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1. Abstract 

Background – Binge Eating Disorder (BED) is thought of as a disorder of cognitive 

control but evidence regarding its neurocognitive mechanisms is inconclusive. Key 

limitations in prior research are a lack of consistent separation between effects of BED 

and obesity, and a disregard for self-report evidence suggesting that neurocognitive 

alterations may emerge primarily in loss- or harm-avoidance contexts.  

Methods – Addressing these gaps, this longitudinal study investigated behavioral 

flexibility and its underlying neuro-computational processes in reward-seeking and 

loss-avoidance contexts. Obese participants with BED (BED), without BED (OB), and 

healthy normal-weight participants (NW) (Ntotal=96) performed a probabilistic reversal 

learning task during functional imaging, with different blocks focused on obtaining wins 

or avoiding losses. They were reinvited for a 6-months follow-up.  

Results – Analyses informed by computational models of reinforcement learning 

showed that unlike BED, OB performed worse in the win than the loss condition. 

Computationally, this was explained by differential learning sensitivities in the win vs 

loss conditions between groups. In the brain, this was echoed in differential neural 

learning signals in the ventromedial prefrontal cortex (vmPFC) per condition. The 

differences were subtle, but scaled with BED symptoms, such that more severe BED 

symptoms were associated with increasing bias towards improved learning from wins 

vs losses. Across conditions, OB switched more between choice options than NW. 

This was reflected in diminished representation of choice certainty in the vmPFC.  

Conclusions – Our study highlights the importance of distinguishing between obesity 

with and without BED to identify unique neuro-computational alterations underlying 

different styles of maladaptive eating behavior.  
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2. Introduction 

Binge Eating Disorder (BED) is a common psychiatric condition (1,2) characterized by 

repetitive, subjectively uncontrollable overeating. It causes significant distress and is 

linked to a number of serious comorbidities such as depression, anxiety, and obesity 

(2–6). BED is recognized as an important public health issue (e.g., 2) but the 

neurocognitive drivers of binge eating – as distinct from the excessive food intake 

without loss of control that characterizes obesity – remain poorly understood.  

BED can be thought of as a disorder of cognitive-behavioral control (7–10). Consistent 

with this view, self-report evidence suggests that impulsivity and compulsivity are 

enhanced in patients (e.g., 11,12). However, the experimental evidence is less clear. 

Thus, research investigating e.g., delay discounting, risky decision-making, or set-

shifting abilities in BED has yielded mixed results (reviewed in e.g., 7,8,10). 

Methodological limitations may account for this inconsistency (8). Many experimental 

tasks lack adequate reliability (13,14), reducing their power to detect differences 

between individuals with and without BED. Further, many studies employ either a 

normal-weight or an obese control group (e.g., 15,16, but see 17), but both are 

necessary to capture differential effects of excess weight and BED. Most studies are 

cross-sectional, precluding investigations of within-subject changes associated with 

symptoms. Finally, previous research may not have sufficiently engaged with literature 

showing enhanced “negative urgency” in BED (12,18,19), which hints that patients may 

show more impulsive behavior in harm-avoidance contexts.  

Addressing these limitations, this study examined behavioral flexibility – an important 

aspect of cognitive-behavioral control – and its neural correlates in obese individuals 

with BED (BED), without BED (OB), and normal-weight (NW) individuals in a 

longitudinal design. We employed a reversal learning task that has previously been 

used to investigate BED in conjunction with functional magnetic resonance imaging 

(fMRI) (20) and is known to produce reliable metrics (21). To capture potentially 

different behavior in reward-seeking vs. loss-avoidance contexts, we introduced 

separate win and loss conditions. To capture within-subject changes in binge-eating 

symptoms and behavioral flexibility, we reinvited participants for a 6-month follow-up. 

To obtain more mechanistic insights, we employed computational modelling using 

reinforcement learning models to inform our behavioral and MRI analyses. 
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In line with previous work, we hypothesized that both BED and OB would perform 

worse than NW due to enhanced switching between options (20,22,23). We expected 

this to be computationally accounted for by greater choice stochasticity (noise in the 

decision-making process) (20,23,24) and neurally reflected as reduced coding of 

learning signals –  (counterfactual) prediction errors and relative expected values – in 

the medial prefrontal cortex, as reported previously (20,25). In light of earlier studies 

(22,26), we further speculated that motivational context might differentially affect BED 

vs. OB participants. Specifically, considering the role of negative urgency in disordered 

eating (12,18,19), we hypothesized that BED participants would perform worse than 

OB in the loss-avoidance condition.  

3. Methods 

3.1. Participants and procedure. 

For this sub-study of a larger project (see ref. 25), we initially enrolled 129 participants 

between 16 and 49 years (43 each of NW, OB, and BED) matched for age, gender, 

and body mass index (BMI) in the case of OB and BED (for in- and exclusion criteria, 

see supplement). The presence of full-blown or subclinical BED was ascertained using 

the Eating Disorder Examination Interview (27) (details in supplement). Thirteen 

participants had contra-indications for MRI scanning and completed the experiment 

outside the scanner. We excluded these subjects and their matches from the analysis 

reported here (final n=96). However, we report the analysis on the full sample in the 

supplement and note discrepancies.  

As part of the study protocol (https://osf.io/fyn6q), participants performed a probabilistic 

reversal learning task during fMRI (25). A minimum of 6 months after their first visit 

(T1), participants were re-invited for a follow-up session (T2) in which they repeated 

the task without MRI measurement. The interval was chosen to allow for change in 

binge-eating symptoms, however, due to restrictions during the Covid-19 pandemic, 

many participants were re-assessed after a longer period (max 28 months, median = 

7.85 months). Participants provided written informed consent and were financially 

compensated for their time (parental consent and Amazon voucher for minors). The 

Leipzig University ethics committee granted ethical approval (385/17-ek). For sample 

characteristics, see Table 1. 
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3.2. Task. 

We employed a modified probabilistic reversal learning task to assess reinforcement 

learning and behavioral flexibility (20,25,28–30). Our version (25) has two blocks of 

140 trials in which participants make repeated choices between two cards. The cards 

have different probabilities of yielding a win (+10 cents) vs. a neutral (± 0 cents) 

outcome (80% and 20%) in the win block, and of yielding a loss (− 10 cents) vs. a 

neutral outcome (± 0 cents) in the loss block (order counterbalanced) (Fig. 1 – A). Five 

times in each block, the outcome contingencies reverse, and participants have to re-

learn them. Neutral outcomes represent negative feedback (no win) in the win 

condition, and positive feedback (no loss) in the loss condition. This allows us to 

differentiate asymmetric learning from valenced feedback (positive vs. negative) from 

asymmetric learning for reward-seeking vs. loss-avoidance. For further details on the 

task and procedure, see supplement.  

3.3. Analysis 

3.3.1. Task performance 

We used trial-by-trial logistic mixed-effects models with maximal random effects (31) 

using the fitglme function in MATLAB R2023a to estimate accuracy (probability of 

choosing the better card), choice switching (probability of choosing another card than 

in the previous trial), and perseveration (probability of choosing the same card after it 

has been punished twice). As predictors, we included group (NW, OB, BED, with OB 

as reference category), condition (win vs. loss), and previous feedback (positive vs. 

negative) for choice switching. Using OB as reference allowed us to test the two 

comparisons central to our design: the difference between BED and OB, reflecting 

effects of loss-of-control eating separate from excess weight; and the difference 

between NW and OB, reflecting effects of excess weight separate from loss-of-control 

eating. We further differentiated between pre-reversal trials, i.e., the trials leading up 

to each reversal (115 trials in total per block), and post-reversal trials, i.e., the 5 trials 

directly following each reversal (25 trials per block) (for details and descriptive 

statistics, see supplement).  

3.3.2. Computational modelling  

To assess processes underlying behavior, we fit 15 computational models (full 

descriptions in supplement). According to the winning model based on integrated BICs 

Jo
urn

al 
Pre-

pro
of



 
 

6 

(Fig. S1), agents learn the expected value of each card by using trial-by-trial prediction 

errors (i.e., the difference between expected value and actual outcome, PEs) to update 

the value of both the chosen (Eq. 1) and the unchosen option (Eq. 2). The latter update 

requires inference on the outcome of the counterfactual choice (Fig. 1 – B).  

 𝑄𝑐ℎ𝑜𝑠𝑒𝑛,𝑡𝑟𝑖𝑎𝑙+1 = 𝑄𝑐ℎ𝑜𝑠𝑒𝑛,𝑡𝑟𝑖𝑎𝑙 + 𝛼(𝜌 ∗ 𝑟𝑒𝑤𝑎𝑟𝑑 − 𝑄𝑐ℎ𝑜𝑠𝑒𝑛,𝑡𝑟𝑖𝑎𝑙)   (1), where 

α = α+   and   ρ = ρ+  ∀  reward > 0 

α = 𝛼–   𝑎𝑛𝑑   𝜌 = 𝜌–  ∀  𝑟𝑒𝑤𝑎𝑟𝑑 < 0 

𝑄𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛,𝑡𝑟𝑖𝑎𝑙+1 = 𝑄𝑐ℎ𝑜𝑠𝑒𝑛,𝑡𝑟𝑖𝑎𝑙 + κα(−(ρ ∗ 𝑟𝑒𝑤𝑎𝑟𝑑) − 𝑄𝑢𝑛𝑐ℎ𝑜𝑠𝑒𝑛,𝑡𝑟𝑖𝑎𝑙) (2), where 

𝛼 = 𝛼–   𝑎𝑛𝑑   𝜌 = 𝜌+  ∀  𝑟𝑒𝑤𝑎𝑟𝑑 > 0 

𝛼 = 𝛼+   𝑎𝑛𝑑   𝜌 = 𝜌–  ∀  𝑟𝑒𝑤𝑎𝑟𝑑 < 0 

Action selection is performed by a softmax rule: 

p(𝑎𝑖) =
𝑒𝑥𝑝(𝑄𝑎𝑖

)

∑ 𝑒𝑥𝑝(𝑄𝑎𝑗
)𝐾

𝑗=1

  

The model has separate learning rates (α) for positive and negative feedback, and a 

weight (κ) on the learning rate for updates of the unchosen option. The reinforcement 

sensitivity parameter (ρ) determines the maximum difference between expected values 

and thus poses a lower bound to choice stochasticity. The model allows for different 

sensitivity to positive and negative feedback, resulting in asymmetric stay-switch 

behavior (e.g., with higher positive ρ, the tendency to stay after positive feedback would 

be stronger than the tendency to switch after negative feedback). The model showed 

overall good fit and recoverability (see supplement). We compared fitted parameters 

from the winning model between groups using linear mixed-effects models (using fitlme 

in MATLAB R2023a).  

3.3.3. Effects of binge-eating frequency. 

To investigate the effects of binge-eating frequency (BEF) on task performance, we 

repeated all generalized linear mixed-effects models in the BED group only, with 

average BEF across sessions and change in BEF as predictors. Change was included 

as the difference from the average in each session (i.e., if BEF was 6 at T1 and 4 at 
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T2, the average would be 5, and change would be +1 at T1 and -1 at T2). This allows 

for the separation of within- and between subject effects related to symptom severity. 

Crucially, the regression coefficient for within-subject changes reflects change in 

symptoms associated with a change in BEF. We removed one participant with 

implausibly high BEF (>3 SD from mean, i.e., 80 binge-eating episodes/month).  

3.3.4. Post-hoc tests, sensitivity and exploratory analyses 

For all models, we used simple effects analyses to unpack interactions. We 

ascertained that the results were not driven by group differences in depression or 

anxiety in sensitivity analyses. We further explored effects of BMI in OB and BED, and 

of the UPPS-scales urgency and lack of perseverance across groups. The results are 

reported in the supplement. 

3.4. fMRI   

For scanning sequences and preprocessing steps, see supplement. We applied event-

related analyses using the general linear model implemented in SPM12, with feedback 

onsets, cue onsets, missing trials, and the 6 movement parameters as regressors. We 

added parametric modulators informed by computational modelling as described 

previously (25). Thus, we added single and double update prediction errors as 

modulators of feedback onsets, and choice probability (relative expected value of the 

chosen option) as modulator of cue onsets (for details, see supplement).  Data from 

the win and loss blocks were analyzed in one model, with each block modeled as a 

separate session. The regressors were convolved with the canonical hemodynamic 

response function.  

For 2nd level analyses, we estimated random-effects ANOVAs on the contrast images 

of the parametric modulators. The ANOVAs included a within-subject condition factor 

(win vs. loss) and a between-subject group factor. Hence, we estimated models 

predicting choice probability from group and condition, and PE-coding from SU vs DU, 

group and condition. For group comparisons, we focused on the ventromedial 

prefrontal cortex (vmPFC) based on previous work (20). For small-volume-correction, 

we used an ROI defined as a 4mm sphere (encompassing 33 voxels) around the peak 

vmPFC voxel associated with valuation ([2 46 -8]) identified in a meta-analysis (32). 

Results were considered significant at pFWE_SVC<.05, where family-wise error correction 

was applied to the peak level. 
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4. Results 

4.1. Task performance 

Context-independent effects. There were no straightforward performance differences 

between groups. However, BED and NW had larger differences in accuracy between 

pre- and post-reversal trials than OB (BED-OB x trial-type: beta=-0.25 t(44717)=-2.4, 

p=.02; NW-OB x trial-type: beta=-0.25, t(44717)=-2.49, p=.01; Fig. 2–A). Simple effects 

analyses suggest that the difference between BED and OB was mainly driven by worse 

performance of BED after reversals (BED-OB pre-reversal: beta=0.29, t(44717)=1.53, 

p=.13; BED-OB post-reversal: beta=-0.21, t(44717)=-2.49, p=.01). The difference 

between OB and NW appeared to be driven by both relatively worse performance 

before (NW-OB: beta=.34, t(44717)=-1.84, p=.07 pre-reversal) and better performance 

after reversals (NW-OB: beta=-.17, t(44717)=-2.05, p=.04 post-reversal) in OB. BED 

and NW did not differ.  

The difference in accuracy between pre- and post-reversal trials tracks successful 

learning during pre-reversal trials, suggesting that OB learn less efficiently than NW, 

with BED landing in between. Our analysis of choice switching corroborated this: BED 

and OB did not differ; however, OB had a smaller difference in choice switching before 

and after reversals than NW (NW-OB x trial-type: beta=0.13, t(43943)=2.26, p=.02, 

Fig. 2-B). Simple effects analyses suggested that this was driven by enhanced 

switching before (NW-OB: beta=-.41, t(43943)=-1.96, p=.05) but not after reversals 

(NW-OB: beta=-0.15, t(43943)=-0.79, p=.43) in OB. BED and NW did not differ. 

Excessive switching between options, especially before reversals, reflects inefficient 

learning (correlation between pre-reversal choice switching and accuracy: r=-.91, 

p<.001). 

There were no context-independent differences between BED, OB, or NW in terms of 

perseveration.  

Context-dependent effects. Motivational context had a different impact on accuracy in 

BED compared to OB (BED-OB x condition: beta=0.12, t(44717)=2.42, p=.02, Fig. 3–

A). Thus, BED had similar accuracy in the win and loss conditions (condition in BED: 

beta=0.02, t(44717)=0.5, p=.62), whilst OB performed worse in the win than the loss 

condition (condition in OB: beta=-0.10, t(44717)=2.94, p=.003). BED and NW did not 

differ.  

Jo
urn

al 
Pre-

pro
of



 
 

9 

There were no context-dependent differences between BED, OB, or NW in terms of 

choice switching. However, the group differences in accuracy were mirrored in 

perseveration (BED-OB x condition: beta=-0.28, t(9008)=-2.53, p=.01, Fig. 3–C). 

Simple effects analyses showed that BED perseverated to a similar extent in the win 

and loss conditions (condition in BED: beta=-0.07, t(9008)=-0.88, p=.38), while OB 

perseverated more in the win than the loss condition (condition in OB: beta=0.21, 

t(9008)=2.66, p=.008). BED and NW did not differ.  

Like excessive switching, perseveration signals ineffective learning (correlation 

between perseveration and accuracy: r=-.19, p=.03). The results therefore suggest 

that, in contrast to BED, OB may learn more effectively in the loss condition due to 

reduced perseveration. 

Sensitivity analyses. When participants without MRI measurement were included in 

the analysis (N=129), the context-independent effects were no longer significant. 

However, the context-dependent group differences between BED and OB participants 

in accuracy and perseveration remained (accuracy: BED-OB x condition: beta=0.09, 

t(61370)= 2.11, p=.04; perseveration: BED-OB x condition: beta=-0.19, t(12309)= -

1.98, p=.05) (see supplement for details). 

4.2. Effects of binge-eating frequency.  

Next, we investigated how average binge-eating frequency (BEF) and longitudinal 

change in BEF were associated with task performance. Consistent with the group-level 

findings, results showed a context-dependent effect of average BEF on accuracy 

(average BEF x condition: beta=0.14, t(13014)=1.99, p=.05). As Fig. 3 – B shows, the 

difference in accuracy between conditions (win>loss) increased with increasing 

average BEF. There was no effect of longitudinal change in BEF on accuracy. 

There were no effects of average BEF on choice switching. However, there was an 

interaction between longitudinal change in BEF and condition (beta=-0.36, t(12807)=-

2.09, p=.04, Fig. 3 – D). Thus, participants switched less between options in the win 

condition when they reported higher BEF relative to baseline (change in BEF in win 

condition: beta=-1.26, t(12807)=-3.38, p<.001; change in BEF in loss condition: beta=-

0.53, t(12807)=-1.14, p=.25).  
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Together, the findings suggest that worse BED symptoms may be associated with a 

bias towards improved learning from wins vs losses, possibly due to diminishing choice 

switching in the win condition as symptoms worsen.  

In addition, there was complex three-way interaction of change in BEF, previous 

feedback, and trial-type on choice switching (for details, see supplement). There were 

no significant effects of average BEF or change thereof on perseveration.  

4.3. Computational modelling.  

Context-independent effects. Contrary to expectations, there were no significant group 

differences in reinforcement sensitivities (𝜌). However, BED participants had more 

asymmetric learning rates (α) and double-update learning rates (α*κ) for positive and 

negative feedback than OB (α – BED-OB x feedback: beta=0.04, t(372)=2.29, p=.02; 

α*κ – BED-OB x feedback: beta=0.02, t(372)=2.53, p=.01; Fig. 2–C). Simple effects 

analyses showed a trend for slower double-update learning after negative but not 

positive feedback in BED (BED-OB in negative feedback: beta=-0.05, t(372)=-1.93, 

p=.06; BED-OB in positive feedback: beta=-0.01, t(372)=-0.52, p=.60). NW also had 

more asymmetric double-update learning rates (α*κ) for positive and negative 

feedback than OB (NW-OB x feedback: beta=0.02, t(372)=2.07, p=.04; Fig. 2–C). This 

seemed to be due to slower double-update learning after positive and faster double-

update learning after negative feedback in OB, although the group effect was not 

significant for either positive or negative feedback.  

Asymmetric learning rates for positive and negative feedback make agents more 

resistant to uninformative (stochastic) negative feedback. Thus, reduced asymmetry 

between learning rates leads to less sharply distinguished expected values and 

therefore to choice switching (correlation between double-update learning rate 

asymmetry and choice switching: r=-.36, p<.001). Thus, the findings suggest that 

reduced asymmetry of double-update learning rates for positive and negative feedback 

may account for our finding of enhanced choice switching in OB.  

Context-dependent effects. Across groups, participants had higher reinforcement 

sensitivities (𝜌), i.e., behaved less noisily, in the loss condition (condition: beta=-0.03, 

t(380)=-2.21, p=.03). However, there were no group differences. 
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BED and OB groups significantly differed in terms of their learning rates (α) in the win 

and loss conditions (BED-OB x condition: beta=0.02, t(372)=2.09, p=.04). BED, but not 

OB participants, had lower learning rates in the loss than in the win condition (condition 

in BED: beta=0.1, t(372)=2.41, p=.02; condition in OB: beta=-0.004, t(372)=-0.54, 

p=.58). This pattern did not quite match our observations at the behavioral level. We 

therefore reasoned that a lower learning rate in the loss condition in BED might 

compensate for higher reinforcement sensitivity in the loss condition across groups. 

The result would be higher “learning sensitivity” in the loss condition in OB compared 

to BED, possibly accounting for improved performance in this condition.  

We therefore calculated the product of learning rate and reinforcement sensitivity (𝜌*α, 

the “learning sensitivity”). BED had higher learning sensitivity for wins than losses, 

while OB had higher learning sensitivity for losses than wins (BED-OB x condition: 

beta=0.09, t(372)=2.06, p=.04, Fig 3–E). Critically, learning sensitivity (𝜌*α) was highly 

correlated with accuracy (r=.82, p<.001). Differences in learning sensitivities in the win 

and loss conditions may thus account for context-dependent differences in accuracy 

between BED and OB.  

There were no context-dependent differences in double-update learning rate between 

BED, OB, or NW. There were no associations between BEF and model parameters. 

Sensitivity analyses. The results did not change when we excluded 7 participants fit at 

chance level. When participants without MRI measurement were included during fitting 

(N=129), the difference between BED and OB participants in learning sensitivity for 

wins and losses, and learning rates for positive and negative feedback were still 

significant (for details, see supplement). The other group differences were no longer 

significant.  

4.4. fMRI results 

Next, we explored how our findings of group differences at the behavioral and 

computational level were reflected in the coding of model-derived learning signals in 

the brain (for group level results, see supplement).  

Context-independent effects. The two obese groups showed less activation associated 

with choice probability in the vmPFC than NW (2/46/-12, t=2.83, p-FWEsmall-

volume=.014, Fig. 2 – D and E). Since choice probability can be understood as reflecting 
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confidence in the upcoming choice, this dovetails with our findings at the behavioral 

and computational level: OB showed enhanced switching, which we have argued may 

be a consequence of less sharply distinguished expected values due to less 

asymmetric learning from positive and negative feedback. There were no other 

context-independent group differences. 

Context-dependent effects. There was a marginal interaction between DU vs SU, 

condition, and group with respect to PE-coding in the vmPFC (2/42/-8, t=2.16, p-

FWEsmall-volume=.063, Fig. 3 – F and G). Activation in response to DU-PEs was 

stronger in the win condition in BED, and stronger in the loss condition in in OB. That 

is, the neural learning signal incorporating counterfactual inference was more 

pronounced in the win than the loss condition in BED participants and vice versa in 

OB. Importantly, this signal also correlated with average BEF in BED, such that more 

binge-eating episodes were associated with larger differences in DU-signal between 

the win and loss conditions (r=.32, p=.04, Fig. 3 – H). This echoes our findings of higher 

learning sensitivity in reward-seeking vs. loss-avoidance contexts in BED, and more 

asymmetric learning from wins vs losses in participants with more frequent binge-

eating episodes. There were no other context-dependent group differences.  

5. Discussion  

In this study, we used a probabilistic reversal learning task, computational modelling, 

and fMRI in a longitudinal design to investigate shared and distinct neurocognitive 

mechanisms of altered decision-making in BED and OB compared to NW.  

We demonstrate subtle differences between BED and OB with regard to learning in 

different motivational contexts. Thus, unlike BED, OB performed better when learning 

for loss-avoidance (loss condition) than reward-seeking (win condition), putatively 

thanks to less perseveration. This is broadly in line with our hypotheses regarding BED 

but somewhat at odds with prior reports of difficulty with learning from losses in obesity 

(33,34). However, the samples used in (33,34) were not screened for BED and may 

have been confounded – something the study reported here was designed to avoid. 

For our data, computational modelling suggested that the condition-specific 

performance difference may reflect relatively enhanced learning sensitivity (product of 

reinforcement sensitivity and learning rate) in the loss condition in OB, and relatively 
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reduced learning sensitivity in the loss condition in BED. Consistent with this, a neural 

learning signal incorporating counterfactual inference in the vmPFC was comparatively 

stronger in the loss condition in OB and comparatively weaker in the loss condition in 

BED. This effect was only marginally significant. However, reduced coding of 

counterfactual prediction errors in the vmPFC has previously been shown to 

characterize BED (20); and the signal was correlated with binge-eating frequency, with 

greater differences between conditions (win>loss) associated with higher frequencies. 

This mirrored the association between binge-eating frequency and the difference in 

performance between the win and loss conditions, where higher frequencies were also 

associated with greater differences between conditions. In addition, and consistent 

with this, worsening symptoms were associated with less choice switching in the win 

but not the loss condition. In sum, the results suggests that BED and OB may be 

characterized by different neurocognitive learning biases, with better learning from 

wins than losses in BED, and better learning from losses than wins in OB. 

Independent of motivational context, OB showed more choice-switching, particularly 

before reversals, leading to worse performance in OB compared to NW before, and 

better performance after reversals compared to BED and NW. Computationally, 

switching was accounted for by less asymmetric counterfactual learning rates for 

positive and negative feedback in OB compared to BED and NW. A lack of asymmetry 

makes agents more sensitive to uninformative feedback, and thus leads to less sharply 

distinguished expected values and enhanced choice switching. At the neural level, 

obese participants (with and without BED) showed reduced coding of choice probability 

– a reflection of the difference between expected values – in the vmPFC. The effects 

were small but resonate with previous reports of enhanced switching in OB (23). The 

absence of discernible differences between BED and OB in pre-reversal accuracy, 

switching behavior, and fMRI observations gesture towards a general effect of obesity, 

irrespective of BED. However, given group differences in post-reversal accuracy and 

model parameters which diverge from this trend, we hesitate to draw definitive 

conclusions. 

Together, our results indicate that obesity in the context of BED may vary qualitatively 

from obesity without loss-of-control eating. Indeed, there may be a bias towards worse 

learning from losses than wins in BED, and vice versa in OB. This fits with the clinical 

picture of BED, where patients repeat actions they know will make them feel bad. It 
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also chimes with demonstrably enhanced negative urgency in this group (18,19,35), 

which may disturb learning and decision-making for loss-avoidance. Indeed, there is 

evidence that inhibitory control and risk-taking in BED are affected by negative mood 

(36,37). It would be interesting to test, by experimentally manipulating stress or mood 

before task performance in the lab, or via more ecological, smartphone-based 

approaches, whether this extends into the reinforcement learning realm. 

Our results are intriguing but not without limitations. The effects we show are subtle, 

complex, and not always easily unpacked. Importantly, while we saw specific 

differences between BED and OB participants, the BED and NW groups did not 

significantly differ from one another. This raises the question whether the BED-OB 

differences are driven by BED-specific alterations or a normalization of obesity-

associated alterations. While our analysis of the effects of binge-eating severity and 

the absence of context-specific differences between OB and NW suggest the former, 

further research in large clinical multicenter samples will be necessary to replicate and 

clarify group differences, and to properly disentangle the dimensional effects of BMI 

and binge-eating severity. Our data yield important leads but the groups were too small 

to produce sufficiently dependable dimensional estimates, let alone investigate 

potential non-linear effects, which may be especially interesting with regard to obesity 

without BED (38). Likewise, our evidence is confined to the monetary domain, 

however, food rewards may be processed differently.  

In conclusion, our data suggest that reinforcement learning in obesity with and without 

BED may be subject to qualitatively different neurocomputational learning biases. 

Thus, individuals with BED may have a bias towards worse learning from losses than 

wins, and obese individuals without BED may have a bias towards worse learning from 

wins than losses. Obesity without BED was further associated with reinforcement 

learning difficulties due to enhanced choice switching. Our findings highlight the 

importance of distinguishing between obesity with and without BED.  
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9. Tables 

Table 1. Demographics and sample characterization 

 
NW OB BED p 

N 32 32 32 
 

Age 29.28 (±6.13) 30.26 (±6.09) 29.82 (±6.90) 0.83 

BMI 22.30 (±2.04) 35.54 (±3.57) 35.47 (±4.67) 0.94 

Follow-up Interval (years) 0.80 (±0.50) 0.90 (±0.38) 0.76 (±0.29) 0.55 

Drop-out 21.88 % 37.50 % 34.38 % 0.37 

Gender 75.00 % 75.00 % 75.00 % 1 

Years of education (full-

time) 

17.77 (±3.92) 16.58 (±5.11) 17.76 (±3.48) 0.44 

TMT-A 19.69 (±4.43) 20.52 (±5.19) 19.81 (±4.95) 0.77 

TMT-B 41.86 (±10.64) 43.10 (±15.32) 37.24 (±8.41) 0.12 

Digit Span Forward 6.69 (±1.26) 6.25 (±0.95) 6.45 (±1.09) 0.29 

Digit Span Backwards 5.34 (±1.36) 4.81 (±1.26) 5.26 (±1.09) 0.19 

Digit-Symbol-Substitution 

Task 

83.41 (±11.57) 81.16 (±15.19) 78.03 (±12.24) 0.26 

Verbal IQ (Wortschatztest) 109.78 (±8.88) 102.84 (±9.64) 105.31 (±5.83) <0.001 

EDE-Q Binge episodes 

(last 28 days) 

0.32 (±1.14) 0.48 (±1.86) 6.84 (±5.04) <0.001 

EDE-Q total 0.79 (±0.95) 1.67 (±1.31) 2.48 (±0.78) <0.001 

EDE-Q restraint 0.74 (±0.86) 1.41 (±1.22) 1.58 (±1.01) <0.001 

EDE-Q Eating Concern 0.22 (±0.25) 0.62 (±0.71) 1.85 (±0.90) <0.001 

EDE-Q Weight Concern 1.87 (±2.24) 4.12 (±3.17) 6.06 (±1.74) <0.001 
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EDE-Q Shape Concern 0.34 (±1.13) 0.53 (±1.36) 0.44 (±0.92) 0.81 

BIS 15 29.71 (±7.53) 30.03 (±6.19) 35.26 (±6.92) <0.001 

UPPS Urgency 24.94 (±5.38) 26.52 (±5.32) 34.32 (±5.28) <0.001 

UPPS Premeditation (-) 22.06 (±4.68) 21.45 (±4.43) 23.45 (±5.42) 0.26 

UPPS Perseverance (-) 19.19 (±5.79) 18.29 (±3.36) 22.03 (±4.35) 0.01 

UPPS Sensation Seeking 31.65 (±7.32) 31.81 (±7.25) 30.94 (±6.79) 0.88 

WBIS 22.27 (±12.32) 39.34 (±14.60) 50.52 (±12.88) <0.001 

YFAS 0.16 (±0.45) 0.75 (±1.57) 3.94 (±2.57) <0.001 

FCQ 10.13 (±3.53) 11.69 (±3.84) 16.11 (±3.59) <0.001 

BDI 4.31 (±5.51) 7.84 (±5.66) 15.79 (±8.99) <0.001 

STAI (Trait) 37.23 (±11.18) 38.97 (±9.76) 50.61 (±10.43) <0.001 

N.B. p-values reflect one-way ANOVAs except for BMI, which reflects a t-test between 

OB and BED subjects. TMT – Trail Making Test (39), Digit Span Task (40), Digit 

Symbol Substitution Task (40), Wortschatztest (41), EDE-Q – Eating Disorder 

Examination Questionnaire (42), BIS-15 – Barratt Impulsiveness Scale – Short Version 

(43), UPPS – UPPS Impulsive Behavior Scale (44), WBIS – Weight Bias Internalization 

Scale (45), YFAS – Yale Food Addiction Scale, modified version (46), FCQ – Food 

Craving Questionnaire (47), BDI – Beck Depression Inventory (48), STAI – State Trait 

Anxiety Inventory (49) 

10.  Figure legends 

Fig. 1. – A. Schematic of the probabilistic reversal learning task (PRLT). Participants 

make 140 binary choices between two abstract stimuli (cards) with different 

probabilities of rewards, neutral outcomes, or losses. The goal is to gain as much and 

lose as little money as possible, depending on condition (win or loss). In the win 

condition, a positive outcome means gaining 10 cents, while a neutral response (±0 

cents) represents a negative outcome. In the loss condition, a neutral response (±0 

cents) is a positive outcome, while a negative outcome means losing 10 cents. In each 

trial, the stimuli are presented for a maximum of 1500ms or until the participant 

Jo
urn

al 
Pre-

pro
of



 
 

24 

responds. A frame then appears around the chosen card and remains visible for the 

1500ms minus the response time. Feedback is indicated through pictures of coins: a 

10-cents coin for wins, 0-cents coin for neutral outcomes, and minus 10-cents coin for 

losses. Trials end with a variable intertrial interval (mean 2500ms) during which 

participants see a fixation cross. The lower panel shows the reward contingencies. In 

the initial 35 trials, the stimuli have win/loss probabilities of 20% and 80% respectively. 

The contingencies reverse five times throughout the task (after the 35th, 55th, 70th, 

85th, and 105th trial), requiring participants to adapt their behavior to maximize gains 

and avoid losses. The order of conditions was randomized. – B. Upper panel. 

Schematic of the winning computational model. Agents learn the expected value (Q) 

of each card based on their actions (a), the rewards (R) they receive at each trial. More 

specifically, agents use prediction errors (𝛿), the difference between expected values 

and actual outcomes to update the values of both the chosen and the unchosen option. 

Notably, the latter update depends on inference on the outcome of the counterfactual 

choice. The learning rate (α) determines how much recent feedback is prioritized over 

older feedback, the reinforcement sensitivity (ρ) determines choice stochasticity, and 

the double update weight (κ) scales the learning rate for counterfactual updates. The 

model has separate learning rates and reinforcement sensitivities for positive and 

negative feedback. Action selection is performed by a simple softmax rule. Middle 

panel. Development of expected values when κ = 0, i.e., when no counterfactual 

inference takes place. Lower panel. Development of expected values when κ = 1, i.e., 

when inferred counterfactual feedback is incorporated in the same way as actual 

feedback. 

Fig. 2. – A. Accuracy in pre and post reversal trials by group. B. Choice switching in 

pre and post reversal trials by group. C. Difference in double update (counterfactual) 

learning rate for positive and negative feedback by group. D. vmPFC cluster reflecting 

the NW > (OB, BED) contrast on BOLD response to choice probability (t=.2.83, pFWE 

svc at [2, 46, -12] = .01). E. Individual parameter estimates at [2, 46, -12] by group. 

Individual dots represent predicted values from (generalized) linear mixed-effects 

models, grey boxplots reflect their distribution, yellow dots and lines indicate group 

means. OB – obese without binge eating disorder; BED – obese with binge eating 

disorder; * – p<.05; ✢ – p<.1  
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Fig. 3. – A. Accuracy by condition and group. B. Accuracy by condition and average 

binge-eating frequency (episodes per 28 days) within the BED group. C. Perseveration 

by condition and group. D. Change in choice switching by condition and change in 

binge-eating frequency across sessions. E. “Learning sensitivity”, the product of 

learning rate and reinforcement sensitivity, by condition and group. F. vmPFC cluster 

reflecting the single vs. double update * condition * OB vs. BED contrast on BOLD 

response to prediction errors (t=2.16, pFWE svc at [2, 42, -8] = .06). G. Individual 

parameter estimates at [2, 42, -8] by group. H. Correlation between Individual 

parameter estimates at [2, 42, -8] and average binge-eating frequency across sessions 

in the BED group. Individual dots represent predicted values from (generalized) linear 

mixed-effects models, grey boxplots reflect their distribution, yellow dots and lines 

indicate group means. OB – obese without binge eating disorder; BED – obese with 

binge eating disorder; * – p<.05; ✢ – p<.1 
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