English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Use of a natural hybrid zone for genomewide association mapping of craniofacial traits in the house mouse

MPS-Authors
/persons/resource/persons85401

Pallares,  Luisa F       
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;
IMPRS for Evolutionary Biology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56714

Harr,  Bettina
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56976

Turner,  Leslie M.
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56962

Tautz,  Diethard       
Department Evolutionary Genetics (Tautz), Max Planck Institute for Evolutionary Biology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Supplementary Material (public)
There is no public supplementary material available
Citation

Pallares, L. F., Harr, B., Turner, L. M., & Tautz, D. (2014). Use of a natural hybrid zone for genomewide association mapping of craniofacial traits in the house mouse. Molecular Ecology, 23(23), 5756-5770. doi:10.1111/mec.12968.


Cite as: https://hdl.handle.net/21.11116/0000-000F-7989-F
Abstract
The identification of the genes involved in morphological variation in nature is still a major challenge. Here, we explore a new approach: we combine 178 samples from a natural hybrid zone between two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus), and high coverage of the genome (~ 145K SNPs) to identify loci underlying craniofacial shape variation. Due to the long history of recombination in the hybrid zone, high mapping resolution is anticipated. The combination of genomes from subspecies allows the mapping of both, variation within subspecies and inter-subspecific differences, thereby increasing the overall amount of causal genetic variation that can be detected. Skull and mandible shape were measured using 3D landmarks and geometric morphometrics. Using principal component axes as phenotypes, and a linear mixed model accounting for genetic relatedness in the mapping populations, we identified nine genomic regions associated with skull shape and 10 with mandible shape. High mapping resolution (median size of significant regions = 148 kb) enabled identification of single or few candidate genes in most cases. Some of the genes act as regulators or modifiers of signalling pathways relevant for morphological development and bone formation, including several with known craniofacial phenotypes in mice and humans. The significant associations combined explain 13% and 7% of the skull and mandible shape variation, respectively. In addition, a positive correlation was found between chromosomal length and proportion of variation explained. Our results suggest a complex genetic architecture for shape traits and support a polygenic model.