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A B S T R A C T   

The Tinderbox Drought (2017–2019) was one of the most severe droughts recorded in Australia. The extreme 
summer air temperatures (>40 ◦C) combined with drought, contributed to the unprecedented Black Summer 
bushfires in 2019–20 over southeast Australia. Whilst the temperature extremes were largely driven by synoptic 
processes, it is important to understand to what extent interactions between land and atmosphere played a role. 
In this study, we use the WRF-LIS-CABLE land-atmosphere coupled model to examine the impacts of changes in 
leaf area index (LAI) and albedo by contrasting simulations with climatological and time-varying LAI and albedo. 
We analyse the impact of these biophysical feedbacks on temperature extremes and fire risk during the Tinderbox 
Drought and the Black Summer bushfires. Remote-sensing data showed a decrease in LAI (0.1–4.0 m2 m− 2) over 
the three years of the drought along the southeast coast of Australia relative to the long-term climatology, while 
albedo increased inland (0.02–0.14). These changes in LAI and albedo were accompanied by an overall decrease 
in daily maximum temperature (Tmax) in the vast majority of interior regions (by ~0.5 ◦C) and, in the 2019–20 
summer, by a clear increase in Tmax in the coastal regions of up to ~1 ◦C. Increased albedo explained most of the 
decreases in Tmax inland, whereas increases in Tmax along the coasts were mostly associated with LAI declines. 
The magnitude of the impact of biophysical changes on temperature demonstrates the potential impact that 
would be missed in simulations that assumed fixed vegetation properties. Finally, we only found a small impact 
from LAI and albedo changes on the fire risk (as measured by the fuel moisture index) preceding the Black 
Summer bushfires, suggesting these biophysical feedbacks did not significantly modulate fire risk. Our results 
have implications for coupled simulations relying on climatological LAI and albedo, including operation weather 
and seasonal climate predictions.   

1. Introduction 

The Tinderbox Drought, which began in 2017 and extended into 
early 2020, stands out as one of the most severe droughts in Australia’s 
instrumental history (Abram et al., 2021; Bureau of Meteorology, 2020a; 
Nguyen et al., 2021). This drought primarily affected the southeast of 
Australia, including the Murray–Darling Basin which accounts for over 
40% of national agricultural production. Years 2017–2019 were the 

driest 3-year period on record in eastern Australia (Nguyen et al., 2021) 
with 12 consecutive months with below average rainfall in the Mur
ray–Darling region and strong rainfall declines experienced in particular 
during the cool season (April–September) (King et al., 2020). The 
Tinderbox Drought led to an estimated $AUD 53 billion total economic 
losses (Wittwer and Waschik, 2021) and threatened the water supply of 
the country’s second largest city, Sydney (Sydney Water, 2020), and that 
of multiple rural towns (NSW DPI, 2020). 
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The drought was accompanied by extremely hot summers. The 
summers of 2018–2019 and 2019–2020 were the hottest on record in 
Australia, with the 2018–2019 summer setting a new national record, 
0.86 ◦C higher than the previous record (Bureau of Meteorology, 2019). 
December 2019 experienced 11 days with an average daily maximum 
temperature (Tmax) exceeding 40 ◦C on average nation-wide, a 
remarkable occurrence given only 11 days ≥ 40 ◦C had previously been 
recorded since 1910 (Bureau of Meteorology, 2020b). Southeast 
Australia was particularly hard hit by these heat extremes. In the 
2018–2019 summer, temperatures in New South Wales broke previous 
records by up to 2 ◦C (Bureau of Meteorology, 2019). These heat ex
tremes were caused by a combination of factors including anomalous 
synoptic processes and the very dry land surfaces caused by the ongoing 
multi-year drought, which likely intensified the heat extremes via the 
positive land–atmosphere feedback (Hirsch et al., 2019a; Miralles et al., 
2019; Schumacher et al., 2019). 

With co-occurring drought, low atmospheric relative humidity, 
extremely hot weather (Deb et al., 2020) and dry soils, combined with 
low moisture in dead and live fuels, the 2019–2020 Australian bushfire 
season (known as Black Summer) was the most destructive on record. 
The fire season started in early September 2019, spread across wide 
areas of southeast Australia and was unprecedented in its scale, severity, 
and impact (Abram et al., 2021; Filkov et al., 2020). The fires burned 
more than 5.8 million hectares of forest, including 21% of the Australia’s 
temperate forests (Abram et al., 2021; Boer et al., 2020; Deb et al., 
2020). The Black Summer bushfires released very large quantities of CO2 
into the atmosphere; estimates include 350 million tons between 
November and December (Sanderson and Fisher, 2020) and between 
414 and 866 million tons for the drought- and fire-affected 2019–2020 
growing season (Byrne et al., 2021). The fires claimed 28 human lives 
(Roach, 2020) and destroyed more than 3 000 houses (Wittwer and 
Waschik, 2021). 

Drought stress can affect vegetation composition, structure and 
function (Gupta et al., 2020; Jiao et al., 2020; Nolan et al., 2021; Peters 
et al., 2018), and lead to crown die-back/tree mortality (Bréda et al., 
2006; De Kauwe et al., 2022; Nolan et al., 2021) and reduced crop yield 
(Boyer et al., 2013; Stahl et al., 2016; van Dijk et al., 2013). At regional 
scales, the impact of drought can be tracked using satellite data to 
monitor reductions in leaf biomass (e.g. leaf area index; LAI) and fluc
tuation in surface albedo. Overall, the changes in LAI and albedo 
induced by both drought and fire should influence both surface energy 
balance and the coupled land-atmosphere system. Reductions in LAI 
modify the water and energy fluxes over land (Duveiller et al., 2018; 
Forzieri et al., 2020; Launiainen et al., 2019), while increases in surface 
albedo reduce the net radiation available to the surface energy balance 
and subsequently temperature (Graf et al., 2023; Li et al., 2015; Su et al., 
2023; Wu et al., 2021), potentially altering regional precipitation 
(Sooraj et al., 2019; Terray et al., 2018). Thus, changes in either the 
amount of energy available at the surface (albedo) or the partitioning of 
energy into sensible versus latent heat fluxes (LAI) subsequently affect 
the risk of heat extremes, and the characteristics of the atmospheric 
boundary layer. Previous modelling work suggests that changes in key 
biophysical properties of the vegetated land surface (e.g. vegetation 
fraction and albedo) intensified the Millennium Drought that affected 
much of eastern Australia between 2001 and 2009 (Evans et al., 2017; 
Meng et al., 2014a, 2014b). Other model studies have also shown that 
using time-varying LAI and albedo rather than climatology can enhance 
model performance by improving simulated water and energy fluxes and 
increase potential predictability of temperature extremes (Boussetta 
et al., 2013, 2015; Duveiller et al., 2023; Koster and Walker, 2015; 
Nogueira et al., 2020; Ruiz-Vásquez et al., 2022, 2023). Some previous 
studies have also assimilated remotely-sensed observations into coupled 
weather and climate models to reflect how drought impacts the land 
surface (Boussetta et al., 2013, 2015; Ruiz-Vásquez et al., 2022, 2023; 
Yan et al., 2020). The updated vegetation (LAI, vegetation fraction, land 
cover) and albedo information enable these coupled models to better 

capture the near surface temperature forecasts (Alessandri et al., 2017; 
Boussetta et al., 2013, 2015; Knote et al., 2009; Liu and Chen, 2024; Yan 
et al., 2020). Boussetta et al. (2015) assimilated the near-real time LAI 
and surface albedo into the European Centre of Medium-Range Weather 
Forecasts (ECMWF) Integrated Forecasting System (IFS) and improved 
the detection of extreme events in regions with significant LAI and al
bedo anomalies, also reducing the errors in near-surface air temperature 
simulations. Further, Alessandri et al. (2017) introduced dynamic LAI 
observations into the ECMWF EC-Earth Earth System Model and found 
significant improvements in the forecast of 2-m temperature and rainfall 
over transitional land surfaces on seasonal to decadal timescales. 

While both LAI and albedo influence the surface and the boundary 
layer, the nature, evolution and magnitude of this influence over 
sequential drought years is not clear, including the contribution these 
made to the remarkably hot summers experienced during the Tinderbox 
Drought and to the Black Summer bushfires. This lack of clarity has 
implications for our understanding of these extreme events but also for 
modelling applications as many regional simulations of weather and 
climate, including operational seasonal predictions in Australia, are 
forced with climatological LAI and albedo using a pre-determined sea
sonal cycle that does not incorporate the dynamic effects of drought or 
other disturbances on the vegetation. This study aims to advance our 
understanding of what impact dynamical changes in LAI and albedo had 
on temperature extremes and fire risk during the Tinderbox Drought and 
seeks to examine what impacts this has in typical simulations omitting 
this feedback. We use a land-atmosphere coupled model and simulations 
driven by climatological and observed (time-varying) LAI and albedo. 
Specifically, we explore whether the changes in LAI and albedo observed 
throughout the drought contributed to the remarkably hot summers in 
the last two years of the Tinderbox Droughts and whether these changes 
made conditions more conducive to the Black Summer bushfires. 

2. Methods 

2.1. Modelling system 

We use the land-atmosphere coupled modelling system WRF-LIS- 
CABLE, which combines the National Aeronautics and Space Adminis
tration (NASA) Unified Weather Research and Forecasting (WRF) model 
version 9.2 (NU-WRF v9.2), a regional atmospheric model, with the 
Community Atmosphere–Biosphere Land Exchange (CABLE) land sur
face model (LSM). NU-WRF v9.2 incorporates the versions 3.9.1 of WRF 
and 7.2 of the Land Information System model framework (LIS), the 
latter which couples the atmospheric and land surface models. The 
CABLE LSM coupled to NU-WRF is based on CABLE 2.0 but with a new 
hydrology scheme developed by Decker (2015) and Decker et al. (2017). 

The WRF atmospheric physics configurations follow Hirsch and King 
(2020) who selected a model configuration that performed well in 
simulating heat extremes over Australia, particularly for the summer 
months. These atmospheric configurations include the 
Mellor-Yamada-Janjic boundary layer and surface layer schemes, the 
New Tiedtke cumulus convection scheme, the RRTMG shortwave and 
longwave radiation schemes and the WRF Single-Moment 5-class 
microphysics scheme. Our simulation domain covers southeast 
Australia (Fig. 1a), including the states of New South Wales (NSW), 
Victoria (VIC), southern Queensland (QLD), and eastern South Australia 
(SA), as well as the Australian Capital Territory (ACT). A spatial reso
lution of 4 km is employed in the simulations in order to explore the 
impact of albedo and LAI on conditioning the landscape for fires. 

The CABLE version within WRF-LIS-CABLE is extended from CABLE 
version 2.0, with the addition of subgrid-scale soil moisture, infiltration 
excess and saturation runoff generation mechanisms, as well as a dy
namic unconfined groundwater aquifer beneath the 4.6 m soil column 
(Decker, 2015; Decker et al., 2017; Mu et al., 2021a). This version of 
CABLE has been evaluated extensively at both site- and global-scales and 
has shown good performance in simulating land water and energy fluxes 
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under both average and extreme conditions, including during the 
Tinderbox Drought period (Decker, 2015; Decker et al., 2017; Mu et al., 
2021a, 2021b; Ukkola et al., 2016). 

We evaluated WRF-LIS-CABLE using the Australian Gridded Climate 
Data (AGCD) observations (Jones et al., 2009). We found that the model 
(using ERA5) tends to underestimate Tmax by up to 4 ◦C, consistent with 
previous studies using ERA Interim (Hirsch et al., 2019b; Mu et al., 
2022) (details in Supplementary Material). The underestimation of Tmax 
is mainly associated with an apparent cold bias in the ERA5 (and ERA 
Interim) reanalysis over the study region. However, as demonstrated by 
Mu et al. (2022) WRF-LIS-CABLE system also tends to underpredict the 
range of the diurnal temperature variation. 

2.2. Experiment design 

We first undertake a 137-year spin-up of the offline CABLE LSM 
following the approach of Mu et al. (2022). This spin-up includes 90 
years of simulation with CO2 concentrations fixed at the 1969 levels, 
recycling years 1970–1999 from the Australian Gridded Climate Data 
(AGCD) meteorology forcing dataset (Jones et al., 2009). We then run 
the model for 1970–2016 using time-evolving CO2 and time-varying 
AGCD meteorological dataset to derive initial conditions for soil mois
ture and groundwater aquifer moisture for the coupled experiments 
using WRF-LIS-CABLE. The coupled simulations were then run from 
January 1, 2017 to February 29, 2020, forced at the boundaries by the 
European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis v5 (ERA5; Hersbach et al., 2020). We note that we do not use 
nested domains to transition from the 31 km ERA5 atmospheric forcing 
to the 4 km simulations conducted here. This was a compromise between 
the computational costs of these simulations, and the desire to resolve 
terrestrial processes at very high spatial detail, which does not limit our 
ability to evaluate the effects of prescribed changes in land properties on 
near-surface temperature. 

We undertake two experiments to examine the impact of drought- 
associated changes in LAI and albedo. The first experiment uses clima
tological daily LAI and albedo calculated using remotely-sensed obser
vations for 2003–2022 (Clim) (see Section 2.3). The second experiment 
uses time-varying daily LAI and albedo observations (Dyn) and therefore 
captures the LAI and albedo changes associated with the drought and 
fire events. Due to the high computational cost of running WRF-LIS- 
CABLE at 4 km resolution for a period of ~3 years, we only run one 
simulation for each experiment. 

2.3. Datasets 

We use the ERA5 dataset to drive the boundary conditions of the 

WRF-LIS-CABLE coupled model. This dataset is at a horizontal resolu
tion of 31 km and an hourly temporal resolution. The ERA5 dataset has 
been widely used in climate analyses (Chiodi et al., 2021; Fang et al., 
2022; Zscheischler et al., 2021), model evaluations (Ajjur and 
Al-Ghamdi, 2021; Tarek et al., 2020) and for driving regional and global 
climate models (Segura et al., 2021; Wei et al., 2021). 

The land cover type in our simulations is sourced from the National 
Dynamic Land Cover Data of Australia (DLCD) dataset (https://www.ga. 
gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landc 
over, last access: August 29, 2021), which is aggregated to five plant 
functional types (PFTs) used by CABLE as shown in Fig. 1a (see Mu et al., 
2021b). The soil hydraulic parameters are derived using the Cosby 
pedotransfer functions (Cosby et al., 1984) and the SoilGrids soil prop
erties maps (Hengl et al., 2017), which provide the fraction of sand, clay, 
silt, and organic carbon at six depths, from the soil surface down to 2 m. 
We weight the SoilGrids depth-varying soil properties to match the 
depth of model soil layers and the groundwater aquifer and assume the 
soil properties below 2 m equal those in SoilGrids at 2 m. These soil 
properties are then used to calculate depth-varying soil hydraulic pa
rameters for the CABLE soil layers and groundwater aquifer. 

We use version 6.1 of the Moderate Resolution Imaging Spectror
adiometer (MODIS) to estimate the climatology and time-varying LAI 
and albedo used in our simulations during the periods of Tinderbox 
Drought. The LAI data is from the MCD15A3H MODIS product, which 
combines the measurements from Terra and Aqua satellites to create a 4- 
day composite dataset at 500 m spatial resolution (Myneni et al., 2021). 
The albedo is from the Bidirectional Reflectance Distribution Function 
and Albedo (MCD43C3) product, which uses the 16-day Terra and Aqua 
MODIS data to provide the 8-day data at a 0.05◦ (~5 km) spatial reso
lution (Schaaf and Wang, 2021). The albedo used in the simulations 
includes black sky albedo and white sky albedo for the visible and 
near-infrared bands. Both the albedo and LAI dataset were extracted 
using the Google Earth Engine (https://developers.google.com/ear
th-engine/datasets/catalog/MODIS_061_MCD15A3H; last access March 
16, 2023). We fill the missing observations by carrying the last obser
vation forward in time, then aggregate to a weekly resolution, and 
smooth the timeseries with a weighted Whittaker filter using a second 
order finite difference penalty. The dataset is finally linearly interpo
lated into daily resolution and to the 4 km WRF domain with the 
nearest-neighbor interpolation to drive the model. The period of 
January 1, 2003 to December 31, 2022 is used to calculate the daily 
climatology. 

To analyse the impact of the Black Summer bushfires on the LAI and 
albedo, we use version 6.1 of MODIS Global Burned Area Product 
(MCD64A1) product at a 500-m spatial resolution to identify burned 
areas and the date the fire commenced at each location 

Fig. 1. (a) The map of land cover types over the studied region and (b) the extent of the Black Summer bushfires and month the fire started (September to December 
are in 2019 and January and February in 2020). In panel a, “forest” refers to broadleaf evergreen forest. The labels indicate Australian states: New South Wales 
(NSW), Victoria (VIC), Queensland (QLD) and South Australia (SA). 
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(Fig. 1b–Boschetti et al., 2019; Giglio et al., 2018). This dataset provides 
similar spatial and temporal patterns of the Black Summer bushfires 
burned regions as the Fire Extent and Severity Mapping product (FESM, 
https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severit 
y-mapping-fesm, last access: December 14, 2023) and the Google Earth 
Engine Burnt Area Map (GEEBAM, https://datasets.seed.nsw.gov.au/ 
dataset/google-earth-engine-burnt-area-map-geebam, last access: 
December 14, 2023). 

2.4. Fuel moisture index 

To determine the potential impact of changes in LAI and albedo on 
fire risk in the lead-up to the Black Summer, we calculated the Fuel 
Moisture Index (FMI, Sharples and McRae, 2011), which assesses the 
dead fuel moisture content: 

FMI=10 − 0.25 (T − q)

where T (◦C) is the air temperature and q (%) is the relative humidity. A 
lower FMI is taken as a proxy for drier fuel and a higher fire risk. While 
the FMI does not consider the impact of fuel quantity and type of fuel, it 

provides a general climatological estimate of likely fuel dryness in 
conditions conducive to extreme fires (Abram et al., 2021; Sharples and 
McRae, 2011). 

3. Results 

3.1. Temperature differences during the tinderbox drought and black 
summer 

We first contrast the evolution of daily near-surface maximum tem
peratures (Tmax) during the three-year Tinderbox Drought in the Dyn 
and Clim simulations designed to quantify the impact of biophysical 
feedback (LAI and albedo) on the atmosphere. Fig. 2 shows Tmax dif
ferences (ΔTmax, Dyn – Clim) over the three years of drought. Overall, 
the use of time-varying LAI and albedo led to differences of up to 0.7 ◦C 
during the Tinderbox Drought, especially from the winter of 2018 on
wards, albeit with notable variations across seasons and space. In the 
inland regions, Tmax differences generally evolved from positive ΔTmax 
of 0.1–0.4 ◦C at the start of the drought (Fig. 2a) to negative ΔTmax of 
0.1–0.7 ◦C in the last year of the drought (Fig. 2e). The higher Tmax in 

Fig. 2. The Tmax difference (ΔTmax, ◦C) between Dyn and Clim through the three years of the Tinderbox Drought. The left column refers to winters (June–August) and 
the right column to summers (December–February). The top row is for the 2017 winter (a) and 2017–18 summer (b), the second row for the 2018 winter (c) and 
2018–19 summer (d), and the third row for the 2019 winter (e) and 2019–20 summer (f). 
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Dyn compared to Clim at the start of the drought was evident in the 
western parts of the domain but weakened within the first year of the 
drought. By the winter 2018, the differences were smaller and more 
varied with both negative and positive ΔTmax in the inland regions 
(Fig. 2c). In the summer of 2018–19 (Fig. 2d), cooler temperatures were 
simulated in Dyn across the areas that were most strongly impacted by 
the drought (in particular inland NSW). The negative ΔTmax intensified 
and spread across much of the model domain in the following winter 
(Fig. 2e), and largely persisted into the following summer. The Tmax 
differences along the coast were less consistent and mostly negligible 
during winter (Fig. 2a, c, 2e). Both negative and positive differences 
arose during the first two summers of the drought (Fig. 2b and d). During 
the last summer of the drought (2019–20), ΔTmax was consistently 
positive across large parts of the eastern coast (Fig. 2f). Tmax differences 
were particularly high (by up to 0.6 ◦C) between the latitudes of 28–38◦S 
which were areas strongly affected by the Black Summer bushfires. 

We further explore the 2019–20 summer period as this is when we 
see some of the largest differences in Tmax from using time-varying LAI 
and albedo (i.e., an inland cooling of Tmax contrasting a coastal increase 
in Tmax). This is also when the Tinderbox Drought reached its peak in
tensity, culminating in the Black Summer bushfires. Fig. 3a–c shows the 
monthly evolution of Tmax differences between December 2019 and 
February 2020. Positive ΔTmax (~0.5 ◦C) were largely isolated to 
northern NSW (~30◦S) in December 2019 but grew in area and intensity 
to affect most of the eastern coastal region by January 2020 (locally 

reaching about 1 ◦C difference) and then propagated westward by 
February 2020. These regions broadly correspond to the regions affected 
by the bushfires (cf. Fig. 1b). 

To show how these temperature differences also affected the atmo
sphere, we examine the vertical profile of the differences in daily 
maximum potential temperature (Δθmax) for the transects (see Fig. 3a–c 
dashed lines) taken across the northern (30◦S), central (33◦S), and 
southern (37.5◦S) fire-affected regions. These transects show that the 
temperature changes were not isolated to the near-surface but extended 
throughout the atmospheric boundary layer. These Δθmax were closely 
associated with the corresponding albedo and LAI differences along each 
transect (see the horizontal inserts at the bottom of panels d–l in Fig. 3), 
such that strong positive Δθmax through the lower 1 500 m of the at
mosphere tended to coincide with areas where LAI was lower in Dyn 
compared to Clim, whereas strong negative Δθmax extending as high as 3 
000 m primarily coincided with higher albedo in Dyn compared to Clim. 
Overall, using observed changes in albedo and LAI affected the surface 
energy balance but, near the coast, also heated the lower atmosphere by 
up to ~0.7 ◦C, with the potential to affect subsequent temperatures via 
heat recycling (cf. Miralles et al., 2014). 

3.2. Impacts of LAI and albedo on the temperature differences 

Beyond changes to LAI and albedo during the summer of 2019–20 
and along the three transects discussed above, the three years of the 

Fig. 3. The difference in Tmax (ΔTmax, ◦C, 1st column) and in atmospheric maximum potential temperature (Δθmax, ◦C, 2nd –4th columns) between Dyn and Clim. 
The first row is for December 2019, the second row for January 2020, and the third row for February 2020. The 2nd, 3rd and 4th columns are, respectively, for the 
North (~30◦S), Central (~33◦S) and South (~37.5◦S) transects indicated by the three dashed lines shown in each panel of the first column. The changes in LAI and 
albedo between Dyn and Clim are shown in insets within each of the subpanels in the 2nd – 4th columns, with the change in LAI (ΔLAI, m2 m− 2) displayed above the 
change in albedo (Δα, unitless). 
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Tinderbox Drought saw large-scale regional variations in LAI and albedo 
which are not captured by model simulations that use fixed climato
logical biophysics. We next analyse the evolution of LAI and albedo 
during the drought before disentangling their effect on the Tmax differ
ences between Clim and Dyn. Figs. 4 and 5 show the LAI and albedo 
anomalies, respectively, relative to their climatology (i.e., Dyn− Clim) 
over the three years of the Tinderbox Drought. 

In the inland regions, which are dominated by shrubs and grassland 
with crops in the southeastern parts (Fig. 1a), the drought initially 
induced localised LAI anomalies (ΔLAI) from − 1.0 m2 m–2 to +2.0 m2 

m–2 (Fig. 4a–b). This positive LAI anomaly may have resulted from 
unusually wet conditions in 2016 which encouraged an overall higher 
LAI than climatology at the beginning of the drought. As the drought 
progressed, the ΔLAI became largely negative in the winter of 2018 and 
was sustained for the remainder of the drought (Fig. 4c–f), apart from 
some southern and northern regions in the 2019 winter (Fig. 4e). The 
albedo anomalies (Δα) were small overall during the first year of the 
drought (Fig. 5a–b), except for negative anomalies in the northwestern 
parts of the domain. For the remainder of the drought, the Δα were 
positive across most of the inland regions, implying an increase in 

surface reflectance. The anomalies reached up to 0.08 compared to the 
climatology (for context, albedo are typically 0.05–0.2 for forests, 
0.1–0.25 for grassland and cropland, and 0.2–0.45 for dry sandy soil; 
Dobos, 2005). Examining the Tmax differences in Fig. 2, the ΔTmax pat
terns seen in the inland regions are most consistent with the evolution of 
the albedo anomalies. The higher temperatures seen inland during the 
first year of the drought (Fig. 2a–b) spatially correspond to the regions of 
negative Δα that would increase the available net radiation. Conversely, 
Dyn shows lower temperatures (negative ΔTmax) from winter 2018 on
wards (Fig. 2c–f) which match closely to the areas of positive Δα 
(Fig. 5c–f) that would decrease net radiation. LAI, on the other hand, 
clearly declined during this period (from winter 2018 onwards), which 
is normally associated with higher rather than lower temperatures due 
to reduced evaporative cooling. However, the general decrease in Tmax 
suggests that temperature changes over this region are dominated by the 
albedo anomalies rather than the LAI anomalies. That is likely because 
both Dyn and Clim simulations had a dry root zone profile (Fig. 6j-6o), 
which limits evaporation and thus reduces the influence of LAI 
dynamics. 

The coastal regions, which are dominated by broadleaf evergreen 

Fig. 4. The LAI difference (ΔLAI, m2 m− 2) between Dyn and Clim through the three years of the Tinderbox Drought (left column: winter; right column: summer). The 
top row is for the 2017 winter (a) and 2017–18 summer (b), the second row for the 2018 winter (c) and 2018–19 summer (d), and the third row for the 2019 winter 
(e) and 2019–20 summer (f). 
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forests (Eucalyptus sp.) (Fig. 1a) showed a very different temporal 
evolution in LAI and albedo compared to the inland regions. Much of the 
coast showed positive ΔLAI of up to 1.6 m2 m− 2 at the start of the 
drought (Fig. 4a). These anomalies weakened as the drought progressed, 
with some coastal regions showing negative anomalies (Fig. 4e–f). 
However, these were not sustained through the three years of the 
drought, with the location of stronger anomalies shifting each season 
(Fig. 4b–e). As the drought peaked, and the Black Summer bushfires 
swept through large parts of the eastern coast during the summer of 
2019–20, negative ΔLAI of up to 2.0 m2 m− 2 were observed (Fig. 4f). 
The negative anomalies were most pronounced in the regions affected 
by fires, in particular around 28–37◦S, but even outside these regions the 
LAI on the eastern coast was consistently below climatological averages 
during this period. Conversely, the albedo showed few changes 
compared to the climatological conditions along the coastal regions 
during the three years of the drought (Fig. 5). Except some localised 
anomalies, Δα was largely within 0.01 of the long-term average. Taken 
together, these anomalies suggest that the Tmax differences between Dyn 
and Clim along the coast (Fig. 2) were largely driven by LAI (and dif
ferences in evaporation) rather than albedo changes. While ΔTmax and 

ΔLAI were fairly localised during most of the drought, in the summer of 
2019–20, ΔTmax was strongly positive along much of the eastern coast 
(Fig. 2f), consistent with the observed strong reduction in LAI (Fig. 4f). 

3.3. Impacts of LAI and albedo changes on the surface energy and water 
balance 

To further disentangle the relationships between Tmax, LAI and al
bedo, we analyse the conditions during the extremely hot summer pe
riods of the Tinderbox Drought. Specifically, we compare the ΔTmax with 
the associated differences in net radiation (ΔRnet) and latent heat flux 
(ΔLH), as well as the ratios of actual soil moisture content to saturated 
soil moisture content in the top 0.5 m (θ0.5m/θsat,0.5m) to understand how 
LAI and albedo anomalies changed the surface energy and water balance 
over land and influenced the extremely hot summers in the Tinderbox 
Drought (Fig. 6). 

In the 2017–18 summer, the ΔTmax (Fig. 6a) were not spatially 
coherent but they were associated with positive ΔRnet (Fig. 6d) of 
~2–18 W m− 2 over the croplands in the southern central area of the 
domain, consistent with the albedo anomalies shown in Fig. 5b. There 

Fig. 5. The albedo difference (Δα, unitless) between Dyn and Clim through the three years of the Tinderbox Drought (left column: winter; right column: summer). 
The top row is for the 2017 winter (a) and 2017–18 summer (b), the second row for the 2018 winter (c) and 2018–19 summer (d), and the third row for the 2019 
winter (e) and 2019–20 summer (f). 
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was also an association between local ΔTmax and ΔLH (Fig. 6g), with 
local reductions in LH (i.e., negative ΔLH) leading to positive ΔTmax 
(Fig. 6a). These changes were not strongly associated with changes in 
soil moisture (Fig. 6j, m). In the summer of 2018–19, Fig. 6b shows 
widespread negative ΔTmax in inland areas, and localized positive Tmax 
differences near the coast. The negative ΔTmax were associated with 
negative ΔRnet by − 2 to − 18 W m− 2 (Fig. 6e) which was clearly related 
to the albedo anomalies (Fig. 5d). In the 2019–20 summer, cooler Tmax 
(Fig. 6c) was simulated in Dyn compared to Clim in inland areas, 
resulting from the lower Rnet by 6–22 W m− 2 (Fig. 6f) which was asso
ciated with the positive albedo anomalies (Fig. 5f). However, along the 

forested coastal regions, although there were not widespread differences 
between Dyn and Clim in the summer of 2018–19 (Fig. 6b), Tmax was up 
to 0.7 ◦C higher in Dyn than in Clim in the 2019–20 summer (Fig. 6c). 
Rnet was locally 2–14 W m− 2 higher (Fig. 6f), and ΔLH reduced by up to 
20 W m− 2 near the coasts, associated with the significant LAI decline 
(Fig. 4f). 

Fig. 6j–o shows the ratio of actual soil moisture content to saturated 
moisture content in the top 0.5 m of soil for Clim and Dyn. Both model 
simulations show a drying trend of the root zone (i.e. the top 0.5 m soil, 
where most roots grow) extending from inland to the coast throughout 
the drought. The extremely dry conditions inland likely limited the 

Fig. 6. The differences (Dyn − Clim) in Tmax (ΔTmax, ◦C, panels a–c), Rnet (ΔRnet, W m− 2, panels d–f), and LH (ΔLH, W m− 2, panels g–i), as well as the ratios of actual 
soil moisture content to saturated soil moisture content in the top 0.5 m (θ0.5m/θsat,0.5m) in Clim (panels j–l) and Dyn (panels m–o) in the summers of the Tinderbox 
Drought. The first column refers to the 2017–18 summer, the second to the 2018–19 summer, and the third to the 2019–20 summer. 
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impact from changing LAI on LH and therefore on the Tmax differences. 
However, the generally wetter soils near to the coast allowed the LAI 
anomalies in the 2019–20 summer to reduce LH and increase Tmax in 
Dyn relative to Clim. 

The differences in Rnet alone could not fully explain the emergence of 
the positive ΔTmax along the coastal regions in the summer of 2018–19 

(Fig. 6b) and their significant intensification during the 2019–20 sum
mer (Fig. 6c). A somewhat equivocal pattern of negative ΔLH began to 
develop in the summer of 2018–19 (Fig. 6h), becoming clearer and more 
widespread by the summer of 2019–20 (Fig. 6i), especially in regions of 
greater tree cover (i.e. along the eastern coast). The differences in LH 
exceeded 10–20 W m− 2 and were not strongly associated with 

Fig. 7. Spatial map and time series of the regions burned during the Black Summer bushfires. Panel a–d are the differences (Dyn − Clim) in daytime FMI (ΔFMI, 
unitless) from September to December 2019. The three boxes in each panel highlights the north (28.5–32◦S, 151.5–153.5◦E), central (32.5–34.5◦S, 149.5–151.5◦E) 
and south (34.5–38◦S, 146.5–151◦E) burned regions. Panels e–g are the time series of the differences (Dyn − Clim) in Tmax (ΔTmax, ◦C; black line) and FMI (ΔFMI, 
unitless; red lines). The dark red line refers to daytime ΔFMI, which is calculated from the 6-h simulation outputs (i.e. the time step of 10 a.m. and 4 p.m. are used), 
and the lighter red line refers to the daily maximum ΔFMI, which is calculated by Tmax and relative humidity when Tmax occurs from hourly output. Due to the 
computing and storage costs, we only put out the periods from December 2019 to February 2020 in hourly resolution, and the other simulated period is in 6-h 
resolution. The dashed horizontal line marks the zero line. Panels h–j are the time series of actual LAI (ΔLAI, m2 m− 2), and panels k–m are actual albedo (Δα, 
unitless) over the fire season of September 2019 to January 2020. The North (left column), Central (middle column) and South (right column) burned regions are as 
shown in panel a–c. In panels h–m, the Clim and Dyn experiments are shown in green and orange solid lines, respectively, and the shadings around them are the 
uncertainty across pixels of one standard deviation. All timeseries are smoothed using a 5-day running window. The three vertical lines from left to right indicate the 
date when the fires had burnt 10% (orange), 50% (red), and 90% (brown) of the regions’ total burnt area in the Black Summer bushfires. The simulations are 
interpolated to 500-m spatial resolution to match with the MODIS fire map. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 
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differences in soil moisture (see the lower two rows of Fig. 6). As the soil 
moisture does not appear to be limiting plant function along the coast, 
this suggests that ΔLH was driven by LAI differences between Dyn and 
Clim rather than soil moisture differences. 

3.4. The impacts of LAI and albedo changes on fire risk 

It is a reasonable hypothesis that the widespread declines in LAI 
induced increases in Tmax in the coastal regions in Dyn relative to Clim, 
hence worsening the projected fire risk. We examine the impact of the 
biophysical feedbacks on fire risk during the Black Summer bushfires by 
analysing changes in the FMI - an atmospheric proxy for dead fuel 
moisture content. Fig. 7a–d shows the difference in the FMI between 
Dyn and Clim for the pixels that eventually would burn during the Black 
Summer. The fires commenced in the northeastern regions in September 
and spread south as the fire season progressed. Fig. 7a and b shows that 
fire risk was higher in Dyn (i.e., ΔFMI was negative) during Septem
ber–October in the northern regions, suggesting the temperature and/or 
humidity (i.e. LH) changes induced by a declining LAI increased the fire 
risk prior to these areas burning. The southern regions started burning in 
November but the impact of ΔLAI on the FMI is less consistent in this 
region, with both localised increases and decreases in the FMI in Dyn 
compared to Clim (Fig. 7c and d). As there were no strong Δα associated 
with the burnt regions (Fig. 5), we cannot conclude that local albedo 
feedbacks influenced fire risk. However, our simulations suggest that the 
fire risk was, to some extent, modulated by dynamic changes in LAI. 

To further understand how the temperature and land properties 
changed in the lead up to fire, and after fire, we show the time series of 
ΔTmax, ΔFMI, LAI and albedo from September 2019 to February 2020 
for the three regions (Fig. 7e–m). The three vertical lines in each panel 
show the date when 10%, 50% and 90% of each of the three regions has 
combusted. In each region, Tmax begins to increase most clearly after 
90% of the region has combusted and FMI declines coincided with this 
increase in Tmax (Fig. 7e, f, 7g). In the northern region, the zonally- 
averaged LAI clearly diverged before the fire started, supporting wide
spread drought impacts on LAI. This coincides with lower FMI and thus 
increasing fire risk in Dyn compared to Clim. In the other two regions, 
drought impacts on LAI were more heterogeneous as the zonally- 
averaged LAI only notably diverged once the fires had already burnt 
10% of the central region (Figs. 7i) and 50% of the southern region 
(Fig. 7j). In all three regions, the albedo only declined after >50% 
(northern and southern region) to >90% (central regions) of the areas 
had burnt, likely reflecting a darkening of the surface from the fires. 
Overall, the biophysical effects we evaluated here only had a negligible 
impact on fire risk before the fires, except the northern region. Never
theless, in all regions, the impact on Tmax and on the FMI increased after 
rapid declines in LAI from the onset of the fires. This suggests a potential 
for rapid LAI declines (induced by fire or other disturbances) to drive 
further temperature increases after the disturbances (e.g. post fires), a 
significant effect that would be missed in a simulation using climato
logical LAI and albedo. 

4. Discussion and conclusions 

In this study, we use the WRF-LIS-CABLE land-atmosphere coupled 
model to investigate the impact of LAI and albedo changes on the 
temperature extremes in southeast Australia’s Tinderbox Drought and 
Black Summer bushfires. By contrasting the effects of climatological 
versus observed time-varying LAI and albedo, this study quantifies how 
important these commonly missing biophysical feedback is for simula
tions of maximum temperature and fire risk during drought. The time- 
varying albedo was higher at the interior of southeastern Australia 
during the Tinderbox drought compared to the climatology, while the 
time-varying LAI was lower near the coast. The increase in albedo 
caused up to a 0.7 ◦C decrease in maximum temperature inland, while 
the combined effects of LAI and albedo caused up to a 0.5 ◦C increase 

along the coasts in the 2019–20 summer before the fires. The primary 
reason for the maximum temperature changes inland was the change in 
albedo, which had the effect of reflecting more solar radiation into the 
atmosphere and thus reduced the surface net radiation. The mechanisms 
leading to increased Tmax near the coasts were more complicated. 
Drought- and fire-induced changes to LAI led to Tmax increasing by up to 
1.2 ◦C at the surface and 0.6 ◦C in the atmospheric boundary layer in the 
regions burned in the Black Summer fires. In both cases, the temperature 
anomalies propagated into the atmosphere to impact the whole of the 
boundary layer. 

The magnitude of the temperature changes linked to dynamic LAI 
and albedo are broadly comparable to previous studies. For example, 
Boussetta et al. (2015) found temperature increases of 0.1–1 ◦C from LAI 
and albedo changes that were of similar magnitude to this study using 
the European Centre for Medium Range Weather Forecasts integrated 
forecasting system. Similarly, Evans et al. (2017) and Meng et al. 
(2014a, 2014b) found temperature differences of 0.6–0.9 ◦C in WRF 
simulations ran with time-varying and climatological vegetation frac
tion (relatively linked to LAI) and/or albedo. These temperature changes 
suggest seasonal forecasts might be improved by representing 
time-varying LAI and albedo (Alessandri et al., 2017; Boussetta et al., 
2015; Knote et al., 2009; Ruiz-Vásquez et al., 2022). However, we note 
the cold biases of 1~4 ◦C in the simulated summer Tmax in both Dyn and 
Clim, which is very similar to a previous evaluation of WRF-LIS-CABLE 
undertaken using ERA Interim (Hirsch et al., 2019b). This cold bias 
would be worth examining further before using WRF-LIS-CABLE for 
predictions as distinct from model sensitivity studies. 

We also explored how these changes in LAI and albedo affected the 
simulated conditions linked to the Black Summer bushfires. In our 
coupled model the time-varying LAI and albedo (Dyn) had a subtle effect 
on the FMI (<0.5 but up to 1.0 locally) before the fires, suggesting any 
biophysical feedbacks had a minor role in increasing fire risk. This is 
most likely because, in both sets of model simulations, the rootzone soil 
moisture is low (Fig. 6) which limits the impact of changes in LH (via 
reductions in LAI) on Tmax. In effect, because we cannot validate the 
accuracy of the modelled soil moisture profiles (in particular their 
evolution in time), we cannot be sure if the correct biophysical feed
backs imposed by fixed vs dynamic LAI were captured. The land model 
we used may also fail to fully capture the impact of drought on the 
vegetation as it does not include representations of hydraulic damage 
and then failure, nor of plant root adaptation to drought (Gupta et al., 
2020; Nolan et al., 2021), although these processes are now being in
tegrated into land models (De Kauwe et al., 2020, 2022; Niu et al., 2020; 
Sabot et al., 2020, 2022). Nevertheless, by using a dynamic LAI forcing 
(Dyn), we do capture any emergent canopy dieback, in line with 
field-observations (Nolan et al., 2021). 

Nevertheless, we show a strong effect on Tmax and FMI after the fires 
in the North and Central regions, with Tmax increases of up to 1 ◦C and 
FMI declines of up to − 2. This demonstrates that a rapid disturbance in 
LAI and albedo, in this case induced by fire and drought, can have a 
significant impact on Tmax and FMI for the post-fire periods that would 
be missed in a simulation using fixed climatology. 

We acknowledge specific limitations in our research. First, we base 
our analysis on the MODIS LAI product which have been shown to 
overestimate LAI over eastern Australian closed-canopy forest and 
woodlands sites (Leuning et al., 2005) and struggle to capture the impact 
of the vertical structure of savannas on LAI (Biudes et al., 2014; Fang 
et al., 2019; Hill et al., 2006; Mayr and Samimi, 2015). Although the 
assessments were carried out on earlier MODIS collections (4 vs 6) these 
issues may persist. Second, we only ran one ensemble of the regional 
climate model due to the computing resources and time required for the 
3-year WRF simulations at 4 km resolution. This may impose a model 
limitation on our experiments by not considering the impact of initial 
conditions or different physics configurations. However, we anticipate 
the impact of ensembles would have a limited influence on our results, 
as the model configuration is widely evaluated and has been shown to 
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perform well and comparable to the previous ensemble mean over the 
studied region (Hirsch et al., 2019b; Hirsch and King, 2020). 

Third, soil moisture dynamics plays a critical role in the evolution of 
drought-heat compound extremes (Miralles et al., 2019; Osman et al., 
2022; Rasmijn et al., 2018; Seneviratne et al., 2010). While soil moisture 
assimilation can improve synoptic and seasonal weather forecasts 
(Dirmeyer and Halder, 2016; Dy and Fung, 2016; Zhang et al., 2020), the 
lack of real-time soil moisture observations over the root zone in our 
region made it impossible to consider in our model experiments. 

In summary, our results highlight value in further developing the 
representation of the land surface in regional modelling. In Australia the 
Australian Community Climate Earth-System Simulator – Seasonal 
(ACCESS–S, Wedd et al., 2022) is used for multi-week to seasonal 
forecasts and uses monthly climatological LAI and albedo. The tem
perature, humidity and surface flux changes reported here by using 
remotely sensed LAI and albedo could enhance existing forecast systems 
relatively easily. Additionally, our study highlights that using remotely 
sensed time-varying LAI and albedo could lead to better forecasts of 
climate extreme events at a fine resolution. The temperature differences 
simulated between inland non-forest and coastal forest regions were 
particularly apparent during the severe drought period. This implies that 
to capture the spatial heterogeneity of temperature extremes during 
drought requires LAI and albedo anomalies to be taken into 
consideration. 
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Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de 
Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., Thépaut, J.N., 2020. The ERA5 
global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049. https://doi.org/10.1002/ 
qj.3803. 

Hill, M.J., Senarath, U., Lee, A., Zeppel, M., Nightingale, J.M., Williams, R. (Dick) J., 
McVicar, T.R., 2006. Assessment of the MODIS LAI product for Australian 
ecosystems. Rem. Sens. Environ. 101, 495–518. https://doi.org/10.1016/j. 
rse.2006.01.010. 

Hirsch, A.L., Evans, J.P., Di Virgilio, G., Perkins-Kirkpatrick, S.E., Argüeso, D., Pitman, A. 
J., Carouge, C.C., Kala, J., Andrys, J., Petrelli, P., Rockel, B., 2019a. Amplification of 
Australian heatwaves via local land-atmosphere coupling. J. Geophys. Res. Atmos. 
124, 13625–13647. https://doi.org/10.1029/2019JD030665. 

Hirsch, A.L., Kala, J., Carouge, C.C., De Kauwe, M.G., Di Virgilio, G., Ukkola, A.M., 
Evans, J.P., Abramowitz, G., 2019b. Evaluation of the CABLEv2.3.4 land surface 
model coupled to NU-WRFv3.9.1.1 in simulating temperature and precipitation 
means and extremes over CORDEX AustralAsia within a WRF physics ensemble. 
J. Adv. Model. Earth Syst. 11, 4466–4488. https://doi.org/10.1029/ 
2019MS001845. 

Hirsch, A.L., King, M.J., 2020. Atmospheric and land surface contributions to heatwaves: 
an Australian perspective. J. Geophys. Res. Atmos. 125 https://doi.org/10.1029/ 
2020JD033223. 

Jiao, T., Williams, C.A., Rogan, J., De Kauwe, M.G., Medlyn, B.E., 2020. Drought impacts 
on Australian vegetation during the millennium drought measured with multisource 
spaceborne remote sensing. J. Geophys. Res.: Biogeosciences 125, e2019JG005145. 

Jones, D., Wang, W., Fawcett, R., 2009. High-quality spatial climate data-sets for 
Australia. Australian Meteorological and Oceanographic Journal 58, 233–248. 
https://doi.org/10.22499/2.5804.003. 

King, A.D., Pitman, A.J., Henley, B.J., Ukkola, A.M., Brown, J.R., 2020. The role of 
climate variability in Australian drought. Nat. Clim. Change 10, 177–179. https:// 
doi.org/10.1038/s41558-020-0718-z. 

Knote, C., Bonafe, G., Giuseppe, F.D., 2009. Leaf area index specification for use in 
mesoscale weather prediction systems. Mon. Weather Rev. 137 (1), 3535–3550. 
https://doi.org/10.1175/2009MWR2891. 

Koster, R.D., Walker, G.K., 2015. Interactive vegetation phenology, soil moisture, and 
monthly temperature forecasts. J. Hydrometeorol. 16, 1456–1465. https://doi.org/ 
10.1175/JHM-D-14-0205.1. 

Launiainen, S., Guan, M., Salmivaara, A., Kieloaho, A.J., 2019. Modeling boreal forest 
evapotranspiration and water balance at stand and catchment scales: a spatial 
approach. Hydrol. Earth Syst. Sci. 23, 3457–3480. https://doi.org/10.5194/hess-23- 
3457-2019. 

Leuning, R., Cleugh, H.A., Zeglin, S.J., Hughes, D., 2005. Carbon and water fluxes over a 
temperate Eucalyptus forest and tropical wet/dry savanna in Australia: 
measurements and comparison with MODIS remote sensing estimates. Agric. For. 
Meteorol. 129, 153–173. 

Li, Y., Zhao, M., Motesharrei, S., Mu, Q., Kalnay, E., Li, S., 2015. Local cooling and 
warming effects of forests based on satellite observations. Nat. Commun. 6 https:// 
doi.org/10.1038/ncomms7603. 

Liu, C., Chen, Y.D., 2024. Impacts of vegetation dynamics on hydrological simulations 
under drought conditions in a humid river basin in Southern China. Ecohydrology 
17, e2630. https://doi.org/10.1002/eco.2630. 

Mayr, M.J., Samimi, C., 2015. Comparing the dry season in-situ leaf area index (LAI) 
derived from high-resolution RapidEye imagery with MODIS LAI in a Namibian 
savanna. Rem. Sens. 7, 4834–4857. https://doi.org/10.3390/rs70404834. 

Meng, X.H., Evans, J.P., McCabe, M.F., 2014a. The impact of observed vegetation 
changes on land–atmosphere feedbacks during drought. J. Hydrometeorol. 15, 
759–776. https://doi.org/10.1175/JHM-D-13-0130.1. 

Meng, X.H., Evans, J.P., McCabe, M.F., 2014b. The influence of inter-annually varying 
albedo on regional climate and drought. Clim. Dynam. 42, 787–803. https://doi.org/ 
10.1007/s00382-013-1790-0. 

Miralles, D.G., Gentine, P., Seneviratne, S.I., Teuling, A.J., 2019. Land-atmospheric 
feedbacks during droughts and heatwaves: state of the science and current 
challenges. Ann. N. Y. Acad. Sci. 1436, 19–35. https://doi.org/10.1111/nyas.13912. 

Miralles, D.G., Teuling, A.J., van Heerwaarden, C.C., De Arellano, J.V.G., Vilà-Guerau de 
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