Proposition 7.4. We omit the details.

Remark 7.10 Let F ∈ Sp×q(D). In view of Definition 7.8 and Proposition 7.9, then
det�•(z) �= 0 for all z ∈ D and F ((1)) = 1

ε
�−1• 
.

Now we are able to verify that, for each function F ∈ Sp×q(D), the left and right
SP-transforms coincide.

Proposition 7.11 Let F ∈ Sp×q(D). Then F ((1)) = F�1�.

Proof First observe that E := F(0) belongs to Kp×q . Regarding Remark A.17(a), we

can thus use parts (b) and (c) ofRemarkA.10 to obtain
√
l
†√

l
† = l† and

√
r†

√
r† = r†

as well as
√
l
√
l
† = √

l
†√

l and
√
r†

√
r = √

r
√
r†. By virtue of (5.4) and (2.1), we

can conclude P
√
l
† = (Ip−

√
l
†√

l)
√
l
† = Op×p and

√
r†Q = √

r†(Iq−√
r
√
r†) =

Oq×q . According to parts (a), (b), and (c) of Lemma A.16, we have l†E = Er† and
E∗l† = r†E∗ as well as l† − Er†E∗ = ll† and r† − E∗l†E = r†r . Regarding (5.2),
from Lemma D.3(a), we can infer ll†F(z) = F(z)− PE and F(z)r†r = F(z)− EQ
for all z ∈ D. Lemma A.16(d) yields PE = EQ. In view of (7.5), (7.1), (7.4), and
(7.3), we consequently obtain

�•(z)�(z) − 
(z)�•(z)

= [�(z) + P]√l
†[F(z) − E] − [F(z) − E]√r

†[�(z) + Q]
= [Ip − F(z)E∗]l†[F(z) − E] − [F(z) − E]r†[Iq − E∗F(z)]
= l†F(z) − l†E − F(z)E∗l†F(z) + F(z)E∗l†E

− [F(z)r† − F(z)r†E∗F(z) − Er† + Er†E∗F(z)]
= l†F(z) + F(z)E∗l†E − F(z)r† − Er†E∗F(z)

= (l† − Er†E∗)F(z) − F(z)(r† − E∗l†E)

= ll†F(z) − F(z)r†r = [F(z) − PE] − [F(z) − EQ] = EQ − PE = Op×q

for all z ∈ D. Taking additionally into accountRemarks 7.10 and7.5, then F ((1)) = F�1�

follows.

8 On the Concordance Between SP-transforms ofSp×q(D) and
Sp×q;∞

In this section, we verify that there is a complete concordance between SP-transforms
of p × q Schur functions and infinite p × q Schur sequences. This correspondence
will be established by inspection of Taylor coefficient sequences.
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Notation 8.1 LetM be a linear subspace of Cp and letQ be a linear subspace of Cq .
Then let Sp×q〈D;M,Q〉 be the set of all G ∈ Sp×q(D) such that R(G(z)) ⊆ M
and Q ⊆ N (G(z)) are valid for all z ∈ D.

Remark 8.2 Sp×q〈D;Cp, {Oq×1}〉 = Sp×q(D).

Remark 8.3 Let θp×q : D → C
p×q be given by θp×q(z) := Op×q . Then:

(a) Sp×q〈D;M,Cq〉 = {θp×q} for each linear subspace M of Cp.
(b) Sp×q〈D; {Op×1},Q〉 = {θp×q} for each linear subspace Q of Cq .

Lemma 8.4 Let M be a linear subspace of Cp with M �= {Op×1}, let m := dimM,
let u1, u2, . . . , um be an orthonormal basis of M, and let U := [u1, u2, . . . , um].
Furthermore, let Q be a linear subspace of Cq with Q �= C

q , let t := q − dimQ, let
v1, v2, . . . , vt be an orthonormal basis of Q⊥, and let V := [v1, v2, . . . , vt ]. Then:
(a) Let S ∈ Sm×t (D). Then G :=USV ∗ belongs toSp×q〈D;M,Q〉.
(b) For all G ∈ Sp×q〈D;M,Q〉, there exists a unique S ∈ Sm×t (D) such that

G = USV ∗, namely S = U∗GV .

Proof First observe that U∗U = Im and V ∗V = It . By virtue of Remark A.5, fur-
thermore UU∗ = PM and VV ∗ = PQ⊥ .

(a) Clearly, G is holomorphic in D. For all z ∈ D, because of Lemma A.15, we
have Im − S(z)[S(z)]∗ ∈ C

m×m
� , so that Remark A.4 yields

Ip − G(z)[G(z)]∗ = Ip −US(z)V ∗V [S(z)]∗U∗ = Ip −US(z)[S(z)]∗U∗

= Ip −UU∗ +U (Im − S(z)[S(z)]∗)U∗ � Ip −UU∗

= Ip − PM � Op×p.

In view of Lemma A.15, then G ∈ Sp×q(D) follows. For all z ∈ D, we see that
R(G(z)) ⊆ R(U ) = M holds true. From Q⊥ = R(V ) and Remark A.2 we obtain
Q = R(V )⊥ = N (V ∗) ⊆ N (USV ∗) ⊆ N (G(z)) for all z ∈ D. According to
Notation 8.1, consequently, G ∈ Sp×q〈D;M,Q〉.

(b) Let G ∈ Sp×q〈D;M,Q〉. We consider an arbitrary z ∈ D. According to Nota-
tion 8.1, we have then G ∈ Sp×q(D) as well as R(G(z)) ⊆ M and Q ⊆ N (G(z)).
Thus, we get UU∗G(z) = PMG(z) = G(z) and G(z)VV ∗ = G(z)PQ⊥ = G(z).
Clearly, S :=U∗GV is holomorphic inD and fulfills thenUSV ∗ = UU∗GVV ∗ = G.
From G ∈ Sp×q(D) as well as Im − S(z)[S(z)]∗ = U∗(Ip −G(z)VV ∗[G(z)]∗)U =
U∗(Ip − G(z)[G(z)]∗)U and Lemma A.15 we conclude S(z) ∈ Km×t . Since z ∈ D

was arbitrarily chosen, hence S ∈ Sm×t (D). If S̃ is an arbitrary function belonging to
Sm×t (D) and fulfilling G = U S̃V ∗, then S = U∗GV = U∗U S̃V ∗V = S̃ follows.

In the following, for each F ∈ [H(D)]p×q , we denote by (CF; j )∞j=0 the Taylor

coefficient sequence of F , given byCF; j := ( j !)−1F ( j)(0). In the sequel, we continue
to use the notation given in Definition 3.4 and (2.5).
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Lemma 8.5 Let F ∈ Sp×q(D) with Taylor coefficient sequence (A j )
∞
j=0. Then � ∈

[H(D)]q×q and (YA; j )∞j=0 is the Taylor coefficient sequence of �. Moreover, �† ∈
[H(D)]q×q and (Y �

A; j )
∞
j=0 is the Taylor coefficient sequence of �

†.

Proof First observe that E := F(0) belongs to Kp×q and fulfills E = A0. In view of
(5.1) and (2.5), then r = r0. Regarding Remark A.17(a), we apply Remark A.10(d)
to obtain

√
r0

†r0 = √
r0. From (7.1) we get � ∈ [H(D)]q×q and, using additionally

Lemma D.1 and Definition 3.4, furthermore

�(z) = √
r0

†

⎛
⎝r0 −

∞∑
j=1

z j A∗
0A j

⎞
⎠ = √

r0 −
∞∑
j=1

z j
√
r0

†A∗
0A j =

∞∑
j=0

z jYA; j

for all z ∈ D. Consequently, (C�; j )∞j=0 = (YA; j )∞j=0. Lemma 7.3 impliesR(�(z)) =
R(�(0)) and N (�(z)) = N (�(0)) for all z ∈ D. Thus, we can apply Lemma D.5
to see that � := �† belongs to [H(D)]q×q and that (C�; j )∞j=0 = (C�

�; j )
∞
j=0. Conse-

quently, (C�; j )∞j=0 = (Y �

A; j )
∞
j=0 follows.

Theorem 8.6 Let F ∈ Sp×q(D) with Taylor coefficient sequence (A j )
∞
j=0. Then

F�1� ∈ Sp×q(D) and (A[1]
j )∞j=0 is the Taylor coefficient sequence of F

�1�.

Proof First observe that E := F(0) belongs to Kp×q and fulfills E = A0. In view of
(5.1) and (2.5), then l = l0. From (7.1) we see � ∈ [H(D)]p×q . Lemma 8.5 shows
that � :=�† belongs to [H(D)]q×q . Consequently, S := �� belongs to [H(D)]p×q .
Lemma 7.2 yields Iq − [S(z)]∗S(z) ∈ C

q×q
� for all z ∈ D. By virtue of Lemma A.15,

then S ∈ Sp×q(D) follows. Regarding (7.1) and E = F(0), moreover�(0) = Op×q ,
implying S(0) = Op×q . Thus, we can conclude 1

ε
S ∈ Sp×q(D) , where ε : D → C

is defined by ε(z) := z (see, e. g., [11, Lem. 2.3.1]). Because of (7.1) and E = F(0)
as well as Definition 3.4(b), we also get that 	 := 1

ε
� belongs to [H(D)]p×q and that

C	;k = √
l
†
CF;k+1 = √

l0
†
Ak+1 = ZA;k for all k ∈ N0. Lemma 8.5 yields C�;k =

Y �

A;k for all k ∈ N0. Taking additionally into account Definition 3.4(b), we conclude

	� ∈ [H(D)]p×q and C	�; j =∑ j
�=0 C	;�C�; j−� =∑ j

�=0 ZA;�Y �

A; j−�
= A[1]

j for

all j ∈ N0. Since 1
ε
S = 1

ε
�� = 	� and Remark 7.1 show 	� = 1

ε
��† = F�1�,

the proof is complete.

Corollary 8.7 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ and let F ∈ Sp×q [D; (A j )

κ
j=0].

Then F�1� ∈ Sp×q [D; (A[1]
j )κ−1

j=0].

Proof If κ < ∞, then let A j :=CF; j for all j ∈ Zκ+1,∞. Consequently, (A j )
∞
j=0 is

the Taylor coefficient sequence of F . Taking additionally into account F ∈ Sp×q(D),

we can thus apply Theorem 8.6 to get that F�1� ∈ Sp×q(D) and that (A[1]
j )∞j=0 is

the Taylor coefficient sequence of F�1�. Regarding Remark 3.5, in particular F�1� ∈
Sp×q [D; (A[1]

j )κ−1
j=0] follows.
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Our next considerations are aimed at examining the interplay between both types of
SP-algorithms and the objects introduced in Notation 8.1. We again use the notations
introduced in Definition 4.7 and Notations 4.11, 6.1 and 6.4.

Proposition 8.8 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0, let

k ∈ Z0,κ , and let F ∈ Sp×q [D; (A[k]
j )κ−k

j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉. Then F�1� ∈
Sp×q〈D;Mk,Qk〉.
Proof Theorem 8.6 provides F�1� ∈ Sp×q(D). According to Definition 4.7, we have

ek = A[k]
0 = CF;0 = F(0). (8.1)

By virtue of Notation 4.11 and Remark 4.12, moreover

lk = Ip − eke
∗
k ∈ C

p×p
� and rk = Iq − e∗kek ∈ C

q×q
� . (8.2)

We are now going to show

R(F�1�(z)) ⊆ Mk and Qk ⊆ N (F�1�(z)) for all z ∈ D \ {0}. (8.3)

To this end, we consider an arbitrary z ∈ D\{0}. FromDefinitions 7.1 and 7.8 we con-
clude R(F�1�(z)) ⊆ R(�(z)) and N (
(z)) ⊆ N (F ((1))(z)). Lemma 6.9 yields (6.5)
for all j ∈ Z−1,κ . Taking into account F ∈ Sp×q〈D;Mk−1,Qk−1〉, Notation 8.1, and
(6.5) for j = k−1, the application ofRemarkA.7 providesMk−1M

†
k−1F(w) = F(w)

and F(w)Q†
k−1Qk−1 = F(w) for all w ∈ D. Taking into account (8.1), (8.2),

(5.1), (7.1), and (7.4), we infer then
√
lk
†
Mk−1M

†
k−1[F(z) − ek] = �(z) and

[F(z) − ek]Q†
k−1Qk−1

√
rk

† = 
(z). In particular, R(�(z)) ⊆ R(
√
lk
†
Mk−1) and

N (Qk−1
√
rk

†
) ⊆ N (
(z)). From Notation 6.4 we see that

√
lk
†
Mk−1 = Mk and

Qk−1
√
rk

† = Qk . Using (6.5) for j = k, we get

R(F�1�(z)) ⊆ R(�(z)) ⊆ R(
√
lk
†
Mk−1) = R(Mk) = Mk

and

Qk = N (Qk) = N (Qk−1
√
rk

†
) ⊆ N (
(z)) ⊆ N (F ((1))(z)).

Regarding Proposition 7.11, hence (8.3) is proved. Since F�1� belongs to Sp×q(D),
from (8.3) we conclude that

PMk F
�1�(0) = lim

z→0
PMk F

�1�(z) = lim
z→0

F�1�(z) = F�1�(0)

and

F�1�(0)PQk = lim
z→0

F�1�(z)PQk = Op×q ,
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implying R(F�1�(0)) ⊆ Mk and Qk ⊆ N (F�1�(0)). Taking additionally into
account F�1� ∈ Sp×q(D) and (8.3), according to Notation 8.1, then F�1� ∈
Sp×q〈D;Mk,Qk〉 follows.
Proposition 8.9 Suppose κ ≥ 1. Let (A j )

κ
j=0 ∈ Sp×q;κ with SP-parameter sequence

(e j )
κ
j=0, let k ∈ Z0,κ−1, and let F ∈ Sp×q [D; (A[k]

j )κ−k
j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉.

Then F�1� ∈ Sp×q [D; (A[k+1]
j )

κ−(k+1)
j=0 ] ∩ Sp×q〈D;Mk,Qk〉.

Proof Denote by (Bj )
κ−k
j=0 the k-th right SP-transform of (A j )

κ
j=0. Remark 4.2 yields

then (Bj )
κ−k
j=0 ∈ Sp×q;κ−k . By assumption, furthermore F ∈ Sp×q [D; (Bj )

κ−k
j=0].

Thus, we can apply Corollary 8.7 to obtain F�1� ∈ Sp×q [D; (B[1]
j )

(κ−k)−1
j=0 ]. Accord-

ing to Definition 4.1, we have (B[1]
j )

(κ−k)−1
j=0 = (A[k+1]

j )
κ−(k+1)
j=0 , so that F�1� ∈

Sp×q [D; (A[k+1]
j )

κ−(k+1)
j=0 ]. The application of Proposition 8.8 completes the proof.

9 The SP-Algorithm for p × q Schur Functions

In view of Theorem 8.6, now we are going to generalize Definitions 7.1 and 7.8. One
can easily convince oneself that it is a direct generalization of the classical algorithm
developed by I. Schur in [28] for complex-valued contractive functions holomorphic
in D. In view of Remark 9.2 below, first we introduce the following notion.

Definition 9.1 Let F ∈ Sp×q(D). Then let F ((0)) := F (resp., F�0� := F). Further-
more, for all k ∈ N, let F ((k)) (resp., F�k�) be recursively defined to be the left
SP-transform of F ((k−1)) (resp., right SP-transform of F�k−1�). For all k ∈ N0, then
F ((k)) (resp., F ((k))) is called the k-th left SP-transform of F (resp., k-th right SP-
transform of F).

Remark 9.2 Let F ∈ Sp×q(D). We emphasize that, in Definition 9.1, we used the
following: By virtue of Theorem 8.6 and Proposition 7.11, one can easily verify by
mathematical induction that F�k� ∈ Sp×q(D) and F ((k)) ∈ Sp×q(D) for all k ∈ N0.

Proposition 9.3 Let F ∈ Sp×q(D). For all k ∈ N0, then F ((k)) = F�k�.

Proof In view of Definition 9.1, there is an m ∈ N0 such that F ((k)) = F�k� for
all k ∈ Z0,m . According to Remark 9.2, we have F�m� ∈ Sp×q(D). In view of
Definition 9.1, the application of Proposition 7.11 yields F ((m+1)) = F�m+1�.

Lemma 9.4 Let F ∈ Sp×q(D) with Taylor coefficient sequence (A j )
∞
j=0. For all

k ∈ N0, then F�k� ∈ Sp×q(D) and (A[k]
j )∞j=0 is the Taylor coefficient sequence of

F�k�.

Proof Regarding Definitions 9.1 and 4.1, this can be proved inductively, using Theo-
rem 8.6.
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Definition 9.5 Let F ∈ Sp×q(D). Then the sequence (γ j )
∞
j=0 given by γ j := F� j�(0)

for all j ∈ N0 is called the sequence of Schur–Potapovparameters (shortSP-parameter
sequence) of F .

Remark 9.6 Let F ∈ Sp×q(D) with SP-parameter sequence (γ j )
∞
j=0. For all k ∈ N0,

according to Remark 9.2 and Definitions 9.1 and 9.5, then F�k� belongs toSp×q(D)

and has SP-parameter sequence (γ j+k)
∞
j=0.

Proposition 9.7 Let F ∈ Sp×q(D) with Taylor coefficient sequence (A j )
∞
j=0 and

SP-parameter sequence (γ j )
∞
j=0. Then (A j )

∞
j=0 ∈ Sp×q;∞ and the SP-parameter

sequence (e j )
∞
j=0 of (A j )

∞
j=0 coincides with (γ j )

∞
j=0.

Proof From Theorem D.2 we can infer (A j )
∞
j=0 ∈ Sp×q;∞. We consider an arbitrary

k ∈ N0. According to Definition 4.7, we have ek = A[k]
0 . By virtue of Definitions 9.1

and 4.1 andTheorem8.6,we can usemathematical induction to see that F�k� belongs to
Sp×q(D) and hasTaylor coefficient sequence (A[k]

j )∞j=0. In particular, F
�k�(0) = A[k]

0 .

Taking additionally into account Definition 9.5, we obtain summarizing ek = A[k]
0 =

F�k�(0) = γk .

10 The E-inverse SP-transform for Matricial Schur Functions

This section can be considered as analogue of Sect. 5 for matricial Schur functions.
In this section, we want to extend the notions of E-inverse SP-transform to arbitrary
functions belonging to Sp×q(D). Similar as in Sect. 7 we consider as well a right
version as a left version. In Proposition 10.10, we show that both versions coincide.
Recall that ε : D → C is defined by ε(z) := z.

Definition 10.1 Let E ∈ Kp×q , let G : D → C
p×q be a matrix-valued function, and

let

� := E + ε
√
l
†
G

√
r and � := Iq + εE∗√l

†
G

√
r . (10.1)

Then

G�−1;E� :=��†

is called the right E-inverse SP-transform of G.

Now we are going to rewrite, for arbitrarily given G ∈ Sp×q(D) and E ∈ Kp×q ,
the function G�−1;E� as linear fractional transformation of matrices. This requires
some preparations.

Lemma 10.2 Let E ∈ Kp×q and let G ∈ Sp×q(D). For all z ∈ D, then det�(z) �= 0.
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Proof We consider an arbitrary z ∈ D. Let v ∈ N (�(z)). Then (10.1) implies

v = −zE∗√l
†
G(z)

√
rv. (10.2)

Since Remark A.17(c) provides
√
r E∗ = E∗√l, consequently

√
rv = −zE∗√l

√
l
†

G(z)
√
rv follows. Hence,

‖√rv‖E ≤ ρ(z)‖√rv‖E, (10.3)

where ρ(z) := ‖−zE∗√l
√
l
†
G(z)‖. Lemma A.15 shows E∗ ∈ Kq×p. From

Remark A.6 we can infer
√
l
√
l
† ∈ Kp×p. Taking additionally into account G ∈

Sp×q(D) and z ∈ D, we get then

ρ(z) ≤ |−z| · ‖E∗‖ · ‖√l
√
l
†‖ · ‖G(z)‖ ≤ |z| < 1. (10.4)

If ‖√rv‖E �= 0, then (10.3) provides ρ(z) ≥ 1, contradicting (10.4). Thus, ‖√rv‖E =
0, i. e.,

√
rv = Oq×1. Hence, from (10.2) we obtain v = Oq×1. Summarizing, we

have proved N (�(z)) ⊆ {Oq×1}, implying det�(z) �= 0.

Lemma 10.3 Let E ∈ Kp×q , let G ∈ Sp×q(D), let F :=G�−1;E�, and let S := εG.
For all z ∈ D, then det�(z) �= 0 and

Iq − [F(z)]∗F(z)

= (
√
r [�(z)]−1)∗(Iq − [S(z)]∗[S(z)] + [S(z)]∗P[S(z)])√r [�(z)]−1(10.5)

as well as, in particular, Iq − [F(z)]∗F(z) ∈ C
q×q
� .

Proof We consider an arbitrary z ∈ D. Definition 10.1 shows F(z) = �(z)[�(z)]†.
Lemma 10.2 yields det�(z) �= 0. Consequently, we infer

Iq − [F(z)]∗F(z) = [�(z)]−∗([�(z)]∗[�(z)] − [�(z)]∗[�(z)])[�(z)]−1. (10.6)

We can apply Remark A.8 to obtain (
√
l
†
)∗ = √

l
†
and (

√
r†)∗ = √

r†. Since (10.1)

yields � = E + √
l
†
S
√
r and � = Iq + E∗√l

†
S
√
r , we get then

[�(z)]∗�(z) = (Iq + √
r [S(z)]∗√l

†
E)[Iq + E∗√l

†
S(z)

√
r ] = Iq

+E∗√l
†
S(z)

√
r + √

r [S(z)]∗√l
†
E + √

r [S(z)]∗√l
†
EE∗√l

†
S(z)

√
r

and

[�(z)]∗�(z) = (E∗ + √
r [S(z)]∗√l

†
)[E + √

l
†
S(z)

√
r ] = E∗E

+E∗√l
†
S(z)

√
r + √

r [S(z)]∗√l
†
E + √

r [S(z)]∗√l
†√

l
†
S(z)

√
r .



  109 Page 48 of 91 V. K. Dubovoy et al.

As in the proof of Lemma 5.10 we can obtain (5.7). Using (5.1), (5.7), and (5.2), we
conclude then

[�(z)]∗�(z) − [�(z)]∗�(z)

= (Iq − E∗E) − √
r [S(z)]∗(√l

†√
l
† − √

l
†
EE∗√l

†
)S(z)

√
r

= r − √
r [S(z)]∗ll†S(z)

√
r = √

r(Iq − [S(z)]∗ll†S(z))
√
r

= √
r(Iq − [S(z)]∗[S(z)] + [S(z)]∗P[S(z)])√r ,

which, inserted in (10.6), gives (10.5). Since G belongs to Sp×q(D), we have
‖zG(z)‖ ≤ 1, i. e., S(z) belongs to Kp×q . In view of Lemma A.15, then Iq −
[S(z)]∗[S(z)] ∈ C

q×q
� follows. Regarding (5.3), Remark A.4 yields P ∈ C

p×p
� , so

that [S(z)]∗P[S(z)] ∈ C
q×q
� . Hence, we infer [�(z)]∗�(z) − [�(z)]∗�(z) ∈ C

q×q
� .

Taking additionally into account (10.5), then Iq − [F(z)]∗F(z) ∈ C
q×q
� .

Lemma 10.4 Let E ∈ Kp×q and let G ∈ Sp×q(D). Then�(
√
r†+Q) = ε

√
l
†
Gr†r+

E(
√
r† + Q) and �(

√
r† + Q) = εE∗√l

†
Gr†r + (

√
r† + Q).

Proof. As in the proof of Lemma 5.18 we can obtain (5.9). Taking additionally into
account (10.1), we get then

�(
√
r
† + Q) = (E + ε

√
l
†
G

√
r)(

√
r
† + Q) = ε

√
l
†
Gr†r + E(

√
r
† + Q)

and

�(
√
r
† + Q) = (Iq + εE∗√l

†
G

√
r)(

√
r
† + Q) = εE∗√l

†
Gr†r + (

√
r
† + Q).

Notation 10.5 If E ∈ Kp×q , then let VE : D → C
(p+q)×(p+q) be defined by

VE (z) :=
⎡
⎢⎣

z
√
l
†

E(
√
r† + Q)

zE∗√l
† √

r† + Q

⎤
⎥⎦ .

Proposition 10.6 Let E ∈ Kp×q and let G ∈ Sp×q(D). Denote by
[ α β

γ δ

]
the block

representation of VE with p × p block α. For all z ∈ D, then det(γ (z)G(z)r†r +
δ(z)) �= 0 and G�−1;E�(z) = [α(z)G(z)r†r + β(z)][γ (z)G(z)r†r + δ(z)]−1.

Proof. We consider an arbitrary z ∈ D. In view of Lemma 10.4 and Notation 10.5, we
have �(z)(

√
r† + Q) = α(z)G(z)r†r + β(z) and �(z)(

√
r† + Q) = γ (z)G(z)r†r +

δ(z). Lemma10.2 yields det�(z) �= 0. FromLemma5.19we infer det(
√
r†+Q) �= 0.

Thus, we can conclude det(γ (z)G(z)r†r + δ(z)) �= 0 and [γ (z)G(z)r†r + δ(z)]−1 =
(
√
r†+Q)−1[�(z)]−1. Definition 10.1 showsG�−1;E�(z) = �(z)[�(z)]†. Hence, we

finally get

[α(z)G(z)r†r + β(z)][γ (z)G(z)r†r + δ(z)]−1
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= �(z)(
√
r
† + Q)(

√
r
† + Q)−1[�(z)]−1

= �(z)[�(z)]−1 = �(z)[�(z)]† = G�−1;E�(z).

We now carry out analogous considerations for left E-inverse SP-transforms of
matrix-valued Schur functions.

Definition 10.7 Let E ∈ Kp×q , let G : D → C
p×q be a matrix-valued function, and

let

ϒ := E + ε
√
lG

√
r
†

and � := Ip + ε
√
lG

√
r
†
E∗. (10.7)

Then

G((−1;E)) := �†ϒ

is called the left E-inverse SP-transform of G.

Lemma 10.8 Let E ∈ Kp×q and let G ∈ Sp×q(D). For all z ∈ D, then det�(z) �= 0.

Proof We consider an arbitrary z ∈ D. Using Remark A.8, from (10.7) we infer
[�(z)]∗ = Ip + zE

√
r†[G(z)]∗√l. Let v ∈ N ([�(z)]∗). Then we obtain

v = −zE
√
r
†[G(z)]∗√lv. (10.8)

Since Remark A.17(b) provides
√
l E = E

√
r , consequently

√
lv = −zE

√
r
√
r†

[G(z)]∗√lv follows. Hence,

‖√lv‖E ≤ σ(z)‖√lv‖E, (10.9)

where σ(z) := ‖−zE
√
r
√
r†[G(z)]∗‖. From Remark A.6 we conclude

√
r
√
r† ∈

Kq×q . Lemma A.15 shows [G(z)]∗ ∈ Kq×p. Taking additionally into account
E ∈ Kp×q and z ∈ D, we get then

σ(z) ≤ |−z| · ‖E‖ · ‖√r
√
r
†‖ · ‖[G(z)]∗‖ ≤ |z| < 1. (10.10)

If ‖√lv‖E �= 0, then (10.9) provides σ(z) ≥ 1, contradicting (10.10). Thus,
‖√lv‖E = 0, i. e.,

√
lv = Op×1. Hence, from (10.8) we obtain v = Op×1. Summariz-

ing, we have proved N ([�(z)]∗) ⊆ {Op×1}. Therefore, det([�(z)]∗) �= 0, implying
det�(z) �= 0.

Lemma 10.9 Let E ∈ Kp×q and let G : D → C
p×q be a matrix-valued function. For

all z ∈ D, then ϒ(z)�(z) = �(z)�(z).

Proof. We consider an arbitrary z ∈ D. In view of (10.7) and (10.1), we have

ϒ(z)�(z) = [E + z
√
lG(z)

√
r
†][Iq + zE∗√l

†
G(z)

√
r ]
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= E + zEE∗√l
†
G(z)

√
r + z

√
lG(z)

√
r
† + z2

√
lG(z)

√
r
†
E∗√l

†
G(z)

√
r

and

�(z)�(z) = [Ip + z
√
lG(z)

√
r
†
E∗][E + z

√
l
†
G(z)

√
r ]

= E + z
√
l
†
G(z)

√
r + z

√
lG(z)

√
r
†
E∗E + z2

√
lG(z)

√
r
†
E∗√l

†
G(z)

√
r .

As in the proof of Lemma 5.8, we can obtain (5.5) and (5.6). Using this, we conclude
then

ϒ(z)�(z) − �(z)�(z)

= zEE∗√l
†
G(z)

√
r + z

√
lG(z)

√
r
† − z

√
l
†
G(z)

√
r − z

√
lG(z)

√
r
†
E∗E

= z
√
lG(z)(

√
r
† − √

r
†
E∗E) − z(

√
l
† − EE∗√l

†
)G(z)

√
r

= z
√
lG(z)

√
r − z

√
lG(z)

√
r = O.

Now we are able to verify that, for arbitrarily given G ∈ Sp×q(D) and E ∈ Kp×q ,
the right and left E-inverse SP-transforms coincide.

Proposition 10.10 Let E ∈ Kp×q and let G ∈ Sp×q(D). Then G((−1;E)) = G�−1;E�.

Proof. We consider an arbitrary z ∈ D. Definitions 10.7 and 10.1 show G((−1;E))(z) =
[�(z)]†ϒ(z) andG�−1;E�(z) = �(z)[�(z)]†. Lemmas10.8 and10.2 yield det�(z) �=
0 and det�(z) �= 0. Using additionally Lemma 10.9, we obtain

G((−1;E))(z) − G�−1;E�(z) = [�(z)]†ϒ(z) − �(z)[�(z)]†
= [�(z)]−1ϒ(z) − �(z)[�(z)]−1

= [�(z)]−1[ϒ(z)�(z) − �(z)�(z)][�(z)]−1 = O.

11 On the Concordance Between E-inverse SP-transforms for
Sp×q(D) andSp×q;∞

In this section, we verify that there is a complete concordance between E-inverse
SP-transforms for p × q Schur functions and infinite p × q Schur sequences. This
correspondence will be established by inspection of Taylor coefficient sequences. In
view of Definition 5.1(b), first we get the following:

Lemma 11.1 Let E ∈ Kp×q and let G ∈ Sp×q(D) with Taylor coefficient sequence
(A j )

∞
j=0. If � is given by (10.1), then � ∈ [H(D)]q×q and (VE,A; j )∞j=0 is the Taylor

coefficient sequence of �. Moreover, �† ∈ [H(D)]q×q and (V �

E,A; j )
∞
j=0 is the Taylor

coefficient sequence of �†.
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Proof From (10.1) we see � ∈ [H(D)]q×q and, in view of Definition 5.1(b), further-
more

�(z) = Iq +
∞∑
k=0

zk+1E∗√l
†
Ak

√
r = Iq +

∞∑
j=1

z j E∗√l
†
A j−1

√
r =

∞∑
j=0

z j VE,A; j

for all z ∈ D. Consequently, (C�; j )∞j=0 = (VE,A; j )∞j=0. Lemma 10.2 provides
det�(z) �= 0 for all z ∈ D. In particular,R(�(z)) = C

q andN (�(z)) = {Oq×1} for
all z ∈ D. Thus, we can apply Lemma D.5 to see that	 := �−1 belongs to [H(D)]q×q

and that (C	; j )∞j=0 = (C�

�; j )
∞
j=0. Consequently, (C	; j )∞j=0 = (V �

E,A; j )
∞
j=0 follows.

Proposition 11.2 Let E ∈ Kp×q and let G ∈ Sp×q(D) with Taylor coefficient

sequence (A j )
∞
j=0. Then G�−1;E� ∈ Sp×q(D) and (A[−1;E]

j )∞j=0 is the Taylor coeffi-

cient sequence of G�−1;E�.

Proof From (10.1) we see � ∈ [H(D)]p×q and, in view of Definition 5.1(b), further-
more

�(z) = E +
∞∑
k=0

zk+1
√
l
†
Ak

√
r = E +

∞∑
j=1

z j
√
l
†
A j−1

√
r =

∞∑
j=0

z jUE,A; j

for all z ∈ D. Consequently, (C�; j )∞j=0 = (UE,A; j )∞j=0. Lemma 11.1 shows that

	 := �† belongs to [H(D)]q×q and that (C	; j )∞j=0 = (V �

E,A; j )
∞
j=0. According to

Definition 10.1, we have G�−1;E� = �	. In particular, F :=G�−1;E� belongs to
[H(D)]p×q with CF; j = ∑ j

�=0UE,A;�V �

E,A; j−�
for all j ∈ N0. Taking into account

Definition 5.1(b), we get then CF; j = A[−1;E]
j for all j ∈ N0. Hence, (A

[−1;E]
j )∞j=0 is

the Taylor coefficient sequence of G�−1;E�. Lemma 10.3 yields Iq − [F(z)]∗F(z) ∈
C
q×q
� for all z ∈ D. By virtue of Lemma A.15, then F ∈ Sp×q(D) follows.

Lemma 11.3 Let E ∈ Kp×q and let G ∈ Sp×q(D). Then F :=G�−1;E� belongs to
Sp×q(D) and fulfills F(0) = E.

Proof Denote by (A j )
∞
j=0 theTaylor coefficient sequence ofG. UsingProposition 11.2

and Remark 5.2, we can infer then F ∈ Sp×q(D) and F(0) = CF;0 = A[−1;E]
0 = E .

Proposition 11.4 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ and let

G ∈ Sp×q [D; (A[1]
j )κ−1

j=0]. Then A0 ∈ Kp×q and G�−1;A0� ∈ Sp×q [D; (A j )
κ
j=0].

Proof The assumption (A j )
κ
j=0 ∈ Sp×q;κ implies that E := A0 belongs to Kp×q .

Denote by (Bj )
∞
j=0 theTaylor coefficient sequence ofG. FromProposition 11.2we can

infer then G�−1;E� ∈ Sp×q [D; (B[−1;E]
j )∞j=0]. Because of G ∈ Sp×q [D; (A[1]

j )κ−1
j=0],
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we have Bj = A[1]
j for all j ∈ Z0,κ−1. Regarding Remark 5.3, then the application

of Corollary 5.25 yields B[−1;E]
j = A j for all j ∈ Z0,κ . This shows that G�−1;A0� ∈

Sp×q [D; (A j )
κ
j=0].

In the sequel, we use again the linear subspaces introduced in Notation 6.1.

Lemma 11.5 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0, let k ∈

Z0,κ , and let G ∈ Sp×q〈D;Mk,Qk〉. Then A[k]
0 ∈ Kp×q and G�−1;A[k]

0 � ∈
Sp×q [D; (A[k]

j )0j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉.

Proof By virtue of Definition 4.7 and Remark 4.12, we see that E := A[k]
0 fulfills E =

ek ∈ Kp×q . In view of (5.1) and Notation 4.11, in particular we get l = lk and r = rk .
According to Notation 8.1, we have G ∈ Sp×q(D). Thus, we can apply Lemma 11.3
to obtain that F :=G�−1;E� belongs to Sp×q(D) and fulfills F(0) = E . This shows

G�−1;A[k]
0 � ∈ Sp×q [D; (A[k]

j )0j=0]. Now we consider an arbitrary z ∈ D. Regarding

that Proposition 10.10 shows F(z) = G((−1;E))(z), from Definitions 10.1 and 10.7 we
can conclude R(F(z)) ⊆ R(�(z)) and N (ϒ(z)) ⊆ N (F(z)). According to (10.1)
and (10.7), we have �(z) = ek + z

√
lk
†
G(z)

√
rk and ϒ(z) = ek + z

√
lkG(z)

√
rk

†.
Proposition 6.10 yields (e j )

κ
j=0 ∈ Ep×q;κ . By virtue of Notation 6.2, we then see

that R(ek) ⊆ Mk−1 and Qk−1 ⊆ N (ek). According to Notation 8.1, we have
R(G(z)) ⊆ Mk and Qk ⊆ N (G(z)). From Notation 6.1 we can infer Mk ⊆ Mk−1
and Qk−1 ⊆ Qk . Lemma 6.9 yields (6.5) for all j ∈ Z−1,κ . Taking into account
(6.5) for j = k − 1, we obtain then R(G(z)) ⊆ Mk ⊆ Mk−1 = R(Mk−1)

and N (Qk−1) = Qk−1 ⊆ Qk ⊆ N (G(z)). Consequently, Remark A.7 provides
Mk−1M

†
k−1G(z) = G(z) and G(z)Q†

k−1Qk−1 = G(z). From Notation 6.4 we con-

clude
√
lk
†
Mk−1 = Mk and Qk−1

√
rk

† = Qk . Hence,
√
lk
†
G(z) = MkM

†
k−1G(z)

and G(z)
√
rk

† = G(z)Q†
k−1Qk follow, implying R(

√
lk
†
G(z)) ⊆ R(Mk) and

N (Qk) ⊆ N (G(z)
√
rk

†
). Since (6.5) is valid for j = k, thus R(

√
lk
†
G(z)) ⊆ Mk

and Qk ⊆ N (G(z)
√
rk

†
) hold true. Summarizing, we obtain

R(F(z)) ⊆ R(�(z)) ⊆ R(ek) + R(
√
lk
†
G(z)) ⊆ Mk−1 + Mk = Mk−1

and

Qk−1 = Qk−1 ∩ Qk ⊆ N (ek) ∩ N (G(z)
√
rk

†
) ⊆ N (ϒ(z)) ⊆ N (F(z)).

Taking additionally into account F ∈ Sp×q(D) and that z ∈ Dwas arbitrarily chosen,

according toNotation 8.1, then F ∈ Sp×q〈D;Mk−1,Qk−1〉 follows. Thus,G�−1;A[k]
0 �

belongs toSp×q〈D;Mk−1,Qk−1〉.
Proposition 11.6 Suppose κ ≥ 1. Let (A j )

κ
j=0 ∈ Sp×q;κ with SP-parameter sequence

(e j )
κ
j=0, let k ∈ Z0,κ−1, and let G ∈ Sp×q [D; (A[k+1]

j )
κ−(k+1)
j=0 ]∩Sp×q〈D;Mk,Qk〉.

Then A[k]
0 ∈ Kp×q and G�−1;A[k]

0 � ∈ Sp×q [D; (A[k]
j )κ−k

j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉.
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Proof Denote by (Bj )
κ−k
j=0 the k-th right SP-transform of (A j )

κ
j=0. From Lemma 11.5

we can infer then B0 = A[k]
0 ∈ Kp×q and G�−1;A[k]

0 � ∈ Sp×q〈D;Mk−1,Qk−1〉.
Remark 4.2 yields (Bj )

κ−k
j=0 ∈ Sp×q;κ−k . According to Definition 4.1, we have B

[1]
j =

A[k+1]
j for all j ∈ Z0,κ−k−1, so that G ∈ Sp×q [D; (B[1]

j )
(κ−k)−1
j=0 ]. Thus, we can

apply Proposition 11.4 to get G�−1;B0� ∈ Sp×q [D; (Bj )
κ−k
j=0]. Therefore, G�−1;A[k]

0 � ∈
Sp×q [D; (A[k]

j )κ−k
j=0].

12 Parametrization of the Set of All Solutions of theMatricial Schur
Problem

In this section, we use the preceding results on the SP-transform to treat the matri-
cial Schur problem connected with an arbitrarily given finite p × q Schur sequence
(A j )

n
j=0. We again use the function ε : D → C defined by ε(z) := z.

Lemma 12.1 Let E ∈ Kp×q . Using Notations 7.6 and 10.5, then

WEVE = ε diag(ll†, Iq) and VEWE = ε

[
ll† EQ

Oq×p Iq

]
. (12.1)

Proof Denote by
[
a b
c d

]
the block representation of WE with p × p block a and by[ α β

γ δ

]
the block representation of VE with p × p block α. Obviously,

WEVE =
[
aα + bγ aβ + bδ

cα + dγ cβ + dδ

]
and VEWE =

[
αa + βc αb + βd

γ a + δc γ b + δd

]
.

By virtue of Notations 7.6 and 10.5, we see

aβ + bδ = √
l
†
E(

√
r
† + Q) + (−√

l
†
E)(

√
r
† + Q) = Op×q .

As in the proof of Lemma 5.23, we can obtain (5.10), (5.12), and (5.11). Regarding
Notations 7.6 and 10.5, from these identities and Lemma 5.19 we can infer then

aα + bγ = √
l
†
(ε

√
l
†
) + (−√

l
†
E)(εE∗√l

†
)

= ε(
√
l
†√

l
† − √

l
†
EE∗√l

†
) = εll†,

cα + dγ = (−ε
√
r
†
E∗)(ε

√
l
†
) + ε(

√
r
† + Q)(εE∗√l

†
) = ε2QE∗√l

† = Oq×p,

and

cβ + dδ = (−ε
√
r
†
E∗)E(

√
r
† + Q) + ε(

√
r
† + Q)(

√
r
† + Q)

= ε
[√

r
†
(Iq − E∗E) + Q

]
(
√
r
† + Q) = ε(

√
r + Q)(

√
r
† + Q) = ε Iq .
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Thus, the first identity in (12.1) is verified. As in the proof of Proposition 5.24, we
can obtain (5.13)–(5.16). Regarding Notations 10.5 and 7.6, from these identities we
conclude

αa + βc = ε
√
l
†√

l
† + E(

√
r
† + Q)(−ε

√
r
†
E∗)

= ε
[√

l
†√

l
† − E(

√
r
† + Q)

√
r
†
E∗] = εll†,

αb + βd = ε
√
l
†
(−√

l
†
E) + E(

√
r
† + Q)[ε(√r

† + Q)]
= ε
[
E(

√
r
† + Q)2 − √

l
†√

l
†
E
]

= εEQ,

γ a + δc = εE∗√l
†√

l
† + (

√
r
† + Q)(−ε

√
r
†
E∗)

= ε
[
E∗√l

†√
l
† − (

√
r
† + Q)

√
r
†
E∗] = Oq×p,

and

γ b + δd = εE∗√l
†
(−√

l
†
E) + (

√
r
† + Q)

[
ε(

√
r
† + Q)

]

= ε
[
(
√
r
† + Q)2 − E∗√l

†√
l
†
E
]

= ε Iq .

Consequently, the second identity in (12.1) is verified as well.

Lemma 12.2 Let E ∈ Kp×q and let G ∈ Sp×q(D). Then F :=G�−1;E� belongs to
Sp×q(D) and fulfills F�1� = ll†Gr†r .

Proof We consider an arbitrary z ∈ D \ {0}. Denote by
[ α β

γ δ

]
the block represen-

tation of VE with p × p block α. Proposition 10.6 then yields det(γ (z)G(z)r†r +
δ(z)) �= 0 and F(z) = [α(z)G(z)r†r + β(z)][γ (z)G(z)r†r + δ(z)]−1. In partic-
ular, Remark C.1 shows rank([γ (z), δ(z)]) = q. Proposition 11.2 and Remark 5.2
imply F ∈ Sp×q(D) and F(0) = CF;0 = A[−1;E]

0 = E . Denote by
[
a b
c d

]
the block representation of WE with p × p block a. Proposition 7.7 then yields
det(c(z)F(z) + d(z)) �= 0 and F�1�(z) = [a(z)F(z) + b(z)][c(z)F(z) + d(z)]−1. In
particular, Remark C.1 provides rank([c(z), d(z)]) = q. Regarding that Lemma 12.1
shows WE (z)VE (z) = diag(zll†, z Iq), we can thus apply Proposition C.2 to obtain
F�1�(z) = [zll†G(z)r†r ](z Iq)−1 = ll†G(z)r†r . In view of F ∈ Sp×q(D), from
Theorem 8.6 we see that F�1� ∈ Sp×q(D). Consequently, F�1�,G ∈ [H(D)]p×q , so
that the Identity Theorem for holomorphic functions yields F�1� = ll†Gr†r .

Lemma 12.3 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0, let

k ∈ Z0,κ , and let G ∈ Sp×q〈D;Mk,Qk〉. Then E := A[k]
0 belongs to Kp×q and

F :=G�−1;E� belongs toSp×q(D) and fulfills F�1� = G.

Proof By virtue of Definition 4.7 and Remark 4.12, we get E = ek ∈ Kp×q . In view
of (5.1) and Notation 4.11, in particular l = lk and r = rk . Taking additionally into
account, that Notation 8.1 shows G ∈ Sp×q(D), we can thus apply Lemma 12.2 to
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obtain F ∈ Sp×q(D) and F�1� = lk l
†
kGr†krk . According to Notations 8.1 and 6.1,

we have R(G(z)) ⊆ Mk ⊆ R(lk) and N (rk) ⊆ Qk ⊆ N (G(z)) for all z ∈ D.
From Remark A.7, for all z ∈ D, then lk l

†
kG(z) = G(z) and G(z)r†krk = G(z) follow.

Consequently, we get F�1� = lk l
†
kGr†krk = G.

Lemma 12.4 Let F ∈ Sp×q(D). Then E := F(0) belongs to Kp×q and G := F�1�

fulfills G�−1;E� = F.

Proof Because of F ∈ Sp×q(D), we have E ∈ Kp×q . We consider an arbitrary
z ∈ D \ {0}. Denote by

[
a b
c d

]
the block representation of WE with p × p block a.

Proposition 7.7 then yields det(c(z)F(z) + d(z)) �= 0 and G(z) = [a(z)F(z) +
b(z)][c(z)F(z) + d(z)]−1. In particular, Remark C.1 shows that rank([c(z), d(z)]) =
q. Theorem 8.6 provides G ∈ Sp×q(D). Denote by

[ α β
γ δ

]
the block representation of

VE with p × p block α. Proposition 10.6 then yields det(γ (z)G(z)r†r + δ(z)) �=
0 and G�−1;E�(z) = [α(z)G(z)r†r + β(z)][γ (z)G(z)r†r + δ(z)]−1. In particu-
lar, Remark C.1 provides rank([γ (z), δ(z)]) = q. Regarding that Lemma 12.1

implies VE (z)WE (z) =
[

zll† zEQ
Oq×p z Iq

]
, we can thus apply Proposition C.2 to obtain

G�−1;E�(z) = [zll†F(z) + zEQ](z Iq)−1 = ll†F(z) + EQ. Regarding (5.2),
from Lemma D.3(a), we can infer ll†F(z) = F(z) − PE . Lemma A.16(d) yields
PE = EQ. Summarizing, we get G�−1;E�(z) = [F(z) − PE] + EQ = F(z).
In view of E ∈ Kp×q and G ∈ Sp×q(D), from Proposition 11.2 we see that
G�−1;E� ∈ Sp×q(D). Consequently, G�−1;E�, F ∈ [H(D)]p×q , so that the Identity
Theorem for holomorphic functions yields G�−1;E� = F .

Proposition 12.5 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0. Then ψ : Sp×q〈D;Mn,Qn〉 → Sp×q [D; (A[n]

j )0j=0] ∩ Sp×q〈D;Mn−1,

Qn−1〉 given byψ(G) :=G�−1;A[n]
0 � is a well-defined bijection with inverseψ−1 given

by ψ−1(F) = F�1� for all F ∈ Sp×q [D; (A[n]
j )0j=0] ∩ Sp×q〈D;Mn−1,Qn−1〉.

Proof According toLemma11.5, themappingψ iswell defined.Using Proposition 8.8
forκ = n and k = n,we see thatχ : Sp×q [D; (A[n]

j )0j=0]∩Sp×q〈D;Mn−1,Qn−1〉 →
Sp×q〈D;Mn,Qn〉givenbyχ(F) := F�1� is alsowell defined.ApplyingLemma12.3,
we get

(χ ◦ ψ)(G) = χ(ψ(G)) = χ(G�−1;A[n]
0 �) = G (12.2)

for allG ∈ Sp×q〈D;Mn,Qn〉. Consequently, the mappingψ is injective withψ−1 =
χ . We now consider an arbitrary F ∈ Sp×q [D; (A[n]

j )0j=0]∩Sp×q〈D;Mn−1,Qn−1〉.
Using Proposition 8.8 with κ = n and k = n, we see then that G := χ(F) belongs to
Sp×q〈D;Mn,Qn〉. Regarding F(0) = A[n]

0 , Lemma 12.4 yields ψ(G) = F . Thus,
ψ is also surjective.

Proposition 12.6 Let n ∈ N, let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0, and let k ∈ Z0,n−1. Thenψ : Sp×q [D; (A[k+1]

j )
n−(k+1)
j=0 ]∩Sp×q〈D;Mk,Qk〉 →
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Sp×q [D; (A[k]
j )n−k

j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉 given by ψ(G) :=G�−1;A[k]
0 � is a

well-defined bijection with inverse ψ−1 given by ψ−1(F) = F�1� for all F ∈
Sp×q [D; (A[k]

j )n−k
j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉.

Proof According to Proposition 11.6, the mapping ψ is well defined. Using
Proposition 8.9, we see that χ : Sp×q [D; (A[k]

j )n−k
j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉 →

Sp×q [D; (A[k+1]
j )

n−(k+1)
j=0 ] ∩ Sp×q〈D;Mk,Qk〉 given by χ(F) := F�1� is also well

defined. From Lemma 12.3, we get (12.2) for all G ∈ Sp×q [D; (A[k+1]
j )

n−(k+1)
j=0 ] ∩

Sp×q〈D;Mk,Qk〉. Therefore,ψ is injectivewithψ−1 = χ .We now consider an arbi-

trary F ∈ Sp×q [D; (A[k]
j )n−k

j=0] ∩ Sp×q〈D;Mk−1,Qk−1〉. Using Proposition 8.9, we

see then that G := χ(F) belongs toSp×q [D; (A[k+1]
j )

n−(k+1)
j=0 ] ∩ Sp×q〈D;Mk,Qk〉.

Regarding F(0) = A[k]
0 , Lemma 12.4 yieldsψ(G) = F . Thus,ψ is surjective as well.

Now we are able to prove a first parametrization of the solution set of the matricial
Schur problem, where we in particular use the notations introduced in Notations 4.11
and 6.1. Observe that the parameters still depend on the given data.

Theorem 12.7 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0. For all k ∈ Z0,n, letUk :=Sp×q [D; (A[k]

j )n−k
j=0]∩Sp×q〈D;Mk−1,Qk−1〉. Let

ψn : Sp×q〈D;Mn,Qn〉 → Un be defined byψn(G) :=G�−1;A[n]
0 �. In the case n ≥ 1,

for all k ∈ Z0,n−1, let furthermoreψk : Uk+1 → Uk be given byψk(G) :=G�−1;A[k]
0 �.

Then �n : Sp×q〈D;Mn,Qn〉 → Sp×q [D; (A j )
n
j=0] defined by �n(G) := (ψ0 ◦ψ1 ◦

· · · ◦ψn)(G) is a well-defined bijection with inverse �−1
n given by �−1

n (F) = F�n+1�

for all F ∈ Sp×q [D; (A j )
n
j=0].

Proof Since Notation 6.1 and Remark 8.2 show that Sp×q〈D;M−1,Q−1〉 =
Sp×q(D) is valid, from Definition 4.1 we see U0 = Sp×q [D; (A j )

n
j=0]. Accord-

ing to Proposition 12.5, the mapping ψn is well defined and bijective with inverse
ψ−1
n given by ψ−1

n (F) = F�1� for all F ∈ Un . If n = 0, then we have �n = ψn and
Un = Sp×q [D; (A j )

n
j=0], so that the proof is complete.

Now suppose n ≥ 1. We already know that there is an m ∈ Z1,n such that, for all
k ∈ Zm,n , the following statement holds true:

(Ik) The mapping ρk := ψk ◦ ψk+1 ◦ · · · ◦ ψn is a bijective mapping from
Sp×q〈D;Mn,Qn〉 onto Uk with inverse ρ−1

k fulfilling ρ−1
k (F) = F�n−k+1�

for all F ∈ Uk .

Taking into account Proposition 12.6, we see then that ρm−1 := ψm−1 ◦ ρm is a bijec-
tive mapping from Sp×q〈D;Mn,Qn〉 onto Um−1, where Definition 9.1 provides
ρ−1
m−1(F) = (ρ−1

m ◦ ψ−1
m−1)(F) = ρ−1

m (ψ−1
m−1(F)) = ρ−1

m (F�1�) = (F�1�)�n−m+1� =
F�n−m+2� for all F ∈ Um−1. Thus, we proved inductively that statement (Ik) holds
true for all k ∈ Z0,n . Consequently, because of �n = ρ0, we checked that �n is a
bijective mapping from Sp×q〈D;Mn,Qn〉 onto U0 with inverse mapping �−1

n ful-
filling �−1

n (F) = F�n+1� for all F ∈ U0. In view of U0 = Sp×q [D; (A j )
n
j=0], the

proof is complete.
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13 Description via Linear Fractional Transformation

In this section, we rewrite the result of Theorem 12.7 in form of a linear fractional
transformation of matrices. This enables us to construct a parametrization of the solu-
tion set of an arbitrary matricial Schur problem by parameters which are independent
of the given data.

Notation 13.1 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. Regard-

ing Remark 4.12 and Notation 10.5, then, for all n ∈ Z0,κ , let Vn :=Ve0Ve1 · · ·Ven .

Lemma 13.2 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0. Denote by

[
wn xn
yn zn

]
the block representation of Vn with p × p block wn.

Let �n : Sp×q〈D;Mn,Qn〉 → Sp×q [D; (A j )
n
j=0] be given as in Theorem 12.7. For

every choice of G ∈ Sp×q〈D;Mn,Qn〉 and z ∈ D, then det(yn(z)G(z) + zn(z)) �= 0
and

[�n(G)](z) = [wn(z)G(z) + xn(z)][yn(z)G(z) + zn(z)]−1.

Proof For all k ∈ Z0,n , let Uk and ψk be given as in Theorem 12.7. According to
Remark 4.12, we have e0, . . . , en ∈ Kp×q . In view of Notation 10.5, for all k ∈ Z0,n ,
we can thus define Uk :=VekVek+1 · · ·Ven . For all k ∈ Z0,n , let

[
sk tk
uk vk

]
be the block

representation of Uk with p × p block sk .
Part 1: In the proof of Theorem 12.7, we verified U0 = Sp×q [D; (A j )

n
j=0] and that,

for all k ∈ Z0,n , the mapping ρk :=ψk ◦ ψk+1 ◦ · · · ◦ ψn is a bijective mapping from
Sp×q〈D;Mn,Qn〉 onto Uk with inverse ρ−1

k fulfilling ρ−1
k (F) = F�n−k+1� for all

F ∈ Uk . Now we will work inductively.
Part 2: First we consider the function ρn . We set E := en . Then E ∈ Kp×q . By virtue
of Notation 4.11 and (5.1), we get moreover rn = r . Let G ∈ Sp×q〈D;Mn,Qn〉
and z ∈ D be arbitrarily chosen. In particular, then G ∈ Sp×q(D), accord-
ing to Notation 8.1. Regarding Un = VE , we can thus apply Proposition 10.6
to obtain det(un(z)G(z)r†nrn + vn(z)) �= 0 and G�−1;E�(z) = [sn(z)G(z)r†nrn +
tn(z)][un(z)G(z)r†nrn+vn(z)]−1.According toNotation 8.1,we haveQn ⊆ N (G(z)).
By virtue of Notation 6.1, we see thatN (rn) ⊆ Qn . Hence,N (rn) ⊆ N (G(z)), so that
Remark A.7(b) yields G(z)r†nrn = G(z). Consequently, det(un(z)G(z) + vn(z)) �= 0
and G�−1;E�(z) = [sn(z)G(z) + tn(z)][un(z)G(z) + vn(z)]−1 follow. Regarding that
Definition 4.7 yields E = A[n]

0 , summarizing we get

[ρn(G)](z) = [ψn(G)](z) = G�−1;A[n]
0 �(z) = G�−1;E�(z)

= [sn(z)G(z) + tn(z)][un(z)G(z) + vn(z)]−1.

If n = 0, then Un = Sp×q [D; (A j )
n
j=0] and �n = ρn as well as Vn = Un , so that

wn = sn , xn = tn , yn = un , zn = vn , which completes the proof in this case.
Part 3: Now suppose n ≥ 1. According to Part 2 of the proof, there exists an m ∈
Z0,n−1 such that, for all k ∈ Zm+1,n the following statement holds true:
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(I)k If G ∈ Sp×q〈D;Mn,Qn〉, then

det(uk(z)G(z) + vk(z)) �= 0 (13.1)

and

[ρk(G)](z) = [sk(z)G(z) + tk(z)][uk(z)G(z) + vk(z)]−1 (13.2)

for all z ∈ D.

We set E := em . Then E ∈ Kp×q . By virtue of Notation 4.11 and (5.1), we get
moreover rm = r . Let G ∈ Sp×q〈D;Mn,Qn〉 and z ∈ D be arbitrarily chosen.
In view of Part 1 of the proof, then H := ρm+1(G) belongs to Um+1. In partic-
ular, H ∈ Sp×q(D), according to Notation 8.1. Denoting by

[ α β
γ δ

]
the block

representation of VE with p × p block α, we can thus apply Proposition 10.6
to obtain det(γ (z)H(z)r†mrm + δ(z)) �= 0 and H �−1;E�(z) = [α(z)H(z)r†mrm +
β(z)][γ (z)H(z)r†mrm+δ(z)]−1. According to Notation 8.1, we haveQm ⊆ N (H(z)).
By virtue of Notation 6.1, we see that N (rm) ⊆ Qm . Hence, N (rm) ⊆ N (H(z)), so
that RemarkA.7(b) yields H(z)r†mrm = H(z). Consequently, det(γ (z)H(z)+δ(z)) �=
0 and H �−1;E�(z) = [α(z)H(z)+β(z)][γ (z)H(z)+δ(z)]−1. In particular,RemarkC.1
provides rank([γ (z), δ(z)]) = q. In view of (I)m+1, from Remark C.1 we can infer
rank([um+1(z), vm+1(z)]) = q. Taking additionally into account Um = VEUm+1, the
application of Proposition C.2 yields that (13.1) and (13.2) hold true for k = m as
well. Thus, we proved inductively that (I)k is fulfilled for all k ∈ Z0,n . Since �n = ρ0
and Vn = U0 are valid, now the assertions in the considered case n ≥ 1 follow
from (I)0.

Now we are able to prove a first variant of a reformulation of Theorem 12.7 in
form of a linear fractional transformation of matrices. We note that the parameters
still depend on the given data.

Theorem 13.3 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0. Denote by

[
wn xn
yn zn

]
the block representation of the matrix-valued function

Vn given by Notation 13.1 with p × p block wn. Then:

(a) If G ∈ Sp×q〈D;Mn,Qn〉, then det(yn(z)G(z) + zn(z)) �= 0 for all z ∈ D and
the function F : D → C

p×q defined by

F(z) := [wn(z)G(z) + xn(z)][yn(z)G(z) + zn(z)]−1

belongs toSp×q [D; (A j )
n
j=0].

(b) For all F ∈ Sp×q [D; (A j )
n
j=0], there exists a unique G ∈ Sp×q〈D;Mn,Qn〉

such that the function det(ynG+zn) does not vanish identically and that F admits
the representation F = (wnG + xn)(ynG + zn)

−1, namely G = F�n+1�.

Proof (a) Let G ∈ Sp×q〈D;Mn,Qn〉. Using Theorem 12.7 and the notations
therein, we see that �n(G) ∈ Sp×q [D; (A j )

n
j=0]. On the other hand, we know from
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Lemma 13.2 that det(yn(z)G(z) + zn(z)) �= 0 and [�n(G)](z) = F(z) hold true for
all z ∈ D.

(b) We consider an arbitrary F ∈ Sp×q [D; (A j )
n
j=0]. Because of Theorem 12.7,

there exists a unique G ∈ Sp×q〈D;Mn,Qn〉 such that �n(G) = F , namely G =
F�n+1�. From Lemma 13.2 we can infer then that det(yn(z)G(z) + zn(z)) �= 0 and
F(z) = [wn(z)G(z)+xn(z)][yn(z)G(z)+zn(z)]−1 hold true for all z ∈ D. It remains to
check that there is only one function G ∈ Sp×q〈D;Mn,Qn〉 such that det(ynG+ zn)
does not vanish identically and F = (wnG+ xn)(ynG+ zn)

−1 is fulfilled. To this end,
we assume that G̃ is an arbitrary function belonging to Sp×q〈D;Mn,Qn〉 such that
det(ynG̃ + zn) does not vanish identically and that F = (wnG̃ + xn)(ynG̃ + zn)

−1

holds true. By virtue of Lemma 13.2, then �n(G̃) = F = �n(G) follows. Since �n

is bijective, according to Theorem 12.7, we get finally G̃ = G = F�n+1�.

Now we are able to parametrize the set Sp×q [D; (A j )
n
j=0] by parameters which

are independent of the given data. We distinguish the following two cases:

(I) 1 ≤ dimMn and dimQn ≤ q − 1.
(II) dimMn = 0 or dimQn = q.

In the so-called non-degenerate case, which is a special case of case (I), we get imme-
diately a corresponding result:

Theorem 13.4 Let the assumptions of Theorem 13.3 be fulfilled whereMn = C
p and

Qn = {Oq×1} are supposed. Then both statements (a) and (b) in Theorem 13.3 hold
true with replacing the set Sp×q〈D;Mn,Qn〉 by the set Sp×q(D).

Proof Use Theorem 13.3 and Remark 8.2.

Now we turn our attention to case (I) in general:

Theorem 13.5 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0. Denote by

[
wn xn
yn zn

]
the block representation of the matrix-valued function

Vn given by Notation 13.1 with p × p block wn. Suppose that the linear sub-
spaces Mn of Cp and Qn of Cq given by Notation 6.1 are such that Mn �=
{Op×1} and Qn �= C

q . Let m := dimMn, let u1, u2, . . . , u p be an orthonormal
basis of Cp such that u1, u2, . . . , um is a basis of Mn, let U• := [u1, u2, . . . , u p],
and let U := [u1, u2, . . . , um]. Furthermore, let t := q − dimQn, let v1, v2, . . . , vq
be an orthonormal basis of C

q such that v1, v2, . . . , vt is a basis of Q⊥
n , let

V• := [v1, v2, . . . , vq ], and let V := [v1, v2, . . . , vt ]. For all S ∈ Sm×t (D), let
S� : D → C

p×q be defined by

S�(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(z), if m = p and t = q

[S(z), Op×(q−t)], if m = p and t < q[
S(z)

O(p−m)×q

]
, if m < p and t = q

[
S(z) Om×(q−t)

O(p−m)×t O(p−m)×(q−t)

]
, if m < p and t < q

. (13.3)
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Then:

(a) Let S ∈ Sm×t (D). Then det(yn(z)U•S�(z) + zn(z)V•) �= 0 for all z ∈ D and
F : D → C

p×q defined by

F(z) := [wn(z)U•S�(z) + xn(z)V•][yn(z)U•S�(z) + zn(z)V•]−1

belongs toSp×q [D; (A j )
n
j=0].

(b) For all F ∈ Sp×q [D; (A j )
n
j=0], there exists a unique S ∈ Sm×t (D) such that the

function det(ynU•S� + znV•) does not vanish identically and F = (wnU•S� +
xnV•)(ynU•S� + znV•)−1 holds true, namely S = U∗F�n+1�V .

Proof First observe thatU is the left p × m block ofU•, that V is the left q × t block
of V•, that U∗U = Im and V ∗V = It , and that the matrices U• and V• are unitary.
According to our assumptions, we can apply Lemma 8.4 withM = Mn andQ = Qn .

(a) Let G :=U•S�V ∗• . Regarding that V• is unitary, we have then

wn(z)G(z) + xn(z) = [wn(z)U•S�(z) + xn(z)V•]V ∗• (13.4)

and

yn(z)G(z) + zn(z) = [yn(z)U•S�(z) + zn(z)V•]V ∗• (13.5)

for all z ∈ D. By virtue of (13.3), we see thatG = USV ∗, so that Lemma 8.4(a) yields
G ∈ Sp×q〈D;Mn,Qn〉. Thus, we can apply Theorem 13.3(a) to get det(yn(z)G(z)+
zn(z)) �= 0 for all z ∈ D and that H : D → C

p×q defined by H(z) := [wn(z)G(z) +
xn(z)][yn(z)G(z) + zn(z)]−1 belongs to Sp×q [D; (A j )

n
j=0]. Taking additionally into

account (13.5) and (13.4), for all z ∈ D, then det(yn(z)U•S�(z) + zn(z)V•) �= 0 and
H(z) = F(z) follow. In particular, F ∈ Sp×q [D; (A j )

n
j=0].

(b) Let F ∈ Sp×q [D; (A j )
n
j=0]. According to Theorem 13.3(b), then there exists a

G ∈ Sp×q〈D;Mn,Qn〉 such that the function det(ynG + zn) does not vanish identi-
cally and that F = (wnG + xn)(ynG + zn)

−1 holds true. From Theorem 13.3(a), thus
det(yn(z)G(z)+zn(z)) �= 0 for all z ∈ D follows. Consequently, for all z ∈ D, we have
F(z) = [wn(z)G(z)+xn(z)][yn(z)G(z)+zn(z)]−1. According to Lemma8.4(b), there
exists an S ∈ Sm×t (D) such thatG = USV ∗. Taking additionally into account (13.3),
we can concludeU•S�V ∗• = G. Regarding thatV• is unitary, for all z ∈ D,wehave then
(13.4) and (13.5). For all z ∈ D, consequently, det(yn(z)U•S�(z) + zn(z)V•) �= 0 and
F(z) = [wn(z)U•S�(z) + xn(z)V•][yn(z)U•S�(z) + zn(z)V•]−1 follow. In particular,
det(ynU•S�+znV•) does not vanish identically and F = (wnU•S�+xnV•)(ynU•S�+
znV•)−1.

Now we consider an arbitrary S ∈ Sm×t (D) such that the function det(ynU•S� +
znV•) does not vanish identically and that F = (wnU•S� + xnV•)(ynU•S� + znV•)−1

holds true. Using part (a), we can infer then det(yn(z)U•S�(z) + zn(z)V•) �= 0
for all z ∈ D. Hence, for all z ∈ D, we have F(z) = [wn(z)U•S�(z) +
xn(z)V•][yn(z)U•S�(z)+zn(z)V•]−1. LetG :=U•S�V ∗• . Regarding that V• is unitary,
for all z ∈ D, we have then (13.4), (13.5), and, in particular, det(yn(z)G(z)+zn(z)) �=
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0, so that [wn(z)G(z) + xn(z)][yn(z)G(z) + zn(z)]−1 = F(z) follows. In particular,
det(ynG+zn) does not vanish identically and F = (wnG+xn)(ynG+zn)

−1. By virtue
of (13.3), we see G = USV ∗, so that Lemma 8.4(a) yields G ∈ Sp×q〈D;Mn,Qn〉.
Consequently, Theorem 13.3(b) provides G = F�n+1�, whereas Lemma 8.4(b) shows
that S = U∗GV . Thus, we obtain S = U∗F�n+1�V .

Now we turn our attention to case (II):

Theorem 13.6 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter sequence

(e j )
n
j=0 be such that Mn = {Op×1} or Qn = C

q . Denote by

[
wn xn
yn zn

]
the block

representation of Vn with p × p block wn. Then det zn(z) �= 0 for all z ∈ D and
Sp×q [D; (A j )

n
j=0] = {xnz−1

n }.
Proof Using Remark 8.3 and the notations therein, we can inferSp×q〈D;Mn,Qn〉 =
{θp×q}. Thus, the application of Theorem 13.3 completes the proof.

14 Recovering the Taylor Coefficients from the Schur–Potapov
Parameters

We reconsider in this section a topic which was already a central theme of Issai Schur
in [28, §2] when he studied complex-valued holomorphic functions bounded by 1. Our
main goal is to prove a parametrization of an arbitrarily given matricial Schur function
by its SP-parameter sequence. In the context of the special case of non-degenerate
p × q Schur sequences, the topic of this section was also handled in [11, Sec. 3.8]. In
particular, [11, Prop. 3.8.1, Thm. 3.8.1, and Prop. 3.8.5] should be considered.We note
that several results of [11, Sec. 3.8] could be obtained by applying relations between
p×q Schur functions and non-negative Hermitian (p + q) × (p + q)Borel measures
on the unit circle. Especially, the SP-algorithm is closely related to the Szegő recursion
formulas for these non-negative Hermitian (p + q) × (p + q) measures. It should be
mentioned that even in the context of complex Hilbert spaces, Constantinescu [9]
also constructed a Schur-type algorithm in order to parametrize contractive operator
matrices of the type Sn given by (2.2).

First we want to give a parametrization of an arbitrary given p × q Schur sequence
by its SP-parameter sequence. With this in mind, we introduce the following notation.

Notation 14.1 Let (e j )κj=0 be a sequence of contractive complex p × q matrices. Then
let L−1 := Ip and R−1 := Iq . Furthermore, for all j ∈ Z0,κ , regarding Remark 4.12,
let

L j :=
√
l0
√
l1 · · ·

√
l j and R j := √

r j · · · √r1
√
r0.

In the sequel, the sequence (e j )
κ
j=0 of contractive complex p × q matrices mainly

arises as the SP-parameter sequence of a p × q Schur sequence.
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Notation 14.2 (cf. [11, p. 181]) Let �0, μ0 : Kp×q → C
p×q be defined by

�0(e0) := e0 and μ0(e0) := Op×q , respectively. For allm ∈ N, let �m, μm : Km+1
p×q →

C
p×q be recursively defined by

�m(e0, e1, . . . , em) := μm−1(e0, . . . , em−1) + Lm−1emRm−1 (14.1)

and

μm(e0, e1, . . . , em) :=
√
l0μm−1(e1 . . . , em)

√
r0

−
m∑

�=1

√
l0�m−�(e1, . . . , em−�+1)

√
r0

†
e∗0��(e0, . . . , e�). (14.2)

Now we are able to describe how an arbitrary p × q Schur sequence can be recov-
ered from its SP-parameters.

Theorem 14.3 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For all

k ∈ Z0,κ , then Ak = �k(e0, . . . , ek).

Proof First observe that Remark 4.12 shows e j ∈ Kp×q for all j ∈ Z0,κ . According

to Definitions 4.7 and 4.1, we have e0 = A[0]
0 = A0. In particular, A0 ∈ Kp×q .

Regarding (2.5), hence Remark A.17(a) shows l0 ∈ C
p×p
� and r0 ∈ C

q×q
� . Thus, we

can apply Remark A.10(d) to obtain with (2.5) then

− √
r0

†A∗
0A0 + √

r0
† = √

r0
†
(Iq − A∗

0A0) = √
r0

†r0 = √
r0. (14.3)

According to Notation 14.2, we have �0(e0) = e0 = A0.
Now assume κ ≥ 1. According to Notations 14.2 and 14.1, and Definition 4.7, we

have

�1(e0, e1) = L0e1R0 + μ0(e0) =
√
l0A

[1]
0

√
r0. (14.4)

Remark 3.3 yields (A j )
κ
j=0 ∈ KNp×q;κ . Thus, we can apply Lemma 5.22 to obtain

S̊
[1]
0 [−〈〈√r0

†A∗
0〉〉1S1 + 〈〈√r0

† + Q0〉〉1] = 〈〈√l0
†〉〉1S1 − 〈〈√l0

†
A0〉〉1. Comparing the

lower left p × q block on both sides, in view of (2.2), and (3.2), then

[A[1]
0 , Op×q ]

[−√
r0

†A∗
0A0 + (

√
r0

† + Q0)

−√
r0

†A∗
0A1

]
= √l0†A1 (14.5)

follows. Remark 3.3 yields (A j )
κ
j=0 ∈ KRNp×q;κ . Thus, from Remark 3.22 we can

infer N (r0) ⊆ N (A[1]
0 ). In view of (2.11), hence A[1]

0 Q0 = O . Taking addition-

ally into account (14.3), from (14.5) we get then A[1]
0

√
r0 = √

l0
†
A1. Remark 3.3

yields (A j )
κ
j=0 ∈ KR p×q;κ . From Notation 3.1 we then seeR(A1) ⊆ R(l0). Hence,

Remark A.7(a) provides l0l
†
0 A1 = A1. Since Remark A.10(c) shows l0l

†
0 = √

l0
√
l0
†
,
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we obtain
√
l0A

[1]
0

√
r0 = √

l0
√
l0
†
A1 = l0l

†
0 A1 = A1. Comparing this with (14.4)

and regarding Remark 4.14, then �1(e0, e1) = A1 follows.
Now assume κ ≥ 2 and that there exists n ∈ Z1,κ−1 such that for all m ∈ Z0,n the

following statement holds true:

(Im) For each (Bj )
m
j=0 ∈ Sp×q;m with SP-parameter sequence (p j )

m
j=0, the identity

Bk = �k(p0, . . . , pk) is valid for all k ∈ Z0,m .

From Remark 4.9 we know that (A j )
n
j=0 belongs to Sp×q;n and has SP-parameter

sequence (e j )
n
j=0, so that (In) yields

Ak = �k(e0, . . . , ek) for all k ∈ Z0,n . (14.6)

Remark 4.8 shows that (A[1]
j )κ−1

j=0 belongs toSp×q;κ−1 and has SP-parameter sequence

(e j+1)
κ−1
j=0. According to Remark 4.9, then (A[1]

j )nj=0 belongs to Sp×q;n and has SP-
parameter sequence (e j+1)

n
j=0, so that (In) yields

A[1]
k = �k(e1, . . . , ek+1) for all k ∈ Z0,n . (14.7)

By virtue of (14.1) and Notations 14.1 and 4.11, we see �n(e1, . . . , en+1) =√
l1 · · · √lnen+1

√
rn · · · √r1+μn−1(e1, . . . , en). In view of (14.7) and Notation 14.1,

then
√
l0A

[1]
n

√
r0 = Lnen+1Rn + √

l0μn−1(e1, . . . , en)
√
r0 follows. Since (14.1)

shows �n+1(e0, e1, . . . , en+1) = Lnen+1Rn + μn(e0, e1, . . . , en), we can thus con-
clude �n+1(e0, e1, . . . , en+1) − √

l0A
[1]
n

√
r0 = μn(e0, e1, . . . , en) − √

l0μn−1(e1,

. . . , en)
√
r0. By virtue of (14.2), then �n+1(e0, e1, . . . , en+1) − √

l0A
[1]
n

√
r0 =

−∑n
�=1

√
l0�n−�(e1, . . . , en−�+1)

√
r0

†e∗0��(e0, . . . , e�) follows. Using (14.7) and

(14.6),we thus get�n+1(e0, e1, . . . , en+1)−√
l0A

[1]
n

√
r0 = −∑n

�=1

√
l0A

[1]
n−�

√
r0

†e∗0
A�. Taking additionally into account e0 = A0, we can conclude

�n+1(e0, e1, . . . , en+1) =
√
l0A

[1]
n

√
r0 −

n∑
�=1

√
l0A

[1]
n−�

√
r0

†A∗
0A�. (14.8)

Regarding (A j )
κ
j=0 ∈ KNp×q;κ , we can apply Lemma 5.22 to obtain

S̊
[1]
n [−〈〈√r0

†A∗
0〉〉n+1Sn+1 + 〈〈√r0

† + Q0〉〉n+1] = 〈〈√l0
†〉〉n+1Sn+1 − 〈〈√l0

†
A0〉〉n+1.

Comparing the lower left p × q block on both sides, in view of (2.2), and (3.2), then

[A[1]
n , A[1]

n−1, . . . , A
[1]
0 , Op×q ]

⎡
⎢⎢⎢⎢⎢⎢⎣

−√
r0

†A∗
0A0 + (

√
r0

† + Q0)

−√
r0

†A∗
0A1

...

−√
r0

†A∗
0An

−√
r0

†A∗
0An+1

⎤
⎥⎥⎥⎥⎥⎥⎦

= √l0†An+1

(14.9)
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follows. Regarding (A j )
κ
j=0 ∈ KRNp×q;κ , Remark 3.22 yields N (r0) ⊆ N (A[1]

n ).

In view of (2.11), hence A[1]
n Q0 = O . Taking additionally into account (14.3),

from (14.9) we get then A[1]
n

√
r0 − ∑n

�=1 A
[1]
n−�

√
r0

†A∗
0A� = √

l0
†
An+1. Regard-

ing (A j )
κ
j=0 ∈ KR p×q;κ , from Notation 3.1 we see R(An+1) ⊆ R(l0). Hence,

Remark A.7(a) provides l0l
†
0 An+1 = An+1. Since l0l

†
0 = √

l0
√
l0
†
, we obtain

√
l0
(
A[1]
n

√
r0 −

n∑
�=1

A[1]
n−�

√
r0

†A∗
0A�

)
= √l0

√
l0
†
An+1 = l0l

†
0 An+1 = An+1.

Comparing thiswith (14.8) and regardingRemark4.14, then�n+1(e0, e1, . . . , en+1) =
An+1 follows.

In view of Theorem 14.3 and the following corollary, it should be mentioned that
an operator version for parametrizing lower triangular block Toeplitz contractions was
worked out by Constantinescu. This was a far-reaching generalization of an idea of
Schur [28, §2]. In particular, he obtained an operator version (see [9, Theorems 2.1
and 2.3]) of the following result:

Corollary 14.4 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence

(e j )
κ
j=0. For all j ∈ Z1,κ , then A j = μ j−1(e0, . . . , e j−1) + L j−1e jR j−1.

Proof Regarding (14.1), this is an immediate consequence of Theorem 14.3.

Corollary 14.5 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0 and let

k ∈ Z0,κ . For all � ∈ Z0,κ−k , then A[k]
� = ��(ek, . . . , ek+�).

Proof Consider an arbitrary � ∈ Z0,κ−k . Remark 4.8 shows that (A[k]
j )κ−k

j=0 belongs

to Sp×q;κ−k and has SP-parameter sequence (e j+k)
κ−k
j=0. Thus, we can apply Theo-

rem 14.3 to obtain A[k]
� = ��(e0+k, . . . , e�+k).

Corollary 14.6 Let (e j )
κ
j=0 ∈ Ep×q;κ . For every choice of n ∈ Z0,κ , k ∈ Z0,n, and

� ∈ Z0,k , then Dn,k;� = ��(en−k, . . . , en−k+�), where (Dn,k; j )kj=0 is given via Nota-
tion 6.12.

Proof Consider an arbitrary n ∈ Z0,κ . According to Notation 6.2, then (e j )
n
j=0 is

a sequence of contractive complex p × q matrices. Thus, we can apply Proposi-
tion 6.14, to see that (A j )

n
j=0 := (Dn,n; j )nj=0 belongs toSp×q;n . Theorem 6.20 shows

that (e j )nj=0 is the SP-parameter sequence of (A j )
n
j=0. Consider an arbitrary k ∈ Z0,n .

The application of Proposition 6.19 to the sequence (A j )
n
j=0 then yields (Dn,k; j )kj=0 =

(A[n−k]
j )kj=0. The application of Corollary 14.5 to the sequence (A j )

n
j=0 provides

A[m]
� = ��(em, . . . , em+�) for every choice of m ∈ Z0,n and � ∈ Z0,n−m . Choosing

m = n−k, for all � ∈ Z0,k , we thus obtain Dn,k;� = A[n−k]
� = ��(en−k, . . . , en−k+�).
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Proposition 14.7 Let (e j )κj=0 ∈ Ep×q;κ and let k ∈ Z0,κ . Then (� j (ek, . . . , ek+ j ))
κ−k
j=0∈ Sp×q;κ−k .

Proof Consider an arbitrary n ∈ Z0,κ−k . The application of Corollary 14.6 yields
Dn+k,n;� = ��(ek, . . . , ek+�) for all � ∈ Z0,n . From Notation 6.2 we see that (e j )

n+k
j=0

is a sequence of contractive complex p × q matrices. Thus, we can apply Propo-
sition 6.14, to see that (Dn+k,n; j )nj=0 belongs to Sp×q;n . Summarizing, we obtain
(� j (ek, . . . , ek+ j ))

n
j=0 = (Dn+k,n; j )nj=0 ∈ Sp×q;n for all n ∈ Z0,κ−k , implying

(� j (ek, . . . , ek+ j ))
κ−k
j=0 ∈ Sp×q;κ−k .

Remark 14.8 In view of Proposition 14.7, the mapping ψp×q;κ : Ep×q;κ → Sp×q;κ
defined by ψp×q;κ((e j )

κ
j=0) := (� j (e0, . . . , e j ))

κ
j=0 is well defined.

Now we obtain a useful parametrization of the setSp×q;κ .
Theorem 14.9 Let φp×q;κ : Sp×q;κ → Ep×q;κ be defined by φp×q;κ((A j )

κ
j=0) :=

(e j )
κ
j=0, where (e j )

κ
j=0 is the SP-parameter sequence of (A j )

κ
j=0, and let ψp×q;κ :

Ep×q;κ → Sp×q;κ be defined by ψp×q;κ((e j )
κ
j=0) := (� j (e0, . . . , e j ))

κ
j=0, where � j

is given via Notation 14.2. Then φp×q;κ and ψp×q;κ are well defined, bijective, and
mutual inverses.

Proof According to Remarks 6.11 and 14.8, the mappings φp×q;κ andψp×q;κ are well
defined.

In order to check thatψp×q;κ◦φp×q;κ = idSp×q;κ , we consider an arbitrary sequence
(A j )

κ
j=0 ∈ Sp×q;κ . Then φp×q;κ((A j )

κ
j=0) is the SP-parameter sequence (e j )

κ
j=0 of

(A j )
κ
j=0 and belongs to Ep×q;κ Theorem 14.3 yields Ak = �k(e0, . . . , ek) for all

k ∈ Z0,κ . Therefore, we conclude

ψp×q;κ(φp×q;κ((A j )
κ
j=0)) = ψp×q;κ((e j )

κ
j=0) = (� j (e0, . . . , e j ))

κ
j=0 = (A j )

κ
j=0.

Consequently, ψp×q;κ ◦ φp×q;κ = idSp×q;κ .
In order to check that φp×q;κ ◦ ψp×q;κ = idEp×q;κ , we consider an arbitrary

sequence (e j )
κ
j=0 ∈ Ep×q;κ . Then (A j )

κ
j=0 := ψp×q;κ((e j )

κ
j=0) belongs to Sp×q;κ .

Denote by (p j )
κ
j=0 the SP-parameter sequence of (A j )

κ
j=0. Consider an arbitrary

n ∈ Z0,κ . Remark 4.9 then shows that (A j )
n
j=0 belongs to Sp×q;n and has SP-

parameter sequence (p j )
n
j=0. Using the given notation for κ = n, we have then

(p j )
n
j=0 = φp×q;n((A j )

n
j=0) by definition. According to the definition of (A j )

κ
j=0 and

ψp×q;κ , we have Ak = �k(e0, . . . , ek) for all k ∈ Z0,κ . Regarding (e j )
κ
j=0 ∈ Ep×q;κ ,

form Notation 6.2 we infer (e j )
n
j=0 ∈ Ep×q;n . Thus, we can use Corollary 6.15 and

the notation therein as well as Corollary 14.6 to see that (Bj )
n
j=0 := χp×q;n((e j )nj=0)

belongs to Sp×q;n and fulfills B� = Dn,n;� = ��(e0, . . . , e�) for all � ∈ Z0,n . Con-
sequently, we conclude A j = Bj for all j ∈ Z0,n . Because of Theorem 6.20, we
have φp×q;n((Bj )

n
j=0) = φp×q;n(χp×q;n((e j )nj=0)) = (e j )

n
j=0. Summarizing, we

obtain (p j )
n
j=0 = φp×q;n((A j )

n
j=0) = φp×q;n((Bj )

n
j=0) = (e j )

n
j=0. Since n ∈ Z0,κ

was arbitrarily chosen, then (p j )
κ
j=0 = (e j )

κ
j=0, i. e., (e j )

κ
j=0 is the SP-parameter

sequence of (A j )
κ
j=0. Taking additionally into account the definition of (A j )

κ
j=0

and φp×q;κ , we get φp×q;κ(ψp×q;κ((e j )
κ
j=0)) = φp×q;κ((A j )

κ
j=0) = (e j )

κ
j=0. Thus,

φp×q;κ ◦ ψp×q;κ = idEp×q;κ is proved as well.
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Corollary 14.10 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. Then

A j = Op×q for all j ∈ Z0,κ if and only if e j = Op×q for all j ∈ Z0,κ .

Proof If A j = Op×q for all j ∈ Z0,κ , then, from Definition 4.7 and Example 4.5,

we can infer e j = A[ j]
0 = Op×q for all j ∈ Z0,κ . Taking additionally into account

Theorem 14.9, thus the asserted equivalence follows.

Corollary 14.11 Let (A j )
κ
j=0 ∈ Sp×p;κ with SP-parameter sequence (e j )

κ
j=0. Then

(A∗
j )

κ
j=0 = (A j )

κ
j=0 if and only if (e∗j )κj=0 = (e j )

κ
j=0.

Proof Using the notation given in Theorem 14.9, we have φp×q;κ((A j )
κ
j=0) =

(e j )
κ
j=0. Lemma 4.10 shows that (A∗

j )
κ
j=0 belongs to Sq×p;κ and has SP-parameter

sequence (e∗j )κj=0. Hence, φp×q;κ((A∗
j )

κ
j=0) = (e∗j )κj=0. Taking additionally into

account that Theorem 14.9, in particular, implies that φp×q;κ is injective, the asserted
equivalence follows.

Now we obtain a main result of this paper. We draw the reader’s attention to the
particular result σp×q(Sp×q(D)) = Ep×q;∞.

Theorem 14.12 Let σp×q : Sp×q(D) → Ep×q;∞ be defined by σp×q(F) := (γ j )
∞
j=0,

where (γ j )
∞
j=0 is the SP-parameter sequence of F. Then σp×q is well defined and

bijective.

Proof Using Theorems D.2 and 14.9, and the notations given there, we see that
τp×q : Sp×q(D) → Sp×q;∞ and φp×q;∞ : Sp×q;∞ → Ep×q;∞ are well defined
bijections. Furthermore, Proposition 9.7 provides σp×q = φp×q;∞ ◦ τp×q .

15 An Extension Problem inSp×q;�

In this section, we are going to show how the preceding considerations can be used to
get a description of the set

An+1 := {An+1 ∈ C
p×q : (A j )

n+1
j=0 ∈ Sp×q;n+1},

where n ∈ N0 and (A j )
n
j=0 ∈ Sp×q;n are arbitrarily given. Parametrizations of An+1

are already given in [9], [14, Part I, Thm. 1], [10, Thm. 8], and [11, Thm. 3.5.1]. We
will develop an explicit connection between the parameters used in [11, Thm. 3.5.1]
and the Schur–Potapov parameters introduced in Definition 4.7. Recall that Kp×q

stands for the set of all contractive complex p × q matrices. In [30], Yu. L. Shmul’yan
worked out the theory of operator balls. In the following, we use some of that results
in the special case of complex matrices.

Notation 15.1 The setK(M; A, B) := {M+AK B : K ∈ Kp×q} signifies the (closed)
matrix ball with center M , left semi-radius A, and right semi-radius B with respect to
arbitrarily given matrices M ∈ C

p×q , A ∈ C
p×p, and B ∈ C

q×q .

Note that Corollary 14.4 can be interpreted in the sense that A j belongs to the
matrix ball K(μ j−1(e0, . . . , e j−1);L j−1,R j−1).
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Theorem 15.2 (cf. [28], [11, Lem. 3.3.1, Thm. 3.5.1], Lemma A.15) Let n ∈ N0 and
let (A j )

n
j=0 ∈ Sp×q;n. In view of (2.4), (2.5), (2.7), and (2.8), then ln and rn are

non-negative Hermitian and An+1 = K(mn;√
ln,

√
rn).

Corollary 15.3 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n. Then mn ∈ An+1. In particular,

there exists a sequence (Ak)
∞
k=n+1 of complex p × q matrices such that (A j )

∞
j=0 ∈

Sp×q;∞.

Proof This is a consequence of Theorem 15.2 and Notation 15.1.

Definition 15.4 (see also [11, Def. 3.5.1]) If (A j )
κ
j=0 ∈ Sp×q;κ , then the sequence

(k j )
κ
j=0 given by k0 := A0 and by k j :=

√
l j−1

†
(A j − m j−1)

√
r j−1

† for all j ∈ Z1,κ
is called the choice sequence corresponding to (A j )

κ
j=0.

Proposition 15.5 (cf. [11, Thm. 3.5.1], Lemma A.15) Let (A j )
κ
j=0 ∈ Sp×q;κ with

choice sequence (k j )
κ
j=0. For all j ∈ Z0,κ , then k j ∈ Kp×q . Furthermore, A0 = k0

and A j = m j−1 +√l j−1k j
√
r j−1 for all j ∈ Z1,κ .

Notation 15.6 LetCp×q;κ be the set of all sequences (k j )
κ
j=0 of complex p × q matri-

ces which fulfill k j ∈ Kp×q as well as R(k j ) ⊆ R(l j−1) and N (r j−1) ⊆ N (k j ) for
all j ∈ Z0,κ .

Proposition 15.7 Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0. Then

(k j )
κ
j=0 ∈ Cp×q;κ .

Proof Proposition 15.5 yields k j ∈ Kp×q for all j ∈ Z0,κ . In view of (2.5), clearly
R(k0) ⊆ R(l−1) and N (r−1) ⊆ N (k0) hold true. Now assume that κ ≥ 1 and
let j ∈ Z1,κ . Then, by virtue of Definition 15.4 and Remarks A.9 and A.10(a),

we can conclude R(k j ) ⊆ R(
√
l j−1

†
) ⊆ R(

√
l j−1) = R(l j−1) and N (r j−1) =

N (
√
r j−1) ⊆ N (

√
r j−1

†) ⊆ N (k j ). Thus, by virtue of Notation 15.6, we get
(k j )

κ
j=0 ∈ Cp×q;κ .

Remark 15.8 Let (e j )κj=0 be a sequence of complex p × q matrices. In view of Nota-

tions 6.1 and 4.11 and Remarks A.1 and A.2, for all j ∈ Z−1,κ , then M⊥
j =∑ j

�=0 N (l�) and Q⊥
j =⋂ j

�=0 R(r�).

Now we turn our attention to interesting relations between the matrices introduced
in Notation 14.1 and the linear subspaces introduced in Notation 6.1.

Proposition 15.9 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For

each j ∈ Z−1,κ , then

N (L j ) = M⊥
j and R(R j ) = Q⊥

j . (15.1)

Proof Our proof works inductively. According to Notations 14.1 and 6.1, we have
N (L−1) = {Op×1} = M⊥−1 and R(R−1) = C

q = Q⊥−1. Now assume that m ∈
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Z−1,κ−1 and that (15.1) is valid for all j ∈ Z−1,m . Remark 4.12 shows lm+1 ∈ C
p×p
�

and rm+1 ∈ C
q×q
� . We first prove that

N (Lm) ⊆ N (Ip −√lm+1) and R(Iq − √
rm+1) ⊆ R(Rm). (15.2)

We consider an arbitrary x ∈ N (Lm). According to (15.1) for j = m, then x ∈ M⊥
m .

Proposition 6.10 and Notation 6.2 provideR(em+1) ⊆ Mm . Because of Remark A.2,
then M⊥

m ⊆ N (e∗m+1), so that e∗m+1x = O follows. In view of Notation 4.11, hence

lm+1x = x . Using Remark A.13, we conclude
√
lm+1x = x . Consequently, x ∈

N (Ip − √lm+1). Thus, N (Lm) ⊆ N (Ip − √lm+1) is proved. We now consider an
arbitrary y ∈ R(Rm)⊥. According to (15.1) for j = m, then y ∈ Qm . Proposition 6.10
and Notation 6.2 provide Qm ⊆ N (em+1), so that em+1y = O follows. In view of
Notation 4.11, hence rm+1y = y. Using Remark A.13, we conclude

√
rm+1y = y.

Consequently, y ∈ N (Iq − √
rm+1). Thus, R(Rm)⊥ ⊆ N (Iq − √

rm+1) is checked.
Applying Remark A.2, we get then

R(Iq − √
rm+1) = R((Iq − √

rm+1)
∗) = N (Iq − √

rm+1)
⊥ ⊆ R(Rm).

Hence, (15.2) is proved. Thus, we can apply Lemmas B.2 and B.3 to obtainN (Lm)+
N (
√
lm+1) = N (Lm

√
lm+1) and R(

√
rm+1) ∩ R(Rm) = R(

√
rm+1Rm). Using

Remark A.10(a), we can infer N (
√
rm+1) = N (rm+1) and R(

√
lm+1) = R(lm+1).

Thus, since (15.1) holds true for j = m, from Notation 14.1 and Remark 15.8 we can
concludeN (Lm+1) = N (Lm

√
lm+1) = N (Lm) +N (

√
lm+1) = M⊥

m +N (lm+1) =
M⊥

m+1 andR(Rm+1) = R(
√
rm+1Rm) = R(

√
rm+1)∩R(Rm) = R(rm+1)∩Q⊥

m =
Q⊥

m+1. Thus, the assertion is inductively proved.

Corollary 15.10 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. In view

of Notations 14.1 and 6.4, for each j ∈ Z−1,κ , then L†
jL j = M jM

†
j and R jR

†
j =

Q†
jQ j .

Proof We consider an arbitrary j ∈ Z−1,κ . Using Remarks A.6 and A.2 as well as
Proposition 15.9 and Lemma 6.9, we have then L†

jL j = PR(L∗
j )

= PN (L j )
⊥ =

PM j = PR(M j ) = M jM
†
j and R jR

†
j = PR(R j ) = PQ⊥

j
= PN (Q j )

⊥ = PR(Q∗
j )

=
Q†

jQ j .

Notation 15.11 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. Then,

in view of Notations 14.1, 3.8 and 4.13, for every choice of n ∈ Z0,κ and k ∈ Z0,n , let

W•,n;k := 〈〈Lk−1〉〉n−kW
[k]
n−k〈〈L†

k〉〉n−k + 〈〈Ip − LkL
†
k〉〉n−k

and

Y•,n;k := 〈〈R†
k〉〉n−kY

[k]
n−k〈〈Rk−1〉〉n−k + 〈〈Iq − R†

kRk〉〉n−k .
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Lemma 15.12 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0, let n ∈

Z0,κ , and let k ∈ Z0,n. ThenW•,n;k is a block Toeplitz matrix belonging toLp,n−k and
Y•,n;k is a block Toeplitz matrix belonging to Lq,n−k . In particular, detW•,n;k = 1
and detY•,n;k = 1.

Proof Denote by (Bj )
κ−k
j=0 the k-th right SP-transform of (A j )

κ
j=0. According to

Remark 4.2, we have (Bj )
κ−k
j=0 ∈ Sp×q;κ−k . Hence, Remark 3.3 yields (Bj )

κ−k
j=0 ∈

Kp×q;κ−k . In view of Definition 3.4, Remark 4.14, and Notation 14.1, we have

Lk−1WB;0 = Lk−1

√
l[k]0 = Lk−1

√
lk = Lk (15.3)

and

YB;0Rk−1 =
√
r [k]
0 Rk−1 = √

rkRk−1 = Rk . (15.4)

Consequently, Lk−1WB;0L†
k + (Ip −LkL

†
k) = Ip andR

†
kYB;0Rk−1+ (Iq −R†

kRk) =
Iq . Regarding Notations 15.11, 4.13, 3.8 and A.18, (3.2), and (2.2), thus the assertions
follow.

The next result indicates a connection between the matrices introduced in Nota-
tion 14.1 and the k-th right SP-transform of a p × q Schur sequence.

Lemma 15.13 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0 and let

k ∈ Z0,κ . Denote by (Bj )
κ−k
j=0 the k-th right SP-transform of (A j )

κ
j=0. For all j ∈

Z0,κ−k , then N (Lk) ⊆ N (Lk−1WB; j ) and R(YB; jRk−1) ⊆ R(Rk).

Proof. As in the proof of Lemma 15.12, we can obtain (Bj )
κ−k
j=0 ∈ Kp×q;κ−k as well

as (15.3) and (15.4), implying triviallyN (Lk) ⊆ N (Lk−1WB;0) andR(YB;0Rk−1) ⊆
R(Rk). Now suppose κ − k ≥ 1 and consider an arbitrary j ∈ Z1,κ−k . In view of
Definition 4.7, we have B0 = ek . Therefore, Corollary 6.7 shows that there exists
Mk ∈ C

p×q such that B0 = Mk−1MkQk−1. Using Remark A.8, from Notation 6.4
we can infer M∗

k−1

√
lk
† = M∗

k and
√
rk

†Q∗
k−1 = Q∗

k . Regarding Definition 3.4 and
Remark 4.14, we can conclude then

WB; j = −Bj B
∗
0

√
l[k]0

†

= −BjQ
∗
k−1M

∗
kM

∗
k−1

√
lk
† = −BjQ

∗
k−1M

∗
kM

∗
k

and

YB; j = −
√
r [k]
0

†

B∗
0 Bj = −√

rk
†
Q∗

k−1M
∗
kM

∗
k−1Bj = −Q∗

kM
∗
kM

∗
k−1Bj .

In particular, N (M∗
k) ⊆ N (WB; j ) and R(YB; j ) ⊆ R(Q∗

k) follow. Proposition 15.9
shows N (Lk) = M⊥

k and R(Rk) = Q⊥
k , whereas Lemma 6.9 provides R(Mk) =

Mk and N (Qk) = Qk . Using additionally Remark A.2, we get then

N (Lk) = M⊥
k = R(Mk)

⊥ = N (M∗
k) ⊆ N (WB; j ) ⊆ N (Lk−1WB; j )
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and

R(YB; jRk−1) ⊆ R(YB; j ) ⊆ R(Q∗
k) = N (Qk)

⊥ = Q⊥
k = R(Rk).

Lemma 15.14 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0, let

n ∈ Z0,κ , and let k ∈ Z0,n. Then W•,n;k〈〈Lk〉〉n−k = 〈〈Lk−1〉〉n−kW
[k]
n−k and

〈〈Rk〉〉n−kY•,n;k = Y[k]
n−k〈〈Rk−1〉〉n−k .

Proof. Denote by (Bj )
κ−k
j=0 the k-th right SP-transform of (A j )

κ
j=0. For all j ∈ Z0,κ−k ,

then Lemma 15.13 shows N (Lk) ⊆ N (Lk−1WB; j ) and R(YB; jRk−1) ⊆ R(Rk),

so that Remark A.7 yields Lk−1WB; jL†
kLk = Lk−1WB; j and RkR

†
kYB; jRk−1 =

YB; jRk−1. Regarding, (3.2) and (2.2), hence 〈〈Lk−1〉〉n−kSWB ;n−k〈〈L†
kLk〉〉n−k =

〈〈Lk−1〉〉n−kSWB ;n−k and 〈〈RkR
†
k〉〉n−kSYB ;n−k〈〈Rk−1〉〉n−k = SYB ;n−k〈〈Rk−1〉〉n−k fol-

low. According to Notations 3.8 and 4.13, we have SWB ;n−k = W[k]
n−k and SYB ;n−k =

Y[k]
n−k . Using additionally Notation 15.11, Remark A.24(b), and (2.1), we obtain

W•,n;k〈〈Lk〉〉n−k = 〈〈Lk−1〉〉n−kW
[k]
n−k〈〈L†

kLk〉〉n−k + 〈〈(Ip − LkL
†
k)Lk〉〉n−k

= 〈〈Lk−1〉〉n−kSWB ;n−k〈〈L†
kLk〉〉n−k = 〈〈Lk−1〉〉n−kW

[k]
n−k

and

〈〈Rk〉〉n−kY•,n;k = 〈〈RkR
†
k〉〉n−kY

[k]
n−k〈〈Rk−1〉〉n−k + 〈〈Rk(Iq − R†

kRk)〉〉n−k

= 〈〈RkR
†
k〉〉n−kSYB ;n−k〈〈Rk−1〉〉n−k = Y[k]

n−k〈〈Rk−1〉〉n−k .

Lemma 15.15 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence

(e j )
κ
j=0, let n ∈ Z1,κ , and let k ∈ Z0,n−1. Then

〈〈Lk−1〉〉n−k L
[k]
n−k〈〈L∗

k−1〉〉n−k

= W•,n;k diag
(
LkL

∗
k , 〈〈Lk〉〉n−k−1L

[k+1]
n−k−1〈〈L∗

k〉〉n−k−1

)
W∗

•,n;k (15.5)

and

〈〈R∗
k−1〉〉n−k R

[k]
n−k〈〈Rk−1〉〉n−k

= Y∗
•,n;k diag

(
〈〈R∗

k〉〉n−k−1R
[k+1]
n−k−1〈〈Rk〉〉n−k−1,R

∗
kRk

)
Y•,n;k . (15.6)

Proof According to Remark 4.2, we have (A[k]
j )κ−k

j=0 ∈ Sp×q;κ−k . Hence, Remark 3.3

yields (A[k]
j )κ−k

j=0 ∈ KRNp×q;κ−k . Regarding Notation 4.13 and Definition 4.1, we

can thus apply Propositions 3.23 and 3.26 to the sequence (A[k]
j )κ−k

j=0 to obtain L [k]
n−k =
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W[k]
n−k diag(Ip, L

[k+1]
n−k−1)(W

[k]
n−k)

∗ and R[k]
n−k = (Y[k]

n−k)
∗ diag(R[k+1]

n−k−1, Iq)Y
[k]
n−k .Using

Lemma 15.14, we can consequently conclude

〈〈Lk−1〉〉n−k L
[k]
n−k〈〈Lk−1〉〉∗n−k

= W•,n;k〈〈Lk〉〉n−k diag(Ip, L
[k+1]
n−k−1)〈〈Lk〉〉∗n−kW

∗
•,n;k

and

〈〈Rk−1〉〉∗n−k R
[k]
n−k〈〈Rk−1〉〉n−k

= Y∗
•,n;k〈〈Rk〉〉∗n−k diag(R

[k+1]
n−k−1, Iq)〈〈Rk〉〉n−kY•,n;k .

Regarding Remark A.24(a) and (3.2), then (15.5) and (15.6) follow.

In the following results, we will use the equivalence relations “∼” and “�” intro-
duced in Notation A.20 (see also Remark A.21). The next observation contains a
relation between the matrices Ln and Rn introduced in (2.3) and the matrices intro-
duced in Notation 14.1.

Lemma 15.16 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0 and let

n ∈ Z0,κ . If Ln and Rn are defined by (2.3), then

Ln ∼ diag(L0L
∗
0,L1L

∗
1, . . . ,LnL

∗
n) (15.7)

and

Rn � diag(R∗
nRn,R

∗
n−1Rn−1, . . . ,R

∗
0R0). (15.8)

Proof First observe that Remark 4.12 shows l j ∈ C
p×p
� for all j ∈ Z0,κ . Using

(2.9), Remark 4.14, and Notation 14.1, we get L0 = l0 = l0 = L0L
∗
0. Regarding

Notations A.18 and A.20(a), in particular, (15.7) holds true for n = 0. Now assume
that κ ≥ 1 and n ∈ Z1,κ . Lemma 15.15 then provides (15.5) for all k ∈ Z0,n−1.
Remark 15.12 showsW•,n;k ∈ Lp,n−k for all k ∈ Z0,n−1. By virtue of Notation A.18,
we can thus inferW∗

•,n;k ∈ Up,n−k for all k ∈ Z0,n−1. According to Notation A.20(a),
for all k ∈ Z0,n−1, consequently (15.5) implies

〈〈Lk−1〉〉n−k L
[k]
n−k〈〈L∗

k−1〉〉n−k

∼ diag
(
LkL

∗
k , 〈〈Lk〉〉n−k−1L

[k+1]
n−k−1〈〈L∗

k〉〉n−k−1

)
. (15.9)

We now show, for all � ∈ Z1,n , inductively

Ln ∼ diag
(
L0L

∗
0,L1L

∗
1, . . . ,L�−1L

∗
�−1, 〈〈L�−1〉〉n−�L

[�]
n−�〈〈L∗

�−1〉〉n−�

)
. (15.10)

Using Definition 4.1, Notations 4.13 and 14.1, and (15.9) for k = 0, we can infer

Ln = L [0]
n = 〈〈L−1〉〉nL [0]

n 〈〈L∗−1〉〉n
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∼ diag
(
L0L

∗
0, 〈〈L0〉〉n−1L

[1]
n−1〈〈L∗

0〉〉n−1

)
.

Hence, (15.10) holds true for � = 1. Now assume κ ≥ 2 and n ≥ 2 and that
m ∈ Z1,n−1 is such that (15.10) is valid for all � ∈ Z1,m . In view of Remark A.22(a),
the combination of (15.10) for � = m and (15.9) for k = m yields that (15.10)
is valid for � = m + 1. Consequently, we get inductively that (15.10) is fulfilled
for all � ∈ Z1,n . Using (2.9), Notation 4.13, and Remark 4.14, we get further-
more L [n]

0 = l[n]
0 = ln . Regarding (3.2) and Notation 14.1, we can thus conclude

〈〈Ln−1〉〉0L [n]
0 〈〈L∗

n−1〉〉0 = Ln−1lnL
∗
n−1 = LnL

∗
n . Combining this with (15.10) for

� = n, we get (15.7). Analogously, (15.8) can be proved. We omit the details.

The following result can be embedded in a more general context (compare [14,
Sec. 3], [11, Sec. 3.5]).

Lemma 15.17 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ and let n ∈ Z1,κ . Then ln and

rn given by (2.8) admit the representations

ln = Ip − A0A
∗
0 − zn(I + S∗

n−1L
†
n−1Sn−1)z

∗
n (15.11)

and

rn = Iq − A∗
0A0 − y∗

n (I + Sn−1R
†
n−1S

∗
n−1)yn, (15.12)

respectively.

Proof Since (A j )
κ
j=0 ∈ Sp×q;κ , we see from Lemma A.15 that the matrix

Tn := [ I S∗
n

Sn I

]
is non-negative Hermitian. Taking into account the block representa-

tion Sn = [ Sn−1 O
zn A0

]
of Sn , we see that the principal submatrix

[ Inq S∗
n−1 z∗n

Sn−1 Inp O
zn O Ip

]
of Tn

is non-negative Hermitian as well. Thus, we haveN (Tn−1) ⊆ N ([zn, O]), i. e., there
are matrices X ∈ C

p×nq and Y ∈ C
p×np such that

[X ,Y ]
[
Inq S∗

n−1
Sn−1 Inp

]
= [zn, O]. (15.13)

Multiplying (15.13) from the right by
[ Inq

−Sn−1

]
and using (2.3), we get [X ,Y ][ Rn−1

O

] =
zn , i. e., XRn−1 = zn . Regarding (2.1), thus zn R

†
n−1Rn−1 = zn . Using additionally

Lemma A.16(c), then

zn R
†
n−1z

∗
n = zn(R

†
n−1Rn−1 + S∗

n−1L
†
n−1Sn−1)z

∗
n = zn(I + S∗

n−1L
†
n−1Sn−1)z

∗
n

and, consequently, (15.11) follow. Analogously, (15.12) can be proved.

Lemma 15.18 Let (A j )
κ
j=0 ∈ Sp×q;κ and let n ∈ Z0,κ . In view of (2.3), (2.5), and

(2.8), then

Ln ∼ diag(l0, l1, . . . , ln) and Rn � diag(rn, rn−1, . . . , r0). (15.14)
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Proof According to (2.9), we have L0 = l0 and, by Notation A.20(a), especially
L0 ∼ l0. In particular, the first relation in (15.14) holds true for n = 0. Now assume
κ ≥ 1 and n ∈ Z1,κ . We consider an arbitrary k ∈ Z1,n . Regarding (2.3), (2.2), (2.6),
and (2.8), we can see the block representation

Lk =
[

Lk−1 −Sk−1z∗k
−zkS∗

k−1 Ip − A0A∗
0 − zk z∗k

]
.

Since (A j )
κ
j=0 ∈ Sp×q;κ implies that the matrix Lk is non-negative Hermitian, then

R(−Sk−1z∗k ) ⊆ R(Lk−1) follows (see, e. g., [11, Lem. 1.1.9(a)]). Consequently, we
can conclude

Lk =
[

Ipk O
−zkS∗

k−1L
†
k−1 Ip

]
diag(Lk−1, Z)

[
Ipk −L†

k−1Sk−1z∗k
O Ip

]
,

where Z := Ip − A0A∗
0 − zk z∗k − zkS∗

k−1L
†
k−1Sk−1z∗k (see, e. g., [11, Lem. 1.1.7(a)]).

According to Notations A.18 and A.20(a), therefore Lk ∼ diag(Lk−1, Z). From
Lemma 15.17 we know Z = lk . Consequently, for all k ∈ Z1,n , we have

Lk ∼ diag(Lk−1, lk). (15.15)

We now show for all � ∈ Z1,n inductively

Ln ∼ diag(L�−1, l�, . . . , ln). (15.16)

Using (15.15) for k = n, we can infer that (15.16) holds true for � = n. Now assume
κ ≥ 2 and n ≥ 2 and that m ∈ Z2,n is such that (15.16) is valid for all � ∈ Zm,n .
In view of Remark A.22(a), the combination of (15.16) for � = m and (15.15) for
k = m−1 yields that (15.16) is valid for � = m−1. Consequently, we get inductively
that (15.16) is fulfilled for all � ∈ Z1,n . Combining L0 = l0 with (15.16) for � = 1,
we get the first relation in (15.14). Analogously, the second relation in (15.14) can be
proved.

Remark 15.19 (cf. [11, Lem. 1.1.7]) Let (A j )
κ
j=0 ∈ Sp×q;κ and let n ∈ Z0,κ . Regard-

ing Notations A.20 and A.18, from Lemma 15.18, one can easily see then that
rank Ln =∑n

�=0 rank l� and det Ln =∏n
�=0 det l� aswell as rank Rn =∑n

�=0 rank r�
and det Rn =∏n

�=0 det r�.

We derive now a useful relation between the sequences of left and right Schur
complements of a p × q Schur sequence (see (2.8)) and the sequences of matrices
introduced in Notation 14.1.

Lemma 15.20 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. In view

of (2.5), (2.8), and Notation 14.1, for all j ∈ Z0,κ , then l j = L jL
∗
j and r j = R∗

jR j .

Proof Taking into account Lemmas 15.18 and 15.16, the assertion can be obtained
easily using Remark A.23.



  109 Page 74 of 91 V. K. Dubovoy et al.

Remark 15.21 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. In view

of Lemma 15.20 and Notation 14.1, for all j ∈ Z0,κ , then l j = L j−1l jL
∗
j−1 and

r j = R∗
j−1r jR j−1.

Remark 15.22 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. In view

of Lemma 15.20, for all j ∈ Z0,κ , then R(L j ) = R(l j ) and N (R j ) = N (r j ).

The following result contains an answer to the extension problem for finite
p × q Schur sequences in terms of SP-parameters. The solution set is again written as
a closed matrix ball. However, the corresponding center and semi-radii are expressed
in terms of SP-parameters. In the particular case of a non-degenerate p × q Schur
sequence, this result appears already in [11, Thm. 3.8.1].

Theorem 15.23 Let n ∈ N0 and let (A j )
n
j=0 ∈ Sp×q;n with SP-parameter

sequence (e j )
n
j=0. Taking into account Notations 14.2 and 14.1, then An+1 =

K(μn(e0, . . . , en);Ln,Rn).

Proof First we consider an arbitrary An+1 ∈ C
p×q such that (A j )

n+1
j=0 ∈ Sp×q;n+1.

Denote by (p j )
n+1
j=0 the SP-parameter sequence of (A j )

n+1
j=0. According to Remark 4.9,

then p j = e j for all j ∈ Z0,n . Taking additionally into account Notations 14.1 and
4.11, we can infer from Corollary 14.4 then An+1 = μn(e0, . . . , en) + Lnpn+1Rn .
Since Remark 4.12 shows pn+1 ∈ Kp×q , in view of Notation 15.1, consequently
An+1 ∈ K(μn(e0, . . . , en);Ln,Rn) follows. Conversely, now consider an arbitrary
An+1 ∈ K(μn(e0, . . . , en);Ln,Rn). According toNotation 15.1, then there exists K ∈
Kp×q such that An+1 = μn(e0, . . . , en)+LnKRn . Clearly, then en+1 :=PMn KPQ⊥

n
belongs to Kp×q and fulfills R(en+1) ⊆ Mn and Qn ⊆ N (en+1). Since Propo-
sition 6.10 shows (e j )

n
j=0 ∈ Ep×q;n , we can, by virtue of Notation 6.2, infer then

(e j )
n+1
j=0 ∈ Ep×q;n+1. Thus, we can apply Theorem 6.20 to see that there exists a

unique sequence (Bj )
n+1
j=0 ∈ Sp×q;n+1 with SP-parameter sequence (e j )

n+1
j=0. Using

Theorem 14.3, we can, for all j ∈ Z0,n , conclude Bj = � j (e0, . . . , e j ) = A j . The
application of Corollary 14.4 yields furthermore Bn+1 = μn(e0, . . . , en)+Lnen+1Rn .
By virtue of Lemma 6.9, Proposition 15.9, and Remark A.6, we get PMn = MnM

†
n

and PQ⊥
n

= RnR
†
n . Since Corollary 15.10 shows MnM

†
n = L†

nLn , consequently

en+1 = L†
nLnKRnR

†
n . Taking additionally into account (2.1), then Lnen+1Rn =

LnKRn follows. Therefore, Bn+1 = An+1. Summarizing, we have (A j )
n+1
j=0 =

(Bj )
n+1
j=0, implying (A j )

n+1
j=0 ∈ Sp×q;n+1.

The considerations of Theorems 15.2 and 15.23 under the view of theory of matrix
balls lead us to the following identity.

Corollary 15.24 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For all

n ∈ Z0,κ , then mn = μn(e0, . . . , en).

Proof We consider an arbitrary n ∈ Z0,κ . From Remark 4.9 we know that (A j )
n
j=0

belongs to Sp×q;n and has SP-parameter sequence (e j )
n
j=0. Thus, we can use The-

orems 15.2 and 15.23 to see K(mn;√
ln,

√
rn) = K(μn(e0, . . . , en);Ln,Rn), which

implies mn = μn(e0, . . . , en) (see, e. g., [11, Cor. 1.5.1]).



The Schur–Potapov Algorithm in the General Matrix... Page 75 of 91   109 

16 On an Explicit Connection Between Choice Sequences and
SP-parameter Sequences

In this section, we consider a finite or infinite p × q Schur sequence.We are interested
in obtaining explicit formulas describing the connections between choice sequence
(see Definition 15.4) and SP-parameter sequences. Taking into account Theorem 15.2,
as a first step in this direction, we introduce the following notation:

Notation 16.1 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0. For all

j ∈ Z0,κ , let Uj :=
√
l j
†
L j and Vj :=R j

√
r j †.

Recall that W ∈ C
p×q is a partial isometry if and only if W ∗W is idempotent or

equivalently WW ∗ is idempotent. In this case, R(W ∗W ) and R(WW ∗) are called
initial and final subspace of W , respectively (see, e. g., [23]). We see now that two
sequences of partial isometries are associated with a p × q Schur sequence.

Lemma 16.2 Let (A j )
κ
j=0 ∈ Sp×q;κ with SP-parameter sequence (e j )

κ
j=0 and let

j ∈ Z0,κ . Then U jU∗
j = PR(l j ) and U∗

j U j = PM j as well as V
∗
j V j = PR(r j ) and

Vj V ∗
j = PQ⊥

j
. In particular, U j (resp., Vj ) is a partial isometry with initial subspace

M j (resp.,R(r j )) and final subspace R(l j ) (resp., Q⊥
j ).

Proof Using Notation 16.1, Remark A.8, Lemma 15.20, and Remarks A.10(e) and
A.6, we get

UjU
∗
j = √l j †L jL

∗
j

√
l j
† = √l j †l j

√
l j
† = l j l

†
j = PR(l j )

and, analogously, V ∗
j V j = PR(r j ). FromRemarkA.10(b)we can infer (

√
l j
†
)∗
√
l j
† =

l†j and
√
r j †(

√
r j †)∗ = r†j . Furthermore, we have L†

j = L∗
j (L jL

∗
j )
† and R†

j =
(R∗

jR j )
†R∗

j (see, e. g., [11, Prop. 1.1.2]). Taking additionally into account Nota-
tion 16.1, Lemma 15.20, Remarks A.6 and A.2, and Proposition 15.9, we get

U∗
j U j = L∗

j l
†
jL j = L∗

j (L jL
∗
j )
†L j = L†

jL j = PR(L∗
j )

= PN (L j )
⊥ = PM j

and, analogously, VjV ∗
j = PQ⊥

j
.

Now we are able to present an explicit connection between the choice sequence
and the SP-parameter sequence of an arbitrarily given p × q Schur sequence.

Theorem 16.3 Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0 andSP-parameter

sequence (e j )
κ
j=0. Then k0 = e0. Moreover, if κ ≥ 1, then kn = Un−1enVn−1 and

en = U∗
n−1knV

∗
n−1 for all n ∈ Z1,κ .

Proof. According to Definitions 15.4, 4.1 and 4.7, we have k0 = A0 = A[0]
0 = e0.

Now assume κ ≥ 1 and consider an arbitrary n ∈ Z1,κ . Corollary 14.4 yields
An = μn−1(e0, . . . , en−1) + Ln−1enRn−1. Corollary 15.24 provides mn−1 =
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μn−1(e0, . . . , en−1). Taking additionally into account Notation 16.1 and Defini-
tion 15.4, we get

Un−1enVn−1 = √ln−1
†
Ln−1enRn−1

√
rn−1

†

= √ln−1
†[An − μn−1(e0, . . . , en−1)]√rn−1

†

= √ln−1
†
(An − mn−1)

√
rn−1

† = kn .

Proposition 6.10 shows (e j )
κ
j=0 ∈ Ep×q;κ . According to Notation 6.2, we have then

R(en) ⊆ Mn−1 and Qn−1 ⊆ N (en), so that PMn−1enPQ⊥
n−1

= en . Lemma 16.2

provides U∗
n−1Un−1 = PMn−1 and Vn−1V ∗

n−1 = PQ⊥
n−1

. Summarizing, we get

U∗
n−1knV

∗
n−1 = U∗

n−1Un−1enVn−1V
∗
n−1 = PMn−1enPQ⊥

n−1
= en .

Corollary 16.4 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence

(k j )
κ
j=0 and SP-parameter sequence (e j )

κ
j=0 and let n ∈ Z1,κ . Then knk

∗
n =

Un−1ene
∗
nU

∗
n−1 and k∗nkn = V ∗

n−1e
∗
nenVn−1 as well as ene

∗
n = U∗

n−1knk
∗
nUn−1 and

e∗nen = Vn−1k
∗
nknV

∗
n−1.

Proof Lemma 16.2 provides

Un−1U
∗
n−1 = PR(ln−1), U∗

n−1Un−1 = PMn−1 , (16.1)

V ∗
n−1Vn−1 = PR(rn−1), and Vn−1V

∗
n−1 = PQ⊥

n−1
. (16.2)

Proposition 6.10 shows (e j )
κ
j=0 ∈ Ep×q;κ . According to Notation 6.2, we have then

R(en) ⊆ Mn−1 and Qn−1 ⊆ N (en), so that PMn−1en = en and enPQ⊥
n−1

= en .
Using additionally Theorem 16.3 and the second identity in (16.2) and (16.1),
resp., we get knk

∗
n = Un−1enVn−1V ∗

n−1e
∗
nU

∗
n−1 = Un−1ene

∗
nU

∗
n−1 and k∗nkn =

V ∗
n−1e

∗
nU

∗
n−1Un−1enVn−1 = V ∗

n−1e
∗
nenVn−1. By virtue of Definition 15.4 we see

R(kn) ⊆ R(
√
ln−1

†
) and R(k∗n) ⊆ R((

√
rn−1

†)∗). Applying Remarks A.9,
A.10(a), and A.8, we can conclude then R(kn) ⊆ R(

√
ln−1) = R(ln−1) and

R(k∗n) ⊆ R(
√
rn−1

†) = R(
√
rn−1) = R(rn−1), so that PR(ln−1)kn = kn and

PR(rn−1)k
∗
n = k∗n . Using additionally Theorem 16.3 and the first identity in (16.2)

and (16.1), resp., we get ene∗n = U∗
n−1knV

∗
n−1Vn−1k

∗
nUn−1 = U∗

n−1knk
∗
nUn−1 and

e∗nen = Vn−1k
∗
nUn−1U∗

n−1knV
∗
n−1 = Vn−1k

∗
nknV

∗
n−1.

Corollary 16.5 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0

and SP-parameter sequence (e j )
κ
j=0 and let n ∈ Z1,κ . Then Ip − knk

∗
n = PN (ln−1) +

Un−1lnU∗
n−1 and Iq − k∗nkn = PN (rn−1) + V ∗

n−1rnVn−1 as well as ln = PM⊥
n−1

+
U∗
n−1(Ip − knk

∗
n)Un−1 and rn = PQn−1 + Vn−1(Iq − k∗nkn)V ∗

n−1.

Proof. Lemma 16.2 provides (16.1) and (16.2). Regarding that the matrices ln−1
and rn−1 are Hermitian, using the first identity in (16.1) and (16.2), resp., and
Remark A.2, we can infer Un−1U∗

n−1 = PR(l∗n−1)
= PN (ln−1)⊥ and V ∗

n−1Vn−1 =
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PR(r∗
n−1)

= PN (rn−1)⊥ . Consequently, Remark A.4 yields PN (ln−1) +Un−1U∗
n−1 = Ip

and PN (rn−1) + V ∗
n−1Vn−1 = Iq . Taking additionally into account Corollary 16.4 and

Notation 4.11, we obtain

Ip − knk
∗
n = PN (ln−1) +Un−1U

∗
n−1 −Un−1ene

∗
nU

∗
n−1 = PN (ln−1) +Un−1lnU

∗
n−1

and

Iq − k∗nkn = PN (rn−1) + V ∗
n−1Vn−1 − V ∗

n−1e
∗
nenVn−1 = PN (rn−1) + V ∗

n−1rnVn−1.

In view of the second identities in (16.1) and (16.2), resp., RemarkA.4 yieldsPM⊥
n−1

+
U∗
n−1Un−1 = Ip and PQn−1 + Vn−1V ∗

n−1 = Iq . Taking additionally into account
Corollary 16.4 and Notation 4.11, we obtain

PM⊥
n−1

+U∗
n−1(Ip − knk

∗
n)Un−1 = Ip −U∗

n−1knk
∗
nUn−1 = Ip − ene

∗
n = ln

and

PQn−1 + Vn−1(Iq − k∗nkn)V ∗
n−1 = Iq − Vn−1k

∗
nknV

∗
n−1 = Iq − e∗nen = rn .

17 Central Matricial Schur Functions

As already mentioned above, in [18] a reference function is used to obtain a
parametrization of the solution set Sp×q [D; (A j )

n
j=0] of a matricial Schur prob-

lem, namely the so-called central p × q Schur function corresponding to a given
p × q Schur sequence (A j )

n
j=0. We recall this notion which was introduced in [14,

Part II, Def. 5]: If n ∈ N0 and if (A j )
n
j=0 ∈ Sp×q;n , then the sequence (A j )

∞
j=0

given by Ak :=mk−1 for all k ∈ Zn+1,∞ is called the central p × q Schur sequence
corresponding (A j )

n
j=0. A p × q Schur sequence (A j )

κ
j=0 is said to be S -central

if there is an n ∈ Z1,κ such that A j = m j−1 for all j ∈ Zn,κ . In this case, the
smallest n with this property is called the corresponding order and (A j )

κ
j=0 is called

S -central of order n. If n ∈ N0 and if (A j )
n
j=0 ∈ Sp×q;n , then F : D → C

p×q given

by F(w) := ∑∞
j=0 w j A j for all w ∈ D, where (A j )

∞
j=0 is the central p × q Schur

sequence corresponding to (A j )
n
j=0, is said to be the central p × q Schur function

corresponding to (A j )
n
j=0. A function F ∈ Sp×q(D) with Taylor series expansion

F(w) =
∞∑
j=0

w j A j for all w ∈ D, (17.1)

is called a central p × q Schur function (resp., a central p × q Schur function of
order n) if (A j )

∞
j=0 is a central p × q Schur sequence (resp., a central p × q Schur

sequence of order n). In [15], explicit representations of central p×q Schur functions
as rational matrix-valued functions constructed by the given p × q Schur sequence
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(A j )
n
j=0 are proved. Central p × q Schur functions are distinguished rational matrix-

valued functions which have certain extremal properties (see, e. g., [1] or [14, Part II]).
Moreover, recurrence formulas for the Taylor coefficients of central p × q Schur
functions can be found in [11, Thm. 3.5.4].

In this section, we study S -central p × q Schur sequences under the view of the
SP-algorithm. For this reason, we recall the following:

Remark 17.1 (cf. [11, Rem. 3.5.3]) Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with choice

sequence (k j )
κ
j=0. For all j ∈ Z−1,κ−1, then

O � l j+1 = √l j (Ip − k j+1k
∗
j+1)

√
l j = l j − (A j+1 − m j )r

†
j (A j+1 − m j )

∗ � l j

and

O � r j+1 = √
r j (Iq − k∗j+1k j+1)

√
r j = r j − (A j+1 − m j )

∗l†j (A j+1 − m j ) � r j .

We give now several characterizations of the fact that a particular element of a
given p × q Schur sequence coincides with the center of the corresponding matrix
ball. Some of them are formulated in terms of the choice sequence and thus already
known. The other ones formulated in terms of SP-parameters seem to be new.

Lemma 17.2 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0

and SP-parameter sequence (e j )
κ
j=0 and let j ∈ Z0,κ−1. Then the following statements

are equivalent:

(i) A j+1 = m j .
(ii) l j+1 = l j .
(iii) r j+1 = r j .
(iv) k j+1 = Op×q .
(v) e j+1 = Op×q .
(vi) l j+1 = Ip.
(vii) r j+1 = Iq .
(viii) L j+1 = L j .
(ix) R j+1 = R j .

Proof According to Definition 15.4, statement (i) implies (iv). Remark 17.1 shows
that (iv) is sufficient for (ii) and (iii). If (ii) is fulfilled, then Remark 17.1 yields√
l j k j+1 = O and, in view of Definition 15.4, consequently k j+1 = √l j †

√
l j k j+1 =

O , i. e., (iv). Analogously, if (iii) holds true, then Remark 17.1 and Definition 15.4
provide k j+1

√
r j = O and, thus, k j+1 = k j+1

√
r j

√
r j † = O , i. e., (iv). Obviously,

applying Proposition 15.5, we get that (iv) implies (i). Because of Theorem 16.3, the
statements (iv) and (v) are equivalent. In view of Notation 4.11, the statements (v)
and (vi) as well as the statements (v) and (vii) are equivalent. From Notation 14.1 we
see that (viii) is necessary for (vi) as well as that (ix) is necessary for (vii). Finally, by
virtue of Lemma 15.20, we see that (viii) implies (ii) and that (ix) is sufficient for (iii).
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Proposition 17.3 Suppose κ ≥ 1. Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0

and SP-parameter sequence (e j )
κ
j=0 and let n ∈ Z1,κ . Then the following statements

are equivalent:

(i) (A j )
κ
j=0 isS -central of order n.

(ii) kk = Op×q for all k ∈ Zn,κ .
(iii) ek = Op×q for all k ∈ Zn,κ .

(iv) A[n]
j = Op×q for all j ∈ Z0,κ−n.

(v) A[k]
j = Op×q for every choice of k ∈ Zn,κ and j ∈ Z0,κ−k .

Proof “(i) ⇔ (ii) ⇔ (iii)”: Apply Lemma 17.2.
“(iii) ⇔ (iv)”: Regarding Remark 4.8, this follows from Corollary 14.10.
“(iv) ⇒ (v)”: Regarding Definition 4.1, use Example 4.5.
“(v) ⇒ (iv)”: This implication holds true obviously.

Proposition 17.4 Let F ∈ Sp×q(D) with SP-parameter sequence (γ j )
∞
j=0 and let

n ∈ N. Then the following statements are equivalent:

(i) F is S -central of order n.
(ii) γk = Op×q for all k ∈ Zn,∞.
(iii) F�n�(z) = Op×q for all z ∈ D.
(iv) F�k�(z) = Op×q for every choice of k ∈ Zn,∞ and z ∈ D.

Proof Denote by (A j )
∞
j=0 the Taylor coefficient sequence of F . Proposition 9.7 shows

then (A j )
∞
j=0 ∈ Sp×q;∞ and that the SP-parameter sequence (e j )

∞
j=0 of (A j )

∞
j=0 coin-

cides with (γ j )
∞
j=0. By virtue of Lemma 9.4, we see that, for all k ∈ N0, furthermore

F�k� belongs to Sp×q(D) and has Taylor coefficient sequence (A[k]
j )∞j=0. Now the

asserted equivalences follow from Proposition 17.3.

18 Completely Degenerate Matricial Schur Functions

In view of Lemma 17.2 and Remark 17.1, we discussed the case that the semi-radii ln
and rn are maximal if n ∈ N and (A j )

n−1
j=0 ∈ Sp×q;n−1 are given. In this section, we

study the other extremal situation, namely that ln = Op×p or rn = Oq×q holds true.
A sequence (A j )

κ
j=0 belonging toSp×q;κ is said to be completely leftS -degenerate

(resp., completely rightS -degenerate) if there exists an n ∈ Z0,κ such that ln = Op×p

(resp., rn = Oq×q ) holds true. In this case, the smallest n with this property is called
the corresponding order and (A j )

κ
j=0 is said to be completely left S -degenerate of

order n (resp., completely right S -degenerate of order n). A function F ∈ Sp×q(D)

with Taylor series expansion (17.1) is called completely left S -degenerate (resp.,
completely left S -degenerate) if (A j )

∞
j=0 is completely left S -degenerate (resp.,

completely rightS -degenerate). A function F ∈ Sp×q(D) with Taylor series expan-
sion (17.1) is said to be completely left S -degenerate of order n (resp., completely
right S -degenerate of order n) if (A j )

∞
j=0 is completely left S -degenerate of order

n (resp., completely right S -degenerate of order n).



  109 Page 80 of 91 V. K. Dubovoy et al.

Remark 18.1 Let n ∈ Z0,κ and let (A j )
κ
j=0 ∈ Sp×q;κ be completely leftS -degenerate

of order n or completely right S -degenerate of order n. From Remark 17.1 and
Proposition 15.5 one can easily see then that there exists an integer k ∈ Z0,n such that
(A j )

κ
j=0 isS -central of order k + 1.

Proposition 18.2 Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0 and SP-

parameter sequence (e j )
κ
j=0 and let n ∈ Z0,κ . Then the following statements are

equivalent:

(i) (A j )
κ
j=0 is completely left S -degenerate of order n.

(ii) Ln = Op×p.
(iii) Mn = Op×p.
(iv) Mn = {Op×1}.
(v) Mn−1 ∩ R(ln) = {Op×1}.
(vi) kn is a partial isometry with final subspace R(ln−1).
(vii) en is a partial isometry with final subspace Mn−1.

Proof “(i) ⇔ (ii)”: This is an immediate consequence of Remark 15.22.
“(ii) ⇔ (iii)”: Using (2.1), this can be seen from Corollary 15.10.
“(iii) ⇔ (iv)”: This is an immediate consequence of Lemma 6.9.
“(iv) ⇔ (v)”: This can be seen from Notation 6.1.
“(vi) ⇔ (vii)”: Since Theorem 16.3 shows k0 = e0 and Notation 6.1 and (2.5) yield

M−1 = R(Ip) = R(l−1), the case n = 0 is trivial. Now suppose κ ≥ 1 and let
n ∈ Z1,κ . Lemma 16.2 provides (16.1). Corollary 16.4 yields

knk
∗
n = Un−1ene

∗
nU

∗
n−1 and ene

∗
n = U∗

n−1knk
∗
nUn−1. (18.1)

First assume (vi). In view of Remark A.3, then knk
∗
n = PR(ln−1). Using additionally

(18.1) and (16.1), we consequently get

ene
∗
n = U∗

n−1PR(ln−1)Un−1 = U∗
n−1Un−1U

∗
n−1Un−1 = P

2
Mn−1

= PMn−1 ,

which, because of Remark A.3, implies (vii).
Now assume (vii). Then Remark A.3 yields again ene

∗
n = PMn−1 . Using addition-

ally (18.1) and (16.1), we consequently get

knk
∗
n = Un−1PMn−1U

∗
n−1 = Un−1U

∗
n−1Un−1U

∗
n−1 = P

2
R(ln−1)

= PR(ln−1),

which implies (vi).
“(vi)⇔ (i)”:We first consider the case n = 0. By virtue of (2.5) andDefinition 15.4,

we see l0 = Ip − k0k
∗
0. Consequently, (A j )

κ
j=0 is completely left S -degenerate of

order 0 if and only if k0k∗0 = Ip, which is equivalent to k0 being a partial isometry with
final subspace R(l−1). Now suppose κ ≥ 1 and let n ∈ Z1,κ . From Remark 17.1 we
can infer

ln = ln−1 −√ln−1knk
∗
n

√
ln−1. (18.2)
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First assume (vi). ThenRemarkA.3yields knk∗n = PR(ln−1). BecauseofRemarkA.10(a),
thus knk

∗
n = PR(

√
ln−1)

, so that knk∗n
√
ln−1 = √

ln−1. From (18.2), consequently
ln = Op×p follows. Thus, (i) holds true. Conversely, now assume (i), i. e., ln =
Op×p. Regarding Definition 15.4 and (2.1), we have

√
ln−1

†√ln−1kn = kn . Using

Remark A.8, then k∗n
√
ln−1

√
ln−1

† = k∗n follows. Because of Remarks A.10(e) and

A.6, we furthermore get
√
ln−1

†ln−1
√
ln−1

† = ln−1l
†
n−1 = PR(ln−1). From (18.2),

we hence obtain
√
ln−1

†ln
√
ln−1

† = PR(ln−1) − knk
∗
n . In view of ln = Op×p, then

knk
∗
n = PR(ln−1) follows, which, by virtue of Remark A.3, implies (vi).

Proposition 18.3 Let (A j )
κ
j=0 ∈ Sp×q;κ with choice sequence (k j )

κ
j=0 and SP-

parameter sequence (e j )
κ
j=0 and let n ∈ Z0,κ . Then the following statements are

equivalent:

(i) (A j )
κ
j=0 is completely rightS -degenerate of order n.

(ii) Rn = Oq×q .
(iii) Qn = Oq×q .
(iv) Q⊥

n = {Oq×1}.
(v) Q⊥

n−1 ∩ R(rn) = {Oq×1}.
(vi) kn is a partial isometry with initial subspace R(rn−1).
(vii) en is a partial isometry with initial subspace Q⊥

n−1.

Proof This can be proved analogous to Proposition 18.2.

Let us observe that, using Remarks 17.1 and 15.22, Corollary 15.10, Lemma 6.9
as well as Propositions 6.10, 17.2 and 6.6, one can easily obtain further conditions for
the complete left and right S -degeneracy of a Schur sequence, respectively, which
are implied by the statements formulated in Propositions 18.2 and 18.3. We omit the
details.

Proposition 18.4 Let F ∈ Sp×q(D) with SP-parameter sequence (γ j )
∞
j=0 and let

n ∈ N0. Let Mn−1 be given by Notation 6.1, where e j := γ j for all j ∈ N0. Then the
following statements are equivalent:

(i) F is completely left S -degenerate of order n.
(ii) γn is a partial isometry with final subspace Mn−1.
(iii) There exists a partial isometry W with final subspaceMn−1 such that F�n�(z) =

W for all z ∈ D.

Proof Denote by (A j )
∞
j=0 the Taylor coefficient sequence of F . Proposition 9.7 then

shows that (A j )
∞
j=0 belongs toSp×q;∞ and has SP-parameter sequence (γ j )

∞
j=0, i. e.,

(e j )
∞
j=0 is the SP-parameter sequence of (A j )

∞
j=0 . Now the equivalence (i) ⇔ (ii)

follows from the equivalence (i) ⇔ (vii) in Proposition 18.2. Furthermore, according
to Definition 9.5, we have γn = F�n�(0), so that (iii) implies (ii).

Now suppose (i). Lemma 9.4 shows that H := F�n� belongs to Sp×q(D). Thus,
we can apply Lemma 12.4 to see that E := H(0) belongs toKp×q and that G := H �1�

fulfillsG�−1;E� = H .According toDefinition 9.1,wehaveG = F�n+1�. In viewof (i),
the sequence (A j )

∞
j=0 is completely leftS -degenerate of order n. Taking additionally



  109 Page 82 of 91 V. K. Dubovoy et al.

into account (A j )
∞
j=0 ∈ Sp×q;∞, then Remark 18.1 shows that there exists an integer

k ∈ Z0,n such that (A j )
∞
j=0 is S -central of order k + 1. Thus, F is S -central of

order k + 1. Consequently, Proposition 17.4 provides F�n+1�(z) = Op×q for all
z ∈ D. Hence, G(z) = Op×q for all z ∈ D. By virtue of Definition 10.1, then
G�−1;E�(z) = E for all z ∈ D follows. Summarizing, for all z ∈ D, we get

F�n�(z) = H(z) = G�−1;E�(z) = E = H(0) = F�n�(0) = γn .

Using additionally that (i) also implies (ii) , then (iii) follows.

Proposition 18.5 Let F ∈ Sp×q(D) with SP-parameter sequence (γ j )
∞
j=0 and let

n ∈ N0. Let Qn−1 be given by Notation 6.1, where e j := γ j for all j ∈ N0. Then the
following statements are equivalent:

(i) F is completely rightS -degenerate of order n.
(ii) γn is a partial isometry with initial subspace Q⊥

n−1.

(iii) There exists a partial isometry W with initial subspaceQ⊥
n−1 such that F

�n�(z) =
W for all z ∈ D.

Proof This can be proved analogous to Proposition 18.4.

Appendix A. Some Facts fromMatrix Theory

Remark A.1 LetU andV be linear subspaces of the unitary spaceCp . Then (U+V)⊥ =
U⊥ ∩ V⊥ and (U ∩ V)⊥ = U⊥ + V⊥.

Remark A.2 If A ∈ C
p×q , then R(A∗) = N (A)⊥ and N (A∗) = R(A)⊥.

Remark A.3 Let U be a linear subspace of the unitary spaceCp. Then PU is the unique
complex p × p matrix satisfying the three equations P

2
U = PU , P∗

U = PU , and
R(PU ) = U .

Remark A.4 Let U be a linear subspace of the unitary space Cp. Then Op×p � PU �
Ip and PU + PU⊥ = Ip.

Remark A.5 If U is a linear subspace of the unitary space C
p with dimension

d := dim U ≥ 1 and some orthonormal basis u1, u2, . . . , ud , then PU = UU∗, where
U := [u1, u2, . . . , ud ].
Remark A.6 If A ∈ C

p×q , then AA† = PR(A) and A†A = PR(A∗).

Remark A.7 Let A ∈ C
p×q . In view of AA†A = A, we have:

(a) Let B ∈ C
p×m . Then R(B) ⊆ R(A) if and only if AA†B = B.

(b) Let C ∈ C
n×q . Then N (A) ⊆ N (C) if and only if CA†A = C .

Remark A.8 If A ∈ C
p×q , then (A†)∗ = (A∗)†.
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Remark A.9 If A ∈ C
p×q , then R(A†) = R(A∗) and N (A†) = N (A∗).

Remark A.10 Let A ∈ C
q×q
� and let Q := √

A. Then:

(a) R(Q) = R(A) and N (Q) = N (A).
(b) A† ∈ C

q×q
� and

√
A† = Q†.

(c) QQ† = AA† = A†A = Q†Q.
(d) Q†A = Q and AQ† = Q.
(e) Q†AQ† = AA†.

Lemma A.11 (cf. [21, Lem. A.19]) Let A ∈ C
p×q and let B ∈ C

q×q be such that
R(B) ⊆ R(A∗) ⊆ R(B∗). Then the matrix B + PN (A) is invertible and B† =
(B + PN (A))

−1 − PN (A).

Remark A.12 (e. g., combine [4, Theorems 4.4 and 4.6]) Let A ∈ C
q×q
H , let λ ∈ R, and

let x ∈ C
q be such that Ax = λx . Then A†x = λ†x .

Remark A.13 Let A ∈ C
q×q
� , let λ ∈ [0,∞), and let x ∈ C

q be such that Ax = λx .

Then
√
Ax = √

λx .

Remark A.14 If A, B ∈ C
q×q
H fulfill Oq×q � A � B, then N (B) ⊆ N (A).

Lemma A.15 (cf. [11, Lem. 1.1.12]) If K ∈ C
p×q , then the following statements are

equivalent:

(i) K is contractive.
(ii) Iq − K ∗K is non-negative Hermitian.

(iii)
[ Ip K
K ∗ Iq

]
is non-negative Hermitian.

(iv) Ip − KK ∗ is non-negative Hermitian.
(v) K ∗ is contractive.

Lemma A.16 Let E ∈ C
p×q and let the matrices l, r and P, Q be given by (5.1) and

(5.2), respectively. Then:

(a) l E = Er and l†E = Er†.
(b) E∗l = r E∗ and E∗l† = r†E∗.
(c) l† − Er†E∗ = ll† and r† − E∗l†E = r†r .
(d) PE = EQ and E∗P = QE∗.
(e) E∗PE = Q and EQE∗ = P.

Proof (a) Regarding (5.1), we obtain l E = (Ip − EE∗)E = E − EE∗E = E(Iq −
E∗E) = Er . Using (5.1) and the singular value decomposition, one can prove l†E =
Er† as well.

(b) Regarding (5.1), we obtain E∗l = E∗(Ip − EE∗) = E∗ − E∗EE∗ = (Iq −
E∗E)E∗ = r E∗. Using (5.1) and the singular value decomposition, one can prove
E∗l† = r†E∗ as well.

(c) Using (b) and (5.1), we get l† − Er†E∗ = l† − EE∗l† = (Ip − EE∗)l† = ll†

and r† − E∗l†E = r† − r†E∗E = r†(Iq − E∗E) = r†r .
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(d) Using (a), we can infer ll†E = l Er† = Err†, whereas the application of
(b) yields E∗ll† = r E∗l† = rr†E∗. By virtue of (5.1), we see r∗ = r , so that
Remark A.6 implies r†r = rr†. Taking additionally into account (5.2), we get then
PE = (Ip − ll†)E = E(Iq −rr†) = E(Iq −r†r) = EQ and E∗P = E∗(Ip − ll†) =
(Iq − rr†)E∗ = (Iq − r†r)E∗ = QE∗.

(e) From (5.2) and (2.1) we can infer r Q = Oq×q and Pl = Op×p. Using
additionally (d) and (5.1), we get then E∗PE = E∗EQ = (Iq − r)Q = Q and
EQE∗ = PEE∗ = P(Ip − l) = P .

Remark A.17 (see, e. g., Lemma A.15 and [11, Lem. 1.1.12(c)]) Let E ∈ Kp×q and
let l and r be given by (5.1). Then:

(a) l ∈ C
p×p
� and r ∈ C

q×q
� .

(b)
√
l E = E

√
r and

√
l
†
E = E

√
r†.

(c) E∗√l = √
r E∗ and E∗√l

† = √
r†E∗.

Notation A.18 For all n ∈ N0 denote byLp,n (resp.,Up,n) the set of all lower (resp.,
upper) p × p block triangular matrices belonging toC(n+1)p×(n+1)p with matrices Ip
on its block main diagonal.

Remark A.19 ( [20, Rem. A.20]) For all n ∈ N0 the setsLp,n and Up,n are both sub-
groups of the general linear group of invertible complex (n + 1)p × (n + 1)p matri-
ces.

Notation A.20 Letn ∈ N0 and letA,Bbe twocomplex (n + 1)p × (n + 1)qmatrices.

(a) We write A ∼n,p×q B if there exist matrices L ∈ Lp,n and U ∈ Uq,n such that
B = LAU. If the corresponding (block) sizes are clear from the context, we will
omit the indices and write A ∼ B.

(b) We write A �n,p×q B if there exist matrices V ∈ Up,n and M ∈ Lq,n such that
B = VAM. If the corresponding (block) sizes are clear from the context, we will
omit the indices and write A � B.

Remark A.21 (cf. [20, Rem. A.25]) Let n ∈ N0. Then the relations∼n,p×q and�n,p×q

are both equivalence relations on the set of complex (n + 1)p × (n + 1)q matrices.

Remark A.22 (cf. [20, Rem. A.26]) Let �,m ∈ N0, let A and B be complex
(� + 1)p × (� + 1)q matrices, let X and Y be complex (m + 1)p × (m + 1)q matri-
ces, and let n := � + m + 1. Then

(a) If A ∼�,p×q B and X ∼m,p×q Y, then diag(A,X) ∼n,p×q diag(B,Y).
(b) If A ��,p×q B and X �m,p×q Y, then diag(A,X) �n,p×q diag(B,Y).

Remark A.23 (cf. [19, Lem. A.3]) Let n ∈ N0 and let A0, A1, . . . , An and
B0, B1, . . . , Bn be complex p × q matrices such that diag(A j )

n
j=0 ∼ diag(Bj )

n
j=0

or diag(A j )
n
j=0 � diag(Bj )

n
j=0. Then A j = Bj for all j ∈ Z0,n .

In view of (3.2), we state the following:

Remark A.24 Let A, B ∈ C
p×q , let C ∈ C

q×m , and let n ∈ N0. Then:

(a) 〈〈A〉〉∗n = 〈〈A∗〉〉n and 〈〈A〉〉†n = 〈〈A†〉〉n .
(b) 〈〈A + B〉〉n = 〈〈A〉〉n + 〈〈B〉〉n and 〈〈AC〉〉n = 〈〈A〉〉n〈〈C〉〉n .
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Appendix B. Some Technical Results on Linear Subspaces

Lemma B.1 Let L ∈ C
p×p and let M ∈ C

p×q be such that R(Ip − L) ⊆ R(M).
Then R(L) ∩ R(M) ⊆ R(LM).

Proof We consider an arbitrary y ∈ R(L) ∩ R(M). Using Remark A.6, we can infer
then LL†y = y and MM†y = y. Remark A.7(b) yields MM†(Ip − L) = Ip − L ,
implying Ip − MM† = (Ip − MM†)L . Summarizing, we get (Ip − MM†)L†y =
(Ip − MM†)LL†y = (Ip − MM†)y = O and hence L†y = MM†L†y. Thus,
y = LL†y = LMM†L†y. In particular, y ∈ R(LM).

Lemma B.2 Let Q ∈ C
p×q and let R ∈ C

q×q be such thatN (Q) ⊆ N (Iq − R). Then
N (Q) + N (R) = N (QR).

Proof From our assumption we get N (Iq − R)⊥ ⊆ N (Q)⊥. Using Remark A.2, we
can infer then that thematrices L := R∗ andM := Q∗ fulfillR(Iq−L) ⊆ R(M). Thus,
we can apply Lemma B.1 to obtainR(L) ∩R(M) ⊆ R(LM), implyingR(LM)⊥ ⊆
[R(L) ∩ R(M)]⊥ = R(L)⊥ + R(M)⊥. Using Remark A.2 again, then N (QR) =
N ((LM)∗) ⊆ N (L∗) + N (M∗) = N (R) + N (Q) follows. It remains to prove
N (Q) +N (R) ⊆ N (QR). To this end, let v ∈ N (Q) +N (R), i. e., v = x + y with
certain x ∈ N (Q) and y ∈ N (R). Then, x ∈ N (Iq − R) by our assumption, implying
Rx = x . Consequently, QRv = QRx + QRy = Qx = O .

Lemma B.3 Let L ∈ C
p×p and let M ∈ C

p×q be such that R(Ip − L) ⊆ R(M).
Then R(L) ∩ R(M) = R(LM).

Proof In view of Lemma B.1, it remains to prove R(LM) ⊆ R(L) ∩ R(M). From
our assumption we get R(M)⊥ ⊆ R(Ip − L)⊥. Using Remark A.2, we can infer
then that the matrices Q := M∗ and R := L∗ fulfill N (Q) ⊆ N (Ip − R). Thus, we
can apply Lemma B.2 to obtain N (Q) + N (R) = N (QR), implying N (QR)⊥ =
[N (Q) + N (R)]⊥ = N (Q)⊥ ∩ N (R)⊥. Using Remark A.2 again, then R(LM) =
R((QR)∗) ⊆ R(Q∗) ∩ R(R∗) = R(M) ∩ R(L) follows.

In the sequel, we continue to use the notations given in (5.1).

Remark B.4 Let E ∈ C
p×q , let B ∈ C

p×m , and letM be a linear subspace ofCp such
thatR(E) +R(B) ⊆ M. In view of (5.1), thenR(l B) ⊆ R(B) +R(EE∗B) ⊆ M.

Remark B.5 Let E ∈ C
p×q , let B ∈ C

p×m , and letM be a linear subspace ofCp such
thatR(E) +R(B) ⊆ M. Using Remark B.4, one can easily proveR(lk B) ⊆ M for
all k ∈ N0 by mathematical induction.

Lemma B.6 Let E ∈ Kp×q , let B ∈ C
p×m, and let M be a linear subspace of Cp

such that R(E) + R(B) ⊆ M. Then R(
√
l B) ⊆ M.

Proof Remark A.17(a) shows l ∈ C
p×p
� . Thus, we can choose a sequence (ρn)

∞
n=1

of polynomials fulfilling
√
l = limn→∞ ρn(l). From Remark B.5 we can infer (Ip −

PM)lk B = O for all k ∈ N0. Consequently, (Ip − PM)ρn(l)B = O for all n ∈ N

follows. Passing to the limit n → ∞, we obtain (Ip − PM)
√
l B = O . In particular,

R(
√
l B) ⊆ M.
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Remark B.7 Let E ∈ Kp×q , let B ∈ C
p×m , and letM be a linear subspace ofCp such

that R(E) + R(B) ⊆ M. Using Lemma B.6, one can easily prove R(
√
l
k
B) ⊆ M

for all k ∈ N0 by mathematical induction.

Lemma B.8 Let E ∈ Kp×q , let B ∈ C
p×m, and let M be a linear subspace of Cp

such that R(E) + R(B) ⊆ M. Then R(
√
l
†
B) ⊆ M.

Proof First observe that l ∈ C
p×p
� by Remark A.17(a). Since the matrix

√
l is Her-

mitian, there exists (see, e. g., [4, Cor. 4.3]) a polynomial π fulfilling
√
l
† = π(

√
l).

From Remark B.7 we can infer (Ip − PM)
√
l
k
B = O for all k ∈ N0. Conse-

quently, (Ip − PM)π(
√
l)B = O follows, i. e., (Ip − PM)

√
l
†
B = O . In particular,

R(
√
l
†
B) ⊆ M.

Remark B.9 Let E ∈ C
q×q , let B ∈ C

m×q , and letQ be a linear subspace of Cq such
that Q ⊆ N (E) ∩ N (B). In view of (5.1), then Q ⊆ N (B) ∩ N (BE∗E) ⊆ N (Br).

Remark B.10 Let E ∈ C
q×q , let B ∈ C

m×q , and letQ be a linear subspace ofCq such
that Q ⊆ N (E) ∩ N (B). Using Remark B.9, one can easily prove Q ⊆ N (Brk) for
all k ∈ N0 by mathematical induction.

Lemma B.11 Let E ∈ Kp×q , let B ∈ C
m×q , and let Q be a linear subspace of Cq

such that Q ⊆ N (E) ∩ N (B). Then Q ⊆ N (B
√
r).

Proof Remark A.17(a) shows r ∈ C
q×q
� . Thus, we can choose a sequence (ρn)

∞
n=1

of polynomials fulfilling
√
r = limn→∞ ρn(r). From Remark B.10 we can infer

BrkPQ = O for all k ∈ N0. Consequently, Bρn(r)PQ = O for all n ∈ N

follows. Passing to the limit n → ∞, we obtain B
√
rPQ = O . In particular,

Q ⊆ N (B
√
r).

Remark B.12 Let E ∈ Kp×q , let B ∈ C
m×q , and letQ be a linear subspace ofCq such

that Q ⊆ N (E) ∩ N (B). Using Lemma B.11, one can easily prove Q ⊆ N (B
√
rk)

for all k ∈ N0 by mathematical induction.

Lemma B.13 Let E ∈ Kp×q , let B ∈ C
m×q , and let Q be a linear subspace of Cq

such that Q ⊆ N (E) ∩ N (B). Then Q ⊆ N (B
√
r†).

Proof First observe that r ∈ C
q×q
� by Remark A.17(a). Since the matrix

√
r is Her-

mitian, there exists (see, e. g., [4, Cor. 4.3]) a polynomial π fulfilling
√
r† = π(

√
r).

From Remark B.12 we can infer B
√
rkPQ = O for all k ∈ N0. Consequently,

Bπ(
√
r)PQ = O follows, i. e., B

√
r†PQ = O . In particular, Q ⊆ N (B

√
r†).

Appendix C. Linear Fractional Transformations of Matrices

Remark C.1 (see, e. g. [11, Lem. 1.6.1]) Let c ∈ C
q×p and d ∈ C

q×q . Then the set
Q(c, d) := {x ∈ C

p×q : det(cx+d) �= 0} is non-empty if and only if rank([c, d]) = q.
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Let M be a complex (p + q) × (p + q) matrix and let M =
[
a b
c d

]
be the block

representation of M with p × p block a. Suppose that Q(c, d) �= ∅. Then let the
linear fractional transformation T (p,q)

M : Q(c, d) → C
p×q be defined by T (p,q)

M (x) :=
(ax + b)(cx + d)−1.

Proposition C.2 ( [11, Prop. 1.6.1])Let M1 and M2 be complex (p + q) × (p + q)matri-
ces, let M := M2M1, and let

M1 =
[
a1 b1
c1 d1

]
, M2 =

[
a2 b2
c2 d2

]
, and M =

[
a b
c d

]

be the block representations with p × p blocks a1, a2, and a of M1, M2, and M,
respectively. Suppose that rank([c1, d1]) = q and rank([c2, d2]) = q hold true. Then
Q(c, d) ∩ Q(c1, d1) = {x ∈ Q(c1, d1) : T (p,q)

M1
(x) ∈ Q(c2, d2)}. Furthermore, if

Q(c, d) ∩ Q(c1, d1) �= ∅, then T (p,q)
M2

(T (p,q)
M1

(x)) = T (p,q)
M (x) for all x ∈ Q(c, d) ∩

Q(c1, d1).

Example C.3 ([5, Beispiel B.11]) Let M := M1M2 where M1 = [ Oq×q Oq×q
Oq×q Iq

]
and

M2 = [ Oq×q Oq×q
Iq Oq×q

]
. Let the block representations of M1, M2, and M be given as

in Proposition C.2. Then Q(c1, d1) = C
q×q , Q(c2, d2) = {x ∈ C

q×q : det x �= 0},
and Q(c, d) = ∅.

Appendix D. Some Facts on the ClassSp×q(D)

Lemma D.1 Let F ∈ [H(D)]p×q with Taylor coefficient sequence (A j )
∞
j=0 and let

E := F(0). For all z ∈ D, then F(z) − E = ∑∞
j=1 z

j A j and Iq − E∗F(z) = r0 −∑∞
j=1 z

j A∗
0A j , where r0 is given by (2.5).

Proof. We consider an arbitrary z ∈ D. Clearly, F(z) = ∑∞
j=0 z

j A j and A0 = E .

Therefore, F(z) − E =∑∞
j=1 z

j A j and, using (2.5), moreover

Iq − E∗F(z) = Iq − A∗
0

⎛
⎝A0 +

∞∑
j=1

z j A j

⎞
⎠ = r0 −

∞∑
j=1

z j A∗
0A j .

Theorem D.2 Let τp×q : Sp×q(D) → Sp×q;∞ be defined by τp×q(F) := (A j )
∞
j=0,

where (A j )
∞
j=0 is the Taylor coefficient sequence of F. Then τp×q is well defined and

bijective.

Proof Well-definedness and surjectivity follow from [11, Thm. 3.1.1], whereas injec-
tivity is clear.

Lemma D.3 Let F ∈ Sp×q(D), let E := F(0), and let l and r be given by (5.1). For
all z ∈ D, then:
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(a) ll†[F(z) − E] = F(z) − E and [F(z) − E]r†r = F(z) − E.
(b) r†r − [F(z)]∗ll†F(z) = Iq − [F(z)]∗F(z) and ll† − F(z)r†r [F(z)]∗ = Ip −

F(z)[F(z)]∗.
Proof We consider an arbitrary z ∈ D.

(a) Denote by (A j )
∞
j=0 the Taylor coefficient sequence of F . Lemma D.1 provides

F(z)−E =∑∞
j=1 z

j A j . TheoremD.2 yields (A j )
∞
j=0 ∈ Sp×q;∞. Hence, Remark 3.2

shows R(A j ) ⊆ R(l0) and N (r0) ⊆ N (A j ) for all j ∈ N. Applying Remark A.7,
we thus infer l0l

†
0 A jr

†
0r0 = A j for all j ∈ N. Clearly, A0 = E , so that r0 = r and

l0 = l by (2.5) and (5.1). Summarizing, we get F(z) − E = ∑∞
j=1 z

j l0l
†
0 A jr

†
0r0 =

l(
∑∞

j=1 z
j l†0 A jr

†
0 )r . Using additionally (2.1), then ll†[F(z) − E] = F(z) − E and

[F(z) − E]r†r = F(z) − E follow.
(b) Regarding (5.2), from (a) we can infer PF(z) = PE and F(z)Q = EQ.

Regarding (5.3) and Remark A.3, we see P∗ = P and Q∗ = Q. Using additionally
Lemma A.16(e), we conclude

[F(z)]∗PF(z) = [F(z)]∗PE = [PF(z)]∗E = (PE)∗E = E∗PE = Q

and, analogously, F(z)Q[F(z)]∗ = P . Regarding again (5.2), consequently

r†r − [F(z)]∗ll†F(z) = r†r + [F(z)]∗PF(z) − [F(z)]∗F(z)

= r†r + Q − [F(z)]∗F(z) = Iq − [F(z)]∗F(z)

and, analogously, ll† − F(z)r†r [F(z)]∗ = Ip − F(z)[F(z)]∗.
Lemma D.4 (see, e. g., [11, Lem. 2.1.5]) Let F ∈ Sp×q(D) and let E := F(0). For all
z ∈ D, then N (Iq − [F(z)]∗F(z)) = N (r), where r is given by (5.1).

Lemma D.5 Let F ∈ [H(D)]p×q be such that R(F(z)) = R(F(0)) and N (F(z)) =
N (F(0)) for all z ∈ D. Then G := F† belongs to [H(D)]q×p and (CG; j )∞j=0 is exactly
the reciprocal sequence corresponding to (CF; j )∞j=0.

Proof From [22, Prop. 8.4] we know that G belongs to [H(D)]q×p, whereas [22,
Thm. 8.9] yields (CF; j )∞j=0 ∈ Ip×q;∞ and that (CG; j )∞j=0 is exactly the inverse
sequence corresponding to (CF; j )∞j=0. Using [22, Thm. 4.21], we see then that
(CF; j )∞j=0 belongs to Dp×q;∞ and that (CG; j )∞j=0 coincides with the reciprocal
sequence corresponding to (CF; j )∞j=0.
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