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Abstract Dynamic attending theory proposes that the ability to track temporal cues in the audi-
tory environment is governed by entrainment, the synchronization between internal oscillations and 
regularities in external auditory signals. Here, we focused on two key properties of internal oscilla-
tors: their preferred rate, the default rate in the absence of any input; and their flexibility, how they 
adapt to changes in rhythmic context. We developed methods to estimate oscillator properties 
(Experiment 1) and compared the estimates across tasks and individuals (Experiment 2). Preferred 
rates, estimated as the stimulus rates with peak performance, showed a harmonic relationship across 
measurements and were correlated with individuals’ spontaneous motor tempo. Estimates from 
motor tasks were slower than those from the perceptual task, and the degree of slowing was consis-
tent for each individual. Task performance decreased with trial-to-trial changes in stimulus rate, and 
responses on individual trials were biased toward the preceding trial’s stimulus properties. Flexi-
bility, quantified as an individual’s ability to adapt to faster-than-previous rates, decreased with age. 
These findings show domain-specific rate preferences for the assumed oscillatory system underlying 
rhythm perception and production, and that this system loses its ability to flexibly adapt to changes 
in the external rhythmic context during aging.

eLife assessment
This important study has practical and theoretical implications for understanding rhythm perception 
and production in human cognition. The evidence for individual frequency preferences and a deteri-
oration in frequency adaptation with age is convincing. These findings will inform existing models of 
rhythm perception and production, and the reported effects of age may have clinical implications.

Introduction
Auditory tasks such as understanding speech and listening to music rely on our ability to allocate and 
adjust attention to rhythmic cues in complex auditory signals. However, listeners’ attention to rhythmic 
cues can fail when the signal is temporally disorganized (Zalta et al., 2020), or with advancing age 
(Schneider et al., 2005). These failures of attention might result in reduced speech comprehension 
(Schneider et al., 2005) as well as in diminished ability to solve the ‘cocktail party problem’ (Zion 
Golumbic et  al., 2013). However, speech perception (Poeppel and Assaneo, 2020) and produc-
tion of musical sequences are improved when stimuli are presented at specific rates (Zamm et al., 
2018; Scheurich et al., 2018), indicating that these abilities might be ‘restored’ in certain conditions. 
Here, we aimed to understand factors that facilitate and impede auditory rhythm processing from 
two different perspectives: the factors that arise from stimulus properties in the external world and 
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those that stem from individual differences (the perceiver). Specifically, we tested how stimulus and 
the rhythmic context in which a stimulus is presented affect rhythm perception and production, and 
how temporal adaptation abilities change with advancing age. We found (1) a range of rates specific 
for each individual that yielded best performance and (2) deteriorating performance when switching 
between stimulus rates that was further amplified by age.

Two main theoretical approaches explain how we perceive time and rhythm. A timekeeper account 
proposes that the duration between two events is represented by the count of accumulated pulses 
that are generated by an internal pacemaker (Scheurich et  al., 2018). An entrainment account, 
dynamic attending theory (DAT) proposes that biological systems consist of internal oscillations, i.e., 
rhythms, that adjust their phase and period to the temporal regularities of an external signal (Jones, 
2018; Jones, 1976; Jones and Boltz, 1989). Synchronization between internal and external rhythms, 
termed entrainment, is the underlying mechanism for time and rhythm perception. Predictions of 
DAT have been confirmed in a number of studies that reported rhythmic facilitation effects, where a 
rhythmic cue improves perceptual timing of subsequent targets, with the highest accuracy for targets 
aligning with the entraining attentional oscillator’s peaks (Large and Jones, 1999; Barnes and Jones, 
2000; Jones et al., 2002; McAuley and Jones, 2003; Martin et al., 2005; Herrmann et al., 2016; 
Jones et al., 2017; Cheng and Creel, 2020).

The current study did not test whether timing abilities are governed by entrainment or timekeeper 
mechanisms. We rather adopt an entrainment approach as well as common assumptions of entrain-
ment models (Jones, 2008) that derive from the general properties of limit-cycle oscillators:

Assumption 1: Oscillators are self-sustaining; they persist even when no stimulus is present. 
They induce series of periodic expectations at the peaks of the oscillations.
Assumption 2: Oscillators are adaptive; they respond to timing perturbations (e.g. changes in 
stimulus rate) by correcting their phase and period.
Assumption 3: Each oscillator has an intrinsic period (Drake et al., 2000) at which it oscillates in 
the absence of any input (see Assumption 1) and is most stable against perturbations.
Assumption 4: Oscillators can respond to stimulus rates with integer-ratio relationships (i.e. in 
nested hierarchies).

Two key properties of internal oscillators that were the focus of the current study are their preferred 
rate and their flexibility. Preferred rate, also termed as natural frequency or eigenfrequency in different 
literatures, refers to the intrinsic period of the oscillator (Assumption 3), or group of nested oscilla-
tors (Jones, 2008), in the absence of any input (Assumption 1). Oscillators accomplish synchroniza-
tion to periodicities in the external signal better when the signal’s rate is similar to the oscillator’s 
preferred rate (or harmonics of the preferred rate; McAuley and Jones, 2003) than when it is dissim-
ilar (Notbohm et al., 2016). The range of rates around the oscillator’s preferred rate for synchroni-
zation is referred to as the entrainment region (McAuley et al., 2006). Theoretically, knowing the 
preferred rate of an individual’s internal oscillator would allow predicting the rates at which they would 
most successfully interact in a real-world listening situation.

One common method to estimate the preferred rate is the spontaneous tapping task, where 
participants are asked to tap their finger (McAuley et al., 2006; Collyer et al., 1994; Schwartze 
and Kotz, 2015) or a drumstick (Drake et al., 2000), on a desk or a sensor at a ‘comfortable rate’. 
The preferred rate estimate, spontaneous motor tempo (SMT), measured as the mean or median of 
the intervals between the individual taps, tends to cluster around 500–600 ms in adults (McAuley 
et al., 2006). One potential shortcoming of using SMT as a direct measure of an internal oscillator’s 
preferred rate is that SMT reflects a ‘preference’ for producing periodic movements in the absence 
of any interaction with the environment. Although this is indeed the definition of preferred rate, a 
stronger test of the degree to which SMT reflects the preferred rate of an internal oscillator would be 
to observe successful synchronization within – but not outside of – an entrainment region. SMT does 
predict timing preference and performance in other tasks: participants tend to prefer stimulus rates 
(i.e. preferred perceptual tempo [PPT]; McAuley et al., 2006) closer to their SMT (McAuley et al., 
2006), drift back to their SMT during continuation tapping in synchronization-continuation paradigms 
(Zamm et al., 2018), and over- and underproduce stimuli that are faster and slower than their SMT, 
respectively (Zamm et al., 2018; Scheurich et al., 2018). However, in paradigms that involve compar-
ison of individuals’ rate preferences (McAuley et al., 2006) and tapping performance (Zamm et al., 
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2018; Scheurich et al., 2020) across stimulus rates, stimulus conditions are tailored to individuals’ 
SMT and are low in number. This results in a resolution that is too poor to observe an entrainment 
region, and often confounds SMT with the global mean stimulus rate in an experiment (Kliger Amrani 
and Zion Golumbic, 2020a). We have previously proposed a synchronization-continuation paradigm 
where individuals’ tapping behavior on a finely sampled, broad range of stimulus rates was assessed. 
We estimated preferred rate as the stimulus rate with minimum tapping errors during continuation 
tapping (Kaya and Henry, 2022). However, estimating preferred rates based on a tapping paradigm 
cannot disentangle preferred rates of an auditory oscillator, a motor oscillator, or a coupled oscillatory 
system whose preferred rate would be influenced by the preferences and coupling strengths of its 
components (Schneider et al., 2005). Thus, here we applied the fine rate sampling to a perceptual 
paradigm (Experiment 1), estimated preferred rates in perceptual and motor versions of the paradigm 
with same stimulus rate conditions (Experiment 2), and compared the estimates to individuals’ SMT 
and PPT (Experiment 2).

Based on Assumption 2, we defined flexibility as the internal oscillator’s ability to adapt to rate 
changes in the external sound signal (Kaya and Henry, 2022). The logic is as follows: upon encoun-
tering a new rate, the oscillator gradually updates its phase and period to each upcoming interval. 
From a dynamical systems perspective, flexibility can be conceptualized as a complement to ‘stiffness’, 
and might be quantified based on the presence of hysteresis, which refers to a system’s tendency to 
stay in a previous state despite changes in stimulus parameters (Kelso, 1995). An inflexible oscillator 
would exhibit hysteresis and continue to respond in a way that reflects the properties of previously 
entrained stimuli. A fully flexible oscillator would not exhibit hysteresis as it would completely update 
its phase and period to the new stimulus, resulting in no discrepancy between the current stimulus 
and its internal representation. Thus, the extent to which timing performance would be affected by 
the stimulus history is inversely related to the underlying oscillator’s flexibility.

Prior research reveals effects of preceding context, also referred to as serial dependence (Kim and 
Alais, 2021; Motala et al., 2020) and carryover effects (Wiener et al., 2014), on timing behavior in 
tasks with and without a motor synchronization component. Within individual trials of synchronized 
tapping paradigms, changes in stimulus rate (period perturbation) and stimulus onset times (phase 
perturbation) result in increased asynchronies between stimulus and tap onsets. This effect is more 
pronounced for phase than period perturbations (Large et al., 2002; Loehr et al., 2011), and for 
sequences that speed up than those that slow down (Scheurich et al., 2020; Loehr et al., 2011). 
Across trials, the tapping rate in each trial is biased toward the previous trial’s stimulus rate (Kaya and 
Henry, 2022; Motala et al., 2020). Temporal judgments in the absence of motor synchronization are 
also affected by the stimulus properties presented in a preceding trial (Wiener et al., 2014; Jones 
and Mcauley, 2005; Wiener and Thompson, 2015) and throughout the experiment (Jones and 
Mcauley, 2005; McAuley and Miller, 2007), suggesting effects of local and global temporal contexts 
on duration perception. The majority of studies that revealed individual differences in proneness to 
history effects (Kim and Alais, 2021; Arzounian et al., 2017) have not aimed to explicitly estimate 
the extent and source of these individual differences, or have done so in shorter temporal contexts, 
using different operational definitions of flexibility than the one used here (Scheurich et al., 2018). 
Finally, similar to methods proposed to estimate preferred rate (Zamm et al., 2018; Scheurich et al., 
2018; McAuley et al., 2006; Kaya and Henry, 2022; McPherson et al., 2018), previous attempts to 
measure flexibility (Scheurich et al., 2018; Scheurich et al., 2020; Kaya and Henry, 2022) involved 
only motor responses. Thus, we presented the same stimulus history to participants in two tasks, 
one with and one without the motor demands of synchronize-continue tapping. This design allowed 
assessing the effects of the same predictor (trial-to-trial rate change) on performance in different 
tasks, and thereby performing systematic comparisons of oscillator flexibility across perceptual and 
motor domains.

From the perceiver’s side, we chose to focus on how properties of internal oscillators change 
with advancing age. Studies assessing age-related changes in timing abilities show that older, as 
compared to younger individuals, produce slower tapping rates when asked to tap at a comfortable 
rate (McAuley et al., 2006; Baudouin et al., 2004) and at the fastest rate (Turgeon et al., 2011) 
they can maintain, show worse performance in temporal-order judgments (Szymaszek et al., 2009), 
gap detection (Fitzgibbons and Gordon-Salant, 1995) and discrimination and reproduction of time 
intervals (Incao et al., 2022), and tend to prefer slower stimulus rates (McAuley et al., 2006), which 
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manifests in a breakdown in understanding fast speech. From an entrainment perspective, these find-
ings suggest that internal oscillators of older individuals have slower preferred rates, reduced flexi-
bility, or both. While the current study did not incorporate neural measures, it is worth noting that 
literature on neural entrainment can offer insights into the dynamics of attention. This is particularly 
relevant as these physical measures often align with the predictions of DAT (see Haegens and Zion 
Golumbic, 2018; Henry and Herrmann, 2014 for reviews). Neural entrainment to external auditory 
signals is aberrant (Goossens et al., 2016; Herrmann et al., 2019; Purcell et al., 2004), and less 
responsive to top-down attention in older than younger adults (Henry et al., 2017). Moreover, older 
adults exhibit reduced neural adaptation (Herrmann et al., 2023) and sensory gating (Brinkmann 
et al., 2021), suggesting an age-related decline in neural inhibition (Herrmann et al., 2023) that leads 
to a reduced capacity of the auditory system to adapt based on context. Based on the behavioral find-
ings converging on reduced temporal abilities and evidence for impaired neural entrainment in older 
individuals, we hypothesized that older adults would exhibit stronger hysteresis than younger adults, 
which should result in smaller estimates of oscillator flexibility.

The aim of the current study was to estimate individuals’ preferred rate and flexibility in rhythmic 
tasks with and without a motor synchronization component, and in both preference and performance 
contexts: here, preference refers to SMT and PPT, whereas performance refers to tasks that require 
listeners to either synchronize with or make a perceptual judgment about rhythmic stimuli. Moreover, 
we aimed to assess how internal oscillator properties, specifically oscillator flexibility, change with 
advancing age.

We conducted two experiments. The main goal of Experiment 1 was to develop methods to esti-
mate preferred rate and flexibility in a paradigm without a motor synchronization component, as a 
complement to our recent tapping study (Kaya and Henry, 2022). The task was a duration discrim-
ination paradigm where participants compared the duration of a single comparison interval to the 
duration of intervals making up a standard stimulus. We assessed the effect of stimulus history on 
responses by comparing performance across two sessions with the same finely sampled pool of stim-
ulus rates, one where we maximized and the other where we minimized the amount of rate change 
across trials. Experiment 2 involved shorter versions of the duration discrimination (Experiment 1) and 
paced tapping (Kaya and Henry, 2022) tasks with matched stimulus rates and histories, unpaced 
tapping tasks including SMT, and two tasks where individuals’ rate preferences (PPT) were measured.

In line with the preferred period hypothesis (McAuley et al., 2006), if SMT captures the preferred 
rate of common mechanisms underlying rhythm perception and production, we should see better 
performance around an individual’s SMT, as has previously been observed for motor tasks (Zamm 
et  al., 2018; Scheurich et  al., 2018; McAuley et  al., 2006; Kliger Amrani and Zion Golumbic, 
2020b). However, we did not necessarily expect a one-to-one correspondence between preferred 
rate estimates across tasks with and without a motor component, as individual differences in motor 
contributions to synchronization abilities are well documented (Assaneo et al., 2021).

We hypothesized that larger trial-to-trial changes in stimulus rate would lead to poorer perfor-
mance due to hysteresis, in that both tapping and duration discrimination responses should reflect 
the properties of the preceding stimuli. Thus, we expected that larger changes between consecu-
tive trials’ stimulus rates should decrease discrimination accuracy and increase tapping errors. We 
expected that the strength of these effects – the degree of inflexibility – should increase with age.

Experiment 1
Methods
Participants
Participants (N=31) were recruited from the participant pool of Max Planck Institute for Empirical 
Aesthetics laboratories in Frankfurt, Germany. Written informed consent was obtained from all partici-
pants. The procedure was approved by the Ethics Council of the Max Planck Society (approval number 
2019_04) and the Research Ethics Board at Toronto Metropolitan University in accordance with the 
Declaration of Helsinki. Out of 31 (age: M=33, SD = 11) individuals who were recruited for the study, 
27 participants (age: M=33, SD = 12) completed both sessions. Upon completion of each session, 
participants received 7 euros for every 30 min of their participation (21 euros per session on average). 
Two participants volunteered to complete the study without compensation. Prior to the experimental 
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sessions, participants completed an online survey. All participants self-reported normal hearing and 
proficiency in English.

Procedure
The study consisted of an online background survey that participants completed at home, and then 
two experimental sessions. During the in-lab experimental sessions, participants completed two types 
of tasks. A series of unpaced tapping tasks, consisting of SMT and a ‘forced’ motor tempo (FMT) task, 
which was used to assess the range of free tapping rates within the participants’ motor abilities; and 
the main task, duration discrimination, where participants judged whether a comparison interval was 
‘shorter’ or ‘longer’ than the intervals making up a standard sequence. Details of all tasks are provided 
below. Sessions were separated by 4–19 days. A single session started with the SMT and FMT tasks. 
Participants then set the sound volume to a level that they found comfortable for completing the 
task. Then, participants were presented with instructions on a computer screen that explained the 
main task with text and figures. A practice block, simulating the duration discrimination task, followed 
the instructions (details below). All instructions were in English. Once participants indicated that they 
understood the task, the main task blocks were initiated. Finally, unpaced tapping tasks were repeated 
in the same order. Participants were debriefed upon their request, only after the second session. An 
individual session lasted 90 min on average.

Duration discrimination task
The main task was a duration discrimination paradigm, where participants judged whether a compar-
ison interval was longer or shorter than the intervals making up an isochronous standard sequence, 
by pressing either the L (longer) or S (shorter) key on a computer keyboard. The task procedure is 
illustrated in Figure 1. In each experimental session, 400 unique trials of this task were presented, 
each consisting of a combination of the three main independent variables: the inter-onset interval, IOI; 
amount of deviation of the comparison interval from the standard, DEV, and the amount of change in 
stimulus IOI between consecutive trials, ΔIOI. We explain each of these variables in detail in the next 
paragraphs.

Stimuli were made up of 50 ms woodblock sounds; first, an isochronous standard sequence and 
then a comparison interval, separated by a silent gap. The interval between the five woodblock 
sounds making up the ‘standard’ isochronous stimulus sequence is referred to as IOI. Each trial’s IOI 
was drawn (without replacement) from a pool of all possible stimulus rates, linearly spaced between 
200 ms to 998 ms in 2 ms steps. The silent interval between the last stimulus onset of the standard 
sequence and the first stimulus onset of the comparison pair was six times the standard IOI.

The comparison interval on each trial was longer or shorter than the standard IOI. DEV refers to 
the magnitude of the comparison interval’s deviation from the standard IOI. DEV took on one of ten 
levels, which were proportional to IOI:±2%, 7%, 11%, 16%, 20%. Each DEV level was presented 40 
times in each session. Since IOI was unique on each trial, IOI and DEV were not fully crossed factors. 

Figure 1. Design of the duration discrimination task in Experiment 1. Each trial consisted of an isochronous standard sequence of five sounds (four 
intervals), followed by silence and another pair of sounds. The comparison duration was either shorter or longer than the standard intervals and took on 
one of ten values (DEV) that were proportional to the inter-onset interval (IOI) between sounds making up the standard sequence. The task was to press 
the S or L key to indicate whether the comparison interval was shorter or longer than the standard IOI. Over the course of 400 unique trials of a single 
session, IOI ranged from 200 ms to 998 ms. In random-order sessions, change in stimulus rate between a given trial n and immediately preceding trial 
n–1 (ΔIOI) was maximized, and the distribution of ΔIOI ranged from –778 ms to +770 ms. In linear-order sessions, IOI increased in each trial in the first 
200 trials and decreased in the other half of the trials (or vice versa, counterbalanced across participants) in steps of 4 ms.
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Instead, the IOI dimension was divided into 40 bins, each consisting of 10 consecutive IOIs. The 10 
DEV levels were randomly assigned to the 10 IOI values in each bin. The correspondence between IOI 
and DEV pairs was unique for each participant.

While the mean (M=599 ms), standard deviation (SD = 231 ms), and range (200 ms, 998 ms) of 
the presented stimulus IOIs were identical between the sessions, the way IOI changed from trial to 
trial was different. Change in IOI between consecutive trials was referred to as ΔIOI. In one session, 
the ‘linear-order’ session, ΔIOI was always ±4 ms. In one half of the session, ΔIOI was fixed at +4 
ms. That is, IOI was 200 ms in the first trial, 204 ms in the second, and so on. In the other half of the 
session, ΔIOI was fixed at –4 ms. On the first trial, IOI was 998 ms, 994 ms in the second, and so on. 
The starting point, either 200 ms or 998 ms (in fast-start and slow-start conditions, respectively), was 
counterbalanced across participants.

In the other session, the ‘random-order’ session, ΔIOI was maximized, and the direction of the 
change (i.e. whether a trial was faster or slower than the previous) alternated on every trial. That is, 
if the stimulus IOI on one trial was faster than the previous (–ΔIOI), it would be slower (+ΔIOI) in the 
following trial, and vice versa. Note that stimulus IOI was stable within the standard sequence, and 
only changed between trials. Session order, i.e., whether a participant experienced the linear-order or 
random-order session first, was counterbalanced across participants. An example trajectory of stim-
ulus IOI within random-order and linear-order sessions across trials is illustrated in Figure 1.

In each session, participants completed 407 trials, presented in 8 blocks with 50 trials in the first 
block, and 51 trials in the remaining 7 blocks. Except for the first block, the first trial of each block 
repeated the IOI that was presented as the last trial of the preceding block and was discarded from 
further analyses; this enabled preservation of the between-trial histories across blocks between which 
participants were allowed to take short breaks. Before the main task, participants were instructed 
about the task, and practiced the task for at least 6 trials. Instructions included two example trials 
with IOI of 500 ms, one with DEV of +0.3 and another with DEV of –0.3, illustrating ‘comparison 
longer’ and ‘comparison shorter’ conditions, respectively. DEV was fixed at +0.2 in half of the practice 
trials and at –0.2 in the other half. Two practice trials each were presented at fast, medium, and slow 
IOIs; randomly selected from ranges of [300–500 ms], [501–700 ms], and [701–900 ms], respectively. 
If participants failed on more than 3 of the first 6 practice trials, they completed another round of 6 
practice trials. Both example and practice trials were randomly ordered within their respective blocks 
in each session.

The dependent variables were accuracy and bias. Accuracy coded whether a response on a trial 
was correct or not (1=correct, 0=incorrect). Bias, on the other hand, could take on one of three values 
per trial: if the response was correct, bias was 0. If the comparison interval in a trial was longer than the 
standard, and the participant’s response was ‘shorter’, bias in that trial was –1. Similarly, if participant’s 
response was ‘longer’ in a trial where comparison interval was shorter, bias was +1.

Unpaced tapping tasks
Unpaced tapping tasks consisted of a single SMT trial and two FMT trials, one each to estimate 
the ‘slowest’ and ‘fastest’ rates at which participants could maintain steady tapping. The unpaced 
tasks were repeated in the same order before and after completion of the duration discrimination 
task in both sessions. In the SMT task, participants were instructed to ‘tap on the desk at a rate 
that is comfortable to maintain’. In the FMT tasks, the instruction was ‘tap at the slowest rate that is 
comfortable to maintain’ (FMT-slowest) and to ‘tap at the fastest rate that is comfortable to maintain’ 
(FMT-fastest). Participants tapped for 30 s in the SMT task and FMT-fastest task, and 45 s in the FMT-
slowest task. For all unpaced tapping tasks, the dependent measures were tapping rate (median of 
the produced intervals) and coefficient of variation (CV).

Apparatus
Stimuli were generated and presented on a Windows desktop computer, using the Psychophysics 
Toolbox extensions (Brainard, 1997; Pelli, 1997) for MATLAB. Auditory stimuli were presented via 
Beyerdynamics 880 Pro headphones. The audio signal was presented and recorded by an RME Fireface 
UC soundcard. All instructions were presented on an ASUS VG24QE LCD screen. Keypress responses 
for the duration discrimination task were collected on a USB keyboard. Tapping responses for the 
unpaced tapping tasks were recorded via a Schaller Oyster S/P contact microphone at a sampling rate 
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of 44,100 Hz. The contact microphone was attached on the right half of the desk by default. Prior to 
the sessions, participants were asked to specify if they would like the microphone to be moved to the 
left half of the desk. None of the participants requested a relocation of the microphone.

Background survey
Prior to the first experimental session, participants completed an online survey. The survey consisted 
of two parts: the first part included questions about participants’ demographics, language skills, 
hearing abilities, and psychological disorders. The second part was ‘The Goldsmiths Musical Sophis-
tication Index’, ‘Gold-MSI’ (Müllensiefen et al., 2014). The survey language was English by default, 
with an option to change the language to German. One question in the Gold-MSI was removed from 
the analyses due to contrasting Likert coding between the different languages in which the survey 
was completed.

Analysis
Data cleaning and exclusion criteria
The raw format of the tapping data was audio, since tapping responses were collected by a micro-
phone. Individual taps were extracted from the audio files after visual inspection of the soundwave of 
each trial to set the noise floor for the recording on that trial. All peaks that exceeded the noise floor 
were retained. Inter-tap intervals (ITIs) were calculated as the difference between neighboring taps’ 
timestamps. We developed an automated procedure that detects and removes single-trial ITI outliers 
while accounting for drift that may have occurred within tapping trials. The script first marked the ITIs 
whose deviation from the median ITI exceeded 3× the median absolute deviation (MAD) of all ITIs in 
the respective trial. Then, it fitted a linear regression to the unmarked ITIs as a function of tap count. 
Finally, it removed any ITI that was smaller than half or larger than 1.5 times the predicted ITI.

Exclusion criteria for the main task were (1) a decrease in accuracy with increasing absolute DEV, 
and (2) chance level performance for both deviation directions (trials where comparison interval was 
shorter, and those where it was longer). To assess the first criterion at the participant level, we fitted 
separate models to each individual’s single-session data where accuracy was predicted by absolute 
deviation of the comparison interval for either shorter (|–DEV|) or longer (|+DEV|) comparison condi-
tions. The models were fitted using MATLAB’s fitglm function, with the response variable distribution 
specified as ‘binomial’, and link function specified as ‘logit’, since the response variable, accuracy, was 
binary. Next, we compared the slopes (β) obtained from the separate models where either |–DEV| or 
|+DEV| predicted accuracy against zero, using one-tailed one-sample t-tests. All participants had posi-
tive slopes for both directions in both session types, indicating that the probability of correct response 
increased with |DEV| in all conditions. To test for chance level performance, for each session type, we 
split all trials into negative and positive DEV conditions and compared each group of trials’ accuracy 
against a mean of 0.5, using one-sample t-tests. Results showed that none of the participants had 
chance-level performance for both deviation directions. Finally, before applying group-level statistics 
such as t-tests and correlations, any data point that fell outside of the interquartile range was excluded 
from the respective distributions.

Preferred rate estimates
We conceptualized individuals’ preferred rates as the stimulus rates where duration discrimination 
accuracy was highest. To estimate preferred rate on an individual basis, we smoothed response accu-
racy across the stimulus rate (IOI) dimension for each session type, using the smoothdata function 
in MATLAB, which outputs the moving average of the neighboring data points within a specified 
window size. We used ‘Gaussian’ as the method for smoothing that calculates the Gaussian-weighted 
moving average over each window. This method gives higher values into the midpoint of the window, 
enhancing the fluctuations in the data that were the focus of the current analysis. As we were inter-
ested in a single-point maximum accuracy for each individual and session, we optimized the window 
size for each session type such that the smoothed data revealed a single global maximum. An illustra-
tion of the optimization for an example participant’s dataset is shown in Figure 2—figure supplement 
1. For small windows, smoothed data included multiple IOI values where accuracy was 1, especially 
in the linear-order sessions. The optimization procedure revealed that, to obtain a single global 
maximum for each individual’s dataset, accuracy should be smoothed by windows of 26 samples in 
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the random-order sessions and 48 samples in linear-order sessions (Figure 2—figure supplement 1). 
To equalize the smoothing across the variables of accuracy and IOI, we also smoothed IOI with the 
same window size. Estimates of preferred rate were taken as the smoothed IOI that yielded maximum 
accuracy.

To compare the preferred rate estimates between session types, we first conducted a paired-
samples t-test. Then, we assessed the correspondence between the estimates. However, conven-
tional correlation methods are not able to capture possible harmonic relationships between variables. 
Thus, we used a permutation test that accounted for the harmonic structure in data, in addition 
to the assessment of one-to-one correspondence between the data points. The test first calculates 
the perpendicular distance of the data points to the closest line among the y=x, y=2*x, and y=x/2 
theoretical lines (referred to as residuals here, as in Kaya and Henry, 2022) whose sum quantifies 
how much the data points deviate from a total harmonic correspondence. Then, the test shuffles 
the Y axis values with respect to the X axis values 1000 times and calculates summed residuals for 
each permutation. The p-value is the percentage of summed residuals smaller than the initial value 
computed from original data. To validate the results obtained from this test, we ran an additional 
analysis using a modular approach. We first calculated how much the slower estimate (larger IOI value) 
diverts, proportionally from the faster estimate (smaller IOI value) or its multiples (i.e. harmonics) by 
normalizing the estimates from both sessions by the faster estimate. The outcome measure was the 
modulus of the slower, with respect to the faster estimate, divided by the faster estimate, described 
as mod(max(X), min(X))/min(X) where X = [session1_estimate session2_estimate]. For example, if a 
participant’s preferred rate estimate is 603 ms in one session, 295 ms in the other session, the slower 
estimate (603 ms) diverts from the multiple of the faster estimate (590 ms) by 13 ms, a proportional 
deviation of 4% of the faster estimate. As the resulting distribution of percentage diversion values 
was non-normal, we used median to summarize the central tendency for percentage diversion of 
slow from fast preferred rate estimates. Then, we ran a permutation test where linear-order session 
estimates were shuffled over 1000 iterations, and median percentage diversion values for each iter-
ation (Figure 2—figure supplement 2) were retrieved. This test statistic was significant (p=0.003), 
indicating that the harmonic relationships we observed in the estimates were not due to chance or 
dependent on the assessment method.

In addition to estimating preferred rate at stimulus rates with peak performance, we investigated 
whether accuracy increased as a function of detuning, namely, the difference between stimulus rate 
and preferred rate, as predicted by the entrainment models (Jones, 2018; Large, 1994; McAuley, 
1995). We tested this prediction by assessing the slopes of mixed-effects logistic regression models, 
where accuracy was regressed on the IOI condition, separately for stimulus rates that were faster or 
slower than an individual’s preferred rate estimate. To do so, we first z-scored IOIs that were faster 
and slower than the participant’s preferred rate estimates separately to render IOI scales comparable 
across participants. The detuning direction (i.e. whether stimulus IOI was faster or slower than the 
preferred rate estimate) was coded categorically. Accuracy (binary) was predicted by these variables 
(z-scored IOI, detuning direction), and their interaction. The model was fitted separately to datasets 
from random-order and linear-order sessions, using the fitglme function in MATLAB. Fixed effects 
were z-scored IOI and detuning direction and random effect was their interaction. We expected a 
systematic increase in performance toward the preferred rate, which would result in a significant inter-
action between stimulus rate and detuning direction. To decompose the significant interaction and to 
visualize the effects of detuning, we fitted separate models to each participant’s single-session data-
sets, and obtained slopes from each direction condition, hereafter denoted as the ‘relative-detuning 
slope’. We treated relative-detuning slope as an index of the magnitude of relative-detuning effects on 
accuracy. We then evaluated these models, using the glmval function in MATLAB to obtain predicted 
accuracy values for each participant and session. To visualize the relative-detuning curves, we aver-
aged the predicted accuracies across participants within each session, separately for each direction 
condition (faster or slower than the preferred rate). To obtain a single value of relative-detuning magni-
tude for each participant, we averaged relative-detuning slopes across direction conditions. However, 
since slopes from IOI > preferred rate conditions quantified an accuracy decrease as a function of 
detuning, we sign-flipped these slopes before averaging. The resulting average relative-detuning 
slopes, obtained from each participant’s single-session datasets, quantified how much the accuracy 
increase toward preferred rate was dependent on, in other words, sensitive to, relative detuning.

https://doi.org/10.7554/eLife.90735
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Flexibility estimates
We hypothesized that larger trial-to-trial changes in stimulus rate would reduce accuracy. To test this 
hypothesis, we first compared participants’ average accuracy between session types, using a paired-
sample t-test. Then, we assessed the effect of absolute rate change (|±ΔIOI|) on accuracy for each 
individual. To do so, we fitted generalized linear models to each participant’s random-order session 
data and obtained slopes (β) that quantified the strength of the |±ΔIOI| effect for each participant. 
The models were fitted using MATLAB’s fitglm function, with the distribution of the response variable 
specified as ‘binomial’, and link function specified as ‘logit’, since the response variable, accuracy, was 
binary. We fitted separate models for trials where the stimulus was faster or slower than the previous 
trial’s stimulus, where the predictor was either |–ΔIOI| or |+ΔIOI|, respectively. The model formula was 
p(Y=1|X)=e(α+βx)/e(α+βx)+1, where Y is accuracy and X is the amount of rate change in trials that were 
faster than previous (|–ΔIOI|) or in trials that were slower (|+ΔIOI|). Next, using one-tailed one-sample 
t-tests, we tested whether models’ β were smaller than zero, which would confirm a decrease in accu-
racy as a function of |–ΔIOI| or |+ΔIOI|. The β values, which quantified individuals’ ability to adapt to 
changes in stimulus rate from one trial to the next, served as our single-individual estimate of oscillator 
flexibility. Finally, to investigate whether responses were affected by the previous trial’s stimulus, we 
computed participants’ average bias in trials where stimulus was faster than the previous one (|–
ΔIOI|), and in trials where it was slower (|+ΔIOI|). We compared the distribution of average bias values 
against zero, using one-sample t-tests. Non-zero positive bias indicated that participants incorrectly 
responded as ‘comparison interval was longer’ in trials where comparison interval was in fact shorter 
than the standard interval, and non-zero negative bias indicated the opposite. We further tested the 
relationship between the flexibility estimates (β from models where |–ΔIOI| or |+ΔIOI| predicted accu-
racy) and average relative-detuning slopes (see Preferred rate estimates) from random-order sessions. 
We predicted that flexible oscillators (larger β) would be less severely affected by detuning, and thus 
have smaller detuning slopes. Conversely, inflexible oscillators (smaller β) should have more difficulty 
in adapting to a large range of stimulus rates, and their adaptive abilities should be constrained 
around the preferred rate, as indexed by steeper relative-detuning slopes.

Results
We first assessed whether accuracy increased with increasing DEV. Comparison of the distribution 
of slopes (β) against zero showed that for both DEV directions, β were greater than zero. Descrip-
tive and inferential statistics are shown in Supplementary file 1a. Next, we compared participants’ 
average accuracies from ‘comparison shorter’ (|–DEV|) and ‘comparison longer’ (|+DEV|) conditions. 
Although average accuracy from the latter conditions was higher in both sessions, these differences 
were nonsignificant.

Preferred rate estimates
We expected that accuracy should depend on IOI differently for each participant, and estimated indi-
viduals’ preferred rate as the IOI where smoothed accuracy was maximum. Between-session compar-
isons showed that estimates did not significantly differ between sessions (p=0.129). When we directly 
compared preferred rate estimates from the two session types (Figure 2A), we found that for most 
participants, the estimates were numerically close to each other. Interestingly, for some participants, 
estimates from one session were close to double or half of those from the other session, suggesting 
a harmonic relationship between the estimates. We applied a permutation test that accounted for 
the harmonic structure of the data and found a significant relationship between estimates from two 
session types (p=0.008, Figure 2A).

Logistic models assessing a systematic increase in accuracy toward the preferred rate esti-
mate in each session type revealed significant main effects of IOI (linear-order session: β=0.26399, 
p=4.9546e-09; random-order session: β=0.17506, p=8.1406e-08), and significant interactions 
between IOI and direction (linear-order session: β=–0.44378, p=4.1998e-13; random-order session: 
β=–0.36437, p=5.0164e-15), indicating that accuracy increased as fast rates slowed toward the 
preferred rate (positive slopes) and decreased again as slow rates slowed further past the preferred 
rate (negative slopes), regardless of the session type. Figure 2B illustrates the preferred rate esti-
mation method for an example participant’s dataset and shows the predicted accuracy values from 
models fitted to each participant’s single-session datasets. Note that the main effect and interaction 
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Figure 2. Main findings of Experiment 1. (A) Left: Each circle represents a single participant’s preferred rate estimate from the random-order session (x 
axis) and linear-order session (y axis). The histograms along the top and right of the plot show the distributions of estimates for each session type. The 
dotted and dashed lines respectively represent 1:2 and 2:1 ratio between the axes, and the solid line represents one-to-one correspondence. Right: 
Permutation test results. The distribution of summed residuals (distance of data points to the closest y=x, y=2*x, and y=x/2 lines) of shuffled data over 
1000 iterations, and the summed residual from original data (dashed line) that fell below 0.008 of the permutation distribution. (B) Top: Illustration 
of the preferred rate estimation method from an example participant’s linear-order session dataset. Estimates were the stimulus rates (IOI) where 
smoothed accuracy (orange line) was maximum (arrow). The dotted lines originating from the IOI axis delineate the stimulus rates that were faster (left, 
IOI < preferred rate) and slower (right, IOI > preferred rate) than the preferred rate estimate and expand those separate axes, the values of which were 
z-scored for the relative-detuning analysis. Bottom: Predicted accuracy, calculated from single-participant models where accuracy in random-order 
(purple) and linear-order (orange) sessions was predicted by z-scored IOIs that were faster than a participant’s preferred rate estimate (left), and by 
those that were slower (right). Thin lines show predicted accuracy from single-participant models, solid lines show the averages across participants, and 
the shaded areas represent standard error of the mean. Predicted accuracy is maximal at the preferred rate and decreases as a function of detuning. 
(C) Average accuracy from random-order (left, purple) and linear-order (right, orange) sessions. Each circle represents a participant’s average accuracy. 
(D) Flexibility estimates. Each circle represents an individuals’ slope (β) obtained from logistic models, fitted separately to conditions where |–ΔIOI| 
(left, green) or |+ΔIOI| (right blue) predicted accuracy, with greater values (arrow’s direction) indicating better oscillator flexibility. The means of the 
distributions of β from both conditions were smaller than zero (dashed line), indicating a negative effect of between-trial absolute rate change on 
accuracy. (E) Participants’ average bias from |–ΔIOI| (green) and |+ΔIOI| (blue) conditions in random-order (left) and linear-order (right) sessions. Negative 
bias indicates underestimation of the comparison intervals, positive bias indicates the opposite. Box plots in C–E show median (black vertical line), 25th 
and 75th percentiles (box edges), and extreme data points (whiskers). In C and E, empty circles show outlier values that remained after data cleaning 
procedures. (F) Correlations between participants’ average relative-detuning slopes, indexing the steepness of the increase in accuracy toward the 
preferred rate estimate (from panel B), and flexibility estimates from |–ΔIOI| (top, green) and |+ΔIOI| (bottom, blue) conditions (from panel C). Solid black 
lines represent the best-fit line, dashed lines represent 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Illustration of the optimization procedure and parameter choices for smoothing accuracy in Experiment 1.

Figure supplement 2. Permutation test results from the modular approach.
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were obtained from mixed-effects models that included aggregated datasets from all participants, 
whereas the slopes quantifying the accuracy increase as a function of detuning (i.e. relative-detuning 
slopes) were from models fitted to single-participant datasets.

Flexibility estimates
Average accuracy (Figure  2C) was higher in linear-order (M=0.834, SD = 0.039) sessions than in 
random-order (M=0.695, SD = 0.072) sessions (t(24) = 12.5964, p=4.5497e-12). β from models where 
|±ΔIOI| predicted accuracy was significantly smaller than zero for both |–ΔIOI| and |+ΔIOI| conditions 
and we found no significant differences between β from the former and latter conditions, showing 
that the probability of giving a correct response decreased with the amount of rate change across 
trials, regardless of whether a stimulus was faster or slower than the previous trial. Descriptive and 
inferential statistics are provided in Supplementary file 1a. The distributions of β from individual fits 
are shown in Figure 2D. To investigate the source of the negative relationship between |±ΔIOI| and 
accuracy, we analyzed how rate change affected bias. In both session types, participants’ average 
bias from faster-than-previous (|–ΔIOI|) conditions was significantly smaller than zero (random-order 
session: M=–0.179, SD = 0.144, t(26) = –6.4487, p=3.9085e-07; linear-order session: M=–0.065, SD = 
0.078, t(26) = –4.3159, p=0.00010215), and average bias from slower-than-previous (|+ΔIOI|) condi-
tions was significantly greater than zero (random-order session: M=0.195, SD = 0.096, t(26) = 10.5406, 
p=3.5025e-11; linear-order session: M=0.063, SD = 0.046, t(23) = 6.6472, p=4.4044e-07), as shown 
in Figure 2E. These results indicate that participants perceived longer comparison intervals as shorter 
on the trials where stimulus was faster than the previous trial, and vice versa on trials where stimulus 
was slower.

We tested the relationship between the flexibility estimates and single-participant relative-detuning 
slopes from random-order sessions (Figure 2B). The results revealed negative correlations between 
the relative-detuning slopes and flexibility estimates, both with β(r(23) = –0.52905, p=0.0065428) from 
models where |–ΔIOI| predicted accuracy (adapting to speeding-up trials), and β (r(23) = –0.57999, 
p=0.0023735) from models where |+ΔIOI| predicted accuracy (adapting to slowing-down trials). That 
is, the performance of individuals with less flexible oscillators suffered more as detuning increased. 
These results are shown in Figure 2F.

Unpaced tapping
Individuals completed a series of unpaced tapping tasks in the beginning and in the end of each 
session. Here, we focused on tapping rate from the SMT task. We first compared individuals’ SMT 
before and after sessions. For both random- and linear-order sessions, SMT from before and after the 
session correlated and were not significantly different. Given the consistency of the measure, we aver-
aged participants’ SMT within sessions and compared the mean SMT across session types. We found 
a strong correlation between tapping rates from the random- and linear-order sessions. Test results of 
the unpaced tapping analyses are provided in Supplementary file 1b.

Discussion
The results of Experiment 1 showed that discrimination accuracy systematically increased with the 
difference between standard and comparison intervals (DEV) and decreased with the difference in 
stimulus rate between consecutive trials (|±ΔIOI|). Accuracy showed a nonlinear relationship with IOI: 
we observed improved accuracy at an individual-specific range of stimulus rates and in cases at their 
(sub)harmonics.

For most participants, estimates from random-order sessions were close to double the estimates 
from the linear-order sessions (see Figure  2A). Correspondence between estimates from the two 
session types shows the reliability of the paradigm and robustness of the methods we developed for 
the preferred rate estimation, since we were able to obtain similar estimates in repeated measure-
ments, and under conditions with major differences in stimulus history and task difficulty. The current 
findings support three key predictions of the entrainment account. First, similar estimates of preferred 
rate under different temporal contexts and repeated measurements as well as a systematic increase 
in accuracy toward the preferred rate suggest improved timing abilities in situations with smaller 
detuning between the oscillator’s preferred rate and the stimulus rate (Notbohm et al., 2016). Second, 
that the estimates from the more challenging random-order session were narrower while preserving 
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the correspondence to those from other conditions indicates that the internal oscillators were able 
to adaptively (McAuley and Jones, 2003; McAuley, 1995) entrain to the range of rates around their 
preferred rate, i.e., their entrainment region (McAuley et al., 2006). Finally, the harmonic relation-
ship between the estimates from the two session types suggest the oscillator’s ability to respond to 
multiple, nested rates, either due to the circular nature of oscillators (McAuley, 1995) or by involve-
ment of multiple nested oscillators in rhythmic entrainment (Jones, 2008).

Two sets of results confirmed the presence of history effects on timing performance. Accuracy was 
lower in random-order sessions where absolute rate change (|±ΔIOI|) was maximum, than in linear-
order sessions where it was minimum. Moreover, accuracy in random-order sessions decreased as rate 
change increased. The difference in discrimination accuracy between sessions cannot be attributed 
merely to the effects of the global context, given that the global context was identical across 
session types. If the duration representations were drawn toward the mean of the rates presented 
in the session (‘the central tendency effect’, Jazayeri and Shadlen, 2010), accuracy would be similar 
between the sessions with identical global means. Instead, we observed a drastic decrease in accuracy 
in the random-order session, which suggests a stronger influence of local than global context in the 
current paradigm. The analyses of bias confirmed this explanation by showing that internal duration 
representations on a given trial were biased toward the previous stimulus rate. Interestingly, rate 
change across trials affected bias even when it was small and fixed.

Experiment 2
Methods
Participants
32 participants were recruited from the participant pool of Max Planck Institute for Empirical Aesthetics 
laboratories. The procedure was approved by the Ethics Council of the Max Planck Society (approval 
number 2019_04) and the Research Ethics Board at Toronto Metropolitan University and was in accor-
dance with the Declaration of Helsinki. Participants signed an informed consent prior to the session 
and received 21 euros on average as compensation after completing the session. Prior to the experi-
mental sessions, they also completed an online survey. We targeted a uniform age distribution (M=50, 
SD = 17): within the range of 20–80 years of age, we recruited 5 or 6 participants from each 10-year 
age bin.

Procedure
The study consisted of an online background survey, a series of unpaced tapping tasks including the 
SMT, two PPT tasks, a duration discrimination and a paced tapping task. Participants’ hearing thresh-
olds were measured using standard pure-tone audiometry. Participants were not excluded based 
on hearing threshold. The experiment procedure is illustrated in Figure 3A. Details of all tasks are 
provided below.

Figure 3. Experiment 2 (A) timeline, and illustrations of the (B) duration discrimination, (C) paced tapping, (D) slider, and (E) keypress tasks.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Results of the bootstrapping analysis.

https://doi.org/10.7554/eLife.90735


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 13 of 30

Participants completed an online survey prior to the session. The lab session started with the SMT 
and FMT tasks, respectively. Then, participants were asked to set the sound volume to be used in the 
auditory tasks throughout the experiment using a slider that they clicked with a mouse. The exper-
iment proceeded with the slider PPT task, the keypress PPT task, then the duration discrimination 
and paced tapping tasks, and finally with repetitions of the SMT, FMT, and slider tasks. The order 
of the keypress, duration discrimination and paced tapping tasks was pseudo-randomized for each 
participant and all six order combinations were counterbalanced. Prior to each task, participants were 
presented with instructions on the screen. Short breaks were allowed between tasks. Upon comple-
tion of the experiment, participants were moved to another booth in the laboratory room to complete 
a pure-tone audiometry measurement. An individual session including audiometry lasted 90 min on 
average. Instructions (see Supplementary file 2) were in German.

Duration discrimination task
The stimuli for the duration discrimination task were the same as in Experiment 1. The conditions 
differed from Experiment 1 random-order sessions in three aspects: here, the pool of stimulus rates 
was linearly spaced between 200 ms and 1000 ms in 10 ms steps, comparison interval deviated from 
standard IOI at a fixed amount of DEV = ±13%, and there were two repetitions of each stimulus rate. 
For determining the spacing for IOI, we performed a bootstrapping analysis on data from our previous 
study, from which the current paced tapping paradigm was adapted (Kaya and Henry, 2022). We first 
downsampled each participant’s single-session data from the previous study (Kaya and Henry, 2022) 
with each even step size between 4 ms and 20 ms. That is, for the respective step size, we filtered 
data where IOI corresponded to the spacing value added to the smallest (200 ms) to the largest (1000 
ms) IOI (e.g. trials with IOI = 200, 204, 208 ms, and so on, for step size of 4 ms). We performed the 
preferred rate estimation procedure for each downsampled dataset, used in the experiment analyses. 
To assess the optimum step size that would represent the experiment’s findings, we assessed the 
correspondences between (1) preferred rate estimates from the original and downsampled datasets 
for each session and (2) estimates from downsampled datasets between sessions. In both steps, the 
correspondence between estimates was quantified by their harmonic difference (i.e. the sum of the 
data points Euclidean distances to the closest line among y=x, y=2x, and y=x/2 lines). A smaller 
difference value indicated that the estimates subject to comparison were similar, or close to doubles 
or halves of each other. Harmonic differences obtained from the first and seconds steps of the boot-
strapping analysis are shown in Figure 3—figure supplement 1. Together, the bootstrapping analyses 
showed that the average harmonic difference between estimates from original versus downsampled 
datasets was smallest at the step size of 10, where harmonic difference between downsampled 
sessions’ estimates was also small.

We selected the fixed deviation for comparison intervals as follows. First, we estimated thresh-
olds for negative and positive deviations from Experiment 1. To do so, for each participant’s (N=27) 
random-order session data, we averaged the accuracy at each deviation level, separately for negative 
and positive deviations. We fitted psychometric curves to the mean values and obtained the deviation 
amount that yielded 75% predicted accuracy from the fitted curve. From the resulting distributions 
of thresholds for negative and positive deviations, we removed outliers by excluding any value that 
exceeded 3× the MAD of all threshold values in the respective distribution. Finally, we took the mean 
threshold value across participants and deviation directions. We then piloted the task on a small 
sample to confirm that the value of 13% was appropriate to be used in the duration discrimination task 
in Experiment 2 that would give an approximate accuracy of 75%.

The task (Figure 3B) consisted of two blocks with complementary DEV conditions. Participants 
were presented with all 81 stimulus rates in the same order in each block. However, if the comparison 
interval for a given stimulus rate was longer in the first block, it was shorter in the second, and vice 
versa. As in Experiment 1 random-order sessions, the change in IOI between consecutive trials (ΔIOI) 
was maximized, and the direction of the change alternated on every trial. For each participant, we 
generated a unique stimulus order which was constant across the blocks and was also used in the 
paced tapping task.

The instructions of the task included two example trials, and participants practiced the task for at 
least 6 trials. The properties and the procedure of the example and practice trials were identical to 
those in Experiment 1.
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Paced tapping task
The task (Figure 3C) was a shorter version of the synchronization-continuation paradigm we devel-
oped in a previous study (Kaya and Henry, 2022). On each trial, participants were presented with an 
isochronous stimulus sequence of five sounds, followed by silence. Sound stimuli were the woodblock 
samples used in Experiment 1. Participants were instructed to start tapping to the stimulus as soon 
as possible, and to continue tapping at the same rate once the sounds ceased, until the end of the 
trial, which was signaled by a change in the screen color. For each participant, the stimulus rates as 
well as their order were identical to those generated for the duration discrimination task. In these 
matched stimulus conditions, IOI ranged from 200 ms to 1000 ms in 10 ms steps. Allowed duration 
for continuation tapping was seven times the stimulus IOI for fast (IOI < 300 ms) stimuli, and six times 
the IOI for slow (IOI > 300 ms) stimuli. Prior to the task, participants completed 6 practice trials, with 
specifications described in Kaya and Henry, 2022.

Unpaced tapping tasks
The procedure for the SMT task and FMT tasks was identical to those in Experiment 1.

Slider task
The slider task was a PPT task where participants dynamically adjusted the rate of stimulus sequences 
comprising the same woodblock samples used in Experiment 1. Each trial started with an isochronous 
stimulus sequence, and participants were presented with the instructions at the top of the screen. A 
horizontal slider (Figure 3D) was displayed with labeled endpoints ‘schnell’ (fast) and ‘langsam’ (slow). 
Moving the mouse changed the indicator of the slider, marked in red, and each left-click produced 
an isochronous stimulus sequence with the selected rate. A right mouse click saved the final rate 
and terminated the trial. Participants completed two blocks of 8 trials of the task. In each block, the 
start-rate of the stimulus sequence was 200 ms in half of the trials and 1000 ms in the other half. The 
location of the labels also differed between trials, and the ‘fast’ label was on the left end in half of 
the trials, and vice versa in the other half. Label locations and start-rates were counterbalanced within 
each block, and their combinations were ordered randomly.

Keypress task
The keypress task was also a PPT task where participants indicated their preferred rates by stop-
ping stimulus sequences with dynamically changing rates. Stimulus samples making up the sequences 
were the woodblock samples used in Experiment 1. Each trial started with a stimulus sequence, and 
participants were presented with the instruction text on the top, and a dynamic figure on the middle 
of the screen that indicated the time left to respond. If no response was given during the stimulus, 
the trial was repeated. Stimuli started fast (IOI = 200) in half of the trials and slow (IOI = 1000) in the 
other half and increased or decreased by 10 ms in each interval, depending on the start-rate. That is, 
the stimulus got slower in each interval on fast-start trials, and vice versa on slow-start trials. Partici-
pants completed 6 trials of the keypress task. The order of the stimulus conditions was randomized. 
Figure 3E illustrates a fast-start condition of the keypress task.

Design
The stimulus IOIs presented in all tasks that involved an auditory stimulus ranged from 200 ms to 
1000 ms. Thus, IOI was an independent variable, on which rate preferences and performances were 
assessed to be compared across tasks. The order of stimulus IOI, and thus ΔIOI, was matched between 
duration discrimination and paced tapping tasks, from which independent variables of |+ΔIOI| and |–
ΔIOI| were derived. Other independent variables were DEV direction (i.e. whether comparison interval 
was shorter or longer than the standard) in duration discrimination task, repetition for SMT, FMT, and 
slider tasks, and start-rate for slider and keypress tasks.

Dependent variables were the tapping rate in SMT and FMT, selected rate in slider and keypress, 
accuracy and bias in duration discrimination, and signed or absolute values of tempo-matching errors 
(TME) in paced tapping tasks.
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Apparatus
Apparatus for the presentation of sound stimuli, and collection of tapping and keyboard responses 
were identical to those of Experiment 1. Additionally, participants used a mouse for giving responses 
in the slider task, and for setting the desired sound volume. The background survey was a German 
translation of the survey used in Experiment 1. We conducted Experiment 2 in German given that the 
participant sample consisted of older individuals who were less likely to fluently speak English than the 
mostly student sample we recruited in Experiment 1.

Analysis
Data cleaning and exclusion criteria
As Experiment 2 involved multiple tasks, participants were excluded from only the respective tasks 
where their performance met the exclusion criteria.

The duration discrimination task in Experiment 2 had two exclusion criteria: (1) chance-level perfor-
mance in both DEV directions, as in Experiment 1 and (2) ceiling performance in overall response 
accuracy (average accuracy >0.95). Two participants were excluded based on the first criterion, one 
participant was excluded based on the second.

On the trial level, the paced tapping task had two exclusion criteria: first, any inter-tap interval (ITI) 
that was smaller than half or bigger than 1.8 times the stimulus IOI was excluded. From the remaining 
ITIs, outliers were detected by the script described in Data cleaning and exclusion criteria for unpaced 
tapping tasks under Experiment 1 in Methods section. On the participant level, criteria were incom-
patibility between stimulus rate and tapping rate, and low number of tapping intervals on average. To 
test the first criterion, we fitted models to overall task data where the tapping rate (i.e. the median of 
all ITIs in each trial after trial-level data cleaning) was predicted by stimulus IOI and obtained slopes. 
Two participants were excluded as they had slopes smaller than 0.5. One participant was excluded 
based on the second criterion, as the average number of intervals they produced across trials was 
smaller than 7.

The data cleaning procedure of unpaced tapping tasks was identical to that described for Experi-
ment 1. In the slider task, we recorded whether participants listened to the different stimulus rates by 
clicking on the different locations on the slider. Exclusion criterion was not testing the stimulus rates 
on more than 75% of the trials by producing a minimum of one mouse click, which suggested that the 
participant did not engage with the task. One participant was excluded from the slider task based on 
this criterion. From the remaining participants’ data, any trial without a mouse click was removed from 
further analyses. No exclusion criterion was defined for the keypress task.

Finally, before applying group-level statistics such as t-tests and correlations, any data point that 
fell outside of the interquartile range was excluded from the respective distributions.

Outcome measures
The outcome measures from the duration discrimination task were accuracy and bias. Response 
coding was same as in Experiment 1. Since the duration discrimination task in Experiment 2 included 
two repetitions of each IOI (presented in different blocks with different DEV directions), accuracy and 
bias were averaged across IOI repetitions.

For each trial in the paced tapping task, we calculated the TME following the analysis in our 
previous study (Kaya and Henry, 2022). TME was the difference between tapping rate (median ITI 
of all taps in a trial) and stimulus IOI, normalized by stimulus IOI, described by TMEk = ((median [ITI1, 
ITI1,…, ITIn,])–IOIk)/IOIk, where k is the trial index and n is the maximum number of intervals in a single 
trial. A positive TME indicated that the tapping rate was slower than stimulus rate, and a negative 
TME indicated that it was faster. For the unpaced tasks, the outcome measure from each trial was the 
tapping rate, calculated as the median ITI after trial-level data cleaning. From each trial of the SMT 
task, we also obtained the CV, calculated as the standard deviation of all intervals divided by their 
mean. We further compared SMT across repetitions of the same task throughout the experiment using 
Pearson correlations and paired-samples t-tests.

The slider task had two start-rate conditions and two repetitions throughout the experiment (before 
and after main tasks). The dependent measure for each trial was the median of all final responses. 
We assessed the main effects and interactions of start-rate and repetition on slider responses across 
participants, using a repeated-measures ANOVA. We calculated the rate preference on each trial of 
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the keypress task as the presented stimulus’ rate at the time of the keypress. The summary measure 
for each start-rate was the median of all rate preferences in trials with same start-rate.

Preferred rate estimates
Experiment 2 involved various tasks by which we aimed to estimate individuals’ preferred rate. For 
the SMT task, we estimated preferred rate as median tapping rate. For the slider and keypress tasks 
(PPT), we averaged participants’ indicated preference across conditions and repetitions. For both 
the duration discrimination and paced tapping tasks, we estimated preferred rate as the stimulus IOI 
yielding peak performance as follows.

Best-performance rates in the duration discrimination task were calculated by smoothing accuracy 
as a function of stimulus rate, as in Experiment 1. After excluding the study-specific outliers on the 
participant level, for each participant, we smoothed accuracy using ‘Gaussian’ method in smooth-
data function in MATLAB. Following the optimization procedure used in Experiment 1, we assessed 
the window size that revealed a single-point maximum accuracy for each participant. The optimum 
window was 13 samples, which was used to smooth both the accuracy and IOI values in each partic-
ipant’s dataset.

The dependent measure in paced tapping task was TME, which was a signed, proportional error 
measure. Best-performance rates in this task were the conditions where participants tapped with the 
least errors, quantified by the absolute TME, |TME|. Since the paced tapping task shared the stimulus 
rate conditions with duration discrimination task, we used the optimum window size obtained for the 
duration discrimination task for smoothing |TME| so that the estimates would be maximally compa-
rable across tasks.

Flexibility estimates
Experiment 1 in the current study and the findings of our previous study (Kaya and Henry, 2022) 
showed robust effects of stimulus history on rhythm perception and production. As in those analyses, 
flexibility in Experiment 2 was defined as the ability to adapt to changes in the rhythmic context.

In the duration discrimination task, we assessed flexibility by fitting logistic models to each partici-
pant’s data where accuracy was predicted either by |–ΔIOI| or |+ΔIOI|, as in Experiment 1. A negative 
slope obtained from the models indicated that the probability of giving a correct response decreased 
as the |±ΔIOI| increased. Similarly, in the paced tapping task, we fitted linear models where |TME| was 
predicted either by |–ΔIOI| or |+ΔIOI|. A positive slope from the models indicated that the absolute 
TME increased with |±ΔIOI|. However, as a final step, we inversed the slopes obtained from this task 
so that more negative β estimates indicated less flexibility.

We tested the hypothesis of a decrease in oscillator flexibility with advancing age by correlating 
age and slopes from each |±ΔIOI| condition (flexibility estimates) in duration discrimination and paced 
tapping tasks (Pearson correlation, one-tailed). Since these analyses involved multiple comparisons, 
we controlled for the false discovery rate (FDR), using the Benjamini-Hochberg method (Benjamini 
and Hochberg, 1995; Benjamini and Yekutieli, 2001). To test whether overall performance decreased 
with age, we ran another series of correlations between age and average accuracy in duration discrim-
ination task, and average |TME| in the paced tapping task, and FDR-corrected the p-values.

Additionally, we explored the relationship between individuals’ age and preferred rate estimates, 
by separate correlation analyses between age and preferred rate estimated from each condition 
and measurement of the slider and keypress (PPT) tasks, and preferred rate estimates from duration 
discrimination and paced tapping tasks. Since we defined no hypothesis for preferred rate and age 
relationships, we used two-tailed Pearson correlation and no correction.

Results
Unpaced tapping
Tapping rates from ‘fastest’ and ‘slowest’ FMT trials showed no difference between pre- and post-
session measurements and were additionally correlated across repeated measurements. Given the 
consistency of the measures, rates from each FMT task from first and second measurements were 
averaged for further analyses. Tapping rates from SMT task were also correlated across measure-
ments. However, rates from the second measurement were significantly slower than those from the 
first measurement. SMT CV did not correlate across measurements (p=0.071731), and CV from the 
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second measurement (M=0.070, SD = 0.033) was significantly higher (t(26) = –2.5116, p=0.018563) 
than CV from first measurement (M=0.055, SD = 0.023). The results of the pairwise comparisons 
between tapping rates from all unpaced tapping tasks across measurements are provided in Supple-
mentary file 1b.

Preferred rate estimates
Individuals’ PPT was measured by the slider and keypress tasks. In the slider task, rate preferences 
from the same start-rate conditions were significantly correlated and showed no systematic differences 
across repeated measurements. Within the first measurement block, rates from slow-start conditions 
(M=0.732, SD = 0.165) were slower than those from fast-start conditions (M=0.658, SD = 0.167) (t(25) 
= –2.109, p=0.045134), although they were significantly correlated (r(24) = 0.691, p=9.3667e-05). Rate 
preferences from the second measurement showed no difference between the start-rate conditions 
(p=0.70863) and were significantly correlated (r(27) = 0.521, p=0.0044391). A repeated-measures 
ANOVA revealed no main effects of start-rate (p=0.16985) or repetition (p=0.86523), and no interac-
tion (p=0.06701). In the keypress task, rate preferences from the fast-start condition (M=0.467, SD = 
0.092) were significantly faster than those from the slow-start condition (M=0.840, SD = 0.111) (t(28) 
= –13.8046, p=5.1076e-14), and we found no correlation between rate preferences across conditions 
(p=0.80261). The distributions of rate preferences from separate conditions of the slider and keypress 
tasks are shown in Figure 4A.

Preferred rate estimates from both the duration discrimination and paced tapping tasks, measured 
by the stimulus rates with best performance, correlated significantly with SMT (Figure 4A, see also 
Supplementary file 1c). Moreover, we found no significant differences between estimates from either 
task and SMT. However, estimates did not correlate between duration discrimination and paced 
tapping tasks (p=0.93433), and were slower (t(26) = –2.7817, p=0.0099304) in the latter (M=0.641, 
SD = 0.173) than in the former task (M=0.541, SD = 0.175). In Figure 4B, estimates from the two 
performance tasks and SMT (first measurement) are illustrated. In general, estimates from both the 
paced and unpaced tapping tasks were slower than those from the duration discrimination task. 
However, the nonparallel nature of the lines that connect single-participant preferred rates for each 
task (Figure 4B, left) indicates that the amount of ‘slowing’ in the tapping tasks relative to the discrim-
ination task varied across individuals. We reasoned that if the degree of slowing for each individual 
arises from a common source for both tasks, which we will call ‘the motor component’, the differ-
ences between estimates for the discrimination versus both tapping tasks should be consistent. We 
quantified the contribution of the motor component to preferred rates from each tapping task by 
subtracting the duration discrimination task estimates, which yielded two difference scores (paced 
tapping – duration discrimination and SMT – duration discrimination). These difference scores were 
significantly positively correlated (r(25) = 0.54084, p=0.0035823), confirming that each individual had 
a consistent motor component contribution that slowed their preferred rate estimate in different 
tapping tasks in a similar manner.

Rate preferences in the slider task correlated with SMT only in slow-start conditions from the first 
measurement, and in fast-start conditions from the second measurement. Rate preferences from the 
keypress task only correlated with those from slider task conditions (i.e. within PPT tasks), but not with 
any SMT measurement or estimates from the performance tasks.

Flexibility estimates
We hypothesized negative effects of stimulus history on performance in both perceptual and motor 
tasks. We found similar effects of stimulus history in both tasks. β obtained from the separate models 
quantifying the effect of |–ΔIOI| and |+ΔIOI| on accuracy in the duration discrimination task were both 
significantly smaller than zero, indicating that accuracy decreased as |±ΔIOI| increased, both in trials 
where the stimulus was faster and slower than previous (Figure 5A). In the paced tapping task, β from 
models where |TME| was predicted either by |+ΔIOI| or |–ΔIOI| were significantly greater than zero, 
indicating that TME increased as a function of |±ΔIOI| (Figure 5B). Paired-samples t-tests revealed no 
significant differences between the strength of the |–ΔIOI| vs |+ΔIOI| effect in either task. However, β 
from models where |+ΔIOI| predicted |TME| were numerically smaller, and significantly more variable 
than those models where |–ΔIOI| predicted |TME|; the difference in variability was assessed using a 
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Brown-Forsythe test (F(1,54) = 5.8671, p=0.01881). Descriptive statistics and test results for compar-
ison of β estimates against zero are provided in Supplementary file 1d.

To investigate the direction of history effects on performance, we compared perceptual and motor 
biases in trials with negative and positive rate change. In conditions where the stimulus on the current 
trial was faster than the previous one, average bias (M=–0.166, SD = 0.094) was significantly smaller 
than zero (t(28) = –9.4985, p=1.48e-10, Figure 5A); and average TME (M=0.014, SD = 0.021) was 
greater than zero (t(26) = 3.3895, p=0.0011216, Figure 5B). The opposite was the case in condi-
tions with slower-than-previous stimulus, as average bias (M=0.217, SD = 0.108) was greater (t(27) 
= 10.587, p=2.059e-11, Figure 5A) and average TME (M=–0.013, SD = 0.018) was smaller (t(26) = 
–3.7556, p=0.00044069, Figure 5B) than zero.

Figure 4. Results of Experiment 2 preferred rate analyses. (A) Top: Estimates of preferred rate from each task condition. Box plots show median (black 
vertical line), 25th and 75th percentiles (box edges), and remaining data range (whiskers). Vertical lines above the box plots represent within-participants 
pairwise comparisons. The horizontal dashed lines represent the minimum and maximum stimulus rates presented in the experiment. Bottom: Pairwise 
correlations between preferred rates across tasks. For the slider and key-press tasks, boxes are colored to indicate fast-start (pink) and slow-start (blue) 
conditions. Coefficients and p-values are reported for significant correlations only. (B) Relationship between the preferred rate estimates from the paced 
tapping, duration discrimination, and spontaneous motor tempo (SMT) (first measurement) tasks. Left: Participants’ estimates from the three tasks. Each 
circle represents an individual’s preferred rate estimate, connected by lines between the tasks. Both circles and lines are color-sorted by individuals’ 
SMT, ranging from fast (pink) to slow (blue). Right: Correlation between the difference scores. Each circle represents a single participant’s difference 
score, namely, how different the estimates from SMT (x axis) and paced tapping (y axis) tasks were than those from the duration discrimination task. Solid 
black line represents the regression line, dashed lines represent 95% confidence intervals.
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In the duration discrimination task, we also assessed the differences in responses to shorter versus 
longer comparison intervals as an indicator of how individuals responded to phase perturbations, by 
comparing accuracy in trials with |–DEV| and |+DEV|. Participants’ average accuracy from the latter 
conditions (M=0.746, SD = 0.070) were higher (t(25) = –2.5536, p=0.017141) than those from the 
former conditions (M=0.694, SD = 0.116).

Age-related changes in oscillator flexibility
One of the main goals of Experiment 2 was to compare the estimates of preferred rate and flexibility 
across individuals to assess the age-related changes in oscillator properties. We recruited our partici-
pant sample to have a flat age distribution, with participants ranging in age from 20 to 76 years.

The results revealed significant correlations (FDR-corrected for multiple comparisons) only between 
individuals’ age and flexibility estimates from |–ΔIOI| conditions. β from logistic fits where |–ΔIOI| 
predicted accuracy in the duration discrimination task negatively correlated with age (r(27) = –0.525, 
p=0.0021, Figure 5C). Similarly, we found a significant negative correlation between the inversed 
β from models where |–ΔIOI| predicted |TME|, and age (r(24) = –0.389, p=0.0249, Figure 5D). The 
findings indicate that the ability to adapt to faster-than-previous rates decreased with increasing age.

Discussion
The results of Experiment 2 revealed correspondences between preferred rate measures from various 
tasks, and effects of stimulus history on performance that were stronger for older individuals. The 
findings on preferred rate are consistent with previous research assessing tapping behavior at stimulus 
rates near to or far from individuals’ SMT. During synchronization to (Scheurich et al., 2018) or contin-
uation of (Zamm et al., 2018; McAuley et al., 2006; Kliger Amrani and Zion Golumbic, 2020b) a 
rhythmic stimulus, individuals overproduce stimulus rates that are faster, underproduce those that are 
slower than their SMT. During continuation tapping, produced intervals have also been shown to drift 
back toward individuals’ SMT (Zamm et al., 2018; Yu et al., 2003). However, these previous para-
digms have generally used a rough sampling of stimulus rates (e.g. 3) (McAuley et al., 2006; Kliger 
Amrani and Zion Golumbic, 2020b; Yu et al., 2003), or those that predefine conditions around SMT 
(Zamm et al., 2018; Scheurich et al., 2018). Here, we used a wide and finely sampled range of stim-
ulus rates that were unrelated to individuals’ SMT. Thus, that we found SMT to be the anchor rate with 

Figure 5. Results of Experiment 2 flexibility analyses. (A and B) Effects of between-trial absolute rate change (|±ΔIOI|) on performance in Experiment 
2 (A) duration discrimination and (B) paced tapping tasks. In the top panels, each circle represents an individual’s slope (β) obtained from models, 
fitted separately to conditions where |–ΔIOI| (left, green) or |+ΔIOI| (right, blue) predicted (A) accuracy in the duration discrimination or (B) |TME| in the 
paced tapping task. The arrow direction indicates better flexibility. In the bottom panels, box plots show (A) average bias in duration discrimination and 
(B) average TME in paced tapping tasks, from |–ΔIOI| (left, green) and |+ΔIOI| (right, blue) conditions. In all panels, box plots show the median (black 
vertical line), 25th and 75th percentiles (box edges), and extreme data points (whiskers). (C and D) Correlations between individuals’ age and the flexibility 
estimates from (C) duration discrimination and (D) paced tapping tasks. Solid black lines represent the regression line, dashed lines represent 95% 
confidence intervals. Histograms above each plot show the distribution of participant ages after outlier corrections.

https://doi.org/10.7554/eLife.90735


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 20 of 30

optimal rhythmic performance further supports the idea that perception and production of rhythms 
are governed by a common mechanism which responds similarly to a range of stimulus rates across 
various tasks. Most work comparing individuals’ timing performance across stimulus rates with respect 
to their SMT has made use of paradigms that involve a rhythmic motor component. The current study 
is the first that compared individuals’ duration discrimination abilities across intervals of a rhythmic 
stimulus with respect to their SMT.

Preferred rates from the preference tasks with and without a rhythmic motor component (SMT 
and PPT, respectively) were more similar than preferred rate estimates from performance tasks (dura-
tion discrimination and paced tapping) with and without rhythmic movement. Rate preferences from 
the same start-rate conditions of the slider task showed strong correspondence across repeated 
measurements. Interestingly, rates from the fast-start conditions showed the strongest correlation 
across measurements, and with SMT. We interpret this difference between the fast- and slow-start 
conditions as being in line with the scalar property of time perception (Wearden and Lejeune, 2008), 
in that absolute timing accuracy is generally more accurate for faster rates and shorter intervals. More-
over, this finding is supported by similar findings of increased discrepancy between SMT and PPT at 
slow, as compared to fast stimulus rates (Michaelis et al., 2014). Preferred rates from the keypress 
task showed large differences between start-rate conditions, although rates from slow-start trials 
were correlated with those from most slider task conditions. Given that the keypress task involved 
no dynamical adjustment of stimulus rate, preferences may have been constrained to a smaller range 
of stimulus rates around the start-rate. Nonetheless, individual differences were still observable, and 
preferred rates were still consistent with those measured in the other PPT (slider) task.

Analyses focused on flexibility revealed that both duration discrimination and paced tapping perfor-
mance were worse when rate change from one trial to the next was large, regardless of the direction 
of the change (i.e. whether stimulus was faster or slower than the previous one). In cases where stim-
ulus in each trial was faster than the previous, slower stimulus, participants tended to perceive longer 
comparison intervals as shorter and tap slower than the stimulus. In the opposite cases, they tended 
to perceive shorter comparison intervals as longer and tap faster than the stimulus. Thus, non-zero 
biases and signed tapping errors observed in response to rate changes suggest that internal repre-
sentations and behavior in each trial reflected the properties of the preceding trial; we will return to 
this point in General discussion. These findings are mostly in line with findings of Experiment 1 (current 
study) and those from our previous tapping study (Kaya and Henry, 2022), and further emphasize 
the presence of history effects on timing performance. The finding of signed tapping errors supports 
the idea that oscillators gradually adjust their phase and period to a newly encountered stimulus, 
resulting in discrepancy between the stimulus interval and oscillator period during synchronization to 
a rhythmic stimulus (McAuley and Jones, 2003; Loehr et al., 2011; McAuley, 1995). However, in our 
previous study (Kaya and Henry, 2022), tapping performance was especially affected when stimulus 
rates were faster than the preceding trial. In that study, |TME| was calculated from only synchronization 
tapping for the flexibility analysis. Here, we calculated |TME| from all taps from both the synchroniza-
tion and continuation segments of each trial due to the lower number of trials. That is, in our previous 
study, we focused only on the first produced intervals on each trial, whereas here we included intervals 
that were produced after participants had a longer period to adapt to the new stimulus rate.

A critical finding from the current study was that flexibility, estimated inversely from the strength 
of the effect of |–ΔIOI| on performance in both tasks with and without a motor component, decreased 
with age. Reduced performance in timing tasks for aging individuals is a common finding across 
perceptual (Szymaszek et al., 2009; Incao et al., 2022; Henry et al., 2017) and motor (Turgeon 
et  al., 2011; von Schnehen et  al., 2022) tasks. However, overall timing performance measures, 
namely, task averages of duration discrimination accuracy and tapping errors, showed no systematic 
relationships with individuals’ age, suggesting that age-related changes in rhythm perception might 
be specific to adaptive mechanisms rather than general timing abilities.

In addition to focusing on deviations in stimulus rate between trials, we also assessed how partici-
pants responded to within-trial deviations, i.e., how much comparison interval deviated from the stim-
ulus IOI. As in Experiment 1, however, significantly here, accuracy was marginally higher in conditions 
with longer compared to shorter comparison intervals. That this difference reached significance only 
in the current study may be due to the age of the participant sample, given the finding that adapting 
to faster, but not slower stimulus was more challenging for older individuals.
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Of note is that the paradigm in Experiment 2 was derived from two multi-session experiments 
through a series of reliability and bootstrapping analyses. The longer versions of the duration discrim-
ination (Experiment 1, current study) and paced tapping (synchronization-continuation paradigm in 
Kaya and Henry, 2022) involved around 400 trials in each of the two sessions, between which the esti-
mates of preferred rate and flexibility were also consistent. Thus, the current paradigm can be used to 
assess internal oscillator properties in clinical settings or with participant samples where concerns for 
task difficulty or fatigue may arise.

General discussion
The goal of the current set of studies was to highlight factors that impact auditory rhythm processing. 
To this end, we conducted two experiments, investigating the interplay between the properties of the 
external world (the stimulus) and the individual responding to the stimulus (the perceiver). Adopting 
an entrainment perspective that considers internal oscillators as the underlying mechanism for rhythm 
processing (Large and Jones, 1999; McAuley, 2010), we aimed to capture this interplay by char-
acterizing the properties of internal oscillators, and to assess how they change with advancing age. 
Specifically, we estimated oscillators’ preferred rates and flexibility for each individual in perceptual 
and motor tasks, assessed the relationship between rate preferences and optimal stimulus rates for 
timing performance, and tested the hypothesis that oscillator flexibility diminishes as we age.

Experiment 1 was a perceptual paradigm, where individuals’ ability to discriminate between stim-
ulus intervals over a wide range of finely sampled stimulus rates was assessed in two temporal contexts: 
one that required rapid temporal adaptation, challenging oscillator flexibility, and one without such 
requirement. In Experiment 2, we combined shorter versions of the duration discrimination paradigm 
(Experiment 1) and a paced tapping paradigm (adapted from Kaya and Henry, 2022), using matching 
stimulus conditions. Experiment 2 also involved a common measure of preferred rate, the SMT task, 
and two ‘PPT tasks (slider, keypress) where individuals’ rate preferences were assessed. From the 
performance paradigms, we estimated preferred rate as the stimulus rates with best performance, 
indexed by maximum accuracy in the duration discrimination tasks, and minimum tempo-matching 
errors (TME) in the paced tapping task. We defined flexibility as the ability to adapt to changes in 
stimulus rate, which was inversely related to how much single-trial performance was affected by trial-
to-trial changes in stimulus rate.

Preferred rate estimates
In the rhythmic entrainment literature, preferred rate is typically estimated by SMT. However, two main 
aspects of the SMT task motivated us to question its explanatory power for predicting individuals’ 
perceptual abilities in real-world listening situations. First, given that the task involves periodic motor 
actions, the relative contributions of an internal timekeeper versus constraints or resonances of an 
individual’s motor system to the produced tapping rate cannot be separated. Second, SMT is a pref-
erence measure, since it measures the rate at which individuals prefer to tap at, without introducing 
any interaction with a stimulus. Although there is evidence for positive relationships between SMT and 
rates yielding best timing abilities in paced tapping tasks (Zamm et al., 2018; Scheurich et al., 2018), 
rate preferences obtained from SMT task may not necessarily predict how individuals would perform 
at other auditory tasks, especially those that don’t involve periodic motor actions. Here, we aimed to 
bridge this gap and understand the potential predictive power of SMT for perceptual performance 
situations with higher ecological validity, by directly comparing SMT to ‘performance’ measures of 
preferred rate both with and without a motor component. Based on the assumptions of entrain-
ment models, we estimated preferred rate as the stimulus rate with peak performance. Findings from 
Experiment 1 validated this estimation method by showing that accuracy in single-session datasets 
not only peaked at this stimulus rate, but also systematically increased toward this value, consistent 
with predictions based on detuning.

The results of Experiment 2 revealed that the stimulus rates for which individuals showed better 
timing performance were indeed correlated with SMT. However, we did not find one-to-one corre-
spondences between SMT and preferred rate estimates from the performance tasks, and estimates 
were not correlated across the performance tasks. SMT was more variable across participants than 
preferred rates estimated from either of the performance tasks, and preferred rates estimated from 
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tasks involving a motor component (SMT, paced tapping) tended to be slower than those estimated 
from the duration discrimination task. We discuss two possible primary dimensions along which these 
tasks differ and how these might preclude directly predicting performance on one task based on the 
rate preference for another: involvement of the motor system and indicating preference versus inter-
acting with an environmental rhythm.

Both the unpaced (SMT) and paced tapping tasks required rhythmic motor responses, as 
compared to the duration discrimination task where perceptual judgments were assessed. We found 
that preferred rate estimates from both motor tasks were slower than those obtained via duration 
discrimination. Interestingly, we found that the degree of ‘slowing down’ in the motor compared to 
the discrimination tasks was consistent within an individual. This suggests that the contribution of the 
‘motor component’ to preferred rate is individually specific and quantifiable. This finding is in line with 
the proposal that perception and production of rhythms are governed by a system of multiple coupled 
oscillators (Zalta et al., 2020; Assaneo et al., 2021), with the observed preferred rate in any task being 
jointly influenced by preferred rate of a perceptual (in this case, auditory) oscillator, preferred rate of 
a motor oscillator, and the coupling strength between these two nodes. Indeed, similar discrepancies 
between preferred rates of auditory and motor oscillators were observed in speech comprehension 
and were attributed to individual differences in auditory-motor coupling (Lubinus et al., 2023). Under 
this assumption, we propose that the differences between preferred rate estimates from tasks with 
and without tapping (motor) responses, i.e., the degree of slowing when the motor component is 
added, will increase with the difference in eigenfrequencies of the perceptual and motor oscillators 
(their detuning), and decrease with increasing coupling strength.

The other difference between the tasks by which preferred rate was estimated was the requirement 
to interact with a stimulus rhythm in the performance tasks, whereas the SMT and PPT tasks only 
involved indicating a preference. Jones and Mcauley, 2005 argue that in the presence of a stimulus, 
the preferred rate can be ‘pushed around’ by the temporal context, given that the oscillators are 
adaptive and can perform within their entrainment regions. Results of Experiment 1 confirmed this 
prediction by revealing an effect of temporal context on preferred rate: the distribution of estimates 
from the temporally challenging condition was narrower than that from the condition that required 
minimal temporal adaptation. Thus, stimulus presentation in Experiment 2 duration discrimination and 
paced tapping tasks as opposed to SMT task may have contributed to the differences in preferred rate 
estimates. Additionally, in the paced tapping task, participants synchronized to the stimulus, which 
is shown to improve performance in tapping precision (Kliger Amrani and Zion Golumbic, 2022; 
Schmidt-Kassow et  al., 2013) and perceptual judgments (Manning and Schutz, 2013; Manning 
et al., 2017), and thus may have contributed to the estimate differences.

Flexibility estimates
One main goal of the current study was to investigate the circumstances that negatively impact timing 
abilities. Specifically, we focused on trial-to-trial changes in stimulus rate, and to what extent indi-
viduals were able to adapt to such changes, which was our definition of oscillator flexibility. In line 
with previous literature which reveals effects of stimulus history on perceptual (Wiener et al., 2014; 
Jones and Mcauley, 2005; Wiener and Thompson, 2015; McAuley and Miller, 2007) and motor 
(Scheurich et al., 2020; Kaya and Henry, 2022; Motala et al., 2020; Large et al., 2002; Loehr et al., 
2011) responses, results of the current study showed that performance in duration discrimination and 
paced tapping tasks decreased as trial-to-trial changes in stimulus rate increased. Moreover, single-
trial responses were biased such that they reflected the properties of the stimulus from the preceding 
trial. This set of findings is in line with predictions of oscillator models (McAuley, 1995). In a changing 
rhythmic context, the oscillator adapts to the newly encountered stimulus rate by gradually updating 
its phase and period (McAuley and Jones, 2003). The extent and time course of adaptation, however, 
will depend on the oscillator’s flexibility, which might be modeled via error correction parameters in 
commonly used models of interval timing (McAuley and Jones, 2003; McAuley, 1995) or synchro-
nized tapping (Loehr et al., 2011). An inflexible oscillator’s period would adjust more slowly to a new 
rate, and so would continue to reflect the previously entrained rate, due to hysteresis. For the duration 
discrimination task, any comparison interval that is shorter than the oscillator’s period would be classi-
fied as ‘shorter’, and vice versa, regardless of whether the interval was indeed shorter than the inter-
vals making up the standard, isochronous rhythm. This means that when the previous trial was faster 
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than the current one, the oscillator period would be relatively short, and participants would be biased 
to judge comparisons as ‘longer’. Conversely, when the previous trial was slower than the current 
one, the oscillator period would be relatively long, and ‘shorter’ responses would be more likely. The 
analysis of bias indicated that this was exactly the case for the current data. Similarly, tapping rates 
gradually updated from the preceding stimulus rate to a current one, resulting in TME in the direction 
of the previous stimulus rate. That is, when the previous trial was faster than the current one, tapping 
rates would underestimate the stimulus rate, and when the previous trial was slower than the previous 
one, tapping rates would overestimate the stimulus rate. Again, the TME analysis confirmed this to be 
the case. Another theoretical approach to oscillator flexibility concerns how the oscillator responds to 
situations with varying amounts of detuning (i.e. the difference between stimulus rate and preferred 
rate). Flexible oscillators can synchronize to wider ranges of stimulus rates around their preferred 
rate than inflexible ones. In other words, detuning does not constitute a strong determinant of a flex-
ible oscillator’s synchronization abilities. Results from Experiment 1 that showed negative correlations 
between flexibility estimates and relative-detuning slopes reveal compatibility with this detuning-
based approach to oscillator flexibility. These findings suggest that the increase in accuracy toward 
an oscillator’s preferred rate depended more strongly on detuning for inflexible oscillators, whereas 
synchronization abilities of the flexible ones were less dependent on detuning.

Age-related changes in oscillator flexibility
A critical finding of the current study was an age-related decline in a specific ability: temporal adap-
tation to faster-than-previous stimuli. In trials where the stimulus was faster than the previous one, 
accuracy in the duration discrimination task decreased, and TME in the paced tapping task increased 
as a function of the amount of rate difference between trials, more so for older individuals.

The timing literature reveals age-related changes in time perception, such as a decrease in the 
accuracy of temporal estimates (Xu and Church, 2017), and slower tapping rates in spontaneous 
(McAuley et al., 2006; Baudouin et al., 2004; Vanneste et al., 2001) or forced (Turgeon et al., 2011) 
unpaced tapping tasks. These changes are generally attributed to slowing of the internal timekeeper 
mechanisms (Baudouin et al., 2004; Szymaszek et al., 2009) or a reduction of attentional resources 
(Lustig and Meck, 2001). Moreover, studies comparing older and younger individuals’ preferences 
and performances in paced tapping paradigms reveal mixed results (von Schnehen et al., 2022). In 
the current study, we did not observe age-related changes in overall performance measures such as 
perceptual accuracy or tapping errors, and contrary to previous work we did not find a slowing of 
preferred rate no matter how it was estimated. Instead, these findings rather point to age-related 
changes in adaptive mechanisms underlying temporal processing. Studies assessing temporal adap-
tation abilities show that older individuals adapt their movements to temporal perturbations more 
slowly and less efficiently than younger individuals (King et al., 2013; Wolpe et al., 2020) and with 
less error correction (Pollok et al., 2022). We observed an age-related decline in temporal adaptation 
during both perception of and synchronization with auditory stimuli, suggesting a common source 
that affected the two means of responding.

Previous work reveals age-related differences in neural entrainment to auditory rhythms. Most 
studies focused on neural entrainment to amplitude modulated sounds show that older adults entrain 
more strongly and in a more stereotyped (less flexible) way to metronomic stimuli like those we used 
here (Goossens et al., 2016; Herrmann et al., 2019; Purcell et al., 2004). A similar pattern was 
observed for entrainment to the amplitude envelope of speech (Decruy et al., 2020; Presacco et al., 
2016). A mixed pattern of results were reported for frequency modulated sounds; however, the 
existing data suggest that these differences might depend on parameters such as modulation rate and 
depth (Henry et al., 2017; Boettcher et al., 2002), which we will not further address here. Moreover, 
older adults show less neural adaptation than younger adults in temporal contexts where stimulus rate 
changes gradually and predictably (Herrmann et al., 2019). Another functional difference between 
younger and older brains, potentially relevant here, are findings on ‘neural noise’. Variability in brain 
activity as measured in the BOLD signal using functional magnetic resonance imaging is higher in 
younger than older brains, again suggesting inflexible and stereotyped neural activity. Indeed, neural 
noise is associated with faster and more consistent performance across a variety of cognitive tasks 
(Garrett et al., 2011; Grady and Garrett, 2014). Similarly, 1/f noise measured with EEG, associated 
with predictive processing in a lexical task, was lower for older than younger individuals (Dave et al., 
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2018). Taken together, these results suggest that poorer performance in temporal tasks that involve 
prediction and adaptation might reflect less flexible, overly stereotyped neural responses in older 
adults. This might indicate a loss of flexibility in the generating oscillator(s).

An interesting aspect of the current findings was that adaptation to faster, but not slower stimulus 
rates, was more difficult for older individuals. Oscillator models predict this asymmetry, with increased 
tapping asynchronies to speeding up compared to slowing down stimuli due to the ‘period adapta-
tion function’ of the oscillator (Loehr et al., 2011). This was the case for the paced tapping paradigm 
(current study), as the effect of rate change on tapping errors was smaller and significantly more 
variable when stimuli slowed down as opposed to sped up, paralleling our previous findings (Kaya 
and Henry, 2022). In the duration discrimination tasks, although the magnitude of the effect of rate 
change was similar for both rate-change directions, only adaptation to faster stimuli worsened with 
age. Though evidence shows reduced adaptation to time-compressed (Peelle and Wingfield, 2005) 
or artificially speeded (Schneider et al., 2005) speech in older individuals, further research is needed 
to address the sources of adaptation to fast versus slow stimuli in aging.

Individual differences in internal oscillator properties
One advantage of the current approach is its focus on individual variability. Previous work on rhythm 
perception and production, as well as aging, has largely used traditional statistical approaches 
involving group or condition comparisons of central tendency measures. In these cases, variability is 
attributed to measurement error or noise. In the current work, we opted to view variability as poten-
tially attributable to individual differences in internal oscillator properties that may in future work be 
shown to have predictive power for successful outcomes in real-world listening situations. Taking this 
approach focused on individual differences revealed several novel findings that would have otherwise 
not been accessible. First, we found correspondence between the rates individuals prefer to tap their 
finger at, listen to, and perform perceptual and motor tasks most accurately, all pointing to preferred 
rates of potentially coupled, perceptual, and motor internal oscillatory systems. Second, we observed 
harmonic relationships between the preferred rates estimated from the duration discrimination para-
digm under two different temporal contexts (Experiment 1). this is in line with the assumption that 
oscillators are capable of entraining to multiple stimulus rates within a temporal hierarchy (McAuley, 
1995; Large, 2008), and further strengthens our choice to adopt an entrainment approach here. 
Finally, we found that oscillator flexibility decreased with age; this finding is supported by evidence 
from neural entrainment research and adds to the narrative regarding the effects of aging on the 
auditory system.

The pared-down versions of the duration discrimination and paced tapping paradigms described 
in Experiment 2 were carefully designed based on the analyses of their correspondence between 
Experiment 1 and our previous tapping study (Kaya and Henry, 2022) in terms of their main results. 
That is, we designed the Experiment 2 tasks to be the streamlined versions that would yield the same 
main results as their longer counterparts. The reasons for minimizing the duration of the tasks were 
(1) it allowed us to test and compare perception and production in a within-participant manner in a 
single session, and (2) it improved suitability for testing older adults, who we did not want to subject 
to an overly long or multi-session experiment. That the results of Experiment 2 replicated those from 
Experiment 1 and Kaya and Henry, 2022, independently confirmed the robustness of the designs. 
Thus, we would propose that these minimized designs could be used in a more diagnostic capacity 
in future work to measure and test predictions about internal oscillator properties of older adults or a 
clinical population of interest.

Conclusion
To summarize, we adopted an entrainment approach to rhythm perception and production, which 
proposes that these abilities are governed by internal oscillatory mechanisms. We then developed a 
paradigm to estimate individuals’ internal oscillator properties based on the common assumptions of 
the entrainment models. Performance in both duration discrimination and synchronized tapping tasks 
was best at a range of stimulus rates that was specific to each individual – their preferred rate – and 
was broadly consistent with preferred rates estimated from preference tasks (SMT). One important 
departure from this consistency was that involving a motor requirement slowed preferred rates, and 
we were able to quantify the contribution of this motor component, which was consistent within 
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individuals across different tasks. Performance decreased as a function of change in stimulus rate 
between consecutive trials. The extent to which individuals were able to adapt to the changes – oscil-
lator flexibility – decreased with age, in accordance with research on neural entrainment and neural 
noise.

Several aspects of the current findings speak against alternative explanations of timekeeper 
models. First, an increase in performance at certain stimulus rates that show consistency across 
multiple measurements (Experiment 1) and tasks with and without a motor component (Experiment 
2) is predicted by entrainment models (Assumption 3), but not timekeeper theories as the latter 
models assume a flat performance profile across stimulus rates, following ‘Weber’s law’ (Gibbon 
et al., 1984; Gibbon, 1977). Second, we observed systematic increases in task accuracy (Experi-
ment 1) toward the best-performance rates (i.e. preferred rate estimates), with the steepness of this 
increase being closely related to the effects of rate change (i.e. oscillator flexibility). Two interdepen-
dent properties of an underlying system together modulating an individual’s timing responses show 
strong support for the entrainment approach. Moreover, preferred rate estimates showed harmonic 
relationships across multiple measurements, which is compatible with the properties of oscillator 
models (Assumption 4), and not predicted by timekeeper models. Finally, studies adopting a time-
keeper approach suggest that timing responses should gravitate toward the mean of the presented 
stimulus rates in a given experimental session (Jazayeri and Shadlen, 2010), which should have 
resulted in similar patterns of results in the two sessions of Experiment 1, where only the trial order 
differed. We found significant accuracy and bias differences between the sessions that cannot be 
solely attributed to the gravitation toward the mean as the temporal statistics for the stimuli were 
identical across sessions.

Overall, these findings support the general hypothesis of DAT that an oscillatory system with a 
stable preferred rate underlies rhythm perception and production. We further show that this system 
loses its ability to flexibly adapt to changes in the external rhythmic context as we age.

Acknowledgements
This work is supported by a European Research Council (ERC) Starting Grant (BRAINSYNC-804029) 
and a Max Planck Research Group awarded to MJH. The authors thank Kristin Weineck for helping 
with German translations and Paola Najera Maldonado for her support in data collection.

Additional information

Funding

Funder Grant reference number Author

European Research 
Council

BRAINSYNC-804029 Molly J Henry

Max-Planck-Gesellschaft Max Planck Research 
Group

Molly J Henry

Institute for Advanced 
Studies at Aix-Marseille 
University Fellowship 
2023-24

Sonja A Kotz

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication. Open access funding provided by Max 
Planck Society.

Author contributions
Ece Kaya, Conceptualization, Formal analysis, Validation, Investigation, Visualization, Methodology, 
Writing - original draft, Project administration, Writing – review and editing; Sonja A Kotz, Conceptu-
alization, Supervision, Methodology, Writing – review and editing, Discussion; Molly J Henry, Concep-
tualization, Resources, Formal analysis, Supervision, Funding acquisition, Validation, Investigation, 
Methodology, Project administration, Writing – review and editing

https://doi.org/10.7554/eLife.90735


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 26 of 30

Author ORCIDs
Ece Kaya ‍ ‍ http://orcid.org/0000-0003-4012-9469
Sonja A Kotz ‍ ‍ https://orcid.org/0000-0002-5894-4624
Molly J Henry ‍ ‍ http://orcid.org/0000-0002-2284-8884

Ethics
"Written informed consent was obtained from all persons who participated in Experiment 1 and 
Experiment 2. The procedures of the experiments were approved by the Ethics Council of the Max 
Planck Society (approval number 2019_04) and the Research Ethics Board at Toronto Metropolitan 
University in accordance with the Declaration of Helsinki."

Peer review material
Reviewer #1 (Public review): https://doi.org/10.7554/eLife.90735.4.sa1
Reviewer #2 (Public review): https://doi.org/10.7554/eLife.90735.4.sa2
Author response https://doi.org/10.7554/eLife.90735.4.sa3

Additional files
Supplementary files
•  Supplementary file 1. Supplementary tables. (a) Descriptive statistics and test results for 
comparison of β estimates against null distributions in Experiment 1 analyses. (b) Descriptive 
statistics of unpaced tapping measures in first and second experiments, and test results for pairwise 
comparisons. (c) Results of the pairwise correlation analyses between preferred rate estimates from 
each task and condition in Experiment 2. (d) Descriptive statistics and test results for comparison of 
β estimates against null distributions in Experiment 2 analyses.

•  Supplementary file 2. Experiment 2 instructions.

•  MDAR checklist 

Data availability
Experiment software, raw data obtained from Experiments 1 and 2 and analysis codes has been 
uploaded to OSF (https://osf.io/2vfsp).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Kaya E 2023 Supplemental materials for 
preprint: A novel method 
for estimating properties 
of attentional oscillators 
reveals an age-related 
decline in flexibility

https://​doi.​org/​10.​
17605/​OSF.​IO/​2VFSP

Open Science Framework, 
10.17605/OSF.IO/2VFSP

References
Arzounian D, de Kerangal M, de Cheveigné A. 2017. Sequential dependencies in pitch judgments. The Journal 

of the Acoustical Society of America 142:3047–3057. DOI: https://doi.org/10.1121/1.5009938, PMID: 
29195443

Assaneo MF, Rimmele JM, Sanz Perl Y, Poeppel D. 2021. Speaking rhythmically can shape hearing. Nature 
Human Behaviour 5:71–82. DOI: https://doi.org/10.1038/s41562-020-00962-0, PMID: 33046860

Barnes R, Jones MR. 2000. Expectancy, attention, and time. Cognitive Psychology 41:254–311. DOI: https://doi.​
org/10.1006/cogp.2000.0738, PMID: 11032658

Baudouin A, Vanneste S, Isingrini M. 2004. Age-related cognitive slowing: the role of spontaneous tempo and 
processing speed. Experimental Aging Research 30:225–239. DOI: https://doi.org/10.1080/​
03610730490447831, PMID: 15487303

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. Journal of the Royal Statistical Society Series B 57:289–300. DOI: https://doi.org/10.1111/j.​
2517-6161.1995.tb02031.x

Benjamini Y, Yekutieli D. 2001. The control of the false discovery rate in multiple testing under dependency. The 
Annals of Statistics 29:1013699998. DOI: https://doi.org/10.1214/aos/1013699998

https://doi.org/10.7554/eLife.90735
http://orcid.org/0000-0003-4012-9469
https://orcid.org/0000-0002-5894-4624
http://orcid.org/0000-0002-2284-8884
https://doi.org/10.7554/eLife.90735.4.sa1
https://doi.org/10.7554/eLife.90735.4.sa2
https://doi.org/10.7554/eLife.90735.4.sa3
https://osf.io/2vfsp
https://doi.org/10.17605/OSF.IO/2VFSP
https://doi.org/10.17605/OSF.IO/2VFSP
https://doi.org/10.1121/1.5009938
http://www.ncbi.nlm.nih.gov/pubmed/29195443
https://doi.org/10.1038/s41562-020-00962-0
http://www.ncbi.nlm.nih.gov/pubmed/33046860
https://doi.org/10.1006/cogp.2000.0738
https://doi.org/10.1006/cogp.2000.0738
http://www.ncbi.nlm.nih.gov/pubmed/11032658
https://doi.org/10.1080/03610730490447831
https://doi.org/10.1080/03610730490447831
http://www.ncbi.nlm.nih.gov/pubmed/15487303
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1214/aos/1013699998


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 27 of 30

Boettcher FA, Madhotra D, Poth EA, Mills JH. 2002. The frequency-modulation following response in young and 
aged human subjects. Hearing Research 165:10–18. DOI: https://doi.org/10.1016/s0378-5955(01)00398-7, 
PMID: 12031510

Brainard DH. 1997. The Psychophysics Toolbox. Spatial Vision 10:433–436 PMID: 9176952. 
Brinkmann P, Rigoulot S, Kadi M, Schwartze M, Kotz SA, Dalla Bella S. 2021. About time: Ageing influences 

neural markers of temporal predictability. Biological Psychology 163:108135. DOI: https://doi.org/10.1016/j.​
biopsycho.2021.108135, PMID: 34126165

Cheng THZ, Creel SC. 2020. The interplay of interval models and entrainment models in duration perception. 
Journal of Experimental Psychology. Human Perception and Performance 46:1088–1104. DOI: https://doi.org/​
10.1037/xhp0000798, PMID: 32614217

Collyer CE, Broadbent HA, Church RM. 1994. Preferred rates of repetitive tapping and categorical time 
production. Perception & Psychophysics 55:443–453. DOI: https://doi.org/10.3758/BF03205301

Dave S, Brothers TA, Swaab TY. 2018. 1/f neural noise and electrophysiological indices of contextual prediction 
in aging. Brain Research 1691:34–43. DOI: https://doi.org/10.1016/j.brainres.2018.04.007, PMID: 29679544

Decruy L, Vanthornhout J, Francart T. 2020. Hearing impairment is associated with enhanced neural tracking of 
the speech envelope. Hearing Research 393:107961. DOI: https://doi.org/10.1016/j.heares.2020.107961, 
PMID: 32470864

Drake C, Jones MR, Baruch C. 2000. The development of rhythmic attending in auditory sequences: attunement, 
referent period, focal attending. Cognition 77:251–288. DOI: https://doi.org/10.1016/s0010-0277(00)00106-2, 
PMID: 11018511

Fitzgibbons PJ, Gordon-Salant S. 1995. Age effects on duration discrimination with simple and complex stimuli. 
The Journal of the Acoustical Society of America 98:3140–3145. DOI: https://doi.org/10.1121/1.413803, PMID: 
8550939

Garrett DD, Kovacevic N, McIntosh AR, Grady CL. 2011. The importance of being variable. The Journal of 
Neuroscience 31:4496–4503. DOI: https://doi.org/10.1523/JNEUROSCI.5641-10.2011, PMID: 21430150

Gibbon J. 1977. Scalar expectancy theory and Weber’s law in animal timing. Psychological Review 84:279–325. 
DOI: https://doi.org/10.1037//0033-295X.84.3.279

Gibbon J, Church RM, Meck WH. 1984. Scalar timing in memory. Annals of the New York Academy of Sciences 
423:52–77. DOI: https://doi.org/10.1111/j.1749-6632.1984.tb23417.x, PMID: 6588812

Goossens T, Vercammen C, Wouters J, van Wieringen A. 2016. Aging affects neural synchronization to speech-
related acoustic modulations. Frontiers in Aging Neuroscience 8:133. DOI: https://doi.org/10.3389/fnagi.2016.​
00133, PMID: 27378906

Grady CL, Garrett DD. 2014. Understanding variability in the BOLD signal and why it matters for aging. Brain 
Imaging and Behavior 8:274–283. DOI: https://doi.org/10.1007/s11682-013-9253-0, PMID: 24008589

Haegens S, Zion Golumbic E. 2018. Rhythmic facilitation of sensory processing: A critical review. Neuroscience 
and Biobehavioral Reviews 86:150–165. DOI: https://doi.org/10.1016/j.neubiorev.2017.12.002, PMID: 
29223770

Henry MJ, Herrmann B. 2014. Low-frequency neural oscillations support dynamic attending in temporal context. 
Timing & Time Perception 2:62–86. DOI: https://doi.org/10.1163/22134468-00002011

Henry MJ, Herrmann B, Kunke D, Obleser J. 2017. Aging affects the balance of neural entrainment and 
top-down neural modulation in the listening brain. Nature Communications 8:15801. DOI: https://doi.org/10.​
1038/ncomms15801, PMID: 28654081

Herrmann B, Henry MJ, Haegens S, Obleser J. 2016. Temporal expectations and neural amplitude fluctuations in 
auditory cortex interactively influence perception. NeuroImage 124:487–497. DOI: https://doi.org/10.1016/j.​
neuroimage.2015.09.019, PMID: 26386347

Herrmann B, Buckland C, Johnsrude IS. 2019. Neural signatures of temporal regularity processing in sounds 
differ between younger and older adults. Neurobiology of Aging 83:73–85. DOI: https://doi.org/10.1016/j.​
neurobiolaging.2019.08.028, PMID: 31585369

Herrmann B, Maess B, Johnsrude IS. 2023. Sustained responses and neural synchronization to amplitude and 
frequency modulation in sound change with age. Hearing Research 428:108677. DOI: https://doi.org/10.1016/​
j.heares.2022.108677, PMID: 36580732

Incao S, Mazzola C, Sciutti A. 2022. The impact of early aging on visual perception of space and time. Frontiers 
in Human Neuroscience 16:988644. DOI: https://doi.org/10.3389/fnhum.2022.988644, PMID: 36466622

Jazayeri M, Shadlen MN. 2010. Temporal context calibrates interval timing. Nature Neuroscience 13:1020–1026. 
DOI: https://doi.org/10.1038/nn.2590, PMID: 20581842

Jones MRT. 1976. Time, our lost dimension: Toward a new theory of perception, attention, and memory. 
Psychological Review 83:323–355. DOI: https://doi.org/10.1037//0033-295X.83.5.323

Jones MR, Boltz MG. 1989. Dynamic attending and responses to time. Psychological Review 96:459–491. DOI: 
https://doi.org/10.1037/0033-295x.96.3.459, PMID: 2756068

Jones MR, Moynihan H, MacKenzie N, Puente J. 2002. Temporal aspects of stimulus-driven attending in dynamic 
arrays. Psychological Science 13:313–319. DOI: https://doi.org/10.1111/1467-9280.00458, PMID: 12137133

Jones MR, Mcauley JD. 2005. Time judgments in global temporal contexts. Perception & Psychophysics 
67:398–417. DOI: https://doi.org/10.3758/BF03193320

Jones M. 2008. Musical time. Hallam S (Ed). Oxford Handbook of Music Psychology. Oxford University Press. p. 
125–142. DOI: https://doi.org/10.1093/oxfordhb/9780198722946.013.13

Jones A, Hsu YF, Granjon L, Waszak F. 2017. Temporal expectancies driven by self- and externally generated 
rhythms. NeuroImage 156:352–362. DOI: https://doi.org/10.1016/j.neuroimage.2017.05.042, PMID: 28528848

https://doi.org/10.7554/eLife.90735
https://doi.org/10.1016/s0378-5955(01)00398-7
http://www.ncbi.nlm.nih.gov/pubmed/12031510
http://www.ncbi.nlm.nih.gov/pubmed/9176952
https://doi.org/10.1016/j.biopsycho.2021.108135
https://doi.org/10.1016/j.biopsycho.2021.108135
http://www.ncbi.nlm.nih.gov/pubmed/34126165
https://doi.org/10.1037/xhp0000798
https://doi.org/10.1037/xhp0000798
http://www.ncbi.nlm.nih.gov/pubmed/32614217
https://doi.org/10.3758/BF03205301
https://doi.org/10.1016/j.brainres.2018.04.007
http://www.ncbi.nlm.nih.gov/pubmed/29679544
https://doi.org/10.1016/j.heares.2020.107961
http://www.ncbi.nlm.nih.gov/pubmed/32470864
https://doi.org/10.1016/s0010-0277(00)00106-2
http://www.ncbi.nlm.nih.gov/pubmed/11018511
https://doi.org/10.1121/1.413803
http://www.ncbi.nlm.nih.gov/pubmed/8550939
https://doi.org/10.1523/JNEUROSCI.5641-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21430150
https://doi.org/10.1037//0033-295X.84.3.279
https://doi.org/10.1111/j.1749-6632.1984.tb23417.x
http://www.ncbi.nlm.nih.gov/pubmed/6588812
https://doi.org/10.3389/fnagi.2016.00133
https://doi.org/10.3389/fnagi.2016.00133
http://www.ncbi.nlm.nih.gov/pubmed/27378906
https://doi.org/10.1007/s11682-013-9253-0
http://www.ncbi.nlm.nih.gov/pubmed/24008589
https://doi.org/10.1016/j.neubiorev.2017.12.002
http://www.ncbi.nlm.nih.gov/pubmed/29223770
https://doi.org/10.1163/22134468-00002011
https://doi.org/10.1038/ncomms15801
https://doi.org/10.1038/ncomms15801
http://www.ncbi.nlm.nih.gov/pubmed/28654081
https://doi.org/10.1016/j.neuroimage.2015.09.019
https://doi.org/10.1016/j.neuroimage.2015.09.019
http://www.ncbi.nlm.nih.gov/pubmed/26386347
https://doi.org/10.1016/j.neurobiolaging.2019.08.028
https://doi.org/10.1016/j.neurobiolaging.2019.08.028
http://www.ncbi.nlm.nih.gov/pubmed/31585369
https://doi.org/10.1016/j.heares.2022.108677
https://doi.org/10.1016/j.heares.2022.108677
http://www.ncbi.nlm.nih.gov/pubmed/36580732
https://doi.org/10.3389/fnhum.2022.988644
http://www.ncbi.nlm.nih.gov/pubmed/36466622
https://doi.org/10.1038/nn.2590
http://www.ncbi.nlm.nih.gov/pubmed/20581842
https://doi.org/10.1037//0033-295X.83.5.323
https://doi.org/10.1037/0033-295x.96.3.459
http://www.ncbi.nlm.nih.gov/pubmed/2756068
https://doi.org/10.1111/1467-9280.00458
http://www.ncbi.nlm.nih.gov/pubmed/12137133
https://doi.org/10.3758/BF03193320
https://doi.org/10.1093/oxfordhb/9780198722946.013.13
https://doi.org/10.1016/j.neuroimage.2017.05.042
http://www.ncbi.nlm.nih.gov/pubmed/28528848


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 28 of 30

Jones MR. 2018. Time Will Tell: A Theory of Dynamic Attending. Oxford University Press. DOI: https://doi.org/​
10.1093/oso/9780190618216.001.0001

Kaya E, Henry MJ. 2022. Reliable estimation of internal oscillator properties from a novel, fast-paced tapping 
paradigm. Scientific Reports 12:20466. DOI: https://doi.org/10.1038/s41598-022-24453-6, PMID: 36443344

Kelso JAS. 1995. Dynamic Patterns: The Self-Organization of Brain and Behavior. The MIT Press.
Kim S, Alais D. 2021. Individual differences in serial dependence manifest when sensory uncertainty is high. 

Vision Research 188:274–282. DOI: https://doi.org/10.1016/j.visres.2021.08.001, PMID: 34488039
King BR, Fogel SM, Albouy G, Doyon J. 2013. Neural correlates of the age-related changes in motor sequence 

learning and motor adaptation in older adults. Frontiers in Human Neuroscience 7:142. DOI: https://doi.org/​
10.3389/fnhum.2013.00142, PMID: 23616757

Kliger Amrani A, Zion Golumbic E. 2020a. Testing the stability of “Default” motor and auditory-perceptual 
rhythms-A replication failure dataset. Data in Brief 32:106044. DOI: https://doi.org/10.1016/j.dib.2020.106044, 
PMID: 32775563

Kliger Amrani A, Zion Golumbic E. 2020b. Spontaneous and stimulus-driven rhythmic behaviors in ADHD adults 
and controls. Neuropsychologia 146:107544. DOI: https://doi.org/10.1016/j.neuropsychologia.2020.107544, 
PMID: 32598965

Kliger Amrani A, Zion Golumbic E. 2022. Memory-paced tapping to auditory rhythms: effects of rate, speech, 
and motor engagement. Journal of Speech, Language, and Hearing Research 65:923–939. DOI: https://doi.​
org/10.1044/2021_JSLHR-21-00406, PMID: 35133867

Large EW. 1994. Dynamic Representation of Musical Structure. The Ohio State University.
Large EW, Jones MR. 1999. The dynamics of attending: How people track time-varying events. Psychological 

Review 106:119–159. DOI: https://doi.org/10.1037//0033-295X.106.1.119
Large EW, Fink P, Kelso JAS. 2002. Tracking simple and complex sequences. Psychological Research 66:3–17. 

DOI: https://doi.org/10.1007/s004260100069, PMID: 11963276
Large EW. 2008. Resonating to musical rhythm: theory and experiment. The Psychology of Time 01:189–231.
Loehr JD, Large EW, Palmer C. 2011. Temporal coordination and adaptation to rate change in music 

performance. Journal of Experimental Psychology 37:1292–1309. DOI: https://doi.org/10.1037/a0023102
Lubinus C, Keitel A, Obleser J, Poeppel D, Rimmele JM. 2023. Explaining flexible continuous speech 

comprehension from individual motor rhythms. Proceedings. Biological Sciences 290:20222410. DOI: https://​
doi.org/10.1098/rspb.2022.2410, PMID: 36855868

Lustig C, Meck WH. 2001. Paying attention to time as one gets older. Psychological Science 12:478–484. DOI: 
https://doi.org/10.1111/1467-9280.00389, PMID: 11760135

Manning F, Schutz M. 2013. “Moving to the beat” improves timing perception. Psychonomic Bulletin & Review 
20:1133–1139. DOI: https://doi.org/10.3758/s13423-013-0439-7, PMID: 23670284

Manning FC, Harris J, Schutz M. 2017. Temporal prediction abilities are mediated by motor effector and 
rhythmic expertise. Experimental Brain Research 235:861–871. DOI: https://doi.org/10.1007/s00221-016-4845-​
8, PMID: 27909748

Martin T, Egly R, Houck JM, Bish JP, Barrera BD, Lee DC, Tesche CD. 2005. Chronometric evidence for entrained 
attention. Perception & Psychophysics 67:168–184. DOI: https://doi.org/10.3758/bf03195020, PMID: 
15912880

McAuley JD. 1995. Perception of Time as Phase: Toward an Adaptive-Oscillator Model of Rhythmic Pattern 
Processing. Indiana University Bloomington.

McAuley JD, Jones MR. 2003. Modeling effects of rhythmic context on perceived duration: a comparison of 
interval and entrainment approaches to short-interval timing. Journal of Experimental Psychology. Human 
Perception and Performance 29:1102–1125. DOI: https://doi.org/10.1037/0096-1523.29.6.1102, PMID: 
14640833

McAuley JD, Jones MR, Holub S, Johnston HM, Miller NS. 2006. The time of our lives: life span development of 
timing and event tracking. Journal of Experimental Psychology. General 135:348–367. DOI: https://doi.org/10.​
1037/0096-3445.135.3.348, PMID: 16846269

McAuley JD, Miller NS. 2007. Picking up the pace: effects of global temporal context on sensitivity to the tempo 
of auditory sequences. Perception & Psychophysics 69:709–718. DOI: https://doi.org/10.3758/bf03193773, 
PMID: 17929694

McAuley JD. 2010. Music perception springer handbook of auditory research. Chapter 6:165–199. DOI: https://​
doi.org/10.1007/978-1-4419-6114-3

McPherson T, Berger D, Alagapan S, Fröhlich F. 2018. Intrinsic rhythmicity predicts synchronization-continuation 
entrainment performance. Scientific Reports 8:11782. DOI: https://doi.org/10.1038/s41598-018-29267-z, 
PMID: 30082734

Michaelis K, Wiener M, Thompson JC. 2014. Passive listening to preferred motor tempo modulates corticospinal 
excitability. Frontiers in Human Neuroscience 8:252. DOI: https://doi.org/10.3389/fnhum.2014.00252, PMID: 
24795607

Motala A, Zhang H, Alais D. 2020. Auditory rate perception displays a positive serial dependence. I-Perception 
11:2041669520982311. DOI: https://doi.org/10.1177/2041669520982311, PMID: 33425315

Müllensiefen D, Gingras B, Musil J, Stewart L. 2014. Measuring the facets of musicality: The Goldsmiths Musical 
Sophistication Index (Gold-MSI). Personality and Individual Differences 60:S35. DOI: https://doi.org/10.1016/j.​
paid.2013.07.081

https://doi.org/10.7554/eLife.90735
https://doi.org/10.1093/oso/9780190618216.001.0001
https://doi.org/10.1093/oso/9780190618216.001.0001
https://doi.org/10.1038/s41598-022-24453-6
http://www.ncbi.nlm.nih.gov/pubmed/36443344
https://doi.org/10.1016/j.visres.2021.08.001
http://www.ncbi.nlm.nih.gov/pubmed/34488039
https://doi.org/10.3389/fnhum.2013.00142
https://doi.org/10.3389/fnhum.2013.00142
http://www.ncbi.nlm.nih.gov/pubmed/23616757
https://doi.org/10.1016/j.dib.2020.106044
http://www.ncbi.nlm.nih.gov/pubmed/32775563
https://doi.org/10.1016/j.neuropsychologia.2020.107544
http://www.ncbi.nlm.nih.gov/pubmed/32598965
https://doi.org/10.1044/2021_JSLHR-21-00406
https://doi.org/10.1044/2021_JSLHR-21-00406
http://www.ncbi.nlm.nih.gov/pubmed/35133867
https://doi.org/10.1037//0033-295X.106.1.119
https://doi.org/10.1007/s004260100069
http://www.ncbi.nlm.nih.gov/pubmed/11963276
https://doi.org/10.1037/a0023102
https://doi.org/10.1098/rspb.2022.2410
https://doi.org/10.1098/rspb.2022.2410
http://www.ncbi.nlm.nih.gov/pubmed/36855868
https://doi.org/10.1111/1467-9280.00389
http://www.ncbi.nlm.nih.gov/pubmed/11760135
https://doi.org/10.3758/s13423-013-0439-7
http://www.ncbi.nlm.nih.gov/pubmed/23670284
https://doi.org/10.1007/s00221-016-4845-8
https://doi.org/10.1007/s00221-016-4845-8
http://www.ncbi.nlm.nih.gov/pubmed/27909748
https://doi.org/10.3758/bf03195020
http://www.ncbi.nlm.nih.gov/pubmed/15912880
https://doi.org/10.1037/0096-1523.29.6.1102
http://www.ncbi.nlm.nih.gov/pubmed/14640833
https://doi.org/10.1037/0096-3445.135.3.348
https://doi.org/10.1037/0096-3445.135.3.348
http://www.ncbi.nlm.nih.gov/pubmed/16846269
https://doi.org/10.3758/bf03193773
http://www.ncbi.nlm.nih.gov/pubmed/17929694
https://doi.org/10.1007/978-1-4419-6114-3
https://doi.org/10.1007/978-1-4419-6114-3
https://doi.org/10.1038/s41598-018-29267-z
http://www.ncbi.nlm.nih.gov/pubmed/30082734
https://doi.org/10.3389/fnhum.2014.00252
http://www.ncbi.nlm.nih.gov/pubmed/24795607
https://doi.org/10.1177/2041669520982311
http://www.ncbi.nlm.nih.gov/pubmed/33425315
https://doi.org/10.1016/j.paid.2013.07.081
https://doi.org/10.1016/j.paid.2013.07.081


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 29 of 30

Notbohm A, Kurths J, Herrmann CS. 2016. Modification of brain oscillations via rhythmic light stimulation 
provides evidence for entrainment but not for superposition of event-related responses. Frontiers in Human 
Neuroscience 10:10. DOI: https://doi.org/10.3389/fnhum.2016.00010, PMID: 26869898

Peelle JE, Wingfield A. 2005. Dissociations in perceptual learning revealed by adult age differences in adaptation 
to time-compressed speech. Journal of Experimental Psychology. Human Perception and Performance 
31:1315–1330. DOI: https://doi.org/10.1037/0096-1523.31.6.1315, PMID: 16366792

Pelli DG. 1997. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial 
Vision 10:437–442 PMID: 9176953. 

Poeppel D, Assaneo MF. 2020. Speech rhythms and their neural foundations. Nature Reviews. Neuroscience 
21:322–334. DOI: https://doi.org/10.1038/s41583-020-0304-4, PMID: 32376899

Pollok B, Hagedorn A, Krause V, Kotz SA. 2022. Age interferes with sensorimotor timing and error correction in 
the supra-second range. Frontiers in Aging Neuroscience 14:1048610. DOI: https://doi.org/10.3389/fnagi.​
2022.1048610, PMID: 36704500

Presacco A, Simon JZ, Anderson S. 2016. Evidence of degraded representation of speech in noise, in the aging 
midbrain and cortex. Journal of Neurophysiology 116:2346–2355. DOI: https://doi.org/10.1152/jn.00372.2016, 
PMID: 27535374

Purcell DW, John SM, Schneider BA, Picton TW. 2004. Human temporal auditory acuity as assessed by envelope 
following responses. The Journal of the Acoustical Society of America 116:3581–3593. DOI: https://doi.org/10.​
1121/1.1798354, PMID: 15658709

Scheurich R, Zamm A, Palmer C. 2018. Tapping into rate flexibility: musical training facilitates synchronization 
around spontaneous production rates. Frontiers in Psychology 9:458. DOI: https://doi.org/10.3389/fpsyg.2018.​
00458, PMID: 29681872

Scheurich R, Pfordresher PQ, Palmer C. 2020. Musical training enhances temporal adaptation of auditory-motor 
synchronization. Experimental Brain Research 238:81–92. DOI: https://doi.org/10.1007/s00221-019-05692-y, 
PMID: 31792555

Schmidt-Kassow M, Heinemann LV, Abel C, Kaiser J. 2013. Auditory-motor synchronization facilitates attention 
allocation. NeuroImage 82:101–106. DOI: https://doi.org/10.1016/j.neuroimage.2013.05.111, PMID: 23732882

Schneider BA, Daneman M, Murphy DR. 2005. Speech comprehension difficulties in older adults: cognitive 
slowing or age-related changes in hearing? Psychology and Aging 20:261–271. DOI: https://doi.org/10.1037/​
0882-7974.20.2.261, PMID: 16029090

Schwartze M, Kotz SA. 2015. The timing of regular sequences: production, perception, and covariation. Journal 
of Cognitive Neuroscience 27:1697–1707. DOI: https://doi.org/10.1162/jocn_a_00805, PMID: 25803600

Szymaszek A, Sereda M, Pöppel E, Szelag E. 2009. Individual differences in the perception of temporal order: 
the effect of age and cognition. Cognitive Neuropsychology 26:135–147. DOI: https://doi.org/10.1080/​
02643290802504742, PMID: 18988063

Turgeon M, Wing AM, Taylor LW. 2011. Timing and aging: slowing of fastest regular tapping rate with preserved 
timing error detection and correction. Psychology and Aging 26:150–161. DOI: https://doi.org/10.1037/​
a0020606, PMID: 20973598

Vanneste S, Pouthas V, Wearden JH. 2001. Temporal control of rhythmic performance: a comparison between 
young and old adults. Experimental Aging Research 27:83–102. DOI: https://doi.org/10.1080/​
03610730125798, PMID: 11205531

von Schnehen A, Hobeika L, Huvent-Grelle D, Samson S. 2022. Sensorimotor synchronization in healthy aging 
and neurocognitive disorders. Frontiers in Psychology 13:838511. DOI: https://doi.org/10.3389/fpsyg.2022.​
838511, PMID: 35369160

Wearden JH, Lejeune H. 2008. Scalar properties in human timing: conformity and violations. Quarterly Journal of 
Experimental Psychology 61:569–587. DOI: https://doi.org/10.1080/17470210701282576, PMID: 18938276

Wiener M, Thompson JC, Coslett HB. 2014. Continuous carryover of temporal context dissociates response bias 
from perceptual influence for duration. PLOS ONE 9:e100803. DOI: https://doi.org/10.1371/journal.pone.​
0100803, PMID: 24963624

Wiener M, Thompson JC. 2015. Repetition enhancement and memory effects for duration. NeuroImage 
113:268–278. DOI: https://doi.org/10.1016/j.neuroimage.2015.03.054, PMID: 25818689

Wolpe N, Ingram JN, Tsvetanov KA, Henson RN, Wolpert DM, Cam-CAN, Rowe JB. 2020. Age-related reduction 
in motor adaptation: brain structural correlates and the role of explicit memory. Neurobiology of Aging 
90:13–23. DOI: https://doi.org/10.1016/j.neurobiolaging.2020.02.016, PMID: 32184030

Xu R, Church RM. 2017. Age-Related Changes in Human and Nonhuman Timing. Timing & Time Perception 
5:261–279. DOI: https://doi.org/10.1163/22134468-00002092

Yu H, Russell DM, Sternad D. 2003. Task-effector asymmetries in a rhythmic continuation task. Journal of 
Experimental Psychology. Human Perception and Performance 29:616–630. DOI: https://doi.org/10.1037/​
0096-1523.29.3.616, PMID: 12848329

Zalta A, Petkoski S, Morillon B. 2020. Natural rhythms of periodic temporal attention. Nature Communications 
11:1051. DOI: https://doi.org/10.1038/s41467-020-14888-8, PMID: 32103014

Zamm A, Wang Y, Palmer C. 2018. Musicians’ natural frequencies of performance display optimal temporal 
stability. Journal of Biological Rhythms 33:432–440. DOI: https://doi.org/10.1177/0748730418783651, PMID: 
29940801

Zion Golumbic EM, Ding N, Bickel S, Lakatos P, Schevon CA, McKhann GM, Goodman RR, Emerson R, 
Mehta AD, Simon JZ, Poeppel D, Schroeder CE. 2013. Mechanisms underlying selective neuronal tracking of 

https://doi.org/10.7554/eLife.90735
https://doi.org/10.3389/fnhum.2016.00010
http://www.ncbi.nlm.nih.gov/pubmed/26869898
https://doi.org/10.1037/0096-1523.31.6.1315
http://www.ncbi.nlm.nih.gov/pubmed/16366792
http://www.ncbi.nlm.nih.gov/pubmed/9176953
https://doi.org/10.1038/s41583-020-0304-4
http://www.ncbi.nlm.nih.gov/pubmed/32376899
https://doi.org/10.3389/fnagi.2022.1048610
https://doi.org/10.3389/fnagi.2022.1048610
http://www.ncbi.nlm.nih.gov/pubmed/36704500
https://doi.org/10.1152/jn.00372.2016
http://www.ncbi.nlm.nih.gov/pubmed/27535374
https://doi.org/10.1121/1.1798354
https://doi.org/10.1121/1.1798354
http://www.ncbi.nlm.nih.gov/pubmed/15658709
https://doi.org/10.3389/fpsyg.2018.00458
https://doi.org/10.3389/fpsyg.2018.00458
http://www.ncbi.nlm.nih.gov/pubmed/29681872
https://doi.org/10.1007/s00221-019-05692-y
http://www.ncbi.nlm.nih.gov/pubmed/31792555
https://doi.org/10.1016/j.neuroimage.2013.05.111
http://www.ncbi.nlm.nih.gov/pubmed/23732882
https://doi.org/10.1037/0882-7974.20.2.261
https://doi.org/10.1037/0882-7974.20.2.261
http://www.ncbi.nlm.nih.gov/pubmed/16029090
https://doi.org/10.1162/jocn_a_00805
http://www.ncbi.nlm.nih.gov/pubmed/25803600
https://doi.org/10.1080/02643290802504742
https://doi.org/10.1080/02643290802504742
http://www.ncbi.nlm.nih.gov/pubmed/18988063
https://doi.org/10.1037/a0020606
https://doi.org/10.1037/a0020606
http://www.ncbi.nlm.nih.gov/pubmed/20973598
https://doi.org/10.1080/03610730125798
https://doi.org/10.1080/03610730125798
http://www.ncbi.nlm.nih.gov/pubmed/11205531
https://doi.org/10.3389/fpsyg.2022.838511
https://doi.org/10.3389/fpsyg.2022.838511
http://www.ncbi.nlm.nih.gov/pubmed/35369160
https://doi.org/10.1080/17470210701282576
http://www.ncbi.nlm.nih.gov/pubmed/18938276
https://doi.org/10.1371/journal.pone.0100803
https://doi.org/10.1371/journal.pone.0100803
http://www.ncbi.nlm.nih.gov/pubmed/24963624
https://doi.org/10.1016/j.neuroimage.2015.03.054
http://www.ncbi.nlm.nih.gov/pubmed/25818689
https://doi.org/10.1016/j.neurobiolaging.2020.02.016
http://www.ncbi.nlm.nih.gov/pubmed/32184030
https://doi.org/10.1163/22134468-00002092
https://doi.org/10.1037/0096-1523.29.3.616
https://doi.org/10.1037/0096-1523.29.3.616
http://www.ncbi.nlm.nih.gov/pubmed/12848329
https://doi.org/10.1038/s41467-020-14888-8
http://www.ncbi.nlm.nih.gov/pubmed/32103014
https://doi.org/10.1177/0748730418783651
http://www.ncbi.nlm.nih.gov/pubmed/29940801


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Kaya et al. eLife 2023;12:RP90735. DOI: https://doi.org/10.7554/eLife.90735 � 30 of 30

attended speech at a “cocktail party.” Neuron 77:980–991. DOI: https://doi.org/10.1016/j.neuron.2012.12.037, 
PMID: 23473326

https://doi.org/10.7554/eLife.90735
https://doi.org/10.1016/j.neuron.2012.12.037
http://www.ncbi.nlm.nih.gov/pubmed/23473326

	A novel method for estimating properties of attentional oscillators reveals an age-­related decline in flexibility
	eLife assessment
	Introduction
	Experiment 1
	Methods
	Participants
	Procedure
	Duration discrimination task
	Unpaced tapping tasks

	Apparatus
	Background survey

	Analysis
	Data cleaning and exclusion criteria
	Preferred rate estimates
	Flexibility estimates


	Results
	Preferred rate estimates
	Flexibility estimates
	Unpaced tapping

	Discussion

	Experiment 2
	Methods
	Participants
	Procedure
	Duration discrimination task
	Paced tapping task
	Unpaced tapping tasks
	Slider task
	Keypress task

	Design
	Apparatus
	Analysis
	Data cleaning and exclusion criteria
	Outcome measures
	Preferred rate estimates
	Flexibility estimates


	Results
	Unpaced tapping
	Preferred rate estimates
	Flexibility estimates
	Age-related changes in oscillator flexibility

	Discussion

	General discussion
	Preferred rate estimates
	Flexibility estimates
	Age-related changes in oscillator flexibility
	Individual differences in internal oscillator properties
	Conclusion

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Peer review material

	Additional files
	Supplementary files

	References


