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Abstract

This paper is a generalization of the topic handled in Bogner et al. (Oper Theory
1(1):55-95, 2007a, Oper Theory 1(2):235-278, 2007b) where the Schur—Potapov
algorithm (SP-algorithm) was handled in the context of non-degenerate p x g Schur
sequences and non-degenerate p x g Schur functions. In particular, the interplay
between both types of algorithms was intensively studied there. This was itself a gener-
alization of the classical Schur algorithm (Schur in J Reine Angew Math 148:122-145,
1918) to the non-degenerate matrix case. In treating the matrix case a result due to
Potapov (Potapov in Trudy Moskov Mat Obs¢ 4:125-236, 1955) concerning particular
linear fractional transformations of contractive p x g matrices was used. For this rea-
son, the notation SP-algorithm was already chosen in Dubovoj et al. (Matricial version
of the classical Schur problem, volume 129 of Teubner-Texte zur Mathematik [Teubner
Texts in Mathematics], B. G. Teubner Verlagsgesellschaft mbH, Stuttgart, 1992). We
are going to introduce both types of SP-algorithms as well for arbitrary p x ¢ Schur
sequences as for arbitrary p x g Schur functions. Again we will intensively discuss
the interplay between both types of algorithms. Applying the SP-algorithm, a com-
plete treatment of the matricial Schur problem in the most general case is established.
A one-step extension problem for finite p x g Schur sequences is considered. Central
p % q Schur sequences are studied under the view of SP-parameters.
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1 Introduction

In this paper, a topic will be studied again, which was studied in the former work on
Schur analysis methods by the first three authors (see [11, 12, 14]). In the background
of these considerations was the discussion of a matricial version of the classical Schur
problem. The most complete result could be achieved in that time for the so-called
non-degenerate case. The main goal of this paper is a treatment of the general matrix
case by an appropriate adaption of the classical algorithm due to I. Schur [28, 29]
and its matricial generalization going back to ideas of V. P. Potapov [27]. We are
guided by our former investigations on matricial versions of truncated power moment
problems. The essential feature of this concept can be described as a detailed study
of the structure of the sequence of moment matrices using Schur type algorithms on
the one side combined with the construction of concordant Schur type algorithms for
various classes of holomorphic matrix-valued functions in several domains which are
determined by the choice of the moment problem under consideration. This method
enabled a simultaneous treatment of both non-degenerate and degenerate cases of
the moment or interpolation problem under consideration. By a careful analysis of
the interplay between two versions of Schur algorithm a complete description of the
solution set of the moment problem via Stieltjes transformation could be achieved.
Roughly speaking, some features of this approach are already contained in the famous
landmark papers [28, 29] by I. Schur who more concentrated on the function-theoretic
version of the algorithm named after him, however also sketched some ideas on the
algebraic version. In the non-degenerate case, a first systematic treatment of both
types of Schur algorithms and their interplay was established in [6, 7]. It should be
mentioned that the matricial version of the Schur algorithm for strict Schur functions
was also considered in Cedzich [8, formulas (4.1), (4.2)] under the view of generalizing
fundamental relations found in the scalar case by S. V. Khrushchev (see [24-26]) to
the matrix case.

The main goal of this paper is to extend these methods for arbitrary matricial
Schur functions defined on the open unit disk D of the complex plane C. Roughly
speaking, the content of this paper can be summarized as follows. In Sect. 2, we
introduce some notation. In particular, we state some facts on matricial p x g Schur
sequences and matricial Schur functions. In Sect. 3, we define a Schur—Potapov trans-
form (shortly SP-transform) for arbitrary sequences of complex p x g matrices. As in
[6, 7], we consider first as well a right as a left version of the SP-transform. Although
we will prove later that both versions coincide (see Proposition 3.19), both represen-
tations prove to be useful. An essential aspect is that the SP-transform transforms
p X g Schur sequences into p x g Schur sequences (see Proposition 3.24). This will
be used in Sect. 4 in order to iterate the SP-transform of p x g Schur sequences.
This leads us to a SP-algorithm for p x g Schur sequences. Intimately connected with
this SP-algorithm is the explicitly constructed sequence (e j)’;:O of SP-parameters
of a p x g Schur sequence (Aj)§=o (see Definition 4.7). In Sect. 5, we discuss an
inverse SP-transform for sequences of complex matrices. We consider again first a left
version and right version of inverse SP-transforms before we see that both versions
coincide (see Proposition 5.9). Observe that both representations prove to be useful
for further considerations. The inverse SP-transform maps p x g Schur sequences
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into p x g Schur sequences (see Proposition 5.11). Section 6 is aimed to work out a
convenient parametrization of finite matricial Schur sequences (see Theorem 6.20).
In Sect. 7, we introduce the SP-transform for matricial Schur functions. Section 8 is
aimed to recognize the concordance between SP-transforms of matricial Schur func-
tions and SP-transforms of matricial Schur sequences (see Theorem 8.6). In Sect. 9, we
introduce a SP-algorithm for p x ¢ Schur functions. We show that the SP-parameter
sequences of a p x g Schur functions and the SP-parameter sequences of its Taylor
coefficient sequence coincide (see Proposition 9.7). In Sect. 10 we discuss the inverse
SP-transform for Schur functions. In Sect. 11, we prove that there is a complete con-
cordance of the inverse SP-transform of p x ¢ Schur functions and of the inverse
SP-transform of infinite p x g Schur sequences (see Propositions 11.2 and 11.4). In
Sects. 12 and 13, we apply the preceding considerations on the SP-algorithm to the
matricial Schur problem in order to parametrize the solution set of this interpolation
problem (see Theorem 12.7). We rewrite the description of the solution set of the
matricial Schur problem in terms of linear fractional transformations of matrices (see
Theorems 13.3 and 13.5). In Sect. 14, we express the Taylor coefficients of a p x ¢
Schur functions only in terms of its SP-parameters. In Sect. 15, we turn our attention
to the extension problem for finite p x g Schur sequences. In [11, 14], we described
the solution set of this problem as a closed matrix ball which is given in terms of
Taylor coefficients. Now we obtain a description of the solution set as a closed matrix
ball which is written with the aid of the SP-parameter sequences (see Theorem 15.23).
In Theorem 16.3 we present explicit formulas between the SP-parameters and the
choice sequence (see Definition 15.4) corresponding to a p x g Schur sequence. The
final Sects. 17 and 18 are dedicated to the characterization of central and completely
degenerate matricial Schur functions and sequences, respectively, in terms of their
SP-parameters.

At the end of the paper some appendices on several results about matrices, linear
subspaces, and linear fractional transformations of matrices are given.

2 Preliminaries

Throughout this paper, let p and ¢ be positive integers. We will use C, Z, Ny, and N to
denote the set of all complex numbers, the set of all integers, the set of all non-negative
integers, and the set of all positive integers, respectively. Further, let D be the open unit
disk of the complex plane, i.e.,D:={z € C: |z| < 1}. I[f v, w € Z U {—00, 00}, then
Zy, o designates the set of all integers n which fulfill v < n < w. If X is a non-empty
set, then X”*? denotes the set of all p x ¢ matrices each entry of which belongs to
X. The notation O, stands for the null matrix which belongs to the set C#*¢ of
all complex p x g matrices and the identity matrix which belongs to C7*9 will be
designated by I,. If the size of an identity matrix or a null matrix is obvious, then we
will omit the indices. Let (C%Xq (resp., Cz;xq) be the set of all Hermitian (resp., non-
negative Hermitian) complex ¢ x g matrices. As usual, we write A = Bor B < A if
A and B are Hermitian complex g x ¢ matrices fulfilling A — B € (Cq;q. For each

A € CP*4,let R(A) be the range of A, let N'(A) be the null space of A, let rank(A) be
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the rank of A, let || A|| be the operator norm of A, and let || A||g be the Euclidean norm
(or Frobenius norm) of A. A complex p x g matrix A is said to be contractive (resp.,
strictly contractive) if ||A|| < 1 (resp., ||A|| < 1) holds true. Observe that a complex
p X g matrix A is contractive (resp., strictly contractive) if and only if I — A*A is
non-negative Hermitian (resp., positive Hermitian). We use K4 (resp., D), x4) to
denote the set of all contractive (resp., strictly contractive) complex p x g matrices.
If A € C4*4, then det A stands for the determinant of A. For each matrix A € CP*4,
let AT be the Moore—Penrose inverse of A, i.e., the unique complex ¢ x p matrix X,
satisfying the four equations

AXA=A, XAX=X, (AX)*=AX, and (XA)*=XA. (2.1

For all x, y € C4, by (x, y)g we denote the (left-hand side) Euclidean inner product
of x and y, i.e., we have (x, y)g := y*x. If M is a non-empty subset of C4, then let
M be the set of all vectors in C?¢ which are orthogonal to M (with respect to (., .)g).
If U is a linear subspace of CY, then let P;; be the orthogonal projection matrix onto
U (see also Remark A.3).

Throughout this paper, let « € Np U {oo}. Considering an arbitrary sequence
(A j)jzo of complex p x g matrices, we use some further notation: We associate
with (A j)ljc':o a collection of matrices. For each n € Zg ,, we define

Ao 0 ... O
A A o
Sn = l ° X and S, = Opxn+g Opxq
: : K : Sn Om+1)pxq
An Anfl AO
2.2)

as well as the left and right defect matrices corresponding to S,;, namely
L, :=Iu+1p —SuS, and Ry :=Ipnt1g — S;Sn. 2.3)
Further, let
m_1 = 0pxq, moy = 0pxg, 2.4)
let
Iy =1, lo =1, — AoAp, roy =1y, ro =1, — AjAo, (2.5)

and, if « > 1, let

yn = ’ Zn = [Al’laAn—]’ MR Al]a (26)
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let
My= — 2,85 L} yn, 2.7
and let
Ly:=1, — AgA§ — 24 R 2, rni=1, — A§Ag — YL yn. 2.8)
In view of (2.2), (2.3), and (2.5), we have Sg = Ag as well as
Lo=1,— AoA} =1y and Ry =1, — AjAg = ro. (2.9)
Let
Po:=1, —lol] and Qo:=1, — riro. (2.10)

The matrices Py and Qg are orthoprojections. Indeed, because of Remarks A.6, A.4
and A.2, we have

P() = ]PR(I())L and QO = IP)N(VO) (211)

A finite sequence (A j)l}zo of complex p x g matrices with some n € Ny is said
to be a p x g Schur sequence (resp., non-degenerate p x q Schur sequence) if
the block Toeplitz matrix S,, given by (2.2) is contractive (resp., strictly contrac-
tive). Obviously, if n € Ny and if (A j)’}:o is a p x g Schur sequence (resp.,
non-degenerate p x g Schur sequence), then (A j)’;:() is a p x g Schur sequence
(resp., non-degenerate p x g Schur sequence) for all k € Zg , as well. A sequence
(A ) 2 of complex p x g matrices is said to be a p x g Schur sequence (resp., non-
degenerate p % g Schur sequence) if for every non-negative integer n the sequence
(A j)7:0 is a p x g Schur sequence (resp., non-degenerate p x g Schur sequence).
We will use %, q:« to denote the set of all p x ¢ Schur sequences (A;);_,. From
Lemma A.15 one can see obviously that, if (Aj)';.zo € Sxqe» then L, = O and
R, = O foralln € Zgp . Conversely, Lemma A.15 also yields that if m € Ny and
if (A; )m ' is such that L,, >= O or Ry = O, then (A; )’” belongs to .7y g:m- If
(A~ =0 isasequence of complex p x g matrices thenitis easﬂy checked that (A )"
is a p x g Schur sequence (resp., non-degenerate p x g Schur sequence) if and only
if (A ) =0 is a g x p Schur sequence (resp., non-degenerate g x p Schur sequence).
A functlon F whose domain is a region G of C and whose values lie in CP*4 is called
p X q Schur function (in G) if F is a holomorphic matrix-valued function the values
of which are contractive p x g matrices. The class of all p x g Schur functions (in
G) is denoted by . x4 (G). We mainly consider the particular domain G = ID, where
D:={w € C: |w| < 1} is the open unit disk of C. In particular, we consider func-
tions belonging to [H(D)]”*? where H(D) is the set of all holomorphic functions
f:D—-C.If Flw) = Zoo_o ij i for all w € D is the Taylor series representation
of a function F € [H(D)]?*4, then we call (A; )°° 2, the Taylor coefficient sequence
of F.
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There is an intimate connection between p x g Schur sequences (A j)?ozo and the
p x q Schur class %4 (D). More precisely, note that a function F: D — CP*¢
which is holomorphic in D with Taylor series representation F(w) = ZC;O:O w’ A j
for all w € I belongs to .}, 4 (D) if and only if (A j)§°=0 isa p x g Schur sequence
(see, e.g., [11, Thm. 3.1.1]). Let f: D — CP*9. Then f € .7)x,(D) if and only
if ¥ e SyxpD), where f¥: D — C?*7 is defined by fV(w) := [f(w)]*. The
matricial version of the classical Schur problem can be formulated as follows:

Let n € Ny and let (A j);fzo be a sequence of complex p x g matrices.
Parametrize the set .7, [D; (A j)?:o] of all p x g Schur functions F (in D)
such that (j))~1F)(0) = A} is satisfied for all j € Zg ,, where F/)(0) is the
Jj-th derivative of F' at the point w = 0.

It is well known that if n € Ny and if (A j)']’.:O is a sequence of complex p x g matri-
ces, then the set .7, [D; (Aj);fzo] is non-empty if and only if (Aj)?:o is a
p x q Schur sequence (see, e.g., [11, Thm. 3.5.2]). In the case of a given non-
degenerate p x g Schur sequence (A j)’}zo, i.e., that the block Toeplitz matrix S,
given by (2.2) is even strictly contractive, there are various parametrizations of
FpxqlD; (A j)’J’.:O] via appropriately constructed linear fractional transformations
(see, e.g., [2, 3, 13] or [11, Theorems 3.9.1 and 5.3.2]). The study of the degenerate
case where the associated block Pick matrix is non-negative Hermitian and singular
was started in [12]. The main goal of [18] was to present an approach to the matricial
version of the classical Schur problem in both non-degenerate and degenerate cases
where an explicit representation of the central matrix-valued Schur function associ-
ated with a finite p x g Schur sequence (see [15]) was used as reference function for
a proof by mathematical induction. This strategy was already applied in the case of
the matricial version of the classical Carathéodory problem (see [16, 17]). In [6, 7]
a SP-algorithm for sequences of complex p x g matrices was constructed which is
directed to later applications to non-degenerate p x g Schur sequences. In this paper,
we are going to extend the construction of [6, 7] to broader classes of sequences of
complex p x ¢ matrices which include arbitrary p x g Schur sequences. The main
results of this paper present a generalization of the classical Schur algorithm [28],
which provides in particular parametrizations of the set .7}, , [D; (A j)’}zo] in the case
of an arbitrarily given p x g Schur sequence (A j)?:o-

3 The SP-transform for Sequences of Complex p x g matrices

In order to generalize the SP-algorithm for non-degenerate p x g Schur sequences,
which was constructed in [6, 7] to classes of sequences of complex p x g matrices
including p x g Schur sequences, we first discuss which classes of sequences of com-
plex p x g matrices we have in mind. Since we are going to treat simultaneously both
the non-degenerate and the degenerate cases of the considered interpolation problem,
a whole series of technical considerations arise. For this reason, it is convenient to
work out results for special classes of matrix sequences.
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Notation 3.1 Let .7, be the set of all sequences (Aj)’;:O with Ag € Ky, let
KR pxq;0 = Hpxg;0,and let Ny g0 .= Hpxg:0- I & > 1, thenlet FZ pyq.« be the
set of all sequences (A ;)" iz € Hpxq: fulfilling Z 1 R(A}) € R(lp), whereas we
use N xq:« to denote the set of all sequences (A ; ) _o € Hpxqic such that N (rg) €
ﬂjzl N (A}) holds true. Furthermore, let C%/%/Vpxq),( =R pxgic N HN pxg:c and
let D4 be the set of all sequences (A j)I;:O of complex p x g matrices such that

> i—o R(A)) S R(Ao) and N (Ag) S M—o N (A)) hold true.

Remark 3.2 Suppose k > 1. Let (A})_y € Fpxq:c and let j € Zj ;. Then

J
lo— AjAjf b Ip - ZAZAZ = [Opxnpa Ip]Lj[Oanp’ Ip]>|< b Opxp

lo, R(Aj) € R(lp), and N'(lp) S N (A% i)

and, consequently, Opx, <X A ]Aj
g < ATAj <o, R(A%) € R(ro), and N (ro) € N(A; )

Analogously, one gets O x

The classes introduced in Notation 3.1 will play an important role in our further
considerations. This is caused by the following simple observations.

Remark 3.3 Remark 3.2 and Notation 3.1 imply the inclusions .5y«
- %%/Vpxq;f( - f%{%pxq;/( UM)xq;K - %Xq;,(.

We recall now the definition of the reciprocal sequence corresponding to a given
sequence (A j)';zo of complex p x g matrices (see [22]). If (A j)';:o is a sequence of

complex p x g matrices, then the sequence (Ai.)’j‘.:0 recursively defined by

Aj:=A) and A= — Al A;A] foralljeZi, ()

is said to be the reciprocal sequence corresponding to (A j)’]‘.zo. For each (block)
matrix X built from the sequence (A J')§=0’ we denote by X* the corresponding matrix
built from the reciprocal sequence (Aﬁ.)".:0 corresponding to (A;)*_, instead of the
sequence (A./)7=o- To emphasize that a certain (block) matrix X,, is built from a
sequence (AJ')§=0’ we sometimes write X 4., for X,,. If n € Ny and if (Aj)?zo is a
sequence of complex p x g matrices, then (A j);?zo is called invertible if there is a
sequence (B )” _p of complex g x p matrices such that SL » = Sp.u. In this case,
SL m = Spm forallm € Zyp,. A sequence (A )<>Q o of complex p x ¢ matrices is
said to be invertible if there is a sequence (B )"10 of complex ¢ x p matrices such
that Sz.m = Sp. forallm € Ny. We will use .#, 4. to denote the set of all invertible
sequences (Aj)’,‘.:0 of complex p x g matrices. One can easily see that if (Aj)’,‘.:0 €
I pxq:x» then there is a unique sequence (B j)’;':o of complex g x p matrices such

that Sz_m = Sp.m for all m € Zg,, the so-called inverse sequence corresponding
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to (A j)’j‘.zo. In [22], one can find several results on invertible sequences of complex
p x g matrices. In particular, ..« = Zpxq:« 18 proved and, moreover, if (Aj)’;zo
belongs to .#, 4.« then one obtains that (At})’jzo is the unique sequence (B j)';zo
of complex ¢ x p matrices which fulfills Sg.,, = Sl,m forall m € Zg, (see [22,
Thm. 4.21, Rem. 2.3)).

We introduce now one of the central objects of this paper. This object has two forms,
namely a left one and a right one. At the end of this section (see Proposition 3.19),
for sequences belonging to £ZN ), 4., we Will see that both forms indeed coincide,
a result which will be proved to be essential for our considerations.

Definition 3.4 Suppose (A;)_y € H}pxg;c- Let Wa0:= Vo and let Y .0 := /ro. If

k > 1, then:

(a) Let Wy, j:= — AjAE';«/ET forall j € Zy, and let Xy, := AHIﬁT for all
J € Zgp «—1. Then the sequence (A;l))’j‘;(l) defined by

J

. _ g

Aj = E WA;j—ZXA?Z
£=0

is called the left SP-transform of (A j)']('=0~
(b) Let Yyu,j:= — ﬁ*A(";AJ- forall j € Zi, and let Zy.; := \/ETAJ-H for all
J € Zgp «—1. Then the sequence (AB.”)E;(I) defined by

J
[._ #
Aj = E ZA?ZYA;/‘—Z
£=0

is called the right SP-transform of (A j)’j‘.zo.

Observe that Definition 3.4 is a natural generalization of [6, Def. 3.1] for sequences
(Aj)’;.:O that only satisfy ||Ag|| < 1 instead of ||Ag|| < 1, by replacing inverses with
Moore—Penrose inverses.

For each matrix X built from the sequence (A j)'](‘:o’ we denote (if possible) by X (1)
(resp., X!1) the corresponding matrix built from the left (resp., right) SP-transform

Dyk— - .
(A§. ))jz(l) (resp., (A')AZ8) of (A))%_ instead of (A)%_,.

Remark 3.5 Suppose k > 1. Let (A;)5_g € Hpxgu. let (AY)EZ) (resp., (A< Z))
be the left (resp., right) SP-transform of (A j)’j‘.zo. For each n € Zj , then one can
i D\n— 1\n—1y -
easily see thfit (Aj ’J?:O belongs to J#},x4:» and that (A§ ));}:(1) (resp., (AB. ]);?:(1)) is the

left (resp., right) SP-transform of (Aj);'.:o.
Example 3.6 Suppose ¥ > 1. Let E € K, and let (Aj)f;zo be defined by Ag:=E

and, for all j € Zj . by Aj = 0pxq. Then (A))"_y € Fprgc and AN = 0,4 for
all j € Zoy—1-
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Lemma 3.7 Suppose k > 1. Let (Aj)'/‘.:0 € Hpxq:c with left SP-transform (Bj)';.;(l)
and right SP-transform (Cj)';;(l). Then (A’/‘.)jzo belongs to Hyx . and has left SP-
transform (C;f)';;(]) and right SP-transform (B;’-‘)';-;(])

Proof Lemma A.15 shows Aj € K;xp, so that (Aj)§=0 € JHgxp.c- Denote
by (A J')’;'zo and (Tj);:() the reciprocal sequence corresponding to (Wg. j)’]‘.zo
anq (Ya. j)’J‘.ZO, respectively. Agcording to Definition 3.4, we have then B; =
Zé:o Aj ¢Xp¢and C; = Zé:o Zp¢Vj_g forall j € Zo—1. Let (Aj)fzo and
((H)j)jzobedeﬁnedby Aj =Wy and®j = Y* ,respectively.From [20, Prop. 3.13]

. _ #
we can infer (Ajf)’]‘.zo = (Aj)"_0 and (T*)K_O = (@l =050 that
! #
ZXMA] ' and Cr=Y 0,74,
£=0

for all j € Zp -1 follow. Let (T-)" be defined by T} :=A’;. By virtue of Def-
inition 3.4 and (2.5), we have Wy, = = VI, — AyAf = /1, — T{To = Yr,0 and

AO = /I, —AjAo = /1; — ToTy = Wr,o. Using Remark A.8, in view of

Definition 3.4, we obtain then W:;j = —(WX;O)TAOAJ. = _YT;OTO*TJ = Y7,
and Y3, = —A%Ao(Yi) = —TjTiWy., = Wr.j forall j € Zj, as well
as Xi, = (¥ O)TA*+1 = Wi Tjp1 = Zrj and Z4 . = A%, (Wi =
T./+1Y7T"-o = Xr.j forall j € Zg 1. In particular, we have shown that (YT;j)’]‘.:0 =
(Aj)’;.:o and (Wr. j)’;.:O = (0; )j _o- Taking additionally into account Defini-
. 1

tion 3.4, wegetthenf() Zzo ?1 gXTZ—Zg OO/Z ae = Cj and
[1] f

T Z[ OZTKYT] Z_Zl OX?:X;[AJ?Z_B; forall j € Zo,—1- O

Notation 3.8 Let (Aj)§:0 € Jifpxq;,(. Then, for all n € Zg , let W, :=Syw,., and
Y, :=Sy,.n as well as Wg, ':S and Y,ﬁZ = S . Furthermore, if « > 1, then,
for all n € Zoy—1, let X, ._SXA n and Z, _SZA » as well as Xn ._SXA ., and

n —SZA ne

Given an arbitrary n € N and arbitrary rectangular complex matrices Ay, A2, ...,
A,, we use diag((Aj)’}zl) or diag(Aq, Aa, ..., A,) to denote the block diago-
nal matrix with diagonal blocks A1, A», ..., A,. Furthermore, for arbitrarily given
A € CP*1 and m € Ny, we write

(A)m == diag((A) 7). (3.2

Now we give some identities, which can be easily checked by virtue of Remark A.7
and Lemma A.16(e).

Remark 3.9 Let (A j)';':o be a sequence of complex p X g matrices.
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(a) Suppose (Aj)’j‘.:0 € HXR pxq:«c- Foreach n € Z ., then

(Lol nSn = Su — (PoAo)n, SEWlold VS = SESn — (Qo)n,
and
(rgrodn — SEQolg)nSn = Ra. (3.3)

(b) Suppose (Aj)’;.zo € JNpxq- Foreach n € Zy ., then

Sn((rgro))n =S, — {A0Q0n> S, ((rof’o)) S, =8uS;, — (Po)n.
and
((lol Dn — Sn ((roro»ns = Ly. 3.4

Remark 3.10 Let (Aj)§=0 € Hpxq;i- In view of (2.5) and Remark A.10(d), for all
n € Lo, then Wy = [Int1)p — S «Ag»n]«\/%T»n and Y, = (/70 Wallinrnyg —
{AG)nSnl.

Remark 3.11 Supposex > 1.Let(A -)" _0 € Hpxqy«-Foreachn € Zl,,{,then)e(n_l =
[Sy — (Ao)nl f* and sfj)1 - Wtt X as well as Zy 1 = (To WSy —
(Ao)s)and S, =2, Y

n—1-

Using Remarks A.9 and A.10(a), we can obtain the following result:
Remark 3.12 1f (Aj)jzo € R pxqc, then (WA;j)’;:0 € Dpxp.c- Moreover, if
(Aj)iZg € HNpxgsc> then (Ya; ;) € Dgxqix-
Remark 3.13 Let (Aj)';.zo € JXK pxg:«- In view of Remark 3.12 and [22, Prop. 4.20],
forall n € Zg,, then Wfl = le Moreover, if « > 1, then Remark 3.12 and [22,

Lem. 4.18] show that W) = |: ] is valid for all n € Z .

Opxnp
* W'

n—1
Remark 3.14 Let (Aj)§=0 € JN)xq:c- In view of Remark 3.12 and [22, Prop. 4.20],
for all n € Zo, then Y,% = Y,Tl. Moreover, if k > 1, then Remark 3.12 and [22,

Lem. 4.18] show that YZ = |:Y21 Onixq] is valid for all n € Zj .

*

Remark 3.15 Suppose « > 1. Let (Aj)§:O € Hpxg:c- In view of Remarks A.9 and
A.10(a), then Z;;é R(Za;j) S R(lp). Moreover, if (Aj)S_y € HZ pxg., then
Y529 R(Xa:) € RUo).
Remark 3.16 Suppose ¥ > 1. Let (Aj)’,‘.:0 € Hpxgc- In view of Remarks A.10(a)
and A.9, then N (rg) C ﬂ’j‘-;(l)N(XA;j). Moreover, if (Aj)§:o € JHNpxq.c» then
N(ro) € SN (Za: ).
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Using Remark 3.12, [22, Thm. 4.21(a), Lem. 3.6], and Remark A.10(c), we can
obtain the following result:

Remark 3.17 1f (Aj)’j‘.:0 € HXR pxq:« then

W W = (ol = (Viovo Jn = (Io VIohn = (Lilo)n = WIW,  (3.5)

forall n € Zo,,.. Moreover if (A )’ _o € AN pxq;c. then

YY) = (r0rg)n = (/70/70 Dn = (/70 /70hn = (rgrodn = Y[ Yu  (3.6)
foralln € Zo .
The following result plays an important role in the proof of Proposition 3.19.
Lemma 3.18 Suppose k > 1. Let (Aj)’]‘.:() € HRN pxgc and let n € 7y . Then
Xp-1Yno1 =Wy 1Zy 1. 3.7

Proof Remarks 3.11 and 3.10 yield

X,o1Y, =[Sy — (Aoda(ri D nllins g — (AG)SH]
= S (rdVn — Sulrd AiNnSn — (Aorghn + (Aorg A§)aSn (3.8)

and, analogously,
WoZy—1 = (I0aSn — (G A0 — SuCASIE)nSn + SuCAGL Ao)n.  (3.9)

According to parts, (c), (b), (a) and (d) of Lemma (A.16), we have rg — A(’SZSAO = rg ro
and [] — Aorg A% = lol] as well as AL = rd A%, 17 Ag = Aory and PyAg = A Qo.
Using (3.8), (3.9), Remark 3.9, and (2.10), we can conclude then

Xp1Yy — WoZyy
=S, ((rg — A§ISAoYn — Sullrg A§ — A NS
— (Aorg — I§Ao)n + (Aorg Al — I$)uSn
= S, (rgrodn — (olg)nSn = Sn — (A0 Q0)n — [Su — (PoAo)n]
= (PoAg — ApQo)n = O.
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Regarding Notation 3.8 and (2.2), this implies finally

O(n+l)p><(n+l)q = )Q(n—lYn - Wnin—l

— OPXMI OPXQ Y1 anxq | * OPX”[’ Oﬁan Opxq
Xn-1 0np><q * * * Wy Z, Onpxq

Now we obtain that the left and the right SP-transforms coincide.

s (Dyk—1
Pr(E{)]OSItlon 3.19 Suppose Kk > 1. Let (Aj)§:0 € HRN pxq.c- Then (4; )I;'=O =
Kk—1
(Al
Proof We consider an arbitrary n € Z; ,. First we observe that Remarks 3.11 and

3.13yieldS'", = W?_ X,_; = W/_ X,_,. Similarly, Remarks 3.11 and 3.14 yield

n—1

SEEI = Zn_lYt = Zn_lYZ_l. For each j € Zo «—1, by virtue of Remarks 3.15

n—1 —

and 3.16, we have R(Z4.;) € R(lp) and N(ro) € N(X4.;), which, because of
RemarkA.7,implieslongA;j = Zu;jand XA;jrgro = X4, j.Regarding Notation 3.8,
(2.2), and (3.2), hence ((lolg))nZn_l =7, 1and X,,_{ ((rgro))n = X, follow. Thus,
combining the obtained equations, we get Sfllzl = WLIX",l ((rg ro)n and S,[ﬂl =
((lolg))nZn,le;fl. Because of Remark 3.17, then

sV =W X, Y,1Y | and S =wW' w,,z,,Y |, 310

n—1 — n—1
follow. Lemma 3.18 gives (3.7). Thus, summarizing (3.10) and (3.7), we get finally
S;(11—)1 = Sylr .

Remark 3.20 Suppose « > 1. Let (Aj)jzO € R xq;c- Taking into account
Remarks 3.13 and 3.11, for all n € Z; ., then

e x 0 0 o o (1)
WX, | = pxnp pxnq pxq | — ) 3.11
nxn—1 |:* WT Xn—l Onpxq Sn—l ( )

n—1
Remark 3.21 Suppose x > 1. Let (Aj)’;:O € K} xq;«- Because of Definition 3.4 and
Remarks 3.15 and 3.16, then Y52 R(A') € R(l) and N (ro) € Mg N (Aj.”).
Remark 3.22 Suppose k > 1. Let (Aj)§:0 € HRNjxq:ic- In view of Proposition 3.19
and Remark 3.21, then Y524 R(A}") € R(lo) and N'(ro) < (525 N (A,
Proposition 3.23 Suppose k > 1. Let (Aj)’]‘.:0 € HRN px g, and let n € Ly . Then
Ly, =W, -diag(I,, L' ) - W and

diag(1,, Ly = (Po), + WiL,(WhH)*. (3.12)

n—1
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Proof One can easily check that

o(l)  o(1) .
Ity — Sy 18,2 = diag(1,, L )). (3.13)

Remark 3.20 yields (3.11). From Remark 3.15 and Remark A.7(a) we can infer
lol(')XA j = Xga,j forall j € Zg,—1. Taking into account Remark 3.17, (3.2),

Notation 3.8, and (2.2), then W WTX,I 1 = ((lolo)) nel = Xn 1 follows. Using
additionally (3.11), we obtain consequently

(1) (1) o o
WS, 8,2 Wi =X, X, . (3.14)

By virtue of Remark A.10(b), we have moreover ((«/ET))H((\/ET))Z = ((lg Y and
\/—T
(/o' W ) n- Applying Remark 3.10, we get then

W, W = (s 1yp — SnCAG) ) (L Dn (1(n+1>p — (Ao)aSE)
= ({30 — G5 AN nSE — SuQASI I + Su( A AN aSE. (3.15)

Similarly, from Remark 3.11 we conclude
X, X, = Su (i )nSE = Su(rd Afhn — (Aord)uSE + (Aord Af)n. (3.16)

Parts (a), (b) and (c) of Lemma A.16 yield lg Ag = Aorg and Aélg = rg Aj as well as
1§ — Aorg A% = lold and r — A%IS Ag = r{ro. Remark 3.9(b) provides (3.4). Using
(3 13), (3.14), (3.15), (3.16), and (3.4), we get then

1 1
W, - diag(Z,. L) - W: = W, w: —w,$." &\ rwr

_WnW —X,, 1Xn 1

= (Ig)hn — (5 A0NnSE — SuCAFIIn + Su(Aflg Ao) S}
—Su(rg Sk + Sulrg Aidn + (Aord)aSk — (Aord Aihn
(15 — Aorg A§dn + Su(AGIG Ao — rg)uS;

= (lolg)n — Sul(rgro)nS; = Lu. (3.17)

By virtue of Proposition 3.19, thus L, = W, - diag(/ ,L[1 D - W, follows.
Remarks 3.22 and A.7(a) yield lol, A(l) A(l) for all j € Zo —1. Regarding (3.2)

and (2.2), hence (Il ),S.", = $\”,. Using (3.17). (3.5). (3.13), Remark A.24(b),
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and (2.1), we get then

WL, (Wh* = WiW, - diag(1,, L") - (WIW,)*

= (ol n sty — So S8 ¥ 100y

= (ol Aol ) n — (oli)nS S ) oty = (oliyn — St L )

and, in view of (3.2), (2.10) and (3.13), consequently

(Poln + WEL, (W = Ipur1)p — (lolihn + Wi L, (Wi
(1) (1) .
= Irnyp — 8,21 8,2 )* = diag(1,, LV ).
By virtue of Proposition 3.19, thus (3.12) follows. O

The next result contains the essential observation that the SP-transform maps the
class .7 4. into the class .7 4. 1.

Proposition 3.24 Suppose k > 1. Let (A))_y € Fhxgu. Then (AU)Z§ e
Z’Xq;f(—l-

Proof We consider an arbitrary n € Zj,. Remark 3.3 provides (A j)'j‘-zo €
HRN pxq:«c- Thus, Proposition 3.23 yields (3.12). Regarding (2.11), from Remark A .4

we can infer Py € (Cp P In view of (3.2), then (Py), = O follows. Since
(A ) o belongs to 5{”(,1 ., we also have L, > O. Thus, from (3.12) we see

that dlag(l L[ _1) = O and, consequently, that LEE O. Hence, (A[l )"_0 €
Tpxqin—1- o

Now we are going to derive a right version of Proposition 3.23. For this we need a
little preparation.

Remark 3.25 Suppose « > 1. Let (A j)’;':o € JNpxq:c- Taking into account
Remarks 3.14 and 3.11, for all n € Z ., then

.
o o 0pan OPXq Y 1 anxq _ el
Z, 1Y) = [Zn_l Onpxq] [ " 91 =8, ). (3.18)

Proposition 3.26 Suppose k > 1. Let (Aj)’;.:O € HRN px g, and letn € 7y . Then

R, = Y* - diag(RY

n—1°

1) Y, (3.19)
and

diag(R" | 1,) = (Qo)n + (Y))*R,Y].
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Proof. One can easily check that

o[1] . all]
Tntyg — S, 21)*S, 1 —dlag(Rn 1 1) (3.20)

Remark 3.25 yields (3.18). From Remark 3.16 and Remark A.7(b) we can infer
ZA;jrgro = Zy;j forall j € Zy 1. Taking into account Remark 3.17, Notation 3.8,
(2.2),and (3.2), then Zy, 1YY, = Zy,_1 (rro)n = Zy—1 follows. Using additionally
(3.18), we obtain consequently

o[1] . all] .
S, S, Y, =27, 7,1 (3.21)

By virtue of Remark A.10(b), we have moreover (/7o )} T (/0" Wn T = Wn and
il
(Vi )y
W%T) n= ((lg Yn. Applying Remark 3.10, we get then

YEY, = Ut 1yg — SECAN ) (D allins1yg — (AG) Sl
= (rgdn = (ra AiDaSn — SE(A0rd)n + SE(Aors AG)aSn.  (3.22)

Similarly, from Remark 3.11 we conclude

o %

Zy (Zny = SEQI S — SEQS A0 — (AGIINnSn + (AGI Ao)n.  (3.23)

Parts (b), (a), and (c) of Lemma A.16 yield A"‘lO = rOA* andl Ag = AorO as well as
1o — ARl Ag = ryro and Ij — Agrg A% = lol}. Remark 3.9(a) provides (3.3). Applying
(3.20), (3 21), (3.22), (3. 23) and (3.3), we get then

Vi - diag(RM 1) Y, = YA L — S )8y,
=YY, - Z 2,
= (rgdn — (g AiInSn — SE(Aorgn + Si(Aorg A§)uSn
— S5 (YnSn + S5 ANn + (AT S — (AL Ao
(rg — ASlG Aohn + Si(Aorg Al — 1§ )nSn
(rgrodn — Sk {loli)nSn = Ru,

i.e., (3.19). Remarks 3.22 and A.7(b) yield A[”rgro - A[/.l] for all j € Zo._1.
Regarding (2.2) and (3.2), hence $. | (riro), = S\ |. Using (3.19), (3.6). (3.20),
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Remark A.24(b), and (2.1), we get then

(Y)*R,Y! = (Y, Y))" diag(R |, 1,)Y,,Y]

n—1°

= (rgro)iUms1)g — (Sn]l)*ghlll]«rgro»

=<((roro)*roro)) — rfronr & 8 oy
= (rirohn — &M yx8lT

and, in view of (3.2), (2.10) and (3.20), consequently

(Qodn + (YD) Ry Y = Iinsyp — (rgrodn + (YD * R, Y
o [1] o [1]
= Ity — S-S, 21 = dlag(Rn 1. O

4 The SP-Algorithm for p x g Schur sequences

Regarding Propositions 3.24 and 3.19, we are able to generalize the notions of the left
and the right SP-transforms of a sequence of complex p x g matrices, introduced in
Definition 3.4 (see also Remark 4.2 below).

Definition 4.1 Let (Aj)§:O € xq.c- Then let the sequence (AE.O))’;.:O (resp.,
(A[.O])’J‘, o) be defined by A(.O) i=Aj (resp., A[O] :=Aj)forall j € Zy,. Furthermore,
(k) K—

)

ifk > 1,forallk € Zj 4, let the sequence (A 15 (resp., (AE.]‘])’;;S) be recursively

defined to be the left SP-transform of (A(k l))'( =1y (resp., right SP-transform of
(Ag.k 1]);:(k 1)). For all k € Zy,, then the sequence (A;k))’;;g (resp., (AE.]‘])’]:S)
is ca}(led the k-th left SP-transform of (A /)I;'=0- (resp., k-th right SP-transform of
(A)S_o).

Remark 4.2 Let (A j)']‘.:() € S xq:«- We emphasize explicitly that, in Definition 4.1, we
used .S xg:c S H#pxq:c and the following: By virtue of Propositions 3.24 and 3.19, one

can easily verify by induction that (Afik))f;;g € Spxqiu—k and (Ag.k])f;;g € Sxqii—k
forall k € Zo .

Now we obtain that the left and the right SP-transforms coincide.

Proposition 4.3 Let (Aj)’;:0 € Sxqc- Then AEk) = Ag,k]for every choice ofk € Zg
and j € Zo k-

Proof In view of Definition 4.1, there is anm € Zg , such that (A(k)) =0 = (A )

for all k € Zg . Consequently, Remark 3.3 provides (A m])" "e Ji/%/i/pxq e

If m < «k, then, in view of Definition 4.1, the apphcatlon of Proposmon 3.19 yields
(A(m+1))K (m+1) = (A m+1])K (m+l) 0
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Remark 4.4 Let (A]-)’J‘.:0 € Sxq:x and, for each k € Zg, let (A(k)) o (resp.,

(Ag.k])’]‘.;g) be the k-th left (resp., right) SP-transform of (A )’]?:0. For every choice of
n € Zo and k € Zo n, one can see then from Definition 4.1, Remarks 4.2 and 3.5, and
Proposition 4.3 that (Aj)’}zo belongs to .%,x;, and that (A;k))?;’g (resp., (AE.]‘]);?;S)
is the k-th left (resp., right) SP-transform of (A j);fzo.

Example 4.5 Let (A;)’_, be given by A := Opx4. From Example 3.6 and Defini-
tion 4.1 one can easily see then that (Aj)’;.zo € Sxq:c and Ag.k] = Opxq for every
choice of k € Zo  and j € Zo j—k-

Lemma 4.6 Let (Aj)’]‘-:0 € Sxgc- Then (Tj)’;:0 defined by T := A;‘- belongs to
Fgxpye and, for all k € Zg ., the k-th right SP-transform of (Tj)’j‘»=0 coincides with
(B*)K_O, where (Bj)j;g denotes the k-th right SP-transform of (Aj)']‘-zo.

Proof Clearly, (Tj)§:0 € Y x p:«c- Denote by (C./)E:o the 0-th right SP-transform of
(A})$_y- In view of Definition 4.1, then (C;)_y = (A})_, and hence (Tj[‘”);f.:0 =
(T; )K_O = (Aj =0 = (C] i=0" In the case k = 0, the proof is complete. Now
suppose k > 1. Now denote by (C ~)'(._l the first right SP-transform of (A./)’;:O.
In view of Remark 3.3, we can apply Proposition 3.19 to get (T(])) (Tj“])’;;(l)
Regarding Remark 3.3 again, we can apply Lemma 3.7 to obtain (Tj(l)) im0 = (C}*);;é
Summarizing, we have (Tj“])’](. =(C *)']‘ (1) In the case x = 1, the proof is complete.

j
Now suppose k > 2. Then there exists an n € Zj ,—1 such that for all k € Z; , the

following statement holds true:

Dy (T[k])j 0= (B] )j 0’ where (B.i);‘;l(; denotes the k-th right SP-transform of
(Ao

Let (S j)’;;('; be defined by S; T["] According to Remark 4.2, then (S;)%_ iz - €
Fgxpic—n- In view of Remark 3. 3 we can thus apply Proposition 3.19 to get

(S(l))(K -1 (S )(K -1 . According to Remark 4.2, the n-th right SP-transform
(Dj)jZg of (A})5_ belongs t0 7 g:x—n. Now denote by (C]-);K:_O")_1 the first right
SP-transform of (D‘)K_” Regarding Remark 3.3 and that (I); for k = n shows

(S; )K no= (D )z —0’ we can apply Lemma 3.7 to the sequence (D, ) o to obtain

(S(l))(l'( 0") (- = (C} )(K "1 Taking additionally into account Deﬁmtlon 4.1, we

obtain (7! n+1])/« (n+1) (S[l])(K n)— 1_(551))@ n)—1 (C*)(K m-l g e Def-

inition 4.1 implies that (C; )K ("+1) is the (n + 1)-th right SP-transform of (Aj)jzo,

thus (I); holds true for k = n + 1. Therefore, the assertion is inductively proved. O

Definition 4.7 Let (A)’_y € Sxq:c- Then the sequence (¢;)’;_ given by ¢; := A([)j]
for all j € Zo, is called the sequence of Schur—Potapov parameters (short SP-
parameter sequence) of (A j>l;=0'

One can easily convince oneself that in the scalar case p = ¢ = 1 (see [28]) the
parameters given in Definition 4.7 are exactly the classical Schur parameters .
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Remark 4.8 Let (A j)jzo € Spxq;c With SP-parameter sequence (e 1)7:0' For all k €
Zy ., according to Remark 4.2 and Definitions 4.1 and 4.7, then (Agk]);;g belongs to
Fpxq;x—k and has SP-parameter sequence (e j+k)’]‘.;]6.

Remark 4.9 Let (Aj)jzO € Sxqy and let n € Zg . In view of Definition 4.7 and
Remark 4.4, then (A j);_, belongs t0 ., < 4:, and has SP-parameter sequence (¢;)’; _-

Lemma4.10 Let (Aj)?zo € Spxg With SP-parameter sequence (ej)§=()' Then
(Aj)’;zo belongs to % x p. and has SP-parameter sequence (e’]‘f);:o.

Proof Regarding Definition 4.7, this follows from Lemma 4.6. O

Notation 4.11 Let (e j)’]‘.zo be a sequence of complex p x ¢ matrices. For each j €

Zo, thenlet [; :=1), — ejej andtj:=1; — ejej.
Remark 4.12 Let (A j)’;:0 € Sxq:« With SP-parameter sequence (¢ j)'](‘:o' For each

J € Lo, inview of Remark 4.2, thene; € K x4 andhencel; € CZ”andt; € CL*.

Notation 4.13 Let (A;)_( € Hxq:c and letk € Zo, . For each matrix X built from
the sequence (A j)’;.zo, we denote (if possible) by X!¥I the corresponding matrix built
from the k-th right SP-transform (AE.k])’j‘.;k of (A j)§:0 instead of (A j)’;:().

Remark 4.14 Let (A j)fzo € S xq:;c With SP-parameter sequencp (e j)’/(‘:O' In Yiew of
Notation 4.13, (2.5), Definition 4.7, and Notation 4.11, then l([)j] = [; and réj] =71
forall j € Zy . In particular, [p = Iy and t9 = ry.

5 The Inverse SP-Transformation for Sequences of Complex Matrices
The main goal of this section is to generalize the notion of the inverse SP-transform
of a sequence of complex p x g matrices with respect to a given contractive complex
p x g matrix E. In [6, Def. 3.4], such considerations are carried out for the special
case that the matrix E is strictly contractive. Taking into account the nature of the

objects under consideration, we start again by considering a left and a right version of
the inverse SP-transform of a sequence (A j)';zo with respect to a given E € K »,.

For each E € CP*1 let

l:=1,— EE* and r:=1,—E'E (5.1)
as well as

Pi=1, -1 and Q:=1,—r'r. (5.2)
Because of Remarks A.6, A.4 and A.2, we have then

P =Prt and 0 = Pr,. (5.3)
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If E € K}y, in view of Remark A.10(c), furthermore

P=1,- IVl and O=1I,—Vivr. (4

Definition 5.1 Let E € K4 andlet (A)’_, be a sequence of complex p x g matri-
ces. Then:

(a) Let Rg a.0:=E and Tg p.0:= I, and, forall j € Z1 411, let Rg a.j :=+/1A;_
ﬁ and Tg 4 := Rg a;; E*. Then the sequence (A( L E))"Jrl defined by

( LE)
Z E.azj—e RE A

is called the left E-inverse SP-transform of (Aj)§:0~

(b) Let Ug a.0:=E and Vg a.0:=1,, and, for all j € Zj,4+1, moreover let
Ug.a,j:= ﬂTAj_lﬁand VE a.j = E*Ug 4. ;. Thenthe sequence (AE._I;E])EI(I)
defined by

[~1:E]
A ZUEAKVEA]g
=0

is called the right E-inverse SP-transform of (A /')I;:O'

Definition 5.1 is a generalization of [6, Definitions 3.4 and 3.10]. We will establish
(see Proposition 5.9) that the left and right inverse SP-transform indeed coincide.
For each matrix X built from the sequence (A j)fzo’ we denote (if possible) by

XELE) (resp., XI7LE]) the corresponding matrix built from the left (resp., right)
E-inverse SP-transform (A( L E))K+O (resp., (A ~LE] )K+(1)) of (A; )K—() instead of
(Aj)5o-

Remark 5.2 Let E € K, and let (A ')K'—O be a sequence of complex p x g matrices.
In view of Definition 5.1 and (3.1), we have A( EE) — E and A[ VEl _ g

Remark 5.3 Let E € K, and let (Aj)jzO be a sequence of complex p x g matrices.
For each k € Zg, then the sequence (A;fl;E))k‘"1 (resp., (A[ L E])k+1) is the left
(resp., right) E-inverse SP-transform of (A j)l;.:()

Lemma5.4 Let E € Ky, and let (Aj)’(._0 be a sequence of complex p x q matrices
with left E-inverse SP-transform (B, ~)'(. and right E-inverse SP-transform (C )K+l
Then E* € Kyxp and (A*)"_0 has left E*-lnverse SP-transform (C )’(+1 and right

*\ K+

E*-inverse SP-transform (B’ ; ]_0
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Proof Lemma A.15 shows E* € K« . Denote by (A; )’(Jrl and (T )KH the recipro-
cal sequence corresponding to (T 4. j) and (VE . A: ,) = 0, respectively. According
to Definition 5.1, we have then B; = Z[ _oAj—¢RE a¢andC; = Zz oUE a:eYj—¢
for all j € Zo,41. Let (A )K.+ and (O, )K.+ be defined by A;:=T; , ; and
0;:=Vg A respectively. From [20, Prop. 3.13] we can infer (A* )']‘+(1) = (Aj)"‘Irl

and (Y* )j+(1) - (@jm, so that

J J
# f
B} = Z REA;ZAJ'—Z and C;= Z ®j—ZUE,A;£

for all j € Zg,+1 follow. Let F:=E* and let (Sj)’]‘.:0 be defined by S; ::Aj.
By virtue of Definition 5.1, we have RE A0 = = E*=F = UF,S o and Ug A0 =
E*—F—Rpgoaswellas O_Ip_VFSOand 0= q—TFSO
Using Remark A.8, we obtain, for all j € Zi+1, in V1ew of (5.1) and Defini-

tion 5.1, furthermore RE’A;J. = f Ajfl\/_ = /I, — FF* Sj_l\/lp —F*F =
Up.s.j and U, = VrAT_ NI = /I, =FF*S; /T, — F*F = Rp., as
wellasTg‘Aj = ER;A] = F*Urys,; = Vrs.jand V EAJ = U;AIE =
Rps.jF* = Trs.;. In particular, we have shown that (Vf g. j)’“’1 = (A )K+1
and (TF_s:. ])"‘H = (9; )" +l . Taking additionally into account Definition 5. 1 we

(1F)
get'thenS Ze -0 FS, eRFSé—Zz -0 ] eUEAE:C".‘ande
Zé:OUF,S[ F,S;j— @-ZZ =0 EA[AI:L Z—B*forall] €Z0K+1 O

Notation 5.5 Let £ € K5, and let (Aj)’j‘.zo be a sequence of complex p x g matri-
ces. Then, for all n € Zg,+1, let R, := SREA n and U, :=Sy; ,;n as well as

and VE, =S

T, :=Sr; 4:n and V,, :=8Sy, ,., and furthermore T,, = VE n

-
TEA

Remark 5.6 Let E € K, andlet (A j)§:0 be a sequence of complex p x g matrices.
Then

Ry = (VDS t (W7 D+ GEDne T = (VDuSus1 6 E* N + Tty
T Ty &

Uy = (VI )uSac1 VT + (EDne Vi = (E*VI )uSu—1 (VT + Tt
foralln € Zj 41 as well as S( LE) _ n and S UnVﬁ foralln € Zo 41
can be checked by straightforward calculat1on

Now we use the notation introduced in Notation A.18.

Lemma5.7 Let E € K, and let (A]-)’J‘.:0 be a sequence of complex p x q matrices.
Then (TE,A;j)';i(l) S -@pxp;K—H and (VE,A;j)Si(l) (S gqxq;K—H' For each n € ZQ’K+1,
moreover, T, € £, and V, € £, ,. In particular, det T, = 1 and Tﬁ = T;l as
well as det V, = 1 and Vi = V' foralln € Zo 1.



The Schur-Potapov Algorithm in the General Matrix... Page210f91 109

Proof First observe that Tg 4.0 = I, and Vg 4.0 = I,. Consequently, (T 4. ]):J<+(1) €

Dpxpic+1 and (VE 4. j)’ﬁLl € Dyxq.i+1 follow. Now we consider an arbitrary n €
Zoxc+1.- Regarding Notatlons Al8and5.5and (2.2),thenT, € £, , and V,, € Z, ;.
In particular, det T,, = 1 and det V,, = 1. According to [22, Prop. 4.20], furthermore
T, =T, 'and Vi = V; 1. O

Lemma5.8 Let E € K, and let (Aj)§=0 be a sequence of complex p x g matrices.
For each n € Zg +1, then R, V, = T,U,.

Proof We have RoVo = E - I, = I, - E = ToUp. Now suppose « > 1 and consider
an arbitrary n € Z ,+1. Remarks 5.6 and A.24(b) yield

RV = [(VDS01 47 o+ (D | [REVT DSt (VP + T |
= (ISt (T E T Y8t (W0 + (VI nSuet (V7 D
A+ (EENT Y a1 (V70 + (EDn

and

U, = [(VDhnSamt (V7 E*)a + 1<n+1>p][<<~fﬁ>>nén_l (Pl + (ED |
= (VS (VBT DSt (VD + (VDS (T BB
(VT DS (VP + (E D

Remark A.17(a) shows [ € (C’;(p and r € (Cq;q. We can thus apply Remark A.10(d)
to obtain with (5.1) then

V=P EE = Uy - BB = V= (5.5)
and

'~ EE*VI =1, — EEDWI =11 = VI (5.6)
Using additionally Remark A24(b) we can conclude then R,V, — T,U, =
WDnSu 1 (7 = 7 E* BN+ (EE*VT = VI )aSu 1 (/e = O. 0

Now we are able to verify that, for each matrix E € K, the left and right
E-inverse SP-transforms of a sequence (A j)I;=0 from CP*? coincide. This is a gen-
eralization of [6, Prop. 3.11].

Proposition 5.9 Let E € K x4 andlet (A; );:O be a sequence of complex p x q matri-

ces. Then (A( L E))'j”r(]) = (A[ LE] )"J_r(l)
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Proof. We consider an arbitrary n € Zg ,+1. Remark 5.6 shows SS,_I;E) = TE,Rn and
SI=1:E] — U, V5. Lemma 5.7 yields det T, # 0 and T, = T} ! as well as det V,, # 0
and VB, =V, L Using additionally Lemma 5.8, we obtain

S¢HE) _ gI-LEl — TR, — U,V: =T, 'R, — U,V,!
=T, (R,V, - T,U)V,;' = 0.

In order to show that the inverse SP-transform with respect to given E € Ky,
maps the class .% x4« into the class .7 4.c+1, we prove the following result.

Lemma5.10 Let E € K xq, let (Aj)?zo be a sequence of complex p x q matrices,
and letn € Z1 s+1. Then det V,, # 0 and

RUVEY = Vo diag ((/rhn—t1 (Ing — SE_ 1 QU ) n—1Sn—1) (/T V-1, IV, L.

Proof Remark 5.6 shows SE‘RE] = U,,Vfl. Lemma 5.7 provides detV,, # 0 and
VB, = V;l. Regarding (2.3), we can infer then

Ry = Iy — S ENSTEE = VIV, — UV
Remark A.17(a) shows [ € (C’;XP andr € Cq;q . Remarks 5.6 and A.24 yield

*

ViV = [0S VT D+ T (VT 0aSat (VD + Taring |

= (S (VT EE*T 801 (/P + (V0SS (VT ED
A CE VI uSa— 1 P + Tt

and

UsUn = [0S VT D+ GE D | (VT DSt (/70 + (ED ]

= (IS VT VISt (P + (VNS (VT EY
+ (E VI uSa_1 (P + (E*E).

Using (5.1) and Remark A.10(e), we get

SV T Ee i =vi'a, - ey =TT =it )
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Taking additionally into account Remark A.24(b), (3.2), (5.1), and (2.2), we can con-
clude then

Vv, —U;U,
= (S (VT EET = STV )aSuet (VP + (1 — E*E)
= (hn = (VDS (U DaSn 1 (V7D
= diag({rhn—1 = (Vrhn1S; - (U D nr Sut (V71 1)
= diag((v/r)n1Ung = Sy (U a1Su-1) (¥ hn-1. 7).

which completes the proof. O

Now we are able to verify the result announced above, which is a generalization of
[6, Prop. 3.6(d)].

Proposition 5.11 Let E € Kpxg and let (Aj)5_, € Fyxq;c- Then (AE._I;E])’]?:(I) €
<y]éxq;/(—}—l-

Proof We consider an arbitrary n € Zj ,+1. Then R,—; = O. From Remarks A.6
and A.4 we can infer /[T < Ip. In view of (3.2), then WY1 = I, follows,
implying Sj;_l((llT))n_ISn_l < S_Sn—1. Taking additionally into account (2.3),

we thus obtain /,,; — SZ,]((”T»n—lSn—l = Ing —S;_1Sp—1 = Ry—1 = O. Since

Remark A.17(a) shows r € (ngq, we can conclude from Lemma 5.10 then R,E_I;E] =

0. Hence, (AE?“E])jig € Fpuqictl- O

The goal of our next considerations is to explain why we have chosen the terminol-
ogy “inverse SP-transform”. For this we still need some preparation.

Remark 5.12 Let E € K,  andlet (A j)'j(':o be a sequence of complex p x g matrices.
In view of Definition 5.1 and Remarks A.10(a) and A.9, then Z'j‘i} R(REg.a:j) € R
and N'(r) € 52 N(RE a:)) as well as Y52 R(Ug ;) € R(I) and N'(r) C

ﬂ’,‘i} N(UE, a; )

Lemma5.13 Let L € CP*P, let R € C1*P, and let (Mj)';.:]l be a sequence of complex
p X q matrices. Let the sequence (Cj)’;:(l) be defined by Co:=1, and C; :=LM;R
forall j € Zi 41. Then Cg = I, and, for all j € Zy 41, there exists a matrix
Nj € CP*% such that C% = LN;R.

Proof Obviously, Cy = I,,. Using [20, Thm. 3.9], we obtain then C;; = I, and, for all

.....

Go,ji=1lk1, ko, ... kel € NXC . ky 4+ ko +---+k¢ = j}. The assertion now follows
from this representation, since C; = LM R for all j € Zq j41. O

Regarding Definition 5.1, from Lemma 5.13 we can infer the following:
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Remark 5.14 Let E € K4 andlet (A ) _ beasequence of complex p x g matrices.
Then TE’A;O = I, and VE!A;O = I,. Furthermore, forall j € Z1 , 11, there exist matri-
ces Mj, Nj € CP*4 such that Tg,A;j = \/ZMjﬁTE* and VE’A;J. = E*\/TTNJ'\/?.

Lemma5.15 Let E € K, and let (Aj)'j‘:o be a sequence of complex p X q matrices.

Then Y 7} R(AB?‘;E]) C R and N'(r) € (VZI N (AE?“E]).

Proof We consider an arbitrary j € Zj,+1. According to Remark 5.14, there
exist matrices M;, N; € CP*? such that Tg A= \/TMJ'\/?TE* and Vg Aj =
E*«/ZTNjﬁ. By virtue of Definition 5.1, then UE,A;OVE A= EE*\/TTNj\/? and
Tg,A;jRE,A;O = ﬁMjﬁTE*E, so that

J
) +
AE. LEl _ EE*VI Nj\/;-l- ZUE,A;EVE,A;]',@
=1

and
LE t j i
Aiﬁ B = ViMr EFE + D TpoaioRE A
=1

Using parts (a) and (b) of Lemma A.16, we can infer UYEE* = EE*I" and
E*Er'r = r'r E¥E. Regarding Remark A.17(a), we can apply Remark A.10(c) to
obtain /1T = /' /I and rr = /r/r'. Taking additionally into account (2.1), then
llTEE*\/ZT = EE*\/ZJr and ﬁTE*ErTr = ﬁTE*E follow. For each £ € Zy j,
by virtue of Remark 5.12, furthermore R(Ug 4:¢) € R(I) and N'(r) € N(Rg a:0),
which, because of Remark A.7, implies ”TUE,A;@ = Ug A.¢ and RE’A;(I"TV = RE A
Summarizing, we can infer that ll*AEfl;E] = ATBE gndg ACEE T = A;_I;E).
Consequently, R(AE_I;E]) C R() and N(r) C N(Agfl;E)) follow. By virtue of
Proposition 5.9, the proof is complete. i
Lemma5.16 Let E € Ky, let (Aj)';':o be a sequence of complex p x q matrices,
and let M be a linear subspace of CP such that R(E) € M and 25:0 R(Aj)) € M.

Then Y523 R(AL D) € M.

Proof We consider an arbitrary j € Zo 1. The assumption Z';:O R(A})) € M
implies R(A¢—1+/r) € M for all £ € Z; ;1. Taking additionally into account the
assumption R(E) € M, we can thus apply Lemma B.8 to get R(\/iTAg_lﬁ) M
for all £ € Z ,+1. Regarding Definition 5.1(b) and again R(E) € M, we hence get
R(Ug.a:0) € Mforall £ € Zg 41, so that R(ALF1) € M follows. O
Lemma5.17 Let E € Kjxq, let (Aj)§=o be a sequence of complex p X g matrices,
and let Q be a linear subspace of C4 such that Q € N(E) and Q C ﬂ';':o N(A)).

Then Q C 52y N (AL 15,
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Proof We consider an arbitrary j € Zgx+1. The assumption @ < (_o N(A))
implies Q@ € N («/7Ag_1) for all £ € Zj ,+1. Taking additionally into account the

assumption @ € N'(E), we can thus apply Lemma B.13 to get Q C N(\/ZAK_M/?T)
for all £ € Z x+1. Regarding Definition 5.1(a) and again Q € N'(E), we hence get

Q C N(Rp a¢) forall £ € Zg 41, so that Q C N(Aﬁ._l;E)) follows. By virtue of
Proposition 5.9, the proof is complete. O

Lemma5.18 Let E € Ky, let (Aj)§:0 be a sequence of complex p X q matrices,
and letn € 7 y+1. Then

Un 7+ O = (VT )uSu 1 (T + (EGF + Q)

and
Volr 4 Oy = (ENT YuSuet (7 0 + (V7 + Q) (5.8)

Proof Regarding Remark A.17(a), we can apply Remark A.10(c) to obtain /7 \/7% =
rir. Taking into account (5.4) and (2.1), we get then

VI 0) = SV RO = i 4 Ry — D =i (59)

By virtue of Remark A.24(b), we can thus conclude

So VIV 4 On =S (VT + On = Su 1 (7T

Consequently, using Remark 5.6 and again Remark A.24(b), we get finally

Unl/r + @ = [(VT S0t (VD + (D [(VF + O
= (VI WSu 1 + (BT + O

and, analogously, (5.8). O

Lemma5.19 Let E € Kjx4. Then (\/r + Q)(\/7T + Q) = I, where Q is given in
(5.2).

Proof First observe that Remark A.17(a) shows r € CL*?. Thus, we can apply
Remark A.10(c) to obtain /77 = +/F /r. In view of (5.4) and (2.1), we have

VFQ = Jr = ryr' i = 0 and Q' = ' = ' r ' = 0. Regarding
(5.3) and Remark A.3, we see Q% = Q. Taking again into account (5.4), we finally

conclude (/7 + Q)(\/—1+Q)—«/_\/_+Q—Iq~ -
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Lemma5.20 Let E € Ky, let (Aj)7:0 be a sequence of complex p X q matrices,
and letn € Zj y+1. Then det((E* VT W uSn_1 {rTr)n + ((\/ﬁ + OWn) # 0and

SE1E = [T DSt + (BT + O

1

< [(E NS0t + (V7 + O]

Proof. Remark 5.6 shows SL‘I;E] = UnVE,. Lemma 5.7 yields detV, # 0
and VE, = V;l. From Lemma 5.19 we infer det(\/?T + Q) # 0. Regard-
ing (3.2), then det((«/7T + O # 0 follows Taking additionally into account
Lemma 5.18, we can conclude det(((E*\/_ ))n a1 (), \/_Jf 4+ O)) #0

and [((E*\/ZT»ngn—l«"T"»n FTT O = (T Q ), 'V 1. Using again
Lemma 5.18, we finally get

(V08010 + (BT + 0]

- —1
x BV DaSumr (T + (7 + O
= U (W + O)alr + 078, =0,V = U, VE =s[-HEL

Lemma 5.21 Let (Aj)'/‘.:0 € JNpxqu and let n € Zg .. Then R(Y,) = R({ro)n)
and N'(Y,,) —N(((ro)) )aswellas det(— (/70 AN aSn + (/70" 4+ Qo)n) # 0 and
Y, + (Qohn = [~ (/70" AiDnSu + ( \/_T+Qo 17

Proof Using Remarks 3.17 and A.24, we get YnYZ = ((rorg W = (rodn(r 0)) and
YIY, = (riroda = (rods(ro)n as well as Y, Y} = Y]Y,. From Remark A.6 we
can infer then PR(((’O))n) = P'R(Yn) = ]P)’R(Y:) = PR(({"O))’,?)’ 1mply1ng R(«}"()»n) =
R(Y,) and R(Y,) = R({ro);) = R(Y}). By virtue of Remark A.2, then also
N{(ro)n) = N(Y,) follows. Furthermore, we can apply Lemma A.11 to obtain
det(Y, + Par(r),)) # 0 and

~1
Y = (Yo +Prropn) ™" = Pacprom)

According to Remark A.2, we have N'({ro),)* = R({ro)}). Using Remarks A.4,
A.6 and A.24, (3.2), and (2.10), we obtain then

PA oy = Tt ig — PRoys) = Ling — (ro) ) (rodn = Qo)

Remark 3.10 shows Y, = ((ﬂT))n[I(n+1)q — (A)aSn]. Taking into account
Remark A.24(b), we can conclude then

Yo+ Prctronn) = (/70 Dn = (/70 DnCAG)nSn + ( Qo)
— (/70 AEYSu + (V70 + Qoln
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Thus, the remaining assertions follow. O

det(— (/70 AENnSn + (/70" + Qo)n) # 0 and

Lemma 5.22 Suppose k > 1. Let (Aj)’j‘.:() € HNpxg:c and let n € Zy . Then

. - 3 P . -1
Sl = [/l 1iSu — (VI Ao ][~ (/7" 4500 + (V70" + Qo]

Proof From Remark 3.16 and Remark A.7(b) we can infer Z 4. jrg ro = Zy;; for all
J € Zp—1. Regarding Notation 3.8, (2.2), (2.10), and (3.2), then Z,,—1 {Qo)n—1 =

Ly 1{1;— rg 70)n = Onpxng follows. Taking additionally into account Remark 3.25,
Notation 3.8, (2.2), and (3.2), we thus get

Zu Y] 4 Qo)) = Zn1 Y] + Z,—1{Q0)n

o[1
N

_ é[l]
Z,—1{Qo)n-1 Onpxq

n—

Using Remarks A.24(b) and 3.11 then 2,1_1 = ((\/ET))HS,, — ((JETAO))n follows.
Consequently, by virtue of Lemma 5.21, the proof is complete. O

The next result provides a key observation for the realization of our aim formulated
before Remark 5.12.

Lemma5.23 Let E € Ky, andlet (B ‘)’;. _obeasequence of complex p x q matrices.
Denote by (A )K+1 the right E-inverse SP-transform of (B; ) o Then Ay = E and
Agl] = llTBjr rforall j € Zo .

Proof First observe that Remark A.17(a) shows [ € (Cp Pandr e (Cq 7. According
to Remark 5.2, we have Ag = E. In particular, Ag € Kpxg- Regardlng (2.5) and
(5.1), furthermore Iy = [ and ry = r. By virtue of (2.10) and (5.2), hence Py = P
and Qo = Q follow. We now consider an arbitrary n € Zj ,+1. Lemma 5.15 provides
then NV (rg) C ﬂKHN(A /). Consequently, (A; )K+(1) € JNpxq:k+1. Thus, we can

apply Lemma 5.22 to obtain det(— fTE* nSn + \/_T + O)n) # 0and
. Foa -1
S = [0Sy — BN [~ B+ (7 o]

LetC, :=Sy, 4.nand D, :=Sy, .., as well as Dﬁ = SV; - Regarding Notation 5.5,
) ’ E.B
then Remark 5.6 shows

Co = (VI )uS5n— 1 (/7)n + (EDn Do = (E*VI )uS5en—1 (/7 + L 1yg-
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and S, = C,,Dﬁ. Lemma 5.7 yields det D,, # 0 and Df, =D, 1 Summarizing, we can
infer det(— (/' E*)uCp + (/7 + @)Dy # 0 and

-1

$,0 1 = [(VI G} — (VT ED | [~ (VF E¥)Cu i + (V7 + 0
= [WI0Cs = (VT EDD ][~ /7 EDCa 4 (7 + 00aDs]
Using Remark A.24(b), we get
(VIDCo = (TN pin (WD + (VT ED
W7 E)Co = (7 VI St (VD f'EE
and

‘/—T n \/_TEE*\/_T an 1 \/_»n \/_-'LE»n’
(Vr 4 00Dy = (V7' + QE* ' DnSBin—1 (N hn + (VT + Q)

From (5.1) and parts (e) and (d) of Remark A.10 we obtain
S - TEEVT =ViTa, — EEOWT =TIV =it (5.10)
and
VI, — E'E) = 7' r = JF. (5.11)

Using Remark A.17(c), (5.4), and (2.1), we get furthermore

QE VI = QUr E* = (I, — Jr V)W E* = 0. (5.12)
Taking additionally into account Remark A.24(b), then
(VI DnCo = (VT END, = (VI'VT = VT EE*VT )8 501 (/P
= (UM )SBin—1(VTIn

and

— (P E*)Co + (V7 + Q)uD
W V4 (S +Q)E*«/ wSBn—1 (V7
(—F E*E+F' + 0),
E*W w8501 (P + (7 Uy = E¥E) + Q)y = (7 + Q)



The Schur-Potapov Algorithm in the General Matrix... Page 29 of 91 109

follow. Consequently, we have det{(/r + Q) # 0 and énl 1= 1,8 Bin—1{/T)n
(r + 0), . Regarding (3.2), then in particular, det(\/r + Q) # 0. Using
Remark A.lO(c) (5.4), and (2.1), we conclude

rr W+ Q) = rirr 10 = VrVE VE VR = VD =

so that /7 (/7 + Q) ™! = r'r. Regarding Remark A.24, hence (/7)) (/7 + Q)

(rTry, follows. Thus, we obtain Snl]l = Iy, SB a—1(rTr),. Taking into account
(2.2) and (3.2), therefore S | = (117,18 5.n—1 (rr),_1 and, in particular, A | =
1T B,_1rr.Since n € Z +1 was arbitrarily chosen, the proof is complete. O

Proposition 5.24 Supposex > 1. Let (A; )" 0 € %%/Vpxq « and let E := Aq. Denote
by (B; )K (1) the right SP-transform of (A )"_O Then B “LEl 4, jforall j € Zy.

Proof First observe that E € K, so that Remark A.17(a) shows [ € C;Xp and

re Cq;q. Regarding (2.5) and (5.1), we see that [y = [ and rq = r. By virtue of (2.10)
and (5.2), hence Py = P and Q¢ = Q follow. Denote by (C J')I]('=0 the right E-inverse

SP-transform of (B ) :é According to Remark 5.2, we have then Co = E = Ag. We

now consider an arbitrary n € Zl «- Then S Bin—1 = S so that Lemma 5.20 shows

nl’

the inequality det(( E*«/_T S,_ 1(( Y+ (V7 4 O)n) # 0 and

Scan = [(VI08,, <<r*r»n +(EGF + 0]
-1
< [(EVI0SL G+ (V7 0]

Remarks 3.22 and A 7(b) yield Ag”r r= A“] for all j € Zg,c_1. Regarding (2.2)
and (3.2), hence S rTry, = Snl]l Setting

Foi= (V1 )uSu — (VT E)ue Gui= — (V5 E*)uSu + (V7 + Q).

o[1
we can furthermore apply Lemma 5.22 to obtain det G,, # 0 and SLEI = F,G; .
Summarizing, we infer

SC;n
= [k 4+ (W + 0 JUE VB G, + (W + 0]
= [0+ (EWF + 001G |[(E VI DE + (V7 + 00aGa]

1

Using Remark A.24(b), we get

(VT YFn = (VINVI )8y — (VT VT E
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(E*NT Y)oF, = (E*T VI 9,8, — (E*T VI EY,
and

(EWF + QG = —(EWF + QWF ENSu + (EGF + 0)2)
(Vr + 00y = (V7 + OVF E*NuSu + (W7 + 0.

Furthermore, we can use parts (b) and (c) of Remark A.10 to obtain
VIVt =1, T = ad = e
In view of (5.4) and (2.1), we thus obtain
NG N NN B N N RN AN NN
Regarding (5.3) and Remark A.3, we see Q> = Q. Hence, we can conclude
W'+ 0P =V o+ oV + 02 =1+ 0.
Using parts (¢), (a), and (b) of Lemma A.16 as well as (5.2), we get then

VIV —EWF O E =17 — B Vi E* =11 — ErTE* =1,

(5.13)
EWF + 02— VIVI'E=EGt+0)—I"E = E0, (5.14)

EI VI — (fr 4+ 0r E* = EX — S EF = BT — rTE* = 0,
(5.15)

and
W+ 0P - EVIVIE=r 4 Q- ETE=rr+0=1,. (5.16)

Taking additionally into account Remark A.24(b) and (3.2), then

VIV, + (EGF + Q)G
NN/ - E(f*+Q)f' 1uSu + (EWT + 0% —VIVI'E)
= (U ),Sn + (EQ)n

and

(E*NVT )uFo + (V7 + Q)G

= (EVINVT = (i + QW E)Sy + ((Vr + 0 — EXVIVITE)
= «qup»nsn + «Iq»n = I(n+1)q
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follow. Consequently, we have Sc., = «ry,Sy + (EQYn. The assumption
(Aj)jzo € HANpxq:c and Remark A.7(a) yield llTAj = Aj forall j € Z.
Regarding (2.2), (3.2) and n > 1, therefore C,, = 1ITA, = A,. Since n € 71, Was
arbitrarily chosen, the proof is complete. O
Proposition 5.24 yields immediately a generalization of [6, Prop. 3.7].

Corollary 5.25 Suppose k > 1. Let (A ')K —0 € “xq;«- Denote by (B ')Kfl the right
SP-transform of (A )K—o and let E == Ag. Then B[ BEI _ 4. jforall j € Zy.

Proof Remark 3.3 yields .7 xq.c S H%N}xq.c. Consequently, applying Proposi-
tion 5.24 completes the proof. O

Lemma 5.26 Supposex > 1. Let (Aj)’j‘.:0 € Sx piic Withright SP-transform (Bj)j;(l)
Then the following statements are equivalent:

(i) A= Ao and (B¥)5Z) = (B,)Z

(i) (Aj =0 = = (A; )K_O
Proof “(i) = (ii)”: The assumption (Aj)’;.zo € S xq;c implies that E := A belongs
t0 K x4 . Corollary 5.25 shows (B][_I;E])jzo =(A -)’]‘ o- Applying Lemma 5.4 to the
sequence (B ~)".:(1) yields that F':= E* belongs to K, , and that (S J) deﬁned by
S;= B* has left F-inverse SP-transform (A* =05 i.e. (Aj)’j‘.:O = (Sj. i F))jzo.
Because of (i), we have (S; L F))j=0 = (B](. L E))';.ZO. Proposition 5.9 yields
(B( L E))] 0= (B}fl;E])’]‘.zo. Consequently, (ii) holds true.

“@i) = (1)”: Regarding Remark 3.3, we can apply Lemma 3.7 to see that (T )’]‘._0
defined by T; —A* belongs to £, p:c and has left SP-transform (B] )J “o» e
(B;’.‘)’]‘.:O = (T(l)) - Because of (ii), we have Aj = Ag and (T))%_, = (4,)_,
implying (Tj(l))j=0 = (A;l))j:(). In view of Remark 3.3, we can apply Proposi-
tion 3.19 to get (Ag.l))’j‘.;é = (B j)’;;(l). Consequently, (i) holds true. O

6 Parametrization of the Class .5, 4: «

In this section, we are going to determine which sequences (e j)jz0 occur really as
SP-parameter sequence of a sequence (A;)_y € Fxg:«c. First we introduce two
sequences of linear subspaces which will turn out to be essential for our further con-
siderations.

Notation 6.1 Let (ej)jzo be a sequence of complex p x g matrices. Then let
M_1:=C? and Q_|:={0,;x1}. Furthermore, in view of Notation 4.11, for all

J€Zo,let M= ()_yR(p) and Q; := YJ_o N'(xo).

The set introduced in the following notation will turn out as one of the most impor-
tant objects occurring in this paper.
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Notation 6.2 Let &), be the setof all sequences (e j)’/(‘:o of complex p x g matrices
which, for all j € Zg,, fulfill ¢; € K, as well as R(e;) S Mj_jand Q;_ C
N(ej).

The following observation corresponds to the description of all SP-parameter
sequences of non-degenerate p x g Schur sequences.

Remark 6.3 Let (ej)’;.zo be a sequence from D . In view of Notations 6.1 and 4.11,
then M; = CP and Q; = {Oyx1} forall j € Z_y ., so that (ej)§=o € Epxgic-

Notation 6.4 Let (¢ j)§:0 be a sequence of contractive complex p x g matrices. Then
letM_; :=1, and N = I,. Furthermore, using Notation 4.11, for all j € Zg, let

il il +
=i i Vi ad Q=R

Remark 6.5 Let (A j)jzo € % xq:« With SP-parameter sequence (e j)’J‘.ZO.For eachj €
Zo,, then ROM)) = /[ RON;_1) and N (Q;) = {v € CT : /5770 € N(Q,;_1)}-

Now we will see that the matrices introduced in Notation 6.4 are closely related to
the SP-algorithm for a p x g Schur sequence (A j)’;=0.

Proposition 6.6 Ler (Aj)’;.:O € Spxq:c With SP-parameter sequence (ej)'j:o- For
every choice of k € Zo and j € Zg c—k, then

R(AY) € RO-1) and N Q1) € N (A, ©.1)

Proof Regarding Notation 6.4, we see that the assertion holds true obviously in the case
k = 0. Now we work inductively and assume that x > 1, that m € Zg ,_1, and that
(6.1)is valid for every choice of k € Zo,, and j € Zg . Denote by (C; )’;;6" the m-th
right SP-transform of (A )*_,. Remark 4.2 yields then (Cj)'j(;g € S xq:k—m» Which,
by virtue of Remark 3.3, implies (C j);;g’ € HRN pxq;c—m-In view of Definition 3.4
and Remark 4.14, we have then

Xcio = Comi/in’ and  Zew =l Cost forall€ € Zoemor.  (6.2)

Consider now an arbitrary v € N'(Q,,). Remark 6.5 yields then /%, v e N(Qu1).
Since we assume that (6.1) is valid for k = m and all j € Zg ,—m, we get then
MTU € N(Cj)forall j € Zg ,—m and, by virtue of (6.2), consequently, X¢.ov = O
forall £ € Zo —m—1. Hence,

N Q) SN (Xcio) forall £ € Zoc—m—1 (6.3)

is proved. Analogously, using (6.2), the assumption that (6.1) holds true for k = m
and all j € Zo «—m, and Remark 6.5, we can infer

R(Zc.e) € RON,) forall £ € Zo x—m—1- 6.4)



The Schur-Potapov Algorithm in the General Matrix... Page330f91 109

In view of Proposition 3.19 and Definition 4.1, we have C}l) = M = A1 g0 aq1
J € Zg —m—1. Taking additionally into account Definition 3.4, for all j € Z¢ —m—1,
from (6.3) we can conclude

J
N(Qm) EJ\/ ZWg,J_KXC’g :/\/’(Cil)) ZN(A5m+1])

=0

and from (6.4) moreover
1 1 J
R(AB,”“r ]) = R(C,E' ]) =R Z ZC;ng;j—l CRON,,).
=0

Thus, (6.1)is valid fork = m+ 1 and all j € Zg ,—(u+1). Consequently, the assertion
is proved inductively. O

Corollary 6.7 Let (Aj)’]‘.:0 € S)xq:c With SP-parameter sequence (ej)’]‘.zo. For each
J € Zy ., then there exists a matrix M; € CP*9 such that e; =9, _1M;Q;_.

Proof We consider an arbitrary j € Zg .. According to Definition 4.7, we have
ej = A([)j]. Proposition 6.6 yields R(A([)/]) C REM;_;) and N(Qj—1) C N(AB"]).
Consequently, R(e;) € R(M;_;) and N(Qj_1) < N(e;). The application of
Remark A.7 completes the proof. i

Now we are going to show that the SP-parameter sequence of a sequence (Aj)']? —0 €
Fpxq:c belongs to &y« This requires some preparations.
Lemma 6.8 Let (Aj)’j‘-:0 € Sxg:c With SP-parameter sequence (ej)’;-:(). For each
Jj € Zo, then R(I, — JT;) S RO, 1) and N(Qj—1) € NIy — ;).

Proof We consider an arbitrary j € Zg,,. Remark 4.12 shows [; € C’;Xp andt; €
(Cq;q. Because of Corollary 6.7, there exists a matrix M; € CP*? such that ¢; =
M;_1M;Q;_;. Consequently, ej = DjfflM}*im;‘;l. We consider an arbitrary x €
N(im;fl). Then ejx = O. Thus, in view of Notation 4.11, we obtain [;x = x.
Using Remark A.13, we conclude ,/T;x = x. Remark A.12 provides then /T; x = x.

Consequently, x € N(I, — \/ET). Thus, N(f)ﬁj._l) c N, - \/GT) is proved.
Applying Remarks A.8 and A.2, we get then

il il il
Ry = Ji) =Ry = \[1; ) =Ny = [ ) SNy =Rem; ).

Now we consider an arbitrary y € N (Q;_1). From ¢; = 9;_1M;Q;_; we see
then that e;y = O. Thus, in view of Notation 4.11, we obtain t;y = y. Using
Remark A.13, we conclude ,/tjy = y. Remark A.12 provides then \/t_jTy = y.
Consequently, y € N(I; — \/t_jl'_). Thus, N (Q;-1) S N, — ﬁ“ is checked as
well. O
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The following observation plays a key role in proving that the SP-parameter
sequence of an arbitrary sequence (A j)§=0 € Syxq:« belongs to &,y For our
considerations, it is essential that the spaces on the left sides of the equations in (6.5)
below can be represented via the spaces on the right sides.

Lemma 6.9 Let (Aj)’j(-:0 € Sxg:c With SP-parameter sequence (ej)’]‘-zo. For each
Jj € Z_1x, then

ROM;) = M; and N(Q/) =0Q;. (6.5)

Proof Our proof works inductively. According to Notations 6.4 and 6.1, we have
ROM_;) = CP = M_; and N(Q—1) = {Oyx1} = Q-1. Now assume that
m € Z_1,—1 and that (6.5) is valid for all j € Z_i,,. From Lemma 6.8 we
know that R(I, — \/Tps1) € R(Dy) and V() S NIy — /omr1)). Apply-
ing Lemma B.3, we get then R(‘/[mHT) NRON,) = Rt 'smm), whereas
Lemma B.2 yields N'(Q) + N (Tma1') = N (Qu/Tmsi ). Using Remarks A.9
and A.10(a), we can infer R(,/[m_HT) = Rlps1) and N (Somgr1) = N(tmat).
Thus, since (6.5) holds true for j = m, from Notations 6.4 and 6.1 we can conclude
il il
R(gﬁm—&—l) = R(\/ [m+1 iInm) = R(\/ [m+1 )ﬂR(mm) = 7?/([m—&-l)m/\/lm = Mm+l
and N (Qui1) = NQu/Tni1) = NQu) + N(foni1) = Qu + N (tmy1) =

Om+1- Thus, the assertion is inductively proved. O

Proposition 6.10 Let (A;)_y € Spxg;c with SP-parameter sequence (¢;)";_. Then
(ej)§:0 € Epxqix-

Proof We consider an arbitrary j € Zg,. Remark 4.12 shows ¢; € K . Propo-
sition 6.6 provides R(A([)j]) C R;—1) and N(Qj-1) < N(AE)]]), whereas
Lemma 6.9 yields R(M;_1) = M ;_; and N'(Q;_1) = Q;_;. Taking additionally
into account Definition 4.7, we can infer then R(e;) € M;_jand Q;_1 C J\f(ej).
Thus, by virtue of Notation 6.2, we get (ej)fzo € Epxqik- ]

Remark 6.11 In view of Proposition 6.10, the mapping ¢, xq:c: Fpxgic —> Epxqic
defined by ¢ ¢:« ((Aj)’;.:O) = (ej)’]‘.zo, where (e./')fzo is the SP-parameter sequence
of (Aj)’j‘.zo, is well defined.

Now we are going to prove that the mapping ¢, defined in Remark 6.11 is
even a bijection between .7, 4., and &), 4. ,. In particular, we have to show that each
sequence (e j)'j('zo € &pxq:« isindeed the SP-parameter sequence of some p x g Schur
sequence (A j)'j‘.zo.

Notation 6.12 Let (¢ j)jzo be a sequence of contractive complex p x g matrices and

let n € Zo,. For each k € Zgy, then let (D,,,k;j)lj‘.:0 be defined recursively by
D, 0.0 :=¢, and, for all k € Z ,,, by

k.l Len—il\k
(Dnk:j)j=0 = (D, 217 jmo-
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Remark 6.13 Let (e j)';':o be a sequence of contractive complex p x g matrices and let
n € Zo,. Regarding Notation 6.12, from Remark 5.2 we get immediately D r.0 =
en—i forall k € Zg .

Proposition 6.14 Let n € Ny and let (ej);!zo be a sequence of contractive complex
p X q matrices. For each k € Zg p, then (Dn,k;j)lj‘.:0 belongs to %y k-

Proof Regarding Notation 6.12 and ¢, € K,,, we have (Dn,O;j)(J)-:o € Fpxq:0-
Now we work inductively and assume that n > 1, that m € Z;,, and that
(Dn,k;j)l;:o € Sxq:k is valid for all k € Zg ;1. Taking into account ¢, _,, € K, xq4
and Notation 6.12, then Proposition 5.11 yields (Dn,m:j),’;lzo € Sxq;m- Thus, the
assertion is proved inductively. O

Corollary 6.15 Letn € No. Then X pxq:n: Epxqin—> Fpxq:n defined by prq;n((ej);l':())
= (Dn,n;j)’}zo, where (Dn,n;j)}}zo is given via Notation 6.12, is well defined.

Proof Use Notation 6.2 and apply Proposition 6.14. O

Lemma6.16 Let (ej)’J‘.ZO € Epxqic and let n € Ly . For each k € Zg p, then

R(Dp:t) € Mpy—k—1 and Q-1 SN Dy i) foralll € Zog. (6.6)

Proof First observe that Notation 6.2 implies ¢; € K, forall j € Zg . Our proof
works inductively. In view of Notation 6.1, the case n = 0 is trivial. Suppose now
k > 1and n > 1 and assume that m € Zg ,—1 is such that (6.6) is fulfilled for
all k € Zo m. We consider an arbitrary £ € Zg ,+1. According to Notation 6.2, we
have R(ep—m—1) € Mu—m—2 and Q,_,,—» < N(ey—m—1). From Notation 6.1 we
can infer M,,_,,—1 € My and Q,,_—2 € Q,,_u—1. Taking additionally into
account that (6.6) holds true for k = m, then R(D;, . ;) € My_m—2and Q2 S
N(Dn .m;j) forall j € Zg,, follow. Thus, we can apply Lemmas 5.16 and 5.17 to obtain

R(DUEen=m=tly « Ag, o and Qs © N(DI =11 Since Notation 6.12

n,m;{ n,m;{
shows D,[l ni ;" m-1] = Dy m+1.¢ and £ € Zg 41 Was arbitrarily chosen, hence (6.6)
is valid for k = m + 1. Consequently, the assertion is proved inductively. O

Lemma 6.17 Suppose k > 1. Let (ej)fzo € Epxqic and let n € 7y . Then

(Dn ks ])]_() = (Dn k-1, ]) forallk € Zy . 6.7)

Proof First observe that Notation 6.2 implies ¢; € K., for all j € Z . We con-
sider an arbitrary k € Z; ,. From Notation 6.12 we see, that (D,,,k;j)l;zo is the right

¢n—k-inverse SP-transform of (D), x—1. j)];;l. Regarding (5.1) and Notation 4.11, the
application of Lemma 5.23 yields then

[1
n,

DY = bkl Do) v forall j € Zox—1.  (6.8)
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Because of Lemma 6.16, we have R(Dy k—1.;) € My and Q,_ < N(D,Lk_l;j)
for all j € Zok—1. By virtue of Notation 6.1, we see that M, < R(l,—x) and
N (typ—k) € Q,—x.Foreach j € Zg j—1,thus R(Dpx—-1;j) € R(lh—k) and N (v,_x) €
N(Dy -1 ;) follow. Consequently, the application of Remark A.7 to (6.8) completes
the proof. O

Lemma 6.18 Let (ej)’]‘.zo € Epxqic and let n € Zg,. For each m € Zyy, then

[m] — . . [m]
(D,",. ]);’_8’ = (Dn,n_m;j);fzg’ and, in particular, D,"|.o = en.

Proof First observe that Notation 6.2 implies ¢; € K., for all j € Zg . Since
Lemma 6.17 yields (6.7) provided that « > 1 and n > 1, we can, in view of Def-

inition 4.1, infer inductively (Dn e j);l o = (Dpn—m; j)ﬁ;g’ forall m € Zo,. In

particular, D,[1"n] 0 = Dun—m;o for all m € Zg . Furthermore, from Remark 6.13 we

can infer ﬁnally Dy n—m:0 = ey forall m € Zg . O

Proposition 6.19 Let (Aj)jzo € S xq:c With SP-parameter sequence (ej)§:0 and let
n € Zo. For each k € Zy ,, then

(Dui )e—g = (ALHE . 6.9)

Proof First observe that Proposition 6.10 and Notation 6.2 imply ¢; € K, for
all j € Zo,. Taking into account Notation 6.12 and Definition 4.7, we have

Dyoo = e = A([)"], i.e., (6.9) holds true for k = 0. Now suppose k > 1
and n > 1 and assume that m € Z;, is such that (6.9) is fulfilled for all
k € Zom—1. Denote by (C; )m o the (n — m)-th right SP-transform of (A;)" o
and by (B; ) 01 the right SP transform of (Cj)"_y- According to Definition 4.1,
we have then (A} L(n= m)+1]) _0 = (B))1 Slnce (6 9) is assumed to be valid for
k = m — 1, thus (Dn — 1j)j o = (Bj )m ! follows. In view of Definition 4.7, we
have ¢,—, = Ay [n=m]" _ . Since Remark 4.2 shows (C)T_g € Fpxg;m» We can

apply Corollary 5.25 to get (B;fl‘c(’]);’?zo = (Cj)’]’.’:o. Thus, Notation 6.12 and our
foregoing consideration provide

lnm
(D )1y = (DY Sy = (BB = (cjymy = Al mhym,

n,m—1;j

i.e., equation (6.9) is fulfilled for k = m as well. Consequently, (6.9) is inductively
proved all k € Zg ;. O

In particular, the next theorem contains an explicit description of the set of all
possible sequences of Schur parameters.

Theorem 6.20 Let n € Ny, let ¢pugin: Foxgin —> Epxq:n be defined by ¢pyg:n
((Aj);fzo) = (ej)’}zo, where (ej)'}-zo is the SP-parameter sequence of (Aj);?zo, and
let Xpxqgin: Epxg:n —> Fpxq:n be defined by prq;n((ej)};:o) = (Dn,n;j);l':o’ where
(Dn,n;./)’}:o is given via Notation 6.12. Then ¢pxg:n and Xpxq;n are well-defined,
bijective, and mutual inverses.
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Proof According to Remark 6.11 and Corollary 6.15, the mappings ¢, x 4:» and X pxq:n
are well defined. In the following, our proof is divided into two parts.

Part 1: In order to check that x,xg:n © ¢pxg;n = idg . We consider an arbi-
trary sequence (A j);!:o € Sxq:n- Denote by (e j);!zo the SP-parameter sequence of
(A j)?’=0~ Observe that Proposition 6.10 yields (e j)l}zo € &pxq:n» SO that Notation 6.2
implies ¢; € K4 for all j € Zo ,. Proposition 6.19 yields (6. 9) for all k € Zo p.
Regarding Definition 4.1, we have in particular (D), ,. J) 0= (A ] o=(A j)’}:O.
Therefore, we conclude

Xqu;n(d’qu;n((Aj)’}:O)) = Xqu:n((ej);;O) (D n; /)] =0 = (Aj);l'=0

and, consequently, X pxg:n © Ppxg:n = 1d.o

Part 2: In order to check that ¢4, 0 X ;;Zn,, id@‘”‘,,xq;,,’ we consider an arbitrary
sequence (¢;)’}_( € &pxq;n- Observe that Notation 6.2 implies ¢; € K., forall j €
Zo n, so that Proposition 6.14 yields (Dn,n;.i).’,l'zo € Y xq;n- Because of Remark 6.13,
we get Dy, j.0 = e,—; for all j € Zo,. Regarding Definition 4. 7 we have then
D pxg:n((Dn p; J)"_O) = (Dlljn 0) o- From Lemma 6.18, we get Dn .0 = em forall
m € Zop- Consequently, we obtam

‘f’qu:n(prq;n((ej)’}:o)) = Ppxqin ((Dn n;j ] 0) (Dr[z]i o)n —o = (¢ ’] =0-

Thus, ¢pxgin © Xpxgin = ldé",,xq , 1s proved as well. i

7 The SP-transform for Matricial Schur Functions

In [6, Sec. 7], we discussed the SP-transformation for functions F belonging to
Fpxg,o0D) :={F € SpxqD) : ||F(0)]| < 1}. In particular, right and left versions of
the SP-transform for functions from .}, .4 0 (ID) were introduced. There is verified that
the right and left versions of SP-transforms for functions from .}, 0(ID) coincide
(see [6, Prop. 7.6]). In this section, we want to extend the notion of SP-transform to
arbitrary functions belonging to .%}, 4 (ID). Similar as in [6], we consider first as well
a right version as a left version. In Proposition 7.11 below, we show then that both
versions coincide. Let us turn our attention to the right SP-transform for matricial
Schur functions. We later will generalize the classical Schur algorithm (see [28]) for
contractive complex-valued functions holomorphic in the open unit disk D to the case
of contractive matrix-valued functions holomorphic in . We first consider the first
step.
Lete: D — C be defined by £(z) :=z.

Definition 7.1 Let I € .7, (D) and let

®:=I (F - E) and Wi=r (I, — E*F),  (1.0)
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where E := F(0). Then

Fll— gyt
£

is called the right SP-transform of F.

In the following, we continue to use the notations introduced in Definition 7.1.
Observe that E € K, and that, because of ®(0) = \/ZT[F(O) — E] = Opxy. the
matrix-valued function %CD belongs to [H(D)]7>4.

Lemma7.2 Let F € S)pxq(D) and let S := OUT. Forall z € D, then
YI'Y(z) = [P P(z) = I, — [F()]*F(2) (7.2)

as well as
I~ 5@IS@ = (I, - v @ ET) + (@) (4, - [FOI FOI @

and, in particular, I; — [S(2)]*S(2) € Cq;q-

Proof We consider an arbitrary z € ID. First observe that E := F(0) belongs to K, .

Regarding Remark A.17(a), we can thus apply Remark A.10(b) to obtain W1 T)*\/7 T
I" and (\/7Jf)”‘\/7T =rT. In view of (7.1), we get then

[V ()W (2) — [@ )] P(2)
=r" —r"E*F(2) = [FQI"Er’ + [FQI"Er ' E*F(2)
~(FQI"'F(z) = [FQI'"'E — E*I"F(2) + E*I'E)
=" —EYNTE)y = ¢TE* — E*I)F(2)
— [F@INErT —I"E) + [FQI"(Er'E* = I")F(2).

Parts (b) and (a) of Lemma A.16 show E*IT = rTE* and ITE = ErT. Using addition-
ally Lemmas A.16(c) and D.3(b), we conclude

W@ W) — [@@I ) = (T — EXTE) + [FQIENE* — 11 F(2)
=r'r —[FQI*'lI'F(z) = I, — [F()I*F(2),

i.e., (7.2). By virtue of (2.1), we see

YOI = (Yore!) varel = (va1) wEr @l



The Schur-Potapov Algorithm in the General Matrix... Page390f91 109

Thus, taking additionally into account (7.2), we get

I~ 5@VS@ = I, - (V@) Te@Te@MN @1
=1, ~ V@I + (19Q@T) (¥@IYE - 0@ @I @I
= (1, - v@v 1) + (18 @) ¢, - FOI Fe¥ @I

From Remarks A.6 and A.4, we can infer I, — V()[R e (Cz;xq. Regarding
F € Spxq(D), Lemma A.15 implies I, — [F(2)]*F(z) € CL*. Consequently,
I, — [S()]*S(z) € c‘;”’ follows. O

Lemma7.3 Let F € /pxy(D) and let E := F(0). For all z € D, then R(®(2)) <
R and N (r) € N (®(2)) as well as R(V(z)) = R(r) and N (¥ (z)) = N (r).

Proof We consider an arbitrary z € ID. First observe that E € K,.,. Regarding
Remark A.17(a), we can thus apply Remark A.10(a) to obtain R(«/?) = R(l) and
R(J/r) = R(r). Taking additionally into account (7.1) and Remark A.9, we then
conclude R(®(z)) € R(WI') € R() and R(¥(2)) € R(SF) € R(r). From
Lemma D.3(a) and (7.1) we see that N'(r) € N(F(z) — E) € N(®(z)). For each
w e D, let F(w) = Z;"’;O w’/ A j be the Taylor series representation of F. Then
Ao = E, so that rp = r by (2.5) and (5.1). Theorem D.2 yields (Aj);?‘;o € Sxgioo-
Lemma D.1 provides I, — E*F(z) = ro — Z?‘;l 7/ A(’gAj. For all j € N, Remark 3.2
shows N (rg) € N'(A}), so that N'(rg) € N (I, — E*F(z)) follows. Consequently, in
view of ro = r and (7.1), we get N'(r) € N'(I; — E*F(z)) € N (¥(z)). Lemma 7.2
yields (7.2), which implies

(VI () = (I; = [FI"F(2) = [®(@)]"®(z) € CL.

Taking additionally into account F' € .#),x4(D) and Lemma A.15, we can con-
clude then [V (2)]*W(z) = I, — [F(Q]*F(2) %= Ogxq. Remark A.14 then provides
NI¥@I*W(2) S Ny — [F(@)]*F(2). Since N([¥()*¥(2)) = N(¥(2))
and Lemma D.4 shows N (I; — [F(2)]*F(z)) = N(r), we thus get N (¥(z)) €
N (r). Therefore, N' (¥ (z)) = N(r) is proved. In particular, we see dimR(r) =
g —dimN(r) = g —dimN(¥(z)) = dimR(¥(z)) < oo. Using additionally
R (2)) C R(r), we finally get R(¥(z)) = R(r). O

Now we want to rewrite the function S introduced in Lemma 7.2 in form of a linear
fractional transformation of matrices.

Proposition7.4 Let F € .7)x4(D) and let S := OWT, If Q is given in (5.2), then
V=V + Q (7.3)

fulfills det Wq(z) # 0 and S(z) = ®(2)[Ve(2)]~! forall z € D.



109  Page 40 of 91 V. K. Dubovoy et al.

Proof Consider an arbitrary z € D. First observe that E := F(0) belongs to K,
so that Remark A.17(a) yields r* = r. Lemma 7.3 provides R(W¥(z)) = R(r) and
N(W(z)) = N(r). Using Remark A.2, then R([¥ (z)]*) = R(r*) follows. Summariz-
ing, we get R(V(z)) = R(r*) = R([Y(z)]*). Regarding (7.3) and (5.3), we can thus
apply Lemma A.11 to obtain det W, (z) # 0 and V()] = [V ()] = Par(r- Since
Lemma 7.3 yields N'(r) € N (®(z)), we have ®(2)Prr) = Opxq. Consequently,
S(2) = @MW @) = PR ([(We(D)]™" = Pargr) = P(2)[Wa(2)] ! follows. O

Remark7.5 Let F € .#}x4(D). In view of Definition 7.1 and Proposition 7.4, then
det Wo(z) # Oforall z € Dand FI'l = low 1,

Notation 7.6 If E € K, g, then let Wg: D — CP+0)*(P+4) be defined by

The preceding considerations provide us the following representation of F [T in
form of a usual linear fractional transformation of matrices.

Proposition7.7 Let F € #,x4(D) and let E := F(0). Denote by [?Z] the block
representation of Wg with p x p block a. For all z € D \ {0}, then det(c(2) F(z) +
d(2) # 0and FUl(2) = [a(2) F(2) + b(2)][c(2) F () + d(2)] 7.

Proof We consider an arbitrary z € D \ {0}. In view of (7.1), (7.3), and Notation 7.6,
we have ®(z) = a(z) F(2) + b(z) and z¥,4(z) = ¢(2) F(z) + d(z). Regarding z # 0,
from Remark 7.5 we can conclude then det(c(z) F(z) + d(z)) = z9det We(z) # 0
and [a(2) F(2) +b(@)I[cQ)F(2) +d()]™' = (@) [2¥e ()] = 10 @)[¥. ()] =
Fm(z). O

Now we carry out analogous considerations for the left SP-transform for functions
from .7 x4 (D).

Definition 7.8 Let F' € .7, (D) and let

O:=(F — E)Jr and Ei=(,— FEOVI,  (1.4)

where E := F(0). Then

1
F.— _g'@
&

is called the left SP-transform of F.

Observe that E € K, and that, because of ®(0) = [F(0) — E]\/ﬂ = Opxgq»
the matrix-valued function é@ belongs to [H(ID)]7*4.
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Proposition7.9 Let F € .7 ,(D) and let S := ET®. If P is given in (5.2), then
Be:=E+P (1.5)

fulfills det E4(z) # 0 and S(z) = [E4(2)]7'O(z) for all z € .

Proof This can be proved analogous to Proposition 7.4. We omit the details. O
Remark7.10 Let F € %), (DD). In view of Definition 7.8 and Proposition 7.9, then
det Bq4(z) #0forallz e Dand F = 15710,

Now we are able to verify that, for each function F € ypxq (D), the left and right
SP-transforms coincide.

Proposition 7.11 Let F € .%x, (D). Then F( = FI'I,

Proof First observe that E := F(0) belongs to K, «,. Regarding Remark A.17(a), we
can thus use parts (b) and (c) of Remark A.10 to obtain Vi f Vi T I"and «/7"- \/7" =t
as well as \/Z\/TT = x/f\/i and /1 /r = /r+/r . By virtue of (5.4) and (2.1), we
canconclude Pv/I' = (II,—\/ZT«/Z)\/ZT = Oppand /5 Q = Jr (I,—J/ryr ) =
Oy xq- According to parts (a), (b), and (c) of Lemma A.16, we have I"E = Er' and
E*I" = rTE*aswellas T — Er'E* = [IT and ¥ — E*ITE = rTr. Regarding (5.2),
from Lemma D.3(a), we can infer //TF(z) = F(z) — PE and F(z)r'r = F(z) —EQ
for all z € . Lemma A.16(d) yields PE = E Q. In view of (7.5), (7.1), (7.4), and
(7.3), we consequently obtain

Ee(2)P(2) — O(2)Ve(2)
=[E(2) + P]x/ZT[F(z) —E]—[F(2) — E]\/FT[\IJ(Z) + 0]
=[I, - FQE*'[F(z) — E] - [F(2) — EVr'[l; — E*F(2)]
=1I'F(z) = I"E —= FQE*I'Fo) + FQE*I'E
—[Fr" = F@r'E*F(2) — Erf + EFTE*F(2)]
=1"F(2) + FQE*I'E — F(2)r" — Er'E*F(2)
=" ErfE")F(z) - Fx)(¢" — E*I'E)
=II'F(z) — F(2)r'r = [F(z) — PE] = [F(2) — EQl = EQ — PE = O,

forall z € ID. Taking additionally into account Remarks 7.10 and 7.5, then F{1) = F [
follows. O

8 On the Concordance Between SP-transforms of ., 4(D) and
“pxgsc0

In this section, we verify that there is a complete concordance between SP-transforms
of p x g Schur functions and infinite p x g Schur sequences. This correspondence
will be established by inspection of Taylor coefficient sequences.
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Notation 8.1 Let M be a linear subspace of C? and let Q be a linear subspace of C4.
Then let .7, (D; M, Q) be the set of all G € .7}, 4 (D) such that R(G(z)) € M
and Q € N(G(z)) are valid for all z € D.

Remark 8.2 .7, ,(D; CP, {Oyx1}) = Spxq(D).

Remark 8.3 Let 6,y : D — CP*4 be given by 6,4 (z) := Opx4. Then:

(@) Spxq{D; M, C?) = {0,4} for each linear subspace M of CP.
() Fpxqg; {Opx1}, Q) = {0pxq} for each linear subspace Q of C9.

Lemma 8.4 Let M be a linear subspace of CP with M # {Opx1}, let m := dim M,

let uy,uy,...,uy be an orthonormal basis of M, and let U :=[uy,uz, ..., uy).
Furthermore, let Q be a linear subspace of C1 with Q # C4, let t :=q — dim Q, let
V1, V2, ..., Uy be an orthonormal basis of oL and let V :=[v1, va, ..., v;]. Then:

(@) Let S € Syxi (D). Then G :==USV* belongs to S}y (D; M, Q).
(b) For all G € Sxq(D; M, Q), there exists a unique S € S x;(D) such that
G =USV* namely S = U*GV.

Proof First observe that U*U = I, and V*V = I;. By virtue of Remark A.5, fur-
thermore UU* = Py and VV* = Pg..

(a) Clearly, G is holomorphic in D. For all z € D, because of Lemma A.15, we
have I,, — S(z)[S(2)]* € (C';X'", so that Remark A.4 yields

I, = GG =1, ~US@QV*VIS@QI'U* = I, - US()[S()]"U*
=1, —UU"+U(n — S@IS@I)U" = I, —UU"
=1, —Ppr = Opxp.

In view of Lemma A.15, then G € .7}, (D) follows. For all z € D, we see that
R(G(z)) € R(U) = M holds true. From O+ = R(V) and Remark A.2 we obtain
Q = R(V)t = N(V*) € N(USV*) € N(G(2)) for all z € D. According to
Notation 8.1, consequently, G € .7}, x4 (D; M, Q).

(b) Let G € Sxq(D; M, Q). We consider an arbitrary z € ID. According to Nota-
tion 8.1, we have then G € .%) (D) as well as R(G(z)) € M and Q € N(G(2)).
Thus, we get UU*G(2) = PG (z) = G(2) and G(2)VV* = G(9)Pgor = G(2).
Clearly, S := U*GYV is holomorphic in D and fulfills then USV* = UU*GVV* = G.
From G € %), xq (D) as well as I, — S()[S@)* = U, — G VV*G@)])U =
U*(I, — G(2)[G(2)]*)U and Lemma A.15 we conclude S(z) € K,,x,. Since z € D
was arbitrarily chosen, hence S € .7, «; (D). If Sis an arbitrary function belonging to
Fmxi(D) and fulfilling G = USV*, then S = U*GV = U*USV*V = § follows.

O

In the following, for each F € [H(ID)]?*4, we denote by (CF: J')iozo the Taylor

coefficient sequence of F, givenby Cr; j :=(j =1 FU)(0). In the sequel, we continue
to use the notation given in Definition 3.4 and (2.5).
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Lemma8.5 Let F € 7,54 (D) with Taylor coefficient sequence (A )°° Then ¥ €
[H(D)19* and (YA ]) o s the Taylor coefficient sequence of V. Moreover ut e

[H(D)]?*9 and ( )<>O 2o is the Taylor coefficient sequence of v,

Proof First observe that E := F(0) belongs to K, and fulfills E = Ag. In view of
(5.1) and (2.5), then r = rg. Regarding Remark A.17(a), we apply Remark A.10(d)
to obtain ﬁTrO = /ro. From (7.1) we get ¥ € [H(ID)]9*? and, using additionally
Lemma D.1 and Definition 3.4, furthermore

o o0 o
V@ = (o) T AGA | = Vo= D AjA =) Y
j=1 =1 =0

for all z € D. Consequently, (Cy: j) = (Ya: ]) o-Lemma 7.3 implies R(¥(z)) =
R(¥(0)) and N (¥(z2)) = N(\IJ(O)) for all z € ID) Thus we can apply Lemma D.5
to see that IT:= W belongs to [H(ID)]9*7 and that (Cl'lzj)j=o = (Cq,;j)?o:o. Conse-

quently, (Cn;j)‘]’.io = (Yg;j)?io follows. O

Theorem 8.6 Let F € prq(ﬂ)) with Taylor coefficient sequence (A ')°° o Then
Fll ¢ S pxq(D) and (A ])°° o IS the Taylor coefficient sequence of FIl.

Proof First observe that E := F(0) belongs to K., and fulfills E = Ay. In view of
(5.1) and (2.5), then I = ly. From (7.1) we see ® € [H(D)]?*?. Lemma 8.5 shows
that IT:= W' belongs to [H(ID)]4*7. Consequently, S := ®IT belongs to [H (D)]P*4.

Lemma 7.2 yields I, — [S(2)]*S(z) € (C"  for all z € D. By virtue of Lemma A.15,

then § € 7y (D) follows Regarding (7 1)and E F(0), moreover ®(0) = Opxy,
implying S(0) = Opx4. Thus, we can conclude 1 25 € Spxg(D) , wheree: D — C
is defined by £(z) := z (see, e. g., [11, Lem. 2.3.1]). Because of (7.1) and E = F(0)
as well as Definition 3.4(b), we also get that A := %<I> belongs to [H(ID)]?*4 and that
Carx = \/ZTCF;H] = %TAk+1 = Z i for all k € No. Lemma 8.5 yields Cry.x =
Yj; i for all £ € No. Taking additionally into account Definition 3.4(b), we conclude
ATl € [H(D)]?*? and Cam;j = Zézo CpyCriyj—e = Zé:o ZA;KY,K;j_g = A5»1] for
all j € Ny. Since 1S = L®IT = AIT and Remark 7.1 show ATl = lowf = FII,
the proof is complete. O

Corollary 8.7 Suppose k > 1. Let (Aj)’j(.:0 € Spxqic and let F € S5y [D; (AJ')§=()]'
Then F[[l]] [S %xq[Dv (A 1])K 0]

Proof If k < oo, thenlet A :=Cp.; forall j € Z,11 0. Consequently, (Aj)?io is
the Taylor coefficient sequence of F'. Taking additionally into account F' € .7, (D),
we can thus apply Theorem 8.6 to get that Fll ¢ pxq(D) and that (AE_I])?o:O is
the Taylor coefficient sequence of F [, Regarding Remark 3.5, in particular F' [ e
FpxglD; (AL)SZ41 follows. O
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Our next considerations are aimed at examining the interplay between both types of
SP-algorithms and the objects introduced in Notation 8.1. We again use the notations
introduced in Definition 4.7 and Notations 4.11, 6.1 and 6.4.

Proposition 8.8 Ler (Aj)’]‘.:0 € Sxqie With SP-parameter sequence (e.,‘)’]‘.:O, let

k € Zo, and let F € g [D; (AN 810 70 (D3 Mi_1, Qi1). Then FIUT €
Fpxq(D; My, Qk).

Proof Theorem 8.6 provides F [ ¢ S pxq(D). According to Definition 4.7, we have
e = AN = Cr.o = F(0). 8.1
By virtue of Notation 4.11 and Remark 4.12, moreover
e =1 —exey € CZ7 and = 1Iy —efex € CL. (8.2)
We are now going to show
RFMGy e My and O c N(FI(z))  forallz e D\ {0}). (8.3)
To this end, we consider an arbitrary z € D\ {0}. From Definitions 7.1 and 7.8 we con-

clude R(FI(z)) € R(®(2)) and N'(O(2)) € N (F(z)). Lemma 6.9 yields (6.5)
forall j € Z_ . Taking into account F' € ./}, (D; M1, Q—_1), Notation 8.1, and

(6.5)for j = k—1, the application of Remark A.7 provides mk_li))TLlF(w) = F(w)
and F(w)DL]Qk_l = F(w) for all w € D. Taking into account (8.1), (8.2),
(5.1), (7.1), and (7.4), we infer then ﬁ"'mtk_lmt,ﬁ_l[F(z) —¢] = ®(z) and
[F(z) — ek]QZ_]Qk_l\/ﬁT = ©(z). In particular, R(P(z)) < R(ﬂTSﬁk_l) and
N(Qk_lﬁ*) C N(O(z)). From Notation 6.4 we see that \/ETsmk_l = My and
Qk_lJTT = . Using (6.5) for j = k, we get
il
RFIN() C R(@@) € R D—1) = RO = My

and

Q=N Q) = N Q1) SN@O®R) S NFD(2)).

Regarding Proposition 7.11, hence (8.3) is proved. Since F [ belongs to .74 (D),
from (8.3) we conclude that

Pt U0 = lim Py, FU ) = lim FUT ) = FU0)

and

Flo)pg, = lim Fll)Pg, = 0,y
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implying R(FI1(0)) € My and Q¢ < N (FI'(0)). Taking additionally into
account FII ¢ Spxqg(D) and (8.3), according to Notation 8.1, then Flll ¢
Fpxq(D; My, Qx) follows. O

Proposition 8.9 Suppose k > 1. Let (A; )K € Syxq:ic With SP-parameter sequence

()5 letk € Zo 1, and let F € Fpq[D; (AUDSZE1 0.5 (D3 M1, Q).
Then Ul € 7, ID: (AN 2801 0.7 0 (D My, Q).

Proof Denote by (Bj)';.;g the k-th right SP-transform of (A./)’;:O. Remark 4.2 yields
then (B~)K_k € Sxq:k—k- By assumption, furthermore F € .7}, [D; (Bj)ﬁ;g].
Thus, we can apply Corollary 8.7 to obtain F' [ ¢ FpxqD; (B[l])(K < 1] Accord-
ing to Definition 4.1, we have (B“])(K -1 _ (A[kH])K (kH), so that FI1I ¢

FpxqlD; (A k+1])" (kH)] The application of Proposition 8.8 completes the proof.
O

9 The SP-Algorithm for p x g Schur Functions

In view of Theorem 8.6, now we are going to generalize Definitions 7.1 and 7.8. One
can easily convince oneself that it is a direct generalization of the classical algorithm
developed by 1. Schur in [28] for complex-valued contractive functions holomorphic
in D. In view of Remark 9.2 below, first we introduce the following notion.

Definition 9.1 Let F € .75, (D). Then let F© :=F (resp., FIOI .— F). Further-
more, for all k € N, let F® (resp., F M) be recursively defined to be the left
SP-transform of F*-1 (resp., right SP-transform of F [[k_lﬂ). For all k € Ny, then
F) (resp., F¥)) is called the k-th left SP-transform of F (resp., k-th right SP-
transform of F).

Remark 9.2 Let F € /)y, (ID). We emphasize that, in Definition 9.1, we used the
following: By virtue of Theorem 8.6 and Proposition 7.11, one can easily verify by
mathematical induction that FIKI ¢ Spxq(D) and F *) ¢ S pxq (D) for all k € No.

Proposition 9.3 Let F € .%),x, (D). For all k € N, then F® = FI¥I,

Proof In view of Definition 9.1, there is an m € Ny such that F © = FI for
all k € Zo m. According to Remark 9.2, we have Flml ¢ SpxqD). In view of

Definition 9.1, the application of Proposition 7.11 yields F(m+1 = plm+1], O

Lemma9.4 Let F € %)x,(D) with Taylor coefficient sequence (A <)® . For all

k € Ny, then FIKI ¢ L pxqD) and (A )<>o 2 is the Taylor coefficient sequence of
FI.

Proof Regarding Definitions 9.1 and 4.1, this can be proved inductively, using Theo-
rem 8.6. o
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Definition 9.5 Let F' € .}, (ID). Then the sequence (yj)?ozo givenby y; := jaltl 0)

forall j € Nyiscalled the sequence of Schur—Potapov parameters (short SP-parameter
sequence) of F.

Remark 9.6 Let F € .7, (D) with SP-parameter sequence (yj)cj?ozo. For all k € Ny,

according to Remark 9.2 and Definitions 9.1 and 9.5, then F [x] belongs to .7 x4 (D)
and has SP-parameter sequence ()/j+k)?°:0.

Proposition 9.7 Let F' € 7 ,(D) with Taylor coefficient sequence (Aj)?‘;o and
SP-parameter sequence (yj);?o:(). Then (Aj)‘]?O:O € Sxg.00 and the SP-parameter
sequence (ej)j?ozo of (Aj)?ozo coincides with (yj)j?‘;o.

Proof From Theorem D.2 we can infer (A j);?‘;o € S xq;00- We consider an arbitrary

k € Np. According to Definition 4.7, we have ¢; = A([)k]. By virtue of Definitions 9.1
and 4.1 and Theorem 8.6, we can use mathematical induction to see that F [<] belongs to
#pxq (D) and has Taylor coefficient sequence (Ag.k])‘]’.io. In particular, F [x] 0) = A([)k].

Taking additionally into account Definition 9.5, we obtain summarizing ¢, = A[Ok] =
FH©) = . o

10 The E-inverse SP-transform for Matricial Schur Functions

This section can be considered as analogue of Sect. 5 for matricial Schur functions.
In this section, we want to extend the notions of E-inverse SP-transform to arbitrary
functions belonging to %, (ID). Similar as in Sect. 7 we consider as well a right
version as a left version. In Proposition 10.10, we show that both versions coincide.

Recall that ¢: D — C is defined by &(z) :=z.

Definition 10.1 Let E € K4, let G: D — CP*? be a matrix-valued function, and
let

T=E+evl GJF and Ai=1, +eE*VI Gr. (10.1)
Then
GIVE] .= AT
is called the right E-inverse SP-transform of G.

Now we are going to rewrite, for arbitrarily given G € /x4 (D) and E € K54,
the function GI=1E] a5 linear fractional transformation of matrices. This requires
some preparations.

Lemma10.2 Let E € K,yq andlet G € Spyxq(D). Forall z € D, then det A(z) # 0.
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Proof We consider an arbitrary z € D. Let v € N (A(z)). Then (10.1) implies
v = —2E*VI G(2)/rv. (10.2)

Since Remark A.17(c) provides \/r E* = E*/I, consequently /7v = —zE*V/1/1 f
G(z)4/rv follows. Hence,

IVrvlle < p@IIVrvllE, (10.3)

where p(z):= ||_ZE*\/Z\/7%G(Z)||. Lemma A.15 shows E* € K,xp,. From

Remark A.6 we can infer «/f\/f € Kpxp. Taking additionally into account G €
Zpxq(D) and z € D, we get then

;

p(@) < |—z| - IIE*| - IWIVI |- IG@) < 2] < 1. (10.4)
If ||/rv|lg # 0, then (10.3) provides p(z) > 1, contradicting (10.4). Thus, ||/rv|g =
0,i.e., /rv = Oy x1. Hence, from (10.2) we obtain v = Oyx1. Summarizing, we

have proved A(A(2)) € {Ogx1}, implying det A () # 0. o

Lemma10.3 Let E € Kyy, let G € Spug(D), let F:=GI"VE] and let § .= ¢G.
For all 7 € D, then det A(z) # 0 and

Iy = [F()I"F(2)
= (WVrIA@1T)* Uy = [SOTIS@)] + [S@T* PIS@DVFIA()]'(10.5)

as well as, in particular, I, — [F(2)]*F(z) € Cz;xq.

Proof We consider an arbitrary z € . Definition 10.1 shows F(z) = T')[AG)] .
Lemma 10.2 yields det A(z) # 0. Consequently, we infer

I = [FI'F ) = [AQI*(AQ@IA@] = [T @I IT@ODIA@] . (10.6)

We can apply Remark A.8 to obtain («/f)* = «/ZT and (\/17%)* = «/ﬁ Since (10.1)
yieldsI" = E + \/er\/;7 and A =1, + E*\/ZTS\/?, we get then

[A@IAR) = (I, + VrIS@QIVI E)I, + E*VI Sl = I,
FE* VT ST 4+ VRSOV E + JrIS@TVI EE*I SG)JF

and

[F@ITE) = (E* + VrIS@IVIDE + VI S@)Jrl = E*E
FEVT ST+ VFISOTVI E + JFSOTVI VI S@)F.
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As in the proof of Lemma 5.10 we can obtain (5.7). Using (5.1), (5.7), and (5.2), we
conclude then
[A@]"A2) = [T ()]*T(z)
— (I, — EE) = JAS@V I VI' = VI EE*VI)S () JF
= r = VIS S@Vr = Vr(ly = [S@QIU S@)Vr
= Vr(ly — [S@V[S@]+ [S@I PIS@D/T,

which, inserted in (10.6), gives (10.5). Since G belongs to .7, (D), we have
lzG()I < 1, ie., S(z) belongsto K,,. In view of Lemma A.15, then I, —

[S@OT[S)] € (Cq;q follows. Regarding (5.3), Remark A .4 yields P € (C’;Xp, SO
that [S(2)]*P[S(2)] € C’;X‘I . Hence, we infer [A(2)]*A(z) — [T @)1*T'(z) € C‘ng .
Taking additionally into account (10.5), then I, — [F(2)]*F(z) € (Cz;xq. 0O

Lemma 10.4 Let E € Ky andletG € 7 pug(D). ThenT(J/r +Q) = ev/I Grir+

E(Jr + Q) and A(J7 + Q) = e E*VT Grir + (J7' + Q).

Proof. As in the proof of Lemma 5.18 we can obtain (5.9). Taking additionally into
account (10.1), we get then

P+ Q) = (E+ev GVNGF +0) = eVl Grir + EF +0)
and
AWF +0) = Uy +eESVT G+ 0) = e EVI Grir + (Vi +0). O

Notation 10.5 If E € K, thenlet Vg: D — C(P+9)>x(P+49) pe defined by

B 4 0)

Proposition 10.6 Let E € K., and let G € /x4 (ID). Denote by [;l ’g] the block
representation of Vg with p x p block a. For all z € D, then det(y (z)G (2)r'r +
8(2) # 0.and GI-5EL(2) = [a(2)G(2)rTr + By ()G ()rTr +8()17".

Proof. We conlsider an arbitrary z € . In view of Lemma 10.4 and Notation 10.5, we
have T'(2)(v/7' + Q) = a()G()r'r + B(z) and A(D)(Vr + Q) = y()G(@)r'r +
8(z).Lemma 10.2 yieldsdet A(z) # 0. From Lemma5.19 we infer det(\/FT+ 0) #0.
Thus, we can conclude det(y (2)G (2)r'r +8(2)) # 0and [y (2)G(2)rr +8(z)]' =
(\/?T + 0) A (2)]7". Definition 10.1 shows GI-1:E] (z) = T(2)[A(2)]". Hence, we
finally get

[(2)G@r'r + By (@G @)r'r + 81!
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=T@QWr + QW + ) MA@
=TQEIAD] ' =T@AE] =6l (). g

We now carry out analogous considerations for left E-inverse SP-transforms of
matrix-valued Schur functions.

Definition 10.7 Let E € K, y4, let G: D — CP*? be a matrix-valued function, and
let

Y:=FE +eJIGJ/r and Q:=1, + eIGr E*. (10.7)
Then
GELE) . ofy
is called the left E-inverse SP-transform of G.

Lemma10.8 Let E € K,y  andlet G € Fpxq(D). Forall z € D, then det Q(z) # 0.

Proof We consider an arbitrary z € . Using Remark A.8, from (10.7) we infer
[Q@)]* = I, +ZEJr [G@)*VI. Let v € N([S2(2)]*). Then we obtain

v = —ZEJr G VIv. (10.8)

Since Remark A.17(b) provides v//E = E./r, consequently vIv = —ZE/r/r'
[G (2)]*V/1v follows. Hence,

IVIlg < o @) IVIv]E, (10.9)

where o (z) := ||—ZE\/}7\/7%[G(z)]*||. From Remark A.6 we conclude \/7\/7T e
Kyxq. Lemma A.15 shows [G(2)]* € K;xp. Taking additionally into account
E € K,x4 and z € D, we get then

(@) < =21 - 1E- IVPvr - G@TF <zl < 1. (10.10)

If |[vIvlg # 0, then (10.9) provides o(z) > 1, contradicting (10.10). Thus,
IVIv|[g = 0,i.e., VIv = Opx1.Hence, from (10.8) we obtain v = O 1. Summariz-
ing, we have proved N ([©2(2)]*) € {Opx1}. Therefore, det([$2(z)]*) # 0, implying
det Q2 (2) # 0. o

Lemma10.9 Let E € Ky, and let G: D — CP*? be a matrix-valued function. For
all z € D, then Y (2)A(z) = Q)T (2).

Proof. We consider an arbitrary z € ID. In view of (10.7) and (10.1), we have

Y@AQR) = E + ViGN 1, + 2E*VT G)Vr]
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— E4+2EEVI GV + tVIGVF + 2VIG()Vr E*VI G(2)vr

and

QT (@) = [y + 2VIG@Wr EXIIE + VT G(2)y/r]
= E + V1 GV + VIG@VF E*E + 2VIG VT E*VI G)Vr.

As in the proof of Lemma 5.8, we can obtain (5.5) and (5.6). Using this, we conclude
then
T(2)A(z) — QL) (2)
— 2EEVT GV + VIG@Wr — 2T GV — VIG@)r E*E
— NIGOWF = P E*E) = 2(VT' — EE*VING()VF
= z2VIG(@)r —2VIG(2)Vr = 0. D

Now we are able to verify that, for arbitrarily given G € .7x4(D) and E € K54,
the right and left E-inverse SP-transforms coincide.

Proposition 10.10 Let E € K x, and let G € .7y (D). Then G HE) = GI-1EL

Proof. We consider an arbitrary z € ID. Definitions 10.7 and 10.1 show G(~1E) () =
[Q(2)]7Y (z) and GI-1E](2) = T'(2)[A(2)]". Lemmas 10.8 and 10.2 yield det Q (z) #
0 and det A(z) # 0. Using additionally Lemma 10.9, we obtain

G B () — Gl El () = [Q2)]T T (2) - T@)IA@R)]
=[Q@)] ' T @) - T@IAG@]!
=[Q@]I T@AR) - @OT@IAR] =0. O

11 On the Concordance Between E-inverse SP-transforms for
Ipxq(D) and Ay g 0

In this section, we verify that there is a complete concordance between E-inverse
SP-transforms for p x g Schur functions and infinite p x g Schur sequences. This
correspondence will be established by inspection of Taylor coefficient sequences. In
view of Definition 5.1(b), first we get the following:

Lemma11.1 Let E € K, x4 and let G € 7,4 (D) with Taylor coefficient sequence
(Aj)?io If A is given by (10.1), then A € [H(D)]9*Y and (VE,A;j)(;?io is the Taylor

coefficient sequence of A. Moreover, AT € [H(D)]17*? and (Vg Asj ‘/’.‘;0 is the Taylor

coefficient sequence of A¥.
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Proof From (10.1) we see A € [H(ID)]9*4 and, in view of Definition 5.1(b), further-
more

oo o) . 0o
AR =Ig+ Y N ENVT Ar =1+ Y EVI A r =) 2 Ve

k=0 j=1 j=0

for all z € D. Consequently, (CA;j)?OZO = (VE,4:))52,- Lemma 10.2 provides
det A(z) # O for all z € D. In particular, R(A(z)) = C? and N(A(z)) = {041} for
all z € . Thus, we can apply Lemma D.5 to see that A := A~! belongs to [H(D)]9>4
and that (Ch, ])] 0= (Ci;j) . Consequently, (Ca. ]) 0= E A J)?Oo follows.

O

Proposition11.2 Let E € Ky, and let G € x4 (D) with Taylor coefficient
sequence (A )C>o Then GI=LE] ¢ Spxq (D) and (A[ L E])Oo ° o is the Taylor coeffi-

cient sequence ofG[[ LE],

Proof From (10.1) we see I' € [H(ID)]?*4 and, in view of Definition 5.1(b), further-
more

I'(z) = E+sz+]«/_ I Apr = E—i—Zz’«/_ AN = ZZ]UEAJ

Jj=1 j=0

for all z € D. Consequently, (Cr. ]) ~0 = (WUE,a; ])] ~0 Lemma 11.1 shows that
A:= AT belongs to [H(ID)]9%7 and that (Ca. ]) 0 =V EA j J o According to
Definition 10.1, we have GI-BE]l — FA In particular, F:= GVl belongs to
[H(ID)]P*? with Cp.; = Z/{;:o UE A gV Asjt for all j € Ny. Taking into account
Definition 5.1(b), we get then C.; = AL~ BED for all j € No. Hence, (AL7151)%e i
the Taylor coefficient sequence of GI-VE] Lemma 10.3 yields I, — [F(2)]*F(z) €
C’;_Xq for all z € D. By virtue of Lemma A.15, then F' € .7, (ID) follows. O

Lemma11.3 Let E € K, and let G € #}5q(D). Then F = GI-LE] belongs to
L pxq D) and fulfills F(0) =
Proof Denoteby (A ; );?‘;0 the Taylor coefficient sequence of G. Using Proposition 11.2
and Remark 5.2, we can infer then F € .7, (D) and F(0) = Cr,0 = AB_I;E] =FE.
O
Proposition 11.4 Suppose « > 1. Let (A~)K €  Fxgue and let
G € FpuglD; (AVNSZJ). Then Ag € Ky and GI= i) € pqDs (A)S_gl.
Proof The assumption (A -)’]‘ 0 € Tpxq: implies that E:= Ag belongs to K.
Denote by (B; )°° ~ o the Taylor coefﬁc1ent sequence of G.From Proposition 11.2 we can
infer then GI-1:E] ¢ FpxglD; (B 1E)% 1 Because of G € .7 [D; (A5 201,
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we have B; = A&l] for all j € Zo «—1. Regarding Remark 5.3, then the application

of Corollary 5.25 yields B™""*! = A forall j € Zg .. This shows that GI~140l €
%Xq[D; (Aj)l’;:()]- |

In the sequel, we use again the linear subspaces introduced in Notation 6.1.

Lemma11.5 Let (A))_y € Fxquc With SP-parameter sequence (¢});_, let k €

Zow and let G € Fpg(D: Mi, Q). Then AX € K,y and GIFHATT ¢
Feq[D; (ASO_(10 g (D5 My1, Q).

Proof By virtue of Definition 4.7 and Remark 4.12, we see that E := Ag‘] fulfills £ =
ex € Kpxg. Inview of (5.1) and Notation 4.11, in particular we get/ = [ and r = 1.
According to Notation 8.1, we have G € %), (ID). Thus, we can apply Lemma 11.3

to obtain that F ;= G[-1:E] belongs to .7, x4 (D) and fulfills F(0) = E. This shows
GI-1AY ¢ S gD (Ag.k])gzo]. Now we consider an arbitrary z € ID. Regarding
that Proposition 10.10 shows F(z) = GLE) (7)), from Definitions 10.1 and 10.7 we
can conclude R(F(z)) € R(I'(z)) and N (Y (z)) € N(F(z)). According to (10.1)
and (10.7), we have I'(z) = ex + Z\/ETG(Z)\/'C_]( and Y(2) = & + 2R G(2) /T .
Proposition 6.10 yields (e j)’/(':o € &pxq:ic- By virtue of Notation 6.2, we then see
that R(ex) € My_1 and Qr_; < N(ex). According to Notation 8.1, we have
R(G(z)) € My and Q¢ € N(G(z)). From Notation 6.1 we can infer My € M;_;
and Qr_1 € 9. Lemma 6.9 yields (6.5) for all j € Z_,. Taking into account
(6.5) for j = k — 1, we obtain then R(G(z)) € My € Mj_1 = RMy_1)
and N (Qi—1) = Qk—1 € Qr € N(G(z)). Consequently, Remark A.7 provides
zmk_lsm,i_lc(z) = G(z) and G(z)Q,t_IDk_l = G(z). From Notation 6.4 we con-
clude \/ETfmk_l = 9y and Qk_l\/ﬁT = . Hence, VI G(z) = zmkzm,t_lc(z)
and G(2)&' = G()Q)_, 9 follow, implying R(V G(z)) € REOM) and
Ny < N(G(z)\/aT). Since (6.5) is valid for j = k, thus R(\/ETG(z)) C My
and Oy C N (G(z)ﬁT) hold true. Summarizing, we obtain

R(F(2)) € R(I'(z)) € Rex) + R(\/TG(Z)) C My + My = My
and

Q1= Q1N SN NN(GRVT) S N(T(2) € N(F{).

Taking additionally into account F € .}, 5, (D) and that z € ID was arbitrarily chosen,

k
according to Notation 8.1, then F € .7,y (D; M1, Q1) follows. Thus, iy
belongs t0 .7} xq (D; Myi—1, Qx—1). =

Proposition 11.6 Suppose k > 1. Let (Aj)’j‘.=0 € Syxq:x With SP-parameter sequence
(€))_g letk € Zoc—1, and let G € Fq[D; (AXTSZEFDIN 7 0 (D My, Qu).
Ak -

Then Al € K g and GIT140 T € 7, (D (AFYA 810 .7 g (D M1, Qe).
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Proof Denote by (B j)’;;g the k-th right SP-transform of (A 1)7:0' From Lemma 11.5
we can infer then By = A([)k] € K,xq and G[[_I;ABHH € Fpxg(D; My—1, Qi—1).
Remark 4.2 yields (B <)']‘_]5 € %Xq «—k- According to Definition 4.1, we have BE.I] =
A[k'H for all j € Zoy—k—1, 50 that G € Fyq[D; (B[I])(K =11 Thus, we can
apply Pr0p051t10n 11.4to0 getG[[ 1:Bo] ¢ FpxqlD; (B )" k] Therefore, G[~! Ag'] €

FqD; (ALY, o

12 Parametrization of the Set of All Solutions of the Matricial Schur
Problem

In this section, we use the preceding results on the SP-transform to treat the matri-
cial Schur problem connected with an arbitrarily given finite p x ¢ Schur sequence
(Aj);l'=o- We again use the function ¢: D — C defined by e(z) := z.

Lemma12.1 Let E € K, . Using Notations 7.6 and 10.5, then

.
WeVE = ediag(l’, 1) and VEWE:s[” EQ] a2.1)
Ogxp 14

Proof Denote by [ "] the block representation of Wg with p x p block a and by
[;l g ] the block representation of Vg with p x p block «. Obviously,

By virtue of Notations 7.6 and 10.5, we see

ap+ 08 =V EWr +0) + (VI EYWF + 0) = 0puy.

As in the proof of Lemma 5.23, we can obtain (5.10), (5.12), and (5.11). Regarding
Notations 7.6 and 10.5, from these identities and Lemma 5.19 we can infer then

ac+by =1 (1) + (T E)E*VI)
— oWV = VI'EE*VTTy = sl
ca+dy = (=ex/r ENeVT) + e/ + Q)EEVI) = 2 QE VI = 0y,
and

cB+ds = (—eT ENEWT +0) +e(/F + QW +0)
= e[ V7 Uy BB 4 Q)W+ 0) = eF + O+ @) = 61



109  Page 54 of 91 V. K. Dubovoy et al.

Thus, the first identity in (12.1) is verified. As in the proof of Proposition 5.24, we
can obtain (5.13)—(5.16). Regarding Notations 10.5 and 7.6, from these identities we
conclude

wa + Be = eI VI + E(JF + Q) (—e/r E®)
:\/ZTx/f _EW Q)\/7TE*] — el
ab+Bd = eV (—V1'E) + EWF + Q)le(Vr + 0)]
:E(\/FT + 07— «ﬁT\/?TE] —¢EQ.
va+sc=eEI VI + (JF + 0)(—ev/r E)

™

™

= e[ EVIVI = (' + OV E] = 0y,
and
yb+bd =BV (VI B) + (Vi + 0)[e(vF + 0]
= e[+ 07 - E*«/ZT\/ZTE] —el,.
Consequently, the second identity in (12.1) is verified as well. O

Lemma12.2 Let E € Ky, and let G € )5 q(D). Then F = GI-1E] belongs to
S pxq(D) and fulfills FI1 = 117G rir.

Proof We consider an arbitrary z € D \ {0}. Denote by [;‘ ’g] the block represen-

tation of Vg with p x p block «. Proposition 10.6 then yields det(y @)G@)rr +
8(2)) # 0and F(2) = [@(@G@r'r + By (@G@r'r +8(2)]17". In partic-
ular, Remark C.1 shows rank([y(z), §(z)]) = ¢. Proposition 11.2 and Remark 5.2
imply F € #yq(D) and F(0) = Cpo = Ay ") = E. Denote by [44]
the block representation of Wg with p x p block a. Proposition 7.7 then yields
det(c(2)F(z) +d(z)) # 0 and FIN(z) = [a(2) F () + b()]lc(z) F(z) + d(z)]"". In
particular, Remark C.1 provides rank([c(z), d(z)]) = ¢g. Regarding that Lemma 12.1
shows W (2)VE(z) = diag(zli”, z14), we can thus apply Proposition C.2 to obtain
FUl(z) = 211G @)ririzly) ™ = UTGR)r'r. In view of F € .7, (D), from
Theorem 8.6 we see that FI! ¢ Spxq (D). Consequently, Fm, G € [H(D)]"*4, so
that the Identity Theorem for holomorphic functions yields F [ = 1t Grir. O

Lemma 12.3 Let (Aj)’;.zo € Syxqie with SP-parameter sequence (ej)7=o’ let
k € Zoy, and let G € Fpuy(D; My, Q). Then E := AXV belongs t0 K, and
F:=GI-1E] belongs to /x4 (D) and fulfills Flll = G.

Proof By virtue of Definition 4.7 and Remark 4.12, we get E = ¢; € K. In view
of (5.1) and Notation 4.11, in particular / = [ and r = t;. Taking additionally into
account, that Notation 8.1 shows G € %), (ID), we can thus apply Lemma 12.2 to
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obtain F € /x4(D) and F [ = lr [ZGtZtk. According to Notations 8.1 and 6.1,
we have R(G(z)) € My < R(Ix) and N(vy) € Q) < N(G(z)) for all z € D.
From Remark A.7, for all z € D, then [t[; G(z) = G(z) and G(2)t[tx = G(z) follow.

Consequently, we get F [ = Ik [}ZGtZtk =G. i

Lemma 124 Let F € /)y q(D). Then E := F(0) belongs to Ky, and G := rli
fulfills GI-VE] = F.

Proof Because of F' € 7)yx,(D), we have E € K,,. We consider an arbitrary
z € D\ {0}. Denote by [ 5] the block representation of Wg with p x p block a.
Proposition 7.7 then yields det(c(z)F(z) + d(z)) # 0 and G(z) = [a(2)F(2) +
b()]c()F(z) +d(z)] L. In particular, Remark C.1 shows that rank([c(z), d(2)]) =
q. Theorem 8.6 provides G € .%),x4(ID). Denote by [ § 5] the block representation of
Ve with p x p block «. Proposition 10.6 then yields det(y )G @)rr +8(2) #
0 and GI=VEl(z) = [a(2)G@)rir + By ()G @)rr + 8(2)]7". In particu-
lar, Remark C.1 provides rank([y(z),d8(z)]) = ¢. Regarding that Lemma 12.1

implies VE(2)WE(z) = Ozil:p ZZEIqQ i|, we can thus apply Proposition C.2 to obtain

GI-VEl) = [2lITF(z) + zEQI(zl,)~" = UTF(z) + EQ. Regarding (5.2),
from Lemma D.3(a), we can infer /[ F(z) = F(z) — PE. Lemma A.16(d) yields
PE = EQ. Summarizing, we get Gﬂ_l;Eﬂ(z) = [F(z) — PE]4+ EQ = F(2).
In view of E € K,x; and G € .#)54(D), from Proposition 11.2 we see that
GI-LE] ¢ S pxq (D). Consequently, GI-LE] F e [H(D)]P*4, so that the Identity
Theorem for holomorphic functions yields GI-VEl = F. O

Proposition 12.5 Let n € Ny and let (Aj);?:o € S xq:n With SP-parameter sequence
(€)1 Then yr: g (D; M, Qu) = FprgD; (A1 0.7 (D My,
Ou—1) given by ¥ (G) := G[[_I;Agl]ﬂ is a well-defined bijection with inverse ¥~ given
by ¢~ (F) = FUl for all F € 7y ID; (A")0_10 .70 (D M1, Qu).

Proof According to Lemma 11.5, the mapping v is well defined. Using Proposition 8.8
fork =nandk = n,weseethat y : .74 [ID; (AB."])(]).:O]HZ,M(ID); Mu_1, Q1) —

Fpxg(D; My, Q) givenby x (F) := FIT is also well defined. Applying Lemma 12.3,
we get

(x 0 ¥)(G) = x(¥(G)) = x(GIT1:4h = G (12.2)

forall G € 7% (D; M,, Q). Consequently, the mapping v is injective with Yl =
X . We now consider an arbitrary F € .74 [D; (AB.”])gzo] N g (D; My_1, Qn1).
Using Proposition 8.8 with k = n and k = n, we see then that G := x (F) belongs to
g (D; My, Q). Regarding F(0) = A, Lemma 12.4 yields ¥ (G) = F. Thus,
Y is also surjective. i

Proposition 12.6 Let n € N, let (A./);!=0 € Syxq:n With SP-parameter sequence
(¢))!_q andletk € Zon—1. Then iy : Fpsq[D; (AU D00 (D My, Qp) —
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K7 D: A[k] n—k R D: M . b G ._G[[_I;Agdﬂ .
pxqlD; ( i )j=0] N Fpxq(D; k—1> Qk—1) given by ¥ (G):= s a
well-defined bijection with inverse ' given by v~ (F) = rlil for all F €
FyxqD; (A1 Z610 g (D5 M1, Q).
Proof According to Proposition 11.6, the mapping Y is well defined. Using
Proposition 8.9, we see that x : .%xq[D; (A[k])" 510 T (D5 My, Qi) —
FpxqlD; (A kHJ)" (k+1)] N SpxqD; My, Q) given by x (F) := FIU i also well
defined. From Lemma 12.3, we get (12.2) for all G € .%q[D; (ASFT1 (D)
Fpxq(D; My, Qk). Therefore, ¥ is injective with v~ = x. Wenow c0n51deran arbi-
trary F € 7 q[D; (A[k )" ]ﬂj’;xq(D M1, Qk—1). Using Proposition 8.9, we

see then that G := x (F) belongs to .7}, x4 [ID; (A[kH])n (kH)] N Fpxq{D; My, k).

Regarding F(0) = ([)k], Lemma 12.4 yields ¥ (G) = F. Thus, ¥ is surjective as well.
(|

Now we are able to prove a first parametrization of the solution set of the matricial
Schur problem, where we in particular use the notations introduced in Notations 4.11
and 6.1. Observe that the parameters still depend on the given data.

Theorem 12.7 Let n € Ny and let (A; )” 0 € %Xq n with SP-parameter sequence
(¢))"_q- Forallk & Zo n, let % := gD (A[k]) ]myg,xq(ID) Mu—1, Ok—1). Let
LI/ %Xq(ID); My, Qn) — U, be defined by ¥,,(G) := Gl- LAY ]]. Inthe casen > 1,
forallk € Zy 1, let furthermore Yy : Uk+1 — U be given by Y (G) := G[[fl;AE)k]]].

Then W, : (D5 My, Qu) = FpeqIDs (A})!_o] defined by W, (G) := (Yo 0 Yy o

-0 Y,)(G) is a well-defined bijection with inverse \Iln_l given by ‘Iln_l (F)= Flr+1]

forall F € 7,4(D; (Aj);?zo].

Proof Since Notation 6.1 and Remark 8.2 show that .7, (D; M_1,Q_1) =

S pxqgD) is valid, from Definition 4.1 we see % = FpxqD; (Aj);f:O]. Accord-

ing to Proposition 12.5, the mapping ¥, is well defined and bijective with inverse

w1 given by ¥, ' (F) = FI!l for all F € %,.1f n = 0, then we have W, = v, and

U = SpxqlD; (Aj)’}zo], so that the proof is complete.

Now suppose n > 1. We already know that there is an m € Z; , such that, for all

k € Z ., the following statement holds true:

(Ix) The mapping px: =¥k o Ygy1 o --- o ¥y, iS a bijective mapping from
Fpxg(D; My, Q) onto % with inverse ,ok_l fulfilling ,ok_l(F) = Fl—k+1]
for all F € %.

Taking into account Proposition 12.6, we see then that p,,,—1 := ¥, —1 o py, 1S a bijec-

tive mapping from .7,y (D; M,,, Q,,) onto %,,—1, where Definition 9.1 provides

Pt 1 (F) = (o 0 i L N(F) = o (0L () = ' (FITy = (LI 1] =

Flr=m+2] for all F € %,_,. Thus, we proved inductively that statement (I;) holds

true for all k € Zy . Consequently, because of W, = po, we checked that ¥, is a

bijective mapping from .7}, (D; M,,, Q,) onto % with inverse mapping W, 1 ful-

filling W, ' (F) = FI"*' for all F € %. In view of % = .7x,[D; (A )l the

proof is complete. O
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13 Description via Linear Fractional Transformation

In this section, we rewrite the result of Theorem 12.7 in form of a linear fractional
transformation of matrices. This enables us to construct a parametrization of the solu-
tion set of an arbitrary matricial Schur problem by parameters which are independent
of the given data.

Notation 13.1 Let (A;)“_, € S xq:« With SP-parameter sequence (ej)’]‘.zo. Regard-
ing Remark 4.12 and Notation 10.5, then, for all n € Zg ., let B, ;= Ve Ve, -+ Ve,,-

Lemma 13.2 Let n € Ny and let (Aj)’}zo € Sxq:n With SP-parameter sequence

(ej)’}-zo. Denote by |:r§: §Z:| the block representation of U, with p x p block vo,.

Let Wy, 0 75 q(D; My, Qn) — FpxglD; (Aj);?zo] be given as in Theorem 12.7. For
every choice of G € /g (D; M, Qp) and z € D, then det(y,(2)G (2) +34(2)) # 0
and

[¥,(G)](2) = [0, (2)G (@) + £ (D02 (G (2) + 3 ()] .

Proof For all k € Zgy ,, let % and ¥y be given as in Theorem 12.7. According to
Remark 4.12, we have ¢, ..., ¢, € K, . In view of Notation 10.5, for all k € Z ,,
we can thus define g :=Ve, Ve, -+ Ve, For all k € Zgp, let [ ¢ é’;] be the block
representation of Ll with p x p block sy.

Part 1: In the proof of Theorem 12.7, we verified %) = % x4[D; (A j)?zo] and that,
for all k € Zy,, the mapping p := Yk © Y41 0 - - - 0 Yy, is a bijective mapping from
g (D; My, Q) onto % with inverse p; ! fulfilling p; '(F) = FI*=*+11 for all
F € . Now we will work inductively.

Part 2: First we consider the function p,,. We set E :=¢,. Then E € K. By virtue
of Notation 4.11 and (5.1), we get moreover t, = r. Let G € 7, (D; M,;, Qp)
and z € D be arbitrarily chosen. In particular, then G € ypxq(]]])), accord-
ing to Notation 8.1. Regarding i, = Vg, we can thus apply Proposition 10.6
to obtain det(u,(2)G(@)tyt, + 0,(2)) # 0 and GIEL(2) = [5,(2)G(Drhrs +
(211 (2)G ()t +0,(2)] ™. According to Notation 8.1, we have Q, € N (G(z)).
By virtue of Notation 6.1, we see that A/ (t,) € Q,.Hence, N (t,) € N(G(z)), so that
Remark A.7(b) yields G(Z)‘C;tn = G(z). Consequently, det(u,(z2)G(z) + v,(z)) # 0
and GI=VEl(2) = [5,(2)G(2) + 1, (2)1[un (2)G(2) + v, (z)]~" follow. Regarding that
Definition 4.7 yields E = A([)"], summarizing we get

[on (O] (@) = [ (G)](2) = G140 () = GI-1:E] (o)
= [5,(2)G (@) + @[t )G @) + vp ()]

If n = 0, then %, = 7,x4[D; (Aj)’;'=0] and ¥, = p, as well as U, = 4, so that
10, = Sy, In = ty, Yy = Uy, 3 = b,, which completes the proof in this case.

Part 3: Now suppose n > 1. According to Part 2 of the proof, there exists an m €
Zo,n—1 such that, for all k € Z,,, 11, the following statement holds true:
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Dy If G € Fug(D; My, Qp), then
det(ux(2)G(2) +04(2)) #0 (13.1)

and

[0 (G)](2) = [51(2)G (2) + & (D)[w ()G (2) + v ()]~ 13.2)

forall z € D.

We set E:=¢,. Then E € K,,. By virtue of Notation 4.11 and (5.1), we get
moreover t, = r. Let G € .7, (D; M,, Q) and z € D be arbitrarily chosen.
In view of Part 1 of the proof, then H := p,,+1(G) belongs to %,+1. In partic-
ular, H € (D), according to Notation 8.1. Denoting by [ g] the block
representation of Vg with p x p block «, we can thus apply Proposition 10.6
to obtain det(y (2) H(2)ttn + 8(2)) # 0 and HITWE(2) = () H(@)then +
By (Z)H(Z)t:ntm +8(z)]™". According to Notation 8.1, we have Q,, € N (H(2)).
By virtue of Notation 6.1, we see that N (t,,) € Q,,. Hence, N (t,,) € N(H(z)), so
that Remark A.7(b) yields H (z)t:g1 t, = H(z).Consequently, det(y (z) H(z)+6(2)) #
Oand HI=VEl(2) = [a(2) H(z)+B(2)1[y (z) H (2)+8(z)]~". In particular, Remark C.1
provides rank([y (z), 6(z)]) = ¢. In view of (I),,, |, from Remark C.1 we can infer
rank ([, +1(2), ¥m+1(2)]) = ¢. Taking additionally into account 4L, = Vgil, 41, the
application of Proposition C.2 yields that (13.1) and (13.2) hold true for k = m as
well. Thus, we proved inductively that (I); is fulfilled for all k € Zg ;. Since ¥, = pg
and U, = Yy are valid, now the assertions in the considered case n > 1 follow
from (I)g. O

Now we are able to prove a first variant of a reformulation of Theorem 12.7 in
form of a linear fractional transformation of matrices. We note that the parameters
still depend on the given data.

Theorem 13.3 Let n € Ny and let (Aj)’;zo € Spxq:n With SP-parameter sequence

(e j)7:0' Denote by |:‘§: §Zi| the block representation of the matrix-valued function

0, given by Notation 13.1 with p x p block vo,,. Then:

@ If G € Spug(D; My, Qp), then det(y,(2)G(2) + 3,(2)) # O forall z € D and
the function F: D — CP*4 defined by

F(2):=[0,(2)G (@) + ta (D102 ()G (2) + 3a(2)] ™"

belongs to S} xq[D; (Aj);fzo].

(b) Forall F € S}y q|D; (Aj)’}-zo], there exists a unique G € Spxq(D; My, Qp)
such that the function det(y,, G 43, ) does not vanish identically and that F admits
the representation F = (10,G + 1) (0,G + 3,)~", namely G = Flr+1],

Proof (a) Let G € 7,xq(D; M, Q,). Using Theorem 12.7 and the notations
therein, we see that W, (G) € ),x4[D; (A j);fzo]. On the other hand, we know from
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Lemma 13.2 that det(1,(z)G(2) + 3,(2)) # 0 and [¥,,(G)](z) = F(z) hold true for
all z € D.

(b) We consider an arbitrary F' € 7,4 [D; (Aj)'}:()]. Because of Theorem 12.7,
there exists a unique G € %), %4(D; M, Q) such that ¥,(G) = F, namely G =
Fln+11 From Lemma 13.2 we can infer then that det(y,(z)G (2) 4 31(z)) # 0 and
F(2) = [10,(2)G(2)+1n (2194 (2) G (2)+3,(z)]~ ! hold true forall z € D). It remains to
check that there is only one function G € .7, (D; M,,, Q,) such that det(y, G +3,)
does not vanish identically and F = (10,,G +1,) (1, G +3,) " is fulfilled. To this end,
we assume that G is an arbitrary function belonging to .}, (D; M,,, Q) such that
det(UnG + 3,) does not vanish identically and that F = (10,G + ;n)(ljné + 307!
holds true. By virtue of Lemma 13.2, then ¥, (G) = F = W,(G) follows. Since ¥,
is bijective, according to Theorem 12.7, we get finally G =G = Fl+l], i

Now we are able to parametrize the set .74 [D; (A j)’}zo] by parameters which
are independent of the given data. We distinguish the following two cases:

DO 1 <dimM, anddimQ, <g — 1.
1) dim M, =0ordim Q, = gq.

In the so-called non-degenerate case, which is a special case of case (I), we get imme-
diately a corresponding result:

Theorem 13.4 Let the assumptions of Theorem 13.3 be fulfilled where M,, = CP and
Q,, = {Oyx1} are supposed. Then both statements (a) and (b) in Theorem 13.3 hold
true with replacing the set /g (D; My, Qy) by the set 'y q (D).

Proof Use Theorem 13.3 and Remark 8.2. O
Now we turn our attention to case (I) in general:
Theorem 13.5 Let n € Ny and let (Aj)’;zo € Sxq:n With SP-parameter sequence

(e j)’}=0' Denote by |:‘§: ;Zi| the block representation of the matrix-valued function

0,, given by Notation 13.1 with p x p block vo,. Suppose that the linear sub-
spaces M,, of CP and Q, of C? given by Notation 6.1 are such that M, #*

{Opx1} and Q, # C4. Let m:= dim M, let uy,uz, ..., u, be an orthonormal
basis of CP such that uy, ua, ..., un is a basis of My, let Ug :=[u1,uz, ..., upl,
and let U :={uy, uz, ..., unl. Furthermore, let t :=q — dim Q,,, let vi, v2, ..., v,
be an orthonormal basis of C4 such that vi, vy, ..., v, is a basis of Qi, let

Vei=[vr,v2,...,04], and let V:=[vi,v2,..., 0] For all § € Fpx;(D), let
So: D — CP*4 be defined by

S(2), ifm=pandt =gq
[S(2), Opxg—nl, ifm=pandt <q
S(z)
O(p—m)xq ’

|: S(2) Omx(q—f) ] zfm < pandl <q

So(2) 1= fm<pandt=q _ (133)

Op—myxt  O(p—myx(g—1)
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Then:

(@) Let S € Spxi (D). Then det(n,,(2)UeSo(2) + 31(2)Ve) # O for all z € D and
F: DD — CP*1 defined by

F(2) :=[10,(2)UsSo(2) + 12 (2) Vall0n (2)UeSo(2) + 30 (2) Vel !

belongs to /)4 D; (Aj)’}zo].

(b) Forall F € S}y q[D; (Aj' ’J.:O], there exists a unique S € ., (D) such that the
function det(9,,UqsSo + 31 Ve) does not vanish identically and F = (10,,U¢So +
V) 00U So + 30 Va) ! holds true, namely S = U*FIn+11y.

Proof First observe that U is the left p x m block of U,, that V is the left ¢ x ¢ block

of Vs, that U*U = I, and V*V = [, and that the matrices U, and V, are unitary.

According to our assumptions, we can apply Lemma 8.4 with M = M, and Q = Q,,.
(a) Let G :=U,S, V. Regarding that V, is unitary, we have then

10,(2)G(2) + 12 (2) = [0, (2)UeS6(2) + 12 (2) Va ]V (13.4)
and
92(2)G(2) + 31 (2) = [ (D UeSo(2) + 32 (D) VeV, (13.5)

forall z € D. By virtue of (13.3), we see that G = U SV*, so that Lemma 8.4(a) yields
G € Spxq(D; My, Q). Thus, we can apply Theorem 13.3(a) to get det(v, (2) G (z) +
3n(2)) # 0 forall z € D and that H: D — CP*4 defined by H (z) :=[10,(2)G(2) +
1 (D10, (2)G(2) + 3n(2)]~" belongs to FpxqD; (Aj)’;zo]. Taking additionally into
account (13.5) and (13.4), for all z € D, then det(y,(z)UeSs(z) + 31 (z) Vo) # 0 and
H(z) = F(z) follow. In particular, F € .%,4[D; (Aj);fzo].

(b) Let F € 74[D; (A j)’}zo]. According to Theorem 13.3(b), then there exists a
G € Spxq(D; M, Qp) such that the function det(y, G + 3,) does not vanish identi-
cally and that F = (10,,G +1,)(1,G + 5,,)_1 holds true. From Theorem 13.3(a), thus
det(9,(z)G(z)+3n(z)) # Oforall z € D follows. Consequently, forall z € D, we have
F(2) = [0, (2)G(2)+1a(2)]1[91(2) G (2) 43 (2)] . According to Lemma 8.4(b), there
existsan S € .7, x; (D) such that G = U SV *. Taking additionally into account (13.3),
we can conclude U, So V) = G.Regarding that V, is unitary, forall z € D, we have then
(13.4) and (13.5). For all z € DD, consequently, det(1,,(z)Ue So(2) + 3,(2) Ve) # 0 and
F(2) = [10,(2)UsSo(2) 4 1n(2) Val[D2(2)UsSo () + 3 (2) Vol ™! follow. In particular,
det(9,UeSe + 3, Ve) does not vanish identically and F = (10,,Ue So + 11 Vo) (1, Ue So +
Vo)

Now we consider an arbitrary S € ., x; (D) such that the function det(n, U, S,, +
3nVe) does not vanish identically and that F = (10,U¢Ss 4+ 11 Ve) (0, Ue So + 31 Vo)~ !
holds true. Using part (a), we can infer then det(n,(z)UeSo(z) + 34(2)Ve) # O
for all z € . Hence, for all z € D, we have F(z) = [0,(z2)UsSo(2) +
£ (@) Vell9n (2)UeSo(2) +30(2) Vol ™. Let G := U, S, V. Regarding that V, is unitary,
for all z € D, we have then (13.4), (13.5), and, in particular, det(v, (z2) G(2) + 3, (2)) #
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0, so that [10,,(2)G(z) + 12 (2)][1,(2)G(2) + 3,(2)]~" = F(z) follows. In particular,
det(n, G +3,) does not vanish identically and F' = (t0,G+1,) (9, G—i—g,n)’1 . By virtue
of (13.3), we see G = USV*, so that Lemma 8.4(a) yields G € %) xq(D; My, Q,).

Consequently, Theorem 13.3(b) provides G = F H”‘H]], whereas Lemma 8.4(b) shows
that S = U*GV. Thus, we obtain § = U*Flr+1ly, O

Now we turn our attention to case (II):

Theorem 13.6 Let n € Ny and let (Aj)’}zo € Syxq:n With SP-parameter sequence

Yn 3n
representation of *U,, with p x p block vo,,. Then det,(z) # 0 for all z € D and
FpxqlDs; (A))1_o) = (w3 ')

(ej);?:() be such that M, = {Opx1} or Q, = C4. Denote by |:m" p”i| the block

Proof Using Remark 8.3 and the notations therein, we can infer .7, (D; M,,, Q) =
{0pxq}. Thus, the application of Theorem 13.3 completes the proof. O

14 Recovering the Taylor Coefficients from the Schur-Potapov
Parameters

We reconsider in this section a topic which was already a central theme of Issai Schur
in [28, §2] when he studied complex-valued holomorphic functions bounded by 1. Our
main goal is to prove a parametrization of an arbitrarily given matricial Schur function
by its SP-parameter sequence. In the context of the special case of non-degenerate
p X q Schur sequences, the topic of this section was also handled in [11, Sec. 3.8]. In
particular, [11, Prop. 3.8.1, Thm. 3.8.1, and Prop. 3.8.5] should be considered. We note
that several results of [11, Sec. 3.8] could be obtained by applying relations between
p x g Schur functions and non-negative Hermitian (p + ¢g) x (p + ¢) Borel measures
on the unit circle. Especially, the SP-algorithm is closely related to the Szeg6 recursion
formulas for these non-negative Hermitian (p 4+ ¢) X (p 4+ ¢) measures. It should be
mentioned that even in the context of complex Hilbert spaces, Constantinescu [9]
also constructed a Schur-type algorithm in order to parametrize contractive operator
matrices of the type S, given by (2.2).

First we want to give a parametrization of an arbitrary given p x ¢ Schur sequence
by its SP-parameter sequence. With this in mind, we introduce the following notation.

Notation 14.1 Let (e j)’;=0 be a sequence of contractive complex p x ¢ matrices. Then
let £ y:=1, and R := 1. Furthermore, for all j € Zo,, regarding Remark 4.12,
let

Sj:z\/%\/ﬂ~-~\/[>j and Rj =T 10

In the sequel, the sequence (e./');:o of contractive complex p X g matrices mainly
arises as the SP-parameter sequence of a p x g Schur sequence.
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Notation 14.2 (cf. [11, p. 181]) Let Wo, no: Kpxq — CP*? be defined by

W (eo) :=eg and o (e0) := Opxg, respectively. Forallm € N, let Wy, iy, : K’I’,’;’; —
CP*4 be recursively defined by
W (eo, €15 o em) i=Um—1(€0, - .., em—1) + Lm—1emMRm—1 (14.1)
and
L 20y @1, -y o) 1=/ 0 ftm—1(e1 - ., em)/%0
m
=Y VoWne(er. e )V Wi e). (14.2)

Now we are able to describe how an arbitrary p x g Schur sequence can be recov-
ered from its SP-parameters.

Theorem 14.3 Let (Aj)’;zo € Syxq:x With SP-parameter sequence (ej)';.zo. For all
ke ZO,K) then Ay = W (eg, ..., ek).

Proof First observe that Remark 4.12 shows ¢; € K., forall j € Zg . According
to Definitions 4.7 and 4.1, we have ¢g = A([)O] = Ag. In particular, A9 € Kj,.

Regarding (2.5), hence Remark A.17(a) shows [y € (Cf;XP and rg € (Cz;xq. Thus, we
can apply Remark A.10(d) to obtain with (2.5) then

— Jr0 A§ Ao + Jro' = ro' (I, — AbAo) = /o ro = /7o (14.3)

According to Notation 14.2, we have Wy (¢g) = ¢g = Aop.
Now assume « > 1. According to Notations 14.2 and 14.1, and Definition 4.7, we
have

Wi (eo, e1) = Loe1Ro + o) = vl AY /0. (14.4)

Remark 3.3 yields (A j)’J‘.ZO € JNpxq:c- Thus, we can apply Lemma 5.22 to obtain

a[1] + + .
So [=(v/r0  Agh1S1 + (/o' + Qo] = (V10181 — (/o' Ao) 1. Comparing the
lower left p x g block on both sides, in view of (2.2), and (3.2), then

—Jro AX Ao + =t +
[A“],Opxq][ Vo OJ’V—OT;:/E QO)]=\/70A1 (14.5)
- 0

follows. Remark 3.3 yields (A J');:O € RN jxq:c- Thus, from Remark 3.22 we can
infer N'(ro) € N'(A))). In view of (2.11), hence A}'Qp = 0. Taking addition-

ally into account (14.3), from (14.5) we get then ABI]W = \/ETAL Remark 3.3
yields (Aj)’;.zo € X pxq:«- From Notation 3.1 we then see R(A) € R(lp). Hence,

Remark A.7(a) provides lolf A; = A. Since Remark A.10(c) shows Il = VIov/To
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we obtain VAN /75 = Viov/To Ay = lol{ A1 = A1. Comparing this with (14.4)
and regarding Remark 4.14, then W (¢g, ¢1) = A1 follows.

Now assume « > 2 and that there exists n € Z; ,—1 such that for all m € Zg , the
following statement holds true:

(I,,) For each (B j)’jﬂ:o € Z,Xq m With SP-parameter sequence (p; _0, the identity
By = Wi (po, - .., pr) is valid for all k € Zg ,.

From Remark 4.9 we know that (A j);?:() belongs to ., 4., and has SP-parameter
sequence (ej)’}zo, so that (I,,) yields

Ar = Wi (eo, - - ., &) for all k € Zq,. (14.6)

Remark 4.8 shows that (AB.I])'; ;(1) belongs to .7 « 4.1 and has SP-parameter sequence

(ej+1)’;_(1) According to Remark 4.9, then (AE.”);!:O belongs to .%) 4., and has SP-
parameter sequence (¢;41)" —0» SO that (I,,) yields

AN = Witer, . ) for all k € Zg.,. (14.7)

By virtue of (14.1) and Notations 14.1 and 4.11, we see W,(e1, ..., ep41) =
S V1% - /T + =1 (e1, . . ., &,). In view of (14.7) and Notation 14.1,

then \/BA,[ll]ﬂ = Luent1Rn + Viopn—1(e1, ..., en)/To follows. Since (14.1)
shows W, 1(e0, €1, ..., ent1) = £y enHER + wn(eg, €1, ..., ¢e,), we can thus con-

clude Wyt (eo, e1, ..., ent1) — VIOAL ]f Mn(eo, €1, ..-,en) — Vopn—1(e1,
. en)/%0. By virtue of (14.2), then W,y (g, €1, ..., eqt1) — «/EALH\/% =
3 oW (e, -y enmer1)/T0 €W (e, . ., ¢g) follows. Using (14 7) and

(14.6), we thus get W,, 1 (eo, €1, . . ., en+1)—%ALIIJt_ ==Y \/_An ' o ey
Ay. Taking additionally into account ¢y = Ag, we can conclude

n
W1 (. et enpt) = VioAM g = Y VoAl e aga. (148)

=1

Regarding (Aj)'j“.=0 € JNpxq» we can apply Lemma 5.22 to obtain

[1] +
[—4/T0" AGDnr1Snt1 + (V70 + Q0)nt1l = «\/loT»n-HSn-H - «\/ZOTAO»rH—L
Comparing the lower left p x g block on both sides, in view of (2.2), and (3.2), then

— V70 Af Ao+ (Vo' + Qo)
— 0 AGA
.
(A, Al AR 0] : =Vio Ansi
—Jr0' A Ay
— 70 AjAn+
(14.9)
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follows. Regarding (A;)_y € H%Npxq;c» Remark 3.22 yields N(ro) € N(AM.
In view of (2.11), hence A,[f]Qo = O. Taking additionally into account (14.3),

from (14.9) we get then AL”\/% DN AflllgﬁTAgAg = \/ETA,H_L Regard-
ing (Aj)’]‘.:() € HR pxq:.c, from Notation 3.1 we see R(A,4+1) € R(lp). Hence,

Remark A.7(a) provides lolgA,,H = A,41. Since lolg = \/5\/1_0—;-, we obtain

n .
Vio(Aro = 30 Al o AGAL) = VioVio Anst = ol Aut = Ap.
=1

Comparing this with (14.8) and regarding Remark 4.14, then W,, 1 (¢q, €1, ..., €y41) =
Ay follows. O

In view of Theorem 14.3 and the following corollary, it should be mentioned that
an operator version for parametrizing lower triangular block Toeplitz contractions was
worked out by Constantinescu. This was a far-reaching generalization of an idea of
Schur [28, §2]. In particular, he obtained an operator version (see [9, Theorems 2.1
and 2.3]) of the following result:

Corollary 14.4 Suppose k > 1. Let (Aj)jzo € Syxq:c With SP-parameter sequence
(ej)fzo. Forall j € Zy ., then Aj = pj_1(eo, ..., ¢j-1) +£j_1¢;R;_1.

Proof Regarding (14.1), this is an immediate consequence of Theorem 14.3. O

Corollary 14.5 Let (Aj)§=o € Sxq:c With SP-parameter sequence (e./)l;:o and let
k € Zo . Forall € € Z «—y, then AN = Wy (er, ..., exro).

Proof Consider an arbitrary ¢ € Zg ,—i. Remark 4.8 shows that (Ag.k])’;;g belongs
t0 A xq:xc—k and has SP-parameter sequence (e Hk)’;;g. Thus, we can apply Theo-

rem 14.3 to obtain Al[zk] = Wo(e0tks---»C04k)- O

Corollary 14.6 Let (e.,');:O € Epxq:c- For every choice of n € Zo,, k € Zo,, and

L€ Zok, then Dy .0 = Vo(ep—k, - .., en—ik+t), where (Dn,k;j)];:() is given via Nota-
tion 6.12.

Proof Consider an arbitrary n € Zo,. According to Notation 6.2, then (¢;)’_, is
a sequence of contractive complex p x g matrices. Thus, we can apply Proposi-
tion 6.14, to see that (Aj)'}:o = (Dn,,,;j)?:o belongs to .4, 4. Theorem 6.20 shows
that (e j)'}zo is the SP-parameter sequence of (A j)’;:o- Consider an arbitrary k € Zo ;.
The application of Proposition 6.19 to the sequence (A ; )’}:O then yields (D, k. j)’j‘.:0 =

(AE.”*H)’J‘.:O. The application of Corollary 14.5 to the sequence (Aj);'.:o provides

AE’"] = Wy(ep, ..., emye) for every choice of m € Zg, and £ € Zg —m. Choosing
m = n—k, forall £ € Z y, we thus obtain D, . = Agn_k] = Wo(Cnky . Cnokit)-

O
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Proposition 14.7 Let (¢,)%_) € &pxqic andletk € Zo . Then (¥ (e, - .-, ey j))j;g
€ %Xq;/(—lo

Proof Consider an arbitrary n € Zo —. The application of Corollary 14.6 yields
Dysknie = We(ek, - .., ext+p) forall £ € Zo ,. From Notation 6.2 we see that (ej)’”k
is a sequence of contractive complex p x g matrices. Thus, we can apply Propo-
sition 6.14, to see that (Dn+k,n;j)?=0 belongs to % x4;,- Summarizing, we obtain
(W (e, - - ek+1))” 0 = (Dpyk, n‘j);l':() € %xq;n for all n € Zg —k, implying
(e, ... ek+1)) -0 G%qu k- O

Remark 14.8 In view of Proposition 14.7, the mapping ¥ pxq:c : Epxgic —> Tpxqic
defined by wpxq;,(((ej)ﬁzo) =Y (e0, ..., ej))§:0 is well defined.

Now we obtain a useful parametrization of the set .7 ;..

Theorem 14.9 Let ¢pugic: Tpxgic — Epxgic be defined by ¢pyq.c((A] )" —0) =
(e])/ _o» Where (e])K _o is the SP-parameter sequence of (A )7_0, and let prq P
éapxq « = pxqix be defined by V4. K((e]) o) = (Y (e, .. e])) o Where ¥
is given via Notation 14.2. Then ¢px 4, and I/fpxq « are well deﬁned, bijective, and
mutual inverses.

Proof According to Remarks 6.11 and 14.8, the mappings ¢, x 4.« and ¥, 4. are well
defined.

In order to check that ¥, 4.4 0@ gy = id pegicr W consider an arbitrary sequence
(Ao € Tpxque- Then @psgic (A )170) is the SP-parameter sequence (ej)’J‘ o of
(Aj) -_o and belongs to &)« Theorem 14.3 yields Ay = Wi (eo, ..., ¢) for all
k e Zoy,(. Therefore, we conclude

prq;K(¢p><q;K((Aj)7:())) = 1//pxq;lc((ej)jz()) = (\I’j (e0, ..., ej))jz() = (Aj)lj(‘:o-

Consequently, ¥px g © Ppxgic = idy;,xq o

In order to check that ¢pxg:c © ¥pxq;x = idg,, . . we consider an arbitrary
sequence (e,) ‘0 € Epxqie- Then (Aj)5 20" _xppxq K((e]) o) belongs to .7
Denote by (p; )"_0 the SP-parameter sequence of (A;)% =0 Consider an arbitrary
n € Zo,. Remark 4.9 then shows that (Aj);?zo belongs t0 S xq:n and has SP-
parameter sequence (p j)n—o Using the given notation for k = n, we have then
(0 ] —0=Ppxq:n((A; )”_O) by definition. According to the definition of (A ; ) _oand
Ypxgi» We have Ay = \IJk(eo, ..., ¢) forall k € Zy . Regarding (e]) o € é”pxq;,(,
form Notation 6.2 we infer (e j)?:o € &pxq:n- Thus, we can use Corollary 6.15 and
the notation therein as well as Corollary 14.6 to see that (Bj)7:0 = prq;n((ej)?:())
belongs to .., and fulfills By = Dy, ,.¢ = We(eo, ..., ¢¢) forall £ € Zgp ;. Con-
sequently, we conclude A; = B; for all j € Zg,. Because of Theorem 6.20, we
have ¢pxq:n ((B;) );’ o) = Ppxq: n(prq;n((ej)l}zo)) = (ej);!:()- Summarizing, we
obtain (P]) -0 — = Ppxq; n((A )" _()) ¢p><q;n((Bj);!=()) = (ej)’}:()- Since n € Zg
was arb1trar1ly chosen, then (p.,) 0 (ej)’;:O, i.e., (e./')7=0 1s the SP-parameter
sequence of (A j)jzo. Taking additionally into account the definition of (A j)';'zo
and @p g, We get Py K(I//pxq;x((ej);:o)) = ¢p><q;K((Aj);:()) = (ej)lj(':(y Thus,

Ppxqic © Upxgie =1dg, . 1s proved as well. O
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Corollary 14.10 Let (Aj)7:0 € Sxq:c With SP-parameter sequence (ej)jzo. Then
Aj = Opxqforall j € Zo, ifand only ifej = Opxq forall j € Zo .

Proof If A; = OPXq for all j € Zg,, then, from Definition 4.7 and Example 4.5,
we can infer e; = A 1 = Opxq forall j € Zy . Taking additionally into account
Theorem 14.9, thus the asserted equivalence follows. O
Corollary 14.11 Let (Aj)’j‘.zo € Sx p:x With SP-parameter sequence (ej)';-zo. Then
(A5 = (A if and only if (£3)_o = (¢))"_g.

Proof Using the notation given in Theorem 14.9, we have ¢4 ((A j)’;.:O) =
(e])j _o- Lemma 4.10 shows that (A*)’(_0 belongs to .7« . and has SP-parameter

sequence (e*)"_o Hence, d),,xq ,(((A*)j 0) = (ej o Taking additionally into
account that Theorem 14.9, in particular, implies that ¢, . ., is injective, the asserted
equivalence follows. O

Now we obtain a main result of this paper. We draw the reader’s attention to the
particular result 6,54 (-7pxqg (D)) = &pxg:oo-

Theorem 14.12 Let opxy: S pxgD) = Epxg.oo be defined by oy (F) = (yj)oo_o,

where (y; )°o
bijective.

2o IS the SP-parameter sequence of F. Then 0% is well defined and

Proof Using Theorems D.2 and 14.9, and the notations given there, we see that
Tpxq* pxgD) = Fxgico A Ppygico: Fpxgioco = Epxgico are well defined
bijections. Furthermore, Proposition 9.7 provides opxg = @ pxg;00 © Tpxg- O

15 An Extension Problem in ., 4.

In this section, we are going to show how the preceding considerations can be used to
get a description of the set

An1 1= {Ans1 € TP 1 (A)"E) € Fpiginin),

where n € Ng and (A ;)" i—0 € Shxq:n are arbitrarily given. Parametrizations of A, 1
are already given in [9], [14 Part I, Thm. 1], [10, Thm. 8], and [11, Thm. 3.5.1]. We
will develop an explicit connection between the parameters used in [11, Thm. 3.5.1]
and the Schur—Potapov parameters introduced in Definition 4.7. Recall that K,
stands for the set of all contractive complex p x g matrices. In [30], Yu. L. Shmul’yan
worked out the theory of operator balls. In the following, we use some of that results
in the special case of complex matrices.

Notation 15.1 Theset R(M; A, B) :={M+AKB : K € K, .} signifies the (closed)
matrix ball with center M, left semi-radius A, and right semi-radius B with respect to
arbitrarily given matrices M € CP*4, A € CP*P and B € C7*19,

Note that Corollary 14.4 can be interpreted in the sense that A; belongs to the
matrix ball R(,uj,] (eg, - .-, ej,l); ,Qj,] s i)‘{j,]),
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Theorem 15.2 (cf. [28], [11, Lem. 3.3.1, Thm. 3.5.1], Lemma A.15) Let n € Ny and
let (Aj)’;:o € Spxqin- In view of (2.4), (2.5), (2.7), and (2.8), then I, and r, are

non-negative Hermitian and Ay, +1 = R(my; /1y, /Th)-

Corollary 15.3 Letn € Ny and let (Aj)’]’-:0 € Sxgin- Thenmy, € Ay 1. In particular,
there exists a sequence (Ax)7=, | of complex p x q matrices such that (A j)?io €

Tpxq:o0-
Proof This is a consequence of Theorem 15.2 and Notation 15.1. O

Definition 15.4 (see also [11, Def. 3.5.1]) If (Aj)’]‘.=0 € S xq:c» then the sequence

()% given by to:= Ao and by & :=\/1;_1" (A} —m;_1) /=i forall j € Zy,q
is called the choice sequence corresponding to (A j)’;:O.

Proposition 15.5 (cf. [11, Thm. 3.5.1], Lemma A.15) Let (Aj)7:0 € Sxqic With
choice sequence (Ej)’j‘.:(). For all j € Zoy, then €; € Kjyx4. Furthermore, Ag = £

andAj =mj_] —i—‘/lj_]Ej /rj_lforallj S Zl,K'

Notation 15.6 Let ), be the set of all sequences ()" _, of complex p x g matri-
ces which fulfill ¢; € Ky, as well as R(¢;) € R(lj—1) and N'(rj—1) S N(¢;) for
all j € Zo .

Proposition 15.7 Let (Aj)’j‘.:0 € Sxqe With choice sequence (EJ')§=0' Then
()20 € Cpxqic-

Proof Proposition 15.5 yields ¢; € K, forall j € Zg,. In view of (2.5), clearly
Ry € R(_1) and N(r_1) € N (&) hold true. Now assume that « > 1 and
let j € Zi,. Then, by virtue of Definition 15.4 and Remarks A.9 and A.10(a),
we can conclude R(¢;) C R(,/lj,lf) € RG\/lj-1) = R(;-1) and J\/(rj,l) =
N(JFi-1) < N(JUT]T) C N(t)). Thus, by virtue of Notation 15.6, we get
(Ej)’j‘.zo € Cpxqic- O

Remark 15.8 Let (e j)fzo be a sequence of complex p x g matrices. In view of Nota-
tions 6.1 and 4.11 and Remarks A.1 and A.2, for all j € Z_j,, then /\/ljL =

o N (1) and QF = N]_y R(xo).

Now we turn our attention to interesting relations between the matrices introduced
in Notation 14.1 and the linear subspaces introduced in Notation 6.1.

Proposition 15.9 Let (Aj)’;.zo € Spxqie With SP-parameter sequence (ej)’;zo. For
each j € Z_1 x, then

N =M; and R(R)) = QF. (15.1)

Proof Our proof works inductively. According to Notations 14.1 and 6.1, we have
N(E_1) = {0px1} = MJ;I and R(R_|) = C?7 = Qfl. Now assume that m €
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71 «—1 and that (15.1) is valid for all j € Z_ ,,. Remark 4.12 shows [, 11 € (C’;Xp
and v,41 € Cq;q. We first prove that

N(&n) S N(Ip = V1) and R(Iq — V1) € R(Rnw). (15.2)

We consider an arbitrary x € N'(£,,). According to (15.1) for j = m, then x € M,J,;
Proposition 6.10 and Notation 6.2 provide R (¢,,+1) S M,,. Because of Remark A.2,

then /\/% - N(e;‘n+l), so that e,’:l_Hx = O follows. In view of Notation 4.11, hence
[m+1x = x. Using Remark A.13, we conclude /[,,+1x = x. Consequently, x €

NUp = /lug1). Thus, N(£,) € NI, — \/lus1) is proved. We now consider an
arbitrary y € R(M,,)*. According to (15.1) for j = m, theny € Q,,. Proposition 6.10
and Notation 6.2 provide Q,, € AN (e;41), so that e, 1y = O follows. In view of
Notation 4.11, hence t,,41y = y. Using Remark A.13, we conclude /t,11y = y.
Consequently, y € N'(I; — \/Tmt1). Thus, R(R,)L € NIy — /tmt1) is checked.
Applying Remark A.2, we get then

R(ly = /eni1) = R(Uy = o)) = Ny = o)™ S R(Rp).

Hence, (15.2) is proved. Thus, we can apply Lemmas B.2 and B.3 to obtain A/ (£,,) +
N(\/ bnt+1) = N(Sm\/ bn+1) and R(/Tu+1) N RRpm) = R(/Tu+1Rm). Using
Remark A.10(a), we can infer N'(/tp11) = N (tma1) and R(/lnr1) = R(pr1).

Thus, since (15.1) holds true for j = m, from Notation 14.1 and Remark 15.8 we can
conclude N (€41) = N (L /Tt 1) = N (L) + N (g 1) = M+ N (Li) =
M and RRi g 1) = RVt 1Rm) = R(STr DRRn) = R(Enp1)N Q5 =
an- il Thus, the assertion is inductively proved. O
Corollary 15.10 Let (Aj)f;:O € S xq:c With SP-parameter sequence (ej)';:o' In view
of Notations 14.1 and 6.4, for each j € Z_y ., then £,.£; = ;M and R;R|, =
Qi9;.

Proof We consider an arbitrary j € Z_1 . Using Remarks A.6 and A.2 as well as

o t
Proposition 15.9 and Lemma 6.9, we have then £,£; = PR(Q;) = Prnejt =
T 1

Pam; =Prem;) = mjf)ﬁj and 9‘{,-9%.,. =Prwm,) = ng_ = PN(Q]_)J_ = PR(QP =
Qjﬂj |

Notation 15.11 Let (AJ')§=0 € Sxq:c With SP-parameter sequence (ej)§=o- Then,
in view of Notations 14.1, 3.8 and 4.13, for every choice of n € Zg , and k € Z ,, let

Wk = (€1 Da kW (S0t + (1) — S0
and

Yok i= (RO ok Y (Rt + (L) — R R i
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Lemma 15.12 Let (Aj)';zo € Sxq;x With SP-parameter sequence (ej)/ _o letn €
2o, and letk € Zg . Then W, .1 is a block Toeplitz matrix belonging to £, , i and
Y. .k is a block Toeplitz matrix belonging to £y k. In particular, det W, p.x = 1
and detY, .k = L.

Proof Denote by (Bj)'j.;g the k-th right SP-transform of (A./')§=0' According to

Remark 4.2, we have (Bj)’;;g € Y xq:c—k- Hence, Remark 3.3 yields (Bj)';.;g €
%Xq;x_k. In view of Definition 3.4, Remark 4.14, and Notation 14.1, we have

Lk—1Wp0 = Lr—14/ l([)k] = SVl = L (15.3)
and
Yp.oRi—1 = r(gk]i)‘{k—l = JuRk-1 = Rk (15.4)

Consequently, £;_1 WB;OSZ +Up - EkEZ) =1, and %zYB;OSRk_l + ;- %Z%k) =
I,. Regarding Notations 15.11, 4.13, 3.8 and A.18, (3.2), and (2.2), thus the assertions
follow. O

The next result indicates a connection between the matrices introduced in Nota-
tion 14.1 and the k-th right SP-transform of a p x ¢ Schur sequence.

Lemma 15.13 Let (A ')K—o e Fpxq:xc With SP-parameter sequence (e])A’;:0 and let

k € Zy . Denote by (B; ) the k-th right SP-transform of (A; ) o Forall j €
Zo ik then N'(£x) € N(Sk 1Wp. ;) and R(Yp, jRik—1) R0,

Proof. As in the proof of Lemma 15.12, we can obtain (B; )K_g € Hpxqie—k as well
as (15.3) and (15.4), implying trivially N'(£x) € N (£ 1WB 0) and R(Yp.0Rk—1) <
R(Rk). Now suppose k — k > 1 and consider an arbitrary j € Zj ,—. In view of
Definition 4.7, we have By = e¢,. Therefore, Corollary 6.7 shows that there exists
My € CP*4 such that By = 91 M. Using Remark A.8, from Notation 6.4

we can infer M;_ /' = f N and /tx TQk , = 9f. Regarding Definition 3.4 and
Remark 4.14, we can conclude then

il 4
Wa.j = —B;B5\I = =B, Moy i = — B0 Mpy
and
Ypj =~ Bo = — K Qf_ My _ | B; = —Qf M{IM;_, B
In particular, N'(0}) € N (Wp,;) and R(Y; ;) S R(LQj) follow. Proposition 15.9
shows N (£y) = /\/lkL and R(R;) = Q,ﬂ-, whereas Lemma 6.9 provides R(91;) =
My and N'(Qy) = Q. Using additionally Remark A.2, we get then

N (L) = Mg = RO = NOR) € N (Wp. ;) € N (L1 W)
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and
R(Yp, jRu—1) € R(Yp:)) € R(Q}) = N Q)" = QF = R(%y). O

Lemma 15.14 Let (Aj)§:0 € Sxq:c With SP-parameter sequence (ej)’]‘.zo, let
n € Zoy and let k € Zon Then We i (Cidat = (Ck—1)usi WL and
(Rt Yok = Yo (e 1) ns.

Proof. Denote by (B; ) thek th right SP-transform of (A )"_0 Forall j € Zo —k,
then Lemma 15.13 shows N C N(i}k 1Wg. ;) and R(YB i Ri— 1) C R(R),

so that Remark A.7 yields Ek_1WB;J£k£k = L£r-1Wp,; and %ki)%kYB;jERk_l =
Yp. jRr—1. Regarding, (3.2) and (2.2), hence ((£k—1»n—kSWB;n—k((SZEk»n—k =
<<£k—l»n—kSW3;n—k and «%km}z»n—ks}’g;n—k (Re—1Dn—k = SYB;n—k (Rik—1)n—x fol-
low. According to Notations 3.8 and 4.13, we have Sw,.,—x = W[k]k and Sy,.,—k =
Y[k] Using additionally Notation 15.11, Remark A.24(b), and (2.1), we obtain

Wi 80—k = (-1 Dn st W (87 s + (T — Sk &) LiDns
= (1Dt Swynk (€ Dk = (L1 Dtk W
and

(Ridn-tYonk = (RuRD -t Y (R ni + (Re(ly — RIRO ) s
= (RUR D nkSvpn—t (Ri—1hnk = YH (R )i O

Lemma 15.15 Suppose k > 1. Let (Aj)’;.:O € Sxq;c With SP-parameter sequence
(ej)’;zo, letn € Zi ., and letk € Zo n—1. Then

(1Dt LM (85 D

= W, i diag <£k£z,<<£k>>n_k LY +,€”1<<£z>>n_k_1>win;k (15.5)

and

(R Dk RY (Re 1Dk

=Y} .. diag («mk»n - ank*;1]1<<mk>>nkl,mzmk>Y.,n;k. (15.6)

Proof According to Remark 4.2, we have (A )/ 0 € S xq;c—k- Hence, Remark 3.3
yields (Agk])j=o € HRN pxqic—k- Regardmg Notation 4.13 and Definition 4.1, we
can thus apply Propositions 3.23 and 3.26 to the sequence (Ag.k])’j‘;g to obtain L,[ﬁ P =
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W diag(,, L¥E YW y*and R = (71 )+ diag(RYE!T 1) Y™ Using
Lemma 15.14, we can consequent]y conclude

(VY T AL Y
= We ik (i) nk diag(Ly, LEFY ) (L) Wi

and
(R 1) Ry (Ram D
= Y2 (R diag (R 1) (R Yenik.
Regarding Remark A.24(a) and (3.2), then (15.5) and (15.6) follow. O

s
“

In the following results, we will use the equivalence relations and “” intro-
duced in Notation A.20 (see also Remark A.21). The next observation contains a
relation between the matrices L, and R, introduced in (2.3) and the matrices intro-
duced in Notation 14.1.

Lemma 15.16 Let (Aj)§:0 € Spxq:c With SP-parameter sequence (ej)’;.zo and let
n € Zoy. If L, and Ry, are defined by (2.3), then

L, ~ diag(£0L5, £1£7, ..., £.£)) (15.7)

and
R, « diagR;R,, R Ru—1, - .., RjRo). (15.8)
Proof First observe that Remark 4.12 shows [; € Cf;p for all j € Zo,. Using
(2.9), Remark 4.14, and Notation 14.1, we get Lo = [y = [p = Soﬁ(’;. Regarding
Notations A.18 and A.20(a), in particular, (15.7) holds true for n = 0. Now assume
that « > 1 and n € Z;,. Lemma 15.15 then provides (15.5) for all k € Zg —1.
Remark 15.12 shows W, ..k € £ n—i forallk € Zg ,—1. By virtue of Notation A.18,

we can thus infer W} nk € Upn—r forallk € Zo 1. According to Notation A.20(a),
forall k € Zo -1, consequently (15.5) implies

(St Ly (S5 Dt
~ diag (€8, (LDn—ko1 LI (€00n—s1)- (159)

We now show, for all £ € Z; ,, inductively
L, ~ diag (sosa, L5 LS, <<£e_1>>n_gL£fle<<£z‘f,1»n_z). (15.10)
Using Definition 4.1, Notations 4.13 and 14.1, and (15.9) for k = 0, we can infer

L, =LY = (1), L0%e* ),
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~ diag (2025, (Lohu-1Lh) (25hn1).

Hence, (15.10) holds true for £ = 1. Now assume « > 2 and n > 2 and that
m € Z n—1 is such that (15.10) is valid for all £ € Z; ;,,. In view of Remark A.22(a),
the combination of (15.10) for £ = m and (15.9) for k = m yields that (15.10)
is valid for £ = m + 1. Consequently, we get inductively that (15.10) is fulfilled
for all £ € Zj . Using (2.9), Notation 4.13, and Remark 4.14, we get further-
more Lg”] = l([)”] = [,. Regarding (3.2) and Notation 14.1, we can thus conclude
(L DL (L Do = o1l L5, = £,£5. Combining this with (15.10) for
£ = n, we get (15.7). Analogously, (15.8) can be proved. We omit the details. O

The following result can be embedded in a more general context (compare [14,
Sec. 3], [11, Sec. 3.5)).

Lemma 15.17 Suppose k > 1. Let (Aj)’;:0 € Sxg and let n € Zy . Then I, and
ry given by (2.8) admit the representations

In = Ip — AgAf — 2o +S;_ L} _ Su_1)z} (15.11)
and

=1, — AfAg — y*(I +S g

n=lq 0A0 = Yy, (I +Sy—1R, S, _)yn, (15.12)

respectively.
Proof Since (A j)§:0 € Sxq» we see from Lemma A.15 that the matrix

T, :=[ ! S"] is non-negative Hermitian. Taking into account the block representa-

S, 1
’ S o Ing S;_y 2
tion S, = [ - Ao] of S,,, we see that the principal submatrix |:S,,_1 Lp O ] of T,
n
w0 1)

is non-negative Hermitian as well. Thus, we have N (T,,—1) € N ([z,,, O)), i.e., there
are matrices X € CP*™ and Y € CP*"P such that

Ly S;_,
[X,Y] ? = [z,, O]. (15.13)
Si—1 Inp

Multiplying (15.13) from the right by [ _é’;"il ] and using (2.3), we get [ X, Y][ R"O—' ] =

Zn, 1.€., XRy—1 = z,. Regarding (2.1), thus z, R;LIR,,,l = z;. Using additionally
Lemma A.16(c), then

R 25 =2u (R Rac1 + S L] Syt =221 +S;_ LS

and, consequently, (15.11) follow. Analogously, (15.12) can be proved. O

Lemma 15.18 Let (Aj)’;-:0 € Sxgc and let n € Zo . In view of (2.3), (2.5), and
(2.8), then

L, ~ diag(lp, l1, ..., 1) and Ry « diag(ry, rp—1, ..., 10). (15.14)
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Proof According to (2.9), we have Ly = Iy and, by Notation A.20(a), especially
Lo ~ lp. In particular, the first relation in (15.14) holds true for n = 0. Now assume
k > 1andn € Z; . We consider an arbitrary k € Z ,. Regarding (2.3), (2.2), (2.6),
and (2.8), we can see the block representation

I Ly—1 —Sk-12;
= TaS Ty T Ay~ |

Since (Aj)’j‘.:0 € S)xq:« implies that the matrix Ly is non-negative Hermitian, then
R(—Sk-12) € R(Lk—1) follows (see, e.g., [11, Lem. 1.1.9(a)]). Consequently, we
can conclude

Ik o7 .. Iy —L1 Si_iz
Ly = P diag(Ly_1, Z) | " k-1 k|,
‘ [_stzll‘lt—l Ip] el )|:0 Ip

where Z :=1, — AgAj — zkzf — sz,”:_lLZ_lsk,]z,’g (see, e.g., [11, Lem. 1.1.7(a)]).
According to Notations A.18 and A.20(a), therefore Ly ~ diag(Lk—1, Z). From
Lemma 15.17 we know Z = I. Consequently, for all k € Z; ,, we have

Ly ~ diag(Lg—1, ). (15.15)
We now show for all £ € Z; ,, inductively
L, ~diag(L¢—1,1¢, ..., 1In). (15.16)

Using (15.15) for k = n, we can infer that (15.16) holds true for £ = n. Now assume
k > 2and n > 2 and that m € Z,, is such that (15.16) is valid for all £ € Zy, ,.
In view of Remark A.22(a), the combination of (15.16) for £ = m and (15.15) for
k = m — 1 yields that (15.16) is valid for £ = m — 1. Consequently, we get inductively
that (15.16) is fulfilled for all £ € Z; ,,. Combining Ly = [y with (15.16) for £ = 1,
we get the first relation in (15.14). Analogously, the second relation in (15.14) can be
proved. O

Remark 15.19 (cf.[11,Lem. 1.1.7]) Let (Aj)’J‘.:0 € Sxq: and letn € Zg . Regard-
ing Notations A.20 and A.18, from Lemma 15.18, one can easily see then that
rank L, = ) j_orank [ganddet L, = []j_,det/; aswellasrank R, = Y ;_,rank ry
and det R, = [[;_, detrg.

We derive now a useful relation between the sequences of left and right Schur
complements of a p x g Schur sequence (see (2.8)) and the sequences of matrices
introduced in Notation 14.1.

Lemma 15.20 Let (Aj)’]‘.:0 € Sxq:c With SP-parameter sequence (ej)’;.zo. In view
of (2.5), (2.8), and Notation 14.1, for all j € Zy ., thenl; = EJ-L‘; andrj = 9%;93/.

Proof Taking into account Lemmas 15.18 and 15.16, the assertion can be obtained
easily using Remark A.23. O
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Remark 15.21 Let (A j)'j':o € Sxg;c With SP-parameter sequence (e j)';:o- In view
of Lemma 15.20 and Notation 14.1, for all j € Zg,, then [; = £j_1[j£j._1 and

rj = %j—lt 9%!_1.

Remark 15.22 Let (A )"_0 € S xq:c With SP-parameter sequence (e /)"_0 In view
of Lemma 15.20, for all J € Zo ., then R(£;) = R(lj) and N (R;) = /\/(r,)

The following result contains an answer to the extension problem for finite
p X g Schur sequences in terms of SP-parameters. The solution set is again written as
a closed matrix ball. However, the corresponding center and semi-radii are expressed
in terms of SP-parameters. In the particular case of a non-degenerate p x g Schur
sequence, this result appears already in [11, Thm. 3.8.1].

Theorem 15.23 Let n € Ny and let (Aj);fzo € Sxg:n With SP-parameter

sequence (e j)’J’.IO. Taking into account Notations 14.2 and 14.1, then A,+1 =
A (eo, ..., en); Ly, Ri).

Proof First we consider an arbitrary A, 41 € CP*9 such that (A; ) —o € Spxgintl-

Denote by (p; )” *1 the SP- -parameter sequence of (A ; )" Accordmg to Remark 4.9,
thenp; = ¢; for all J € Zy,,. Taking additionally 1nt0 account Notations 14.1 and
4.11, we can infer from Corollary 14.4 then A,41 = uu(eo, ..., ¢n) + Lubnt+1Rn.
Since Remark 4.12 shows p,11 € K4, in view of Notation 15.1, consequently
Apy1 € R(un(eo, ..., en); £y, R,) follows. Conversely, now consider an arbitrary
Ang1 € R(un(eo, ..., en); £y, Ry). According to Notation 15.1, then there exists K €
Kpxq suchthat A, = wy(eo, ..., ey) + £, KRy, Clearly, then e, 41 —]PMHK]PQJ_
belongs to K, and fulfills R(e,,_H) C M, and Q, € N(eys1). Since Propo-

sition 6.10 shows (e;)" ie0 € &pxq:n» We can, by virtue of Notation 6.2, infer then
(ej)”Jrl € &pxg:nt1- Thus, we can apply Theorem 6.20 to see that there exists a
unique sequence (B j);:(l) € Sxq:nt1 With SP-parameter sequence (e 1)7:(1) Using
Theorem 14.3, we can, for all j € Zg ,, conclude B; = W;(ep,...,e;) = A;. The
application of Corollary 14.4 yields furthermore By, 11 = w, (€0, - - -, en) +Lnent+1Rn.
By virtue of Lemma 6.9, Proposition 15.9, and Remark A.6, we get Py, = 9)2,193?,[1
and IP’Q# = ER,,ERZ. Since Corollary 15.10 shows 90,90, = Sj,ﬂ,,, consequently

ent] = 2T£ KR, D‘iT Taking additionally into account (2.1), then £,¢,+1R, =

L, KR, follows. Therefore, B,y1 = A,4+1. Summarizing, we have (A; )"+l =

(B, )"t}), implying (A )J:O € Tpxqntl- O

The considerations of Theorems 15.2 and 15.23 under the view of theory of matrix
balls lead us to the following identity.

Corollary 15.24 Let (Aj)’j‘.:O € Syxq;ic With SP-parameter sequence (ej)’]‘.:o. For all
n € Zoy, thenmy = [y (eo, ..., en).

Proof We consider an arbitrary n € Zg . From Remark 4.9 we know that (A j)’]’.zo
belongs to .%, 4., and has SP-parameter sequence (e j)?:o- Thus, we can use The-

orems 15.2 and 15.23 to see R(m,; /1, V) = R(uaeo, ..., e0); £, Ry), which
implies m, = u,(eo, ..., ¢,) (see, e.g., [11, Cor. 1.5.1]). O
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16 On an Explicit Connection Between Choice Sequences and
SP-parameter Sequences

In this section, we consider a finite or infinite p x g Schur sequence. We are interested
in obtaining explicit formulas describing the connections between choice sequence
(see Definition 15.4) and SP-parameter sequences. Taking into account Theorem 15.2,
as a first step in this direction, we introduce the following notation:

Notation 16.1 Let (A j)§:0 € Sxg:« With SP-parameter sequence (e j)’;:(). For all
J € Loy, letU; :=\/17'-2j and V; :=9%j«/r_j*.

Recall that W € CP*1 is a partial isometry if and only if W*W is idempotent or
equivalently WW* is idempotent. In this case, R(W*W) and R(W W*) are called
initial and final subspace of W, respectively (see, e.g., [23]). We see now that two
sequences of partial isometries are associated with a p x g Schur sequence.

Lemma 16.2 Let (Aj)’;.zo € Spxgi With SP-parameter sequence (ej)’;.zo and let

J € Zoy. Then UJ-U;.k = Prq;) and U;‘Uj = Ppm; as well as V].*Vj = Prg;) and
V; V]i" =Py L In particular, Uj (resp., V) is a partial isometry with initial subspace

M (resp., R(r;)) and final subspace R(l}) (resp., Qj‘).

Proof Using Notation 16.1, Remark A.8, Lemma 15.20, and Remarks A.10(e) and
A.6, we get

; Pt
UjUj = VI; £;85V1; =1 1yl =1l = Prg))

and, analogously, ViV; = PR(). From Remark A.10(b) we can infer (\/ITL)*\/I?% =
l; and \/r_jf(\/r_ﬁ)* = r; Furthermore, we have 2; = Ej(ﬁjﬂj)j' and SR; =
(9{79{ j)Tiﬁj (see, e.g., [11, Prop. 1.1.2]). Taking additionally into account Nota-
tion 16.1, Lemma 15.20, Remarks A.6 and A.2, and Proposition 15.9, we get

U;-kU.,' = £;l;£/’ = Sj(ﬂjgj)Tﬂj = ,Q}L-Ej = ]P)R(Q;f) = ]P/\/(Ej)i = ]PM_,-
d, anal ly, V;V¥ =Ps1. O
and, analogously, V; V; Q!

Now we are able to present an explicit connection between the choice sequence
and the SP-parameter sequence of an arbitrarily given p x g Schur sequence.

Theorem 16.3 Let (Aj)’;.:O € Syxq;x Withchoice sequence (Ej)jzo and SP-parameter
sequence (ej)’j.zo. Then tog = ¢9. Moreover, if k > 1, then ¢, = U,_1¢,V,—1 and
e = Uy £,V foralln € Z .

Proof. According to Definitions 15.4, 4.1 and 4.7, we have ¢y = A9 = A([)O] = ¢p.
Now assume « > 1 and consider an arbitrary n € Zj . Corollary 14.4 yields
Ay = wp—1(e0, ..., en—1) + £1-1¢,R,—1. Corollary 15.24 provides m,_; =
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Un—1(e0, ..., e,—1). Taking additionally into account Notation 16.1 and Defini-
tion 15.4, we get

;
Up—1en Vo1 = V-1 Lo—1enRn—1 Vn—lT
+ y
= V-1 [An — pn—1(e0, ---,en—l)]\/rn—lk
il
= ln-1 (Ap — mn—l)\/”‘n—l]L =&,

Proposition 6.10 shows (e j) _o € pxq:c- According to Notation 6.2, we have then
R(en) € M,_1 and Q,_1 < N(e,), so that P, len]P’Ql = ¢,. Lemma 16.2
provides Uy Uy =Ppy,_, and V,, V" | = ]P)QL Summarlzing, we get

n—1

ﬂ IE” l_Un 1Un ]enVn ]V I_IP)Mn ]enHDQL = ¢y. O

Corollary 16.4 Suppose « > 1. Let (Aj)'](.:0 € Sxq:xc With choice sequence
(€ )" _o and SP-parameter sequence (ej)K _o and let n € Zy,. Then £,t;, =
Up—1epepUy | and €38, = V' ere, V1 as well as eyef = Ul €,8:U,_1 and
erey = Vo 1? eV

Proof Lemma 16.2 provides

Un-1U,_y = Pry,_p), Up_1Un—1 =Pum, ., (16.1)
V*—l Vet = PR and Vi1 V:—l = ]P’in_] . (16.2)

n

Proposition 6.10 shows (e j) _o € Epxg:c- According to Notation 6.2, we have then
Rien) € M,_1 and Q,_1 € N(e,), so that Parm, ,en = ¢, and enIPQL = ¢,.
Using additionally Theorem 16.3 and the second identity in (16.2) and (16.1),

resp., we get £,€r = U,_1¢,Vo 1V, iUy | = Up_1¢,¢;U7_| and €38, =
Vi enUy (Up1e, Vg = Vrj‘_leZenVn 1. By virtue of Deﬁmtlon 15.4 we see

R, < R(«/ln_lf) and R(£)) < R((mT)*). Applying Remarks A.9,
A.10(a), and A.8, we can conclude then R(¢,) € R(/T,—1) = R(,_1) and
RE) € R(JSrao1) = R(JSraz1) = R(ra—1), so that Prg, &, = €, and
Pre,_Es = €. Using additionally Theorem 16.3 and the first identity in (16.2)
and (16.1), resp., we get ¢,ey = Uy &,V \V, €U, = U;_€,8U,_| and
Cen = Vo 1B U, U*_ 0V = Vo BB,V 0

Corollary 16.5 Suppose k > 1. Let (Aj)’j‘.=O € Syxq:xc With choice sequence (Ej)';-zo

and SP-parameter sequence (ej)§=0 and letn € Zy . Then I, — £, €% = Pprrq, ) +

U1, Uy_; and I; — &8, = Prnrg,_ ) + V) lthn 1 as well as |, = ]P)ML +
n—l(IP £, U1 and v, = Po, |, + V- 1y — ere, )V*_

Proof. Lemma 16.2 provides (16.1) and (16.2). Regarding that the matrices [,
and r,_; are Hermitian, using the first identity in (16.1) and (16.2), resp., and
Remark A2, we can infer Uy—1U,_; = Prgr_ ) = Prrg, )t and V7 Vg =



The Schur-Potapov Algorithm in the General Matrix... Page 77 of 91 109

PR ) = Prrg,_pyt- Consequently, Remark A.4 yields Parg, )+ Un—1 ur =1,
and Par¢,, ) + V7 Va1 = I,;. Taking additionally into account Corollary 16.4 and
Notation 4.11, we obtain

Ip = &t =P,y + Un1Upy — UncreneUy =P,y + Un1laUy
and

Iy =8t =Prr,p + Vo Vit = Vigepen Vot = P + Vot Vot
In view of the second identities in (16.1) and (16.2), resp., Remark A.4 yields P M +
Ur Uy = I, and Pg, | + V,-1V, | = ;. Taking additionally into account
Corollary 16.4 and Notation 4.11, we obtain

]P)M,f_l + U:—l(lp —6,8U,— = I, — Ur 6,8 U,_ = I, — eper =1,
and

Po, | 4 Va1, — €6V | =1, — Vu B8, VE | =1, —¢fe, =1,. O

17 Central Matricial Schur Functions

As already mentioned above, in [18] a reference function is used to obtain a
parametrization of the solution set .4 [D; (A;)_o] of a matricial Schur prob-
lem, namely the so-called central p x g Schur function corresponding to a given
p % q Schur sequence (A j);!:o- We recall this notion which was introduced in [14,
Part II, Def. 5]: If n € Ny and if (Aj);fzo € S xq:n, then the sequence (Aj)cj?"zo
given by Ay :=my_ for all k € Z, 11 o is called the central p x q Schur sequence
corresponding (Aj)’}zo. A p x g Schur sequence (Aj)’;zo is said to be .-central
if there is an n € Zj, such that A; = mj_; for all j € Z, . In this case, the
smallest n with this property is called the corresponding order and (A j)§:0 is called
S -central of order n. If n € Ny and if (Aj)’}zo € Sxq:n, then F: D — CP*9 given
by F(w) = 27020 w/Aj for all w € D, where (Aj);?"zo is the central p x g Schur
sequence corresponding to (A j);%:o’ is said to be the central p x q Schur function
corresponding to (Aj);fzo. A function F € %), (ID) with Taylor series expansion

o0
F(w) = Z wl A for all w € D, (17.1)
j=0

is called a central p x q Schur function (resp., a central p x q Schur function of
order n) if (A j)iozo is a central p x g Schur sequence (resp., a central p x g Schur
sequence of order n). In [15], explicit representations of central p x g Schur functions
as rational matrix-valued functions constructed by the given p x g Schur sequence
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(Aj ) o are proved. Central p x g Schur functions are distinguished rational matrix-
valued functions which have certain extremal properties (see, €. g., [1] or [14, Part IT]).
Moreover, recurrence formulas for the Taylor coefficients of central p x ¢ Schur
functions can be found in [11, Thm. 3.5.4].

In this section, we study .-central p x g Schur sequences under the view of the
SP-algorithm. For this reason, we recall the following:

Remark 17.1 (cf.[11,Rem. 3.5.3]) Suppose k > 1.Let (Aj)’]‘.=0 € S x g« With choice
sequence (E.i)7=o- Forall j € Z_1 -1, then

Livt = V3 =6 € DV = 1; — (A1 — mj)V;(AjH —mj)* <1

and

O <rjmn = rjUy =8 6 =1 — (Ajr1 —m) L (Ajy —mj) <7

We give now several characterizations of the fact that a particular element of a
given p x g Schur sequence coincides with the center of the corresponding matrix
ball. Some of them are formulated in terms of the choice sequence and thus already
known. The other ones formulated in terms of SP-parameters seem to be new.

Lemma 17.2 Suppose k > 1. Let (Aj)jzo € Syxqix With choice sequence (Ej)7=0
and SP-parameter sequence (¢ j)’jzo andlet j € Zg —1. Then the following statements
are equivalent:

(i) Ajp1=m,.
(i) L1 =1;.
(iii) rjv1 =7rj.
(iv) Ej+l = Opxq'
v) €j+1 = Opxqc
i) Ly =1,

(vil) tj11 = I,

(Viii) £j+l = 2/.
(iX) SRHI = ij.

Proof According to Definition 15.4, statement (i) implies (iv). Remark 17.1 shows
that (iv) is sufficient for (ii) and (iii). If (ii) is fulfilled, then Remark 17.1 yields
V141 = O and, in view of Definition 15.4, consequently €; | = \/ro\/EEHl =
0, i.e., (iv). Analogously, if (iii) holds true, then Remark 17.1 and Definition 15.4
provide EjH\/r_j = O and, thus, £ = Ej+1ﬁﬁT = 0, i.e., (iv). Obviously,
applying Proposition 15.5, we get that (iv) implies (i). Because of Theorem 16.3, the
statements (iv) and (v) are equivalent. In view of Notation 4.11, the statements (v)
and (vi) as well as the statements (v) and (vii) are equivalent. From Notation 14.1 we
see that (viii) is necessary for (vi) as well as that (ix) is necessary for (vii). Finally, by
virtue of Lemma 15.20, we see that (viii) implies (ii) and that (ix) is sufficient for (iii).

O
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Proposition 17.3 Supposex > 1. Let (A]-)’J‘.:0 € S xq;x With choice sequence (Ej)’j‘.zo
and SP-parameter sequence (¢ j).l/(':() and let n € Z . Then the following statements
are equivalent:

(1) (Aj)§:O is ./ -central of order n.
(ii) & = Opxgq forallk € Zy .
(iii) ex = Opxq forallk € Zy .
Gv) A" = Opxq forall j € Zo —p.

J
(v) A =

i = Op x4 for every choice of k € Zy ,c and j € Zg j—-

Proof “(i) < (ii) < (iii)”: Apply Lemma 17.2.
“(iil) < (iv)”: Regarding Remark 4.8, this follows from Corollary 14.10.
“(iv) = (v)”: Regarding Definition 4.1, use Example 4.5.
“(v) = (iv)”: This implication holds true obviously. O

Proposition 17.4 Let F € /) 4(D) with SP-parameter sequence ()/])Oo o and let
n € N. Then the following statements are equivalent:

(i) F is % -central of order n.
(ii) vk = Opxq forallk € Zy .
(iii) FI'l(z) = 0,y forall z € D.
(iv) FIl(z) = Opxq for every choice of k € Zy oo and z € D.

Proof Denote by (A )oo - o the Taylor coefficient sequence of F'. Proposition 9.7 shows
then (A ;)% =0 € Z,Xq,oo and that the SP-parameter sequence (e])"O 0 Of (A; ) 2 o coin-
cides with (Vj)?io- By virtue of Lemma 9.4, we see that, for all k e Ny, furthermore

FIk belongs to ., x4 (D) and has Taylor coefficient sequence (A[jk])?io. Now the
asserted equivalences follow from Proposition 17.3. O

18 Completely Degenerate Matricial Schur Functions

In view of Lemma 17.2 and Remark 17.1, we discussed the case that the semi-radii /,
and r, are maximal if » € N and (A ) 0 € Sxq:n—1 are given. In this section, we
study the other extremal situation, namely that [, = Opxp or r, = Oyxq holds true.

Asequence (A )520 belonging to .7 4. i8 said to be completely left /-degenerate
(resp., completely right ./ -degenerate) if there exists ann € Zg , suchthatl, = Opx
(resp., 1y = Ogxgq) holds true. In this case, the smallest n with this property is called
the corresponding order and (A j)'j'zo is said to be completely left .”-degenerate of
order n (resp., completely right ./ -degenerate of order n). A function F € 75, (D)
with Taylor series expansion (17.1) is called completely left .#-degenerate (resp.,
completely left /-degenerate) if (A j)?ozo is completely left .’-degenerate (resp.,
completely right .”-degenerate). A function F' € .}, 5, (D) with Taylor series expan-
sion (17.1) is said to be completely left ./ -degenerate of order n (resp., completely
right ./ -degenerate of order n) if (A; )°° 2 is completely left ./-degenerate of order
n (resp., completely right .7~ degenerate of order n).
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Remark 18.1 Letn € Zo , and let (A j)';:o € S xq;« be completely left .’-degenerate
of order n or completely right .%-degenerate of order n. From Remark 17.1 and
Proposition 15.5 one can easily see then that there exists an integer k € Zg_, such that
(Aj)’j‘.zo is .#-central of order k + 1.

Proposition 18.2 Let (Aj)’j‘.:0 € Syxq:x With choice sequence (?j)’;:O and SP-
parameter sequence (e./)’;.:() and let n € Zo . Then the following statements are
equivalent:

1) (Aj)jzo is completely left ./ -degenerate of order n.
(i) £, = Opxp.
(iil) My = Opxp-
(iv) M, = {Opx1}-
) Mu—1N R(,) = {Opxl}'
(vi) &, is a partial isometry with final subspace R(l,,—1).
(vil) ey is a partial isometry with final subspace M,,_.

Proof “(i) < (ii)”: This is an immediate consequence of Remark 15.22.

“(i1) < (ii1)”: Using (2.1), this can be seen from Corollary 15.10.

“(iii) < (iv)”: This is an immediate consequence of Lemma 6.9.

“@iv) < (v)”: This can be seen from Notation 6.1.

“(vi) < (vii)”: Since Theorem 16.3 shows £y = ¢¢ and Notation 6.1 and (2.5) yield
M_1 = RWUp) = R(-1), the case n = 0 is trivial. Now suppose ¥ > 1 and let
n € Z1,.Lemma 16.2 provides (16.1). Corollary 16.4 yields

6.6 = Uy_1e,e U and ety = Uy _ 18,85 U,_). (18.1)

First assume (vi). In view of Remark A.3, then ¢, = Pr(,_,). Using additionally
(18.1) and (16.1), we consequently get

ene; = U;lkfl]P)R(ln—l)Un_l = Ulf*lUn_lU;lk*]Un_l = ]P%\/ln,l = IPMn—I’

which, because of Remark A.3, implies (vii).
Now assume (vii). Then Remark A.3 yields again ¢, ¢}, = P4, . Using addition-
ally (18.1) and (16.1), we consequently get

ety = Up 1 Ppy,_ Up_ ) = Up U;_ Up Up_ ) =PL  =Prq,_),

which implies (vi).

“(vi) < (1)”: We first consider the case n = 0. By virtue of (2.5) and Definition 15.4,
we see lg = I, — £o€. Consequently, (A j)’;:() is completely left .’-degenerate of
order 0 if and only if £o€; = I,,, which is equivalent to £y being a partial isometry with
final subspace R(/_1). Now suppose ¥ > 1 and let n € Zj ,. From Remark 17.1 we
can infer

Iy =ln—1 — ln 18,8/ 1. (18.2)
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Firstassume (vi). Then Remark A.3yields ¢, €; = P, ,). Because of Remark A.10(a),
thus €,&, = Pg( ), so that 6,65 /l,_1 = /I,—1. From (18.2), consequently
Iy = Opxp follows. Thus, (i) holds true. Conversely, now assume (i), i.e., [, =
O, p. Regarding Definition 15.4 and (2.1), we have \/l,,__lT\/EEn = ¢,. Using
Remark A 8, then & /7, _v/l,_| = & follows. Because of Remarks A.10(e) and
A.6, we furthermore get mTln_lmT = l,,_ll;[_l = Prq,_,)- From (18.2),
we hence obtain \/ETI,,\/EJr = Pra, ) — &t In view of [, = Opx,, then
£, =Prq,_,) follows, which, by virtue of Remark A.3, implies (vi). O

Proposition 18.3 Let (Aj)’j(':o € Sxgc With choice sequence ({?j)’j‘.:O and SP-
parameter sequence (e j)§:0 and let n € Zo . Then the following statements are
equivalent:

(i) (A; )K_O is completely right . -degenerate of order n.
(ii) Ry = Ogxg-
(iii) Qp = Ogxgq-
(iv) QF = {Ogx1)-
() QL NR(n) = (Ot
(vi) ¥, is a partial isometry with initial subspace R(r,—1).
(vii) e, is a partial isometry with initial subspace Qi_—l

Proof This can be proved analogous to Proposition 18.2. O

Let us observe that, using Remarks 17.1 and 15.22, Corollary 15.10, Lemma 6.9
as well as Propositions 6.10, 17.2 and 6.6, one can easily obtain further conditions for
the complete left and right .¥’-degeneracy of a Schur sequence, respectively, which
are implied by the statements formulated in Propositions 18.2 and 18.3. We omit the
details.

Proposition 18.4 Let F € /)y, (D) with SP-parameter sequence ()/])oo o and let
n € No. Let M,y be given by Notation 6.1, where ¢ :=y; forall j € No Then the
following statements are equivalent:

(1) F is completely left .”-degenerate of order n.
(i) vy is a partial isometry with final subspace M, _1.
(iii) There exists a partial isometry W with final subspace My _ such that F ] (z) =
W for all 7 € D.

Proof Denote by (A ; )°° - o the Taylor coefficient sequence of F'. Proposition 9.7 then
shows that (A )oo belongs t0 %) x4;00 and has SP-parameter sequence (y])J Zori-€.,
(e J)iio is the SP parameter sequence of (A; )7‘; . Now the equivalence (i) < (ii)
follows from the equivalence (i) < (vii) in Proposition 18.2. Furthermore, according
to Definition 9.5, we have y, = FI"1(0), so that (iii) implies (ii).

Now suppose (i). Lemma 9.4 shows that H := F [] belongs to ., (D). Thus,
we can apply Lemma 12.4 to see that £ := H (0) belongs to K, ., and that G := HI
fulfills GI-1E] = H. According to Definition 9.1, we have G = FIr 11 Inview of (1),
the sequence (A )°° ~ o is completely left .”’-degenerate of order n. Taking additionally
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into account (A j)iio € %) xq;00- then Remark 18.1 shows that there exists an integer
k € Zon such that (A;)7Z, is .“-central of order k + 1. Thus, F is .’-central of

order k + 1. Consequently, Proposition 17.4 provides F [+1l(z) = Opxy for all
z € . Hence, G(z) = Opxq for all z € D. By virtue of Definition 10.1, then

GI-1E]l(z) = E for all z € D follows. Summarizing, for all z € D, we get
FIlz) = H@z) = GI4El(2) = E = H(0) = FIN(0) = .

Using additionally that (i) also implies (ii) , then (iii) follows. O

Proposition 18.5 Let F' € .7, (D) with SP-parameter sequence (yj)?o o and let

n € No. Let Q,_1 be given by Notation 6.1, where ¢ :=y; for all j € No. Then the
following statements are equivalent:

(i) F is completely right .7 -degenerate of order n.
(ii) yn is a partial isometry with initial subspace Q#_l.

(iii) There exists a partial isometry W with initial subspace Q,Jl-_l such that F1"] () =
W for all 7 € D.

Proof This can be proved analogous to Proposition 18.4. O

Appendix A. Some Facts from Matrix Theory

Remark A.1 Letl{ and V be linear subspaces of the unitary space C”. Then (U +V)+ =
Utnvtand Unv)t =ut+ v+
RemarkA.2 If A € CP*4, then R(A*) = N (A)' and N'(A*) = R(A)L.

Remark A.3 Let U be alinear subspace of the unitary space C”. Then PP is the unique
complex p x p matrix satisfying the three equations }P’ZZ/[ = Py, P}, = Py, and
R(Py) =U.

Remark A.4 Let U be a linear subspace of the unitary space C”. Then O,y , < Py <
I, and Py + Py = 1,.

Remark A.5 If U is a linear subspace of the unitary space C” with dimension
d:= dimU/ > 1 and some orthonormal basis u{, us, ..., ug, then P;; = UU*, where
U:=[ui,uy,...,uql.

RemarkA.6 If A € CP*1 then AAT = PT\’,(A) and ATA = P'R(A*)'

Remark A.7 Let A € CP*9. In view of AATA = A, we have:

(a) Let B € CP*™ Then R(B) C R(A) if and only if AATB = B.
(b) Let C € C"™ 4. Then N'(A) € N(C) if and only if CATA = C.

Remark A.8 If A € CP*4 then (AT)* = (A™)T.



The Schur-Potapov Algorithm in the General Matrix... Page 830f91 109

RemarkA.9 If A € CP*4 then R(AT) = R(A*) and N'(AT) = N (A¥).

Remark A.10 Let A € C*Y and let Q := v/A. Then:

(a) R(Q) = R(A) and N'(Q) = N(A).
(b) AT e CT*? and VAT = 0F.

(c) 00" =AAT=ATA = 070.

(d QFTA=Qand AQT = Q.

(e) 0TAQT = AAT.

LemmaA.11 (cf. [21, Lem. A.19]) Let A € CP*4 and let B € C1*9 be such that
R(B) € R(A*) C R(B*). Then the matrix B 4+ Ppr(a) is invertible and BT =
(B +Pprca) ! = Ppra).

Remark A.12 (e.g., combine [4, Theorems 4.4 and 4.6]) Let A € C%Xq, let L € R, and
let x € C4 be such that Ax = Ax. Then ATx = ATx.

RemarkA.13 Let A € (cq;’f ,let A € [0, 00), and let x € C? be such that Ax = Ax.

Then v/Ax = +/Ax.
Remark A.14 1f A, B € CI*? fulfill Oy, < A < B, then N'(B) € N (A).

LemmaA.15 (cf. [11, Lem. 1.1.12]) If K € CP*4, then the following statements are
equivalent:

(i) K is contractive.
(ii) I, — K*K is non-negative Hermitian.
(iii) [Ilf* Z ] is non-negative Hermitian.
(iv) I, — KK™ is non-negative Hermitian.
(v) K* is contractive.

LemmaA.16 Let E € CP*91 and let the matrices I, r and P, Q be given by (5.1) and
(5.2), respectively. Then:

(@) l[E = Er andl'E = Er'.

(b) E*l = rE* and E*I" = rTE*.

() I" —ErfE*=1I" and r* — E*I'E = rTr.
(d) PE = EQ and E*P = QE*.

() E*PE = Q and EQE* = P.

Proof (a) Regarding (5.1), we obtain [E' = (I, — EE*)E = E — EE*E = E(I; —
E*E) = Er. Using (5.1) and the singular value decomposition, one can prove [T E =
Er' as well.

(b) Regarding (5.1), we obtain E*! = E*(I, — EE*) = E* — E*EE* = (I, —
E*E)E* = rE*. Using (5.1) and the singular value decomposition, one can prove
EXIT = rTE* as well.

(c) Using (b) and (5.1), we get [T — Er'E* = 1" — EE*I" = (I, — EE")IT =117
andr' — E*I'E =r" —r"E*E = rT(1, — E¥E) = rTr.
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(d) Using (a), we can infer [ITE = [Er" = Err', whereas the application of
(b) yields E*IIT = rE*I"T = rrf E*. By virtue of (5.1), we see r* = r, so that
Remark A.6 implies r'r = rrT. Taking additionally into account (5.2), we get then
PE=(,—II"NE=E(;—rr")=E(,—r'r)=EQand E*P = E*(I,—1l") =
Iy —rrE* = (I, —r'r)E* = QE*.

(e) From (5.2) and (2.1) we can infer rQ = Oyxq and Pl = Opxp. Using
additionally (d) and (5.1), we get then E*PE = E*EQ = (I, —r)Q = Q and
EQE* = PEE* = P(I, — 1) = P. O
Remark A.17 (see, e.g., Lemma A.15 and [11, Lem. 1.1.12(c)]) Let E € K, and
let [ and r be given by (5.1). Then:

(@l e (C;Xp andr € (Cq;q.

(b) VIE = EFand VI E = E /7.

(©) E*J/I = JrE* and E*JI' = 7 E*.

Notation A.18 For all n € Ny denote by .Z), ,, (resp., %p.,) the set of all lower (resp.,
upper) p x p block triangular matrices belonging to C*+DP*#+Dp with matrices / »
on its block main diagonal.

Remark A.19 ([20, Rem. A.20]) For all n € Ny the sets .Z), , and %), ,, are both sub-
groups of the general linear group of invertible complex (n + 1)p x (n + 1) p matri-
ces.

Notation A.20 Letn € NpandletA, Bbetwocomplex (n + 1)p x (n + 1)g matrices.

(a) We write A ~, ,», B if there exist matrices L € .Z), , and U € %, , such that
B = LAU. If the corresponding (block) sizes are clear from the context, we will
omit the indices and write A ~ B.

(b) We write A v, ,xq B if there exist matrices V € %, , and M € . ,, such that
B = VAM. If the corresponding (block) sizes are clear from the context, we will
omit the indices and write A -~ B.

Remark A.21 (cf.[20, Rem. A.25]) Letn € Ny. Then the relations ~,,_,xg and v, pxg
are both equivalence relations on the set of complex (n + 1) p x (n + 1)g matrices.

Remark A.22 (cf. [20, Rem. A.26]) Let £,m € Ny, let A and B be complex
€+ 1)p x (£ + 1)g matrices, let X and Y be complex (m + 1)p x (m + 1)g matri-
ces, and let n:=¢ 4+ m + 1. Then

(@) IfA ~p pxg Band X ~;, ;x4 Y, then diag(A, X) ~; ,xq diag(B,Y).

(b) If A v~¢ pxg Band X vy, pxg Y, then diag(A, X) vy, pxq diag(B, Y).
RemarkA.23 (cf. [19, Lem. A3]) Let n € Ny and let Ag, Ay,..., A, and
By, By, ..., B, be complex p x g matrices such that diag(Aj)’}:O ~ diag(Bj)’]’.zo
or diag(Aj)’}.:O - diag(Bj)’J’.:(). Then A; = Bj forall j € Zo .

In view of (3.2), we state the following:
RemarkA.24 1et A, B € CP*4 let C € C?*™ and letn € Ny. Then:

@ (A)f = (A*)n and (A)) = (A7),
() (A+ Bhn = (Ahn + (B)n and (AC), = (A)n(Chn-
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Appendix B. Some Technical Results on Linear Subspaces

LemmaB.1 Let L € CP*P and let M € CP*4 be such that R(I,, — L) € R(M).
Then R(L) NR(M) C R(LM).

Proof We consider an arbitrary y € R(L) N R(M). Using Remark A.6, we can infer
then LLYy = y and MM'y = y. Remark A.7(b) yields MM'(I, — L) = I, — L,
implying I, — MM" = (I, — MM")L. Summarizing, we get (I, — MM")LTy =
(I, — MM")LL'y = (I, — MM")y = O and hence LTy = MM'L"y. Thus,
y=LL'y=LMMTL"y.In particular, y € R(LM). O

LemmaB.2 Let Q € CP*9 and let R € C7*9 be such that N (Q) € N'(I; — R). Then
N(Q)+N(R) =N(QR).

Proof From our assumption we get N'(I, — R)* € N (Q)*. Using Remark A.2, we
can infer then that the matrices L := R* and M := Q* fulfill R(/; —L) € R(M). Thus,
we can apply Lemma B.1 to obtain R(L) N'R(M) € R(LM), implying R(LM)* C
[R(L) N R(M)]+ = R(L)* + R(M)*. Using Remark A.2 again, then N (QR) =
N{LM)*) € N(L*) + N(M*) = N(R) + N(Q) follows. It remains to prove
N(Q)+N(R) CN(QR). Tothisend, let v e N(Q) + N (R),i.e., v = x + y with
certainx € N'(Q)and y € N(R). Then, x € N'(I, — R) by our assumption, implying
Rx = x. Consequently, QRv = QRx + QRy = Ox = O. ]

LemmaB.3 Let L € CP*P and let M € CP*4 be such that R(I,, — L) € R(M).
Then R(L) NR(M) = R(LM).

Proof In view of Lemma B.1, it remains to prove R(LM) € R(L) N R(M). From
our assumption we get R(M)L C RUp — L)L Using Remark A.2, we can infer
then that the matrices Q := M* and R := L* fulfill N (Q) € N'(I, — R). Thus, we
can apply Lemma B.2 to obtain N'(Q) + N'(R) = N(QR), implying N(QR)* =
N(Q) + N(R)]+ = N(Q)F N N(R)*. Using Remark A.2 again, then R(LM) =
RAQR)*) CR(Q*) NR(R*) = R(M) N'R(L) follows. O

In the sequel, we continue to use the notations given in (5.1).

RemarkB.4 Let E € CP*9,let B € CP*™ and let M be a linear subspace of C? such
that R(E) + R(B) € M. In view of (5.1), then R(IB) € R(B) + R(EE*B) C M.

RemarkB.5 Let E € CP*9,let B € CP*™ and let M be a linear subspace of C? such
that R(E) + R(B) € M. Using Remark B.4, one can easily prove R(I¥B) € M for
all k£ € Ny by mathematical induction.

LemmaB.6 Let E € K, let B € CP*", and let M be a linear subspace of CP
such that R(E) + R(B) € M. Then R(V1B) € M.

Proof Remark A.17(a) shows [ € (CQXP . Thus, we can choose a sequence (pn)g‘;l

of polynomials fulfilling VI = lim;, s oo 04 (1). From Remark B.5 we can infer (1, —
]P’M)lkB = O for all k € Ny. Consequently, (I, — Paq)p,(1)B = O foralln e N
follows. Passing to the limit n — oo, we obtain (/, — P A)VIB = O. In particular,
R(IB) € M. O
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RemarkB.7 Let E € K,y4,let B € CP>*™, and let M be alinear subspace of C? such
that R(E) + R(B) € M. Using Lemma B.6, one can easily prove R(«/ZkB) cM
for all kK € Ny by mathematical induction.

LemmaB.8 Let E € K, let B € CP*™, and let M be a linear subspace of CP
such that R(E) + R(B) € M. Then R(~/T B) € M.

Proof First observe that [ € (C’;Xp by Remark A.17(a). Since the matrix /I is Her-
mitian, there exists (see, e.g., [4, Cor. 4.3]) a polynomial 7 fulfilling \/Z i = n(\/i).
From Remark B.7 we can infer (I, — IP’M)«/ZkB = O for all k € Ny. Conse-
quently, (I, — IPM)TL'(\/Z)B = O follows, i.e., (I, — ]P’M)«/ZTB = O. In particular,
R B) € M. O

RemarkB.9 Let E € C7%9,let B € C"*9, and let Q be a linear subspace of C? such
that @ € N (E) N N(B). In view of (5.1), then Q C N (B) NN (BE*E) € N (Br).

RemarkB.10 Let E € C7*4,let B € C"*4, and let Q be a linear subspace of C? such
that @ € N'(E) N N (B). Using Remark B.9, one can easily prove Q C N (Br¥) for
all k € Ny by mathematical induction.

LemmaB.11 Let E € Ky, let B € C"*9, and let Q be a linear subspace of C?
such that @ € N (E) NN (B). Then Q € N (B+/r).

Proof Remark A.17(a) shows r € (Cq;q. Thus, we can choose a sequence ()5,

of polynomials fulfilling +/r = lim,_ o 0,(r). From Remark B.10 we can infer
Brk]P’Q = O for all k € Ny. Consequently, Bp,(r)Pg = O foralln € N
follows. Passing to the limit n — o0, we obtain By/rPg = O. In particular,

Q S N(BP. o

RemarkB.12 Let E € K4, let B € C"*9, and let Q be a linear subspace of C? such
that @ € N(E) N N(B). Using Lemma B.11, one can easily prove Q C N(Bﬁk)
for all k € Np by mathematical induction.

LemmaB.13 Let E € Ky, let B € C"*4, and let Q be a linear subspace of C?
such that @ € N'(E) N N'(B). Then Q € N (BJr").

Proof First observe that r € CZ*? by Remark A.17(a). Since the matrix /7 is Her-

mitian, there exists (see, e. g., [4, Cor. 4.3]) a polynomial r fulfilling \/7T = (/7).
From Remark B.12 we can infer BﬁkPQ = O for all k € Ny. Consequently,
Br(/r)Pg = O follows, i.e., B«/?TIP’Q = 0. In particular, Q C N(B«/FT). O

Appendix C. Linear Fractional Transformations of Matrices

Remark C.1 (see, e.g. [11, Lem. 1.6.1]) Let ¢ € C?*P and d € C7*4. Then the set
9(c,d) :={x € CP*4 : det(cx+d) # 0}isnon-empty if and only if rank([c, d]) = q.
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Let M be a complex (p 4+ q) x (p 4+ ¢) matrix and let M = i Z be the block

representation of M with p x p block a. Suppose that Q(c, d) # @. Then let the
linear fractional transformation 7, AEIP @) Q(c,d) — CP*1 be defined by TAEIP ) (x) :=
(ax + b)(ex +d)~L.

Proposition C.2 ([11,Prop. 1.6.1]) Let M1 and M be complex (p + q) X (p + q) matri-
ces, let M == M, M,, and let

_|la b _|ax b _|a b
M1—|:Cl d1:|’ M> _|:Cz d2:|’ and M _|:C d]

be the block representations with p X p blocks ay, ax, and a of My, M3, and M,
respectively. Suppose that rank([c1, d1]) = q and rank([c2, d2]) = q hold true. Then

Qc,d) N Q(cr,dy) = {x € Qley,dy) TAEIII)’q)(x) € Q(ca, da)}. Furthermore, if
Qe.d) N Qler, dy) # B, then Ty (TP (1)) = T,V (x) for all x € Q(c, d) N
Q(ci, dy).

Example C.3 ([5, Beispicl B.11]) Let M := M; M, where M; = [0 %4 ] and

quq 1‘1
M, = [O”X" Oqxq ] Let the block representations of M1, M>, and M be given as
I‘I qu’i

in Proposition C.2. Then Q(cy, d;) = C9*9, Q(cp,dp) = {x € C?*9 : detx # 0},
and Q(c,d) = 0.

Appendix D. Some Facts on the Class .7 x 4(ID)

LemmaD.1 Let F € [H(D)]?*? with Taylor coefficient sequence (Aj)?ozo and let
E:=F(0). Forall z € D, then F(z) — E = Z;ilszj and I; — E*F(2) = ro —
> z/ A3 A, where rq is given by (2.5).

Proof. We consider an arbitrary z € . Clearly, F(z) = Z;io A jand Ag = E.
Therefore, F(z) — E = Z;’OZI 7 A and, using (2.5), moreover

oo o0
I, —E*F(2) =1, — Ay | Ao+ Y _/Aj | =ro— ) 2/ AjA;. O
j=1 j=1

TheoremD.2 Let Tpxg: Spxg(D) — Fxgi00 be defined by Tpxq(F) = (Aj)?‘;o,
where (A j);?ozo is the Taylor coefficient sequence of F. Then t, x4 is well defined and
bijective.

Proof Well-definedness and surjectivity follow from [11, Thm. 3.1.1], whereas injec-
tivity is clear. O

LemmaD.3 Let F € /)y q(D), let E :=F(0), and let | and r be given by (5.1). For
all z € D, then:



109  Page 88 of 91 V. K. Dubovoy et al.

(a) II'"[F(z) — E1= F(z) — E and [F(z) — Elr'r = F(z) — E.
) rfr —[F@QIUTF() = I = [FQI'F(2) and lI' — FQr'r[F@QT = 1, —
FQIF @I

Proof We consider an arbitrary z € D.

(a) Denote by (A j)?o=() the Taylor coefficient sequence of F. Lemma D.1 provides
F(x)—E = 2?11 z/ Aj. Theorem D.2 yields (Aj)32y € Fpxg;00- Hence, Remark 3.2
shows R(A;) € R(lp) and N'(rg) € N(A)) forall j € N. Applying Remark A.7,
we thus infer lolgAjrgro = Aj forall j € N. Clearly, Ag = E, so that o = r and
lp = [ by (2.5) and (5.1). Summarizing, we get F(z) — E = Z;’il zjlolgAjrgro =
(.52, 21§ A jrf)r. Using additionally (2.1), then II'[F(z) — E] = F(z) — E and
[F(z) — EIrfr = F(z) — E follow.

(b) Regarding (5.2), from (a) we can infer PF(z) = PE and F(z2)Q = EQ.
Regarding (5.3) and Remark A.3, we see P* = P and Q* = Q. Using additionally
Lemma A.16(e), we conclude

[F(I"PF(z) = [F(I"PE = [PF()I"E = (PE)'E = E*PE = Q

and, analogously, F(z) Q[F (z)]* = P.Regarding again (5.2), consequently

r'r +[F@I*PF () — [FI*F(2)
=rfir+ Q- [FQI'F@) = I, - [FQI'F ()

rir — [FQTIUTF(z)

and, analogously, /I — F(z)r'r[F (2)]* = I, — F(2)[F (2)]*. O

LemmaD.4 (see,e.g., [11,Lem.2.1.5]) Let F € #x4(D) and let E := F(0). For all
z €D, then N(I; — [F(2)*F(2)) = N(r), where r is given by (5.1).

LemmaD.5 Let F € [H(D)]?*? be such that R(F(z)) = R(F(0)) and N'(F(z)) =
N(F(0)) forall z € D. Then G := F' belongs to [H(D)]9*P and (CG;j)?O:O is exactly
the reciprocal sequence corresponding to (CF. j);?‘;o.

Proof From [22, Prop. 8.4] we know that G belongs to [H(D)]9*?, whereas [22,
Thm. 8.9] yields (Cp;.,-);?';o € Ipxg;o0o and that (CG;AI')?O:O is exactly the inverse
sequence corresponding to (CF;./)?‘;O. Using [22, Thm. 4.21], we see then that
(CFL/')?.;O belongs t0 Z),x¢;00 and that (CG;j)f.io coincides with the reciprocal
sequence corresponding to (Cr. j)?i()' O
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