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ABSTRACT
Grand-canonical (GC) constant-potential methods within an implicit solvent environment provide a general approach to compute the
potential-dependent energetics at electrified solid–liquid interfaces with first-principles density-functional theory. Here, we use a mindfully
chosen set of 27 isostructural 2D metal halides MX2 to analyze the variation of this energetics when the electronic structure changes from
metallic to semiconducting and insulating state. Apart from expectable changes due to the opening up of the electronic bandgap, the calcula-
tions also show an increasing sensitivity to the numerical Brillouin zone integration and electronic smearing, which imposes computational
burdens in practice. We rationalize these findings within the picture of the total interfacial capacitance arising from a series connection of
the electrochemical double-layer capacitance and the so-called quantum capacitance resulting from the filling of electronic states inside the
electrode. For metals, the electrochemical double-layer capacitance dominates at all potentials, and the entire potential drop takes place in the
electrolyte. For semiconductors, the potential drop occurs instead fully or partially inside the electrode at potentials within or just outside the
bandgap. For 2D semiconductors, the increased sensitivity to numerical parameters then results from the concomitantly increased contribu-
tion of the quantum capacitance that is harder to converge. Fortunately, this understanding motivates a simple extension of the CHE + DL
approximation for metals, which provides the approximate GC energetics of 2D semiconductors using only quantities that can be obtained
from computationally undemanding calculations at the point of zero charge and a generic double-layer capacitance.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0202849

I. INTRODUCTION

Semiconducting materials play an important role in various
electrochemical applications.1–3 Their existence in these applications
may be deliberate as in photoelectrocatalysis or electrochemical
growth4–6 or unintentional as a result of metal surface oxidation
or solvent decomposition.7–9 Despite this relevance, first-principles
modeling of extended electrified semiconductor–electrolyte inter-
faces is much less developed than for metal electrodes. Arguably, this
is connected to the uncertain transferability of the prevalent approx-
imate modeling approach for the latter in the form of the Compu-
tational Hydrogen Electrode (CHE).10–12 Within a thermodynamic
setup, the CHE efficiently captures the influence of an aqueous elec-
trochemical environment (bias, pH) through the consideration of

appropriate reservoirs for electrons and protons. In most appli-
cations, the actual electronic structure of the electrode–electrolyte
interface is treated at the point of zero charge (PZC).13 While the
latter enables computationally appealing electronic structure calcu-
lations of uncharged surface slabs in periodic boundary condition
(PBC) supercells, the incurred neglect of electronic polarization at
the electrochemical interface could be particularly questionable for
semiconducting electrodes. As a result of the limited availability
of electronic charge carriers,14,15 the electronic surface structure of
these electrodes is, after all, non-trivially modified by the capacitive
charging of the interface upon electrification.7

The recent development of grand-canonical (GC) constant
potential methods offers a direct and general route to the
energetics of electrochemical interfaces under applied potential

J. Chem. Phys. 160, 214706 (2024); doi: 10.1063/5.0202849 160, 214706-1

© Author(s) 2024

 28 June 2024 08:41:02

https://pubs.aip.org/aip/jcp
https://doi.org/10.1063/5.0202849
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0202849
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0202849&domain=pdf&date_stamp=2024-June-4
https://doi.org/10.1063/5.0202849
https://orcid.org/0000-0002-6783-4566
https://orcid.org/0000-0001-6944-5575
https://orcid.org/0000-0001-8473-8659
mailto:hoermann@fhi-berlin.mpg.de
https://doi.org/10.1063/5.0202849


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

conditions.16–23 In particular, approximations such as the CHE +DL
approach20,23,24 allow for an account of capacitive charging at com-
putational costs comparable to the CHE. Meanwhile, these methods
have primarily been developed with metal electrodes in mind. In
this article, we, therefore, assess the transferability and necessary
adaptions for the application to 2D semiconductor electrodes. We
thereby specifically aim to establish an analog of the computation-
ally appealing CHE + DL approximation, and we focus particularly
on layered “2D” materials. Apart from the intrinsic relevance of this
class of materials,25–28 the motivation for the latter focus comes from
the fact that extended effects of the interfacial polarization like band
bending inside the semiconductor material do not yet occur. At the
same time, especially the family of isostructural 2D metal halides29

spans metals, semiconductors, and insulators and constitutes, there-
fore, an ideal comparative testing ground for this transferability
study without any disturbance due to structural changes.

Our calculations show that the potential dependence of the
GC energetics at the semiconducting and insulating 2D halides is,
indeed, fundamentally different from the one at the metallic halides.
However, in line with existing phenomenological descriptions,30–36

these differences are readily traced back to the influence of the
material’s electronic density-of-state (DOS) on the interfacial capac-
itance. This understanding then motivates a straightforward exten-
sion of the CHE +DL approximation, essentially simply by account-
ing for the size and position of the bandgap computed at the PZC.
This maintains the computational appeal of only requiring calcu-
lations performed in charge-neutral supercells and provides a solid
starting ground for future work that then additionally includes an
extended space-charge layer formation in extended semiconductor
electrodes of finite width.

II. METHODS
A. 2D metal halide model systems

We focus our calculations on a set of 27 isostructural (transi-
tion) metal halides of MX2 structure in an aqueous environment. As
illustrated in Fig. 1, these “2D” materials exhibit a trilayer geome-
try with hexagonal surface unit-cell (space group P3m1). In a recent
theoretical study, 26 of these halides were identified as easily exfo-
liable from their 3D parent materials.29 TiI2 was added manually to
achieve a complete dataset with the three halides X = Br, Cl, I and
nine metal atoms M = Mg, Ti, V, Mn, Fe, Co, Ni, Zn, Cd. Fifteen
of these halides are metallic, and 12 are semiconducting or insulat-
ing with computed bandgaps spanning the entire range up to and

FIG. 1. Top and side views of the MX2 metal halides considered in this study.
Shown in dashed lines is the primitive hexagonal surface unit-cell with lattice para-
meter a. The halide atoms X are shown as smaller green spheres, and the metal
atoms M are shown as larger gray spheres.

above 4 eV. Section S1 of the supplementary material lists all rel-
evant material properties of the dataset, such as lattice constants,
frontier level positions, and bandgaps, all of which show clear trends
when varying for a given metal atom M the halide X, and equally
when changing for a given halide X the metal atom M. In general,
bandgaps increase and valence band positions decrease when going
from I to Br to Cl. (See Sec. S1 of the supplementary material for
more details.)

B. Computational details
All electronic structure theory calculations were performed at

the density-functional theory (DFT) level using the plane wave and
pseudopotential-based code Quantum ESPRESSO (QE)37,38 and the
AiiDA Quantum ESPRESSO workflow package.39 Pseudopotentials
were taken from the GBRV pseudopotential library (version 1.5)40

with density and wavefunction cutoffs at ecutwfc = 45 Ry and
ecutrho = 360 Ry, respectively. The electronic convergence thresh-
old for self-consistency was set to 1.0 × 10−11 Ry, and Brillouin zone
integrations used Γ-centered Monkhorst–Pack meshes and Gaussian
smearing (see below). The electronic exchange and correlation is
treated at the level of the semi-local PBE41 functional. While PBE
is known to underestimate bandgaps,42 this quantitative deficiency
does not matter for the present systematic trend study. Test calcula-
tions carried out with the dispersion-corrected meta-GGA rVV1043

and hybrid HSE44 functional show some quantitative changes, with-
out affecting any of the methodological derivations or conclusions.
A more detailed analysis on quantitative differences for MgCl2 can
be found in Sec. S2 A of the supplementary material.

The employed PBC supercell contains one MX2 trilayer taken
from the Materials Cloud database29 and separated by 20 Å in the
z-direction from its next periodic images. A (1 × 1) surface unit-cell
was employed throughout, and no spin polarization was considered.
We note that some of the materials show, in principle, either a fer-
romagnetic or an antiferromagnetic behavior.29 For completeness,
we assessed explicitly spin effects for three selected materials FeCl2,
FeI2, and NiI2. While FeCl2 and NiI2 converge to a ferromagnetic,
metallic and a ferromagnetic, semimetallic groundstate, respectively,
the electronic structure of FeI2 remains unchanged when including
two spin channels. In all cases, we find that spin polarization does
not affect the central conclusions of this study (see Sec. S2 B of the
supplementary material).

The uncharged MX2 trilayer was fully relaxed at the optimized
lateral PBE lattice constant a, cf. Fig. 1, until residual forces fell below
1.0 × 10−3 Ry/Bohr. Charged calculations were then performed in a
single-point fashion at this frozen geometry.

The aqueous electrolyte was considered through an implicit
solvation model.13 Specifically, we employed the SCCS implemen-
tation in the ENVIRON module38,45 with soft interface parameters
set to rhomax = 0.005 and rhomin = 0.0001, and applying the non-
linear size-modified Poisson–Boltzmann equation. The temperature
was set to 300 K with a molar concentration of the ionic counter
charge of 1 mol l−1 and a valence of the ionic counter charge of
±1. The solvent radius was fixed to 2.6 Å, and the filling threshold
was fixed to 0.75 Å. The surface tension of the environment was
set to 0 dyn/cm, and the external pressure of the environment was
set to 0 GPa. For the static dielectric permittivity of the electrostatic
continuum embedding model, we chose 78.3.
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The possibility to consider counter charges in the implicit elec-
trolyte allows us to compute halide trilayers at varying amounts of
excess electrons Ne while keeping the overall PBC supercell charge
neutral.13 The GC energy E (μ̃e) discussed below is related to the
corresponding canonical constant-charge total energies E(Ne) via a
Legendre–Fenchel transform,

E (μ̃e) = min
Ne
{E(Ne) −Neμ̃e(Ne)}, (1)

where e is the elementary charge and μ̃e is the electron’s electrochem-
ical potential. Numerically, we evaluate this transform by computing
the systems in a range of charge states spanning −0.1e ≤ Ne ⋅ e
≤ 0.1e in steps of 0.005 e. The electron’s electrochemical potential
in these computations is thereby given by the Fermi energy εF(Ne)
relative to the electrostatic potential in solution ϕS,

μ̃e(Ne) = −(εF(Ne) − e ⋅ ϕS), (2)

where in QE + ENVIRON with included parabolic PBC correction
ϕS = 0 is set as zero reference.46

Previous studies47,48 indicated the possibility of non-convex
E(Ne) relationships for semiconducting systems and possible prob-
lems to evaluate the Legendre transform as in Eq. (1) accurately in
the bandgap region, where the Fermi level position is ill-defined at
0 K. However, we do not observe any such problems for any of the
studied systems in the present work. Indeed, fundamental consider-
ations suggest that E(Ne) is piecewise linear at 0 K and becomes
continuously differentiable and increasingly convex at finite tem-
perature or with common smearing methods. Equally, systems with
non-convex E(Ne) relationships are expected to phase-separate in
the large system size limit, e.g., by the condensation of an appropri-
ate amount of polarons in order to fall back on the linear or convex
ground state energetics. In summary, we believe that Eq. (1), and
therewith implicitly ∂E

∂Ne
= μ̃e, holds in most cases, in particular for

all systems studied in the present work (see, for example, our results
in Sec. S3 of the supplementary material).

A standard quality (SQ) Brillouin zone sampling with a
(12 × 12 × 1) k-point grid and a Gaussian smearing width of
σ = 0.01 Ry was found to be fully sufficient to perform geometry
optimizations and achieve converged energetics. For the metallic
halides, these SQ settings also converge the interfacial capacitance
C, cf. definition below. In contrast, this is not the case for the
halides with a bandgap, which are in a semiconducting state in the
uncharged calculations and in a metallic state in the charged calcu-
lations. While the prior semiconducting state demands a smearing
width reflecting room temperature, the latter conducting state then
requires an excessive k-point sampling to converge the capacitance.
In Sec. III, we demonstrate this by high quality (HQ) settings,
which employ a (84 × 84 × 1) k-point grid together with a room-
temperature Gaussian smearing width of σ = 0.002 Ry. As detailed
in the supplementary material (Figs. S47–S48), no further changes
in the capacitance were then obtained when further increasing the k-
point grid up to (400 × 400 × 1). In addition, we find that Gaussian
smearing leads essentially to identical results as Fermi–Dirac smear-
ing (see subsequent discussions and Sec. S2 D of the supplementary
material).

III. RESULTS AND DISCUSSION

A. General behavior of GC energies from metals
to insulators

Within ab initio thermodynamics considerations, differences of
GC energies of different system states typically appear with addi-
tional chemical potential terms (reflecting thermodynamic reser-
voirs) of, for example, protons balancing any differences in corre-
sponding species between the involved system states.13 The central
differences between metallic and semiconducting 2D electrodes lie
only in the distinct dependence on the electron electrochemical
potential μ̃e. As a result, we concentrate in the following on E (μ̃e) to
generally discuss possible differences in the fundamental behavior of
the GC energetics at metal and semiconductor 2D electrodes, and a
concomitant adaption of the computationally appealing CHE + DL
approximation. For metallic electrodes, the applied electrode poten-
tial ΦE is directly related to the electron’s electrochemical potential
in the bulk electrode μ̃e = −eΦE such that the GC energy E (μ̃e) can
be directly reexpressed as a function of the applied electrode poten-
tial ΦE. This direct relation does not necessarily hold for extended
semiconductors;48 nonetheless, assessment of the grand canonical
energy as a function of μ̃e as in Eq. (1) remains meaningful in gen-
eral, as long as E(Ne) is convex, which holds for all studied 2D
systems in the present work. Our present analysis corresponds thus
to what is referred to as constant Fermi level energetics in Ref. 48 but
not to the constant inner potential (CIP) energetics, whose applica-
tion to 2D materials remains unclear due to a missing bulk-like inner
potential region.

Figure 2 displays the computed E (μ̃e) for three metal chlo-
rides, TiCl2, FeCl2, and MgCl2. This selected group contains one
metal (TiCl2), one semiconductor with a computed gap of 0.9 eV
(FeCl2), and one insulator with a computed gap of 6.0 eV (MgCl2),

FIG. 2. Top panels: GC energy E (μ̃e) as a function of the electron’s electrochem-
ical potential μ̃e and relative to the point of zero charge (PZC) for the three metal
chlorides, TiCl2 (no bandgap), FeCl2 (small bandgap), and MgCl2 (large bandgap).
Shown are computed data for a Brillouin zone sampling at standard quality (SQ,
black) and high quality (HQ, blue), see the text, together with a corresponding
parabolic fit to the respective data (black and blue solid lines). Bottom panels:
Interfacial capacitance C for the three chlorides as obtained numerically (dots)
and through the second derivative of the fitted parabolas (solid line). Shown are
again data at both levels of Brillouin zone sampling (black and blue).

J. Chem. Phys. 160, 214706 (2024); doi: 10.1063/5.0202849 160, 214706-3

© Author(s) 2024

 28 June 2024 08:41:02

https://pubs.aip.org/aip/jcp
https://doi.org/10.60893/figshare.jcp.c.7242007
https://doi.org/10.60893/figshare.jcp.c.7242007
https://doi.org/10.60893/figshare.jcp.c.7242007
https://doi.org/10.60893/figshare.jcp.c.7242007


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

which thus allows us to concisely discuss trends. As shown in the
supplementary material, all remaining 24 MX2 metal halides, indeed,
exhibit a behavior that is fully consistent with the insights derived
here on the basis of this showcase group. The potential dependence
of E (μ̃e) is qualitatively different in the three cases. While the metal-
lic TiCl2 exhibits a seemingly parabolic behavior around the PZC,
the two branches of the parabola for positive and negative poten-
tials are separated for the other two chlorides, with a separation that
matches their bandgap, similarly to what was already described for
TiO2.48

Quantitatively, the potential dependencies are, in fact, also
not exactly parabolic. This is better visible by plotting the area-
normalized interfacial capacitance C(μ̃e) as the formal second
derivative of the GC energy with respect to the electron’s electro-
chemical potential, see below. Figure 2 compares the numerically
computed data with the analytical second derivative of a parabolic
fit to the GC energies. While the numerically computed C(μ̃e) is,
indeed, essentially constant over the tested potential range in the
case of the metallic TiCl2, it does not at all show an at least piecewise
constant profile for the other two chlorides as would be expected
for the case of a split parabola. Moreover, in the latter two cases,
there is also an increasing sensitivity to the accuracy of the Brillouin
zone sampling performed in the DFT calculations. For the small
bandgap FeCl2, there are already notable differences between a stan-
dard quality and a high quality sampling; see Sec. II B. For the large
bandgap MgCl2, the behavior at the lower SQ settings is then com-
pletely unconverged. We verified that the HQ settings correspond to
full convergence in all three cases.

B. Decomposing the interfacial capacitance
In order to gain further insights into the different potential

dependencies and sensitivities to Brillouin zone sampling, we start
by explicitly considering the relation between the GC energy and the
area-normalized interfacial capacitance. Relative to the situation at
the PZC with μ̃0

e = μ̃e(0), this is

E (μ̃e) = EPZC(μ̃0
e) −

A
e2∫

μ̃e

μ̃0
e
∫

μ̃′e

μ̃0
e

C(μ̃′e)dμ̃′edμ̃e, (3)

with A being the interfacial area. For an approximately constant
interfacial capacitance over the studied potential range, C(μ̃e) ∼ C0
= const., this straightforwardly yields a parabolic form

E (μ̃e) ≈ EPZC(μ̃0
e) −

AC0

2e2 (μ̃
0
e − μ̃ e)2. (4)

In fact, with C0 being the interfacial capacitance at the PZC, this
is exactly the CHE + DL energy expression with a phenomeno-
logical quadratic potential dependence20,24,49 used before for metal
electrodes.

However, as obvious from Fig. 2, the underlying assumption
of an essentially constant interfacial capacitance does not hold for
systems with a bandgap. For the latter systems, the potential depen-
dence of C(μ̃e) needs to be explicitly considered. To further analyze

this dependence, we rewrite the definition of C(μ̃e) through Eq. (3)
using Eq. (1),

C(μ̃e) =
e2

A
⎛
⎝
∂2E (μ̃e)
∂μ̃2

e
∣
μ̃e

⎞
⎠

= e2

A
⎛
⎝
∂Ne(μ̃e)
∂μ̃e

∣
μ̃e

⎞
⎠

= e2

A
( ∂μ̃ e(Ne)

∂Ne
∣
Ne(μ̃e)

)
−1

, (5)

which can be evaluated if the respective functions are continuously
differentiable (e.g., for T > 0 K or with employed smearing). By
introducing a material-intrinsic electrostatic reference ϕI, we can
rewrite Eq. (2) as

μ̃e(Ne) = −(εF(Ne) − eϕI(Ne))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

μe

+ (−e(ϕI(Ne) − ϕS))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−eϕeDL

, (6)

which phenomenologically introduces a decomposition of the elec-
tron electrochemical potential into chemical and electrostatic parts.
The chemical contribution μe is hereby given by the Fermi level posi-
tion relative to the inner reference potential ϕI and the electrostatic
part by the relative shift of ϕI relative to the bulk solution reference
ϕS. In general, a decomposition into chemical and electrostatic parts
remains ambiguous as any material-intrinsic potential reference ϕI is
only defined up to a constant that equally applies to the terms inner
potential or Galvani potential, frequently used in electrochemistry.
Gratifyingly, C(μ̃e) remains unaffected by such constant offsets and,
as a result, can be written as

C−1(μ̃e) =
A
e2
⎛
⎝
∂μe

∂Ne
∣
Ne(μ̃e)

+ −e∂ϕeDL

∂Ne
∣
Ne(μ̃e)

⎞
⎠

= C−1
DOS(μ̃e) + C−1

eDL(μ̃e). (7)

This leads thus to the well-established picture of the total inter-
facial capacitance in terms of a series connection of the capacitance
of the electrode and the capacitance of the electrochemical double
layer (eDL). The first contribution, the DOS capacitance (sometimes
also called the quantum capacitance) with

CDOS(μ̃e) =
e2

A
Dσ(εF(μ̃e)), (8)

arises from the Fermi level shift relative to an inner potential refer-
ence ϕI as induced by the filling of the broadened electronic density
of states,50

Dσ(εF) =
∂Ne

∂μe
∣
εF

. (9)

DOS broadenings are intrinsically introduced when allow-
ing non-integer occupations for electronic states, which is nec-
essary for numerical reasons to obtain converged energetics and
forces for metals or metalized semiconductors at finite k-point
resolution.51–54 In principle, realistic temperature-related broaden-
ing effects are obtained when Fermi–Dirac occupations are used in
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FIG. 3. Schematic representation of the DOS for a conducting and a semiconduct-
ing material and the average electrostatic potential in the z-direction ϕ(z) for a
positive (orange) and a negative (green) charged state compared to the potential
of zero charge (blue). It illustrates the shift of the electrochemical potential of an
electron Δμ̃e—as a combination of the electrostatic shift of the whole DOS relative
to the solution level ϕS by eΔ(ϕI

− ϕS
) = eΔϕeDL and the “chemical contribution”

Δμe—the shift of the Fermi level relative to an inner potential reference ϕI. The
electrostatic potential converges to ϕS in the bulk solvent region, which can be
referenced to the electrostatic potential in vacuum ϕVAC.

combination with a room temperature smearing width σ = kBT ∼ 25
meV.50 However, it is common practice to use other occupation
functions that can exhibit smaller artifacts at larger-than-room-
temperature smearings at the expense of introducing unphysical
electronic entropy contributions or non-unique Fermi levels.51,52,54

For all practical purposes, the here used Gaussian smearing method
yields equivalent results to Fermi–Dirac smearing for appropri-
ately rescaled σ values (cf. Figs. S16 and S17 of the supplementary
material), as demonstrated in Ref. 54. Nonetheless, the DOS capac-
itance is affected by electronic smearing via Eq. (8), which will be
discussed below.

The double-layer capacitance,

CeDL(μ̃e) =
−e
A

∂Ne

∂ϕeDL ∣
Ne(μ̃e)

, (10)

in turn derives from the electrostatic potential drop ϕeDL across the
electrode–electrolyte interface as illustrated in Fig. 3.

While a more formal partitioning of C(μ̃e) has been achieved
by Binninger,50 the more heuristic partitioning as in the present
work is commonly applied in the assessment of low-dimensional
electrodes, e.g., graphene,30,31 MoS2,32 or carbon nanotubes,33–35 and
as we will see, the ensuing separate analysis of the two contribu-
tions CDOS(μ̃e) and CeDL(μ̃e) will bring very intuitive access to the
different behavior of metallic and semiconducting electrodes.

1. The double-layer capacitance C eDL

As elaborated before, the double-layer capacitance CeDL(μ̃e)
can be evaluated by analyzing the shift of a material-intrinsic poten-
tial reference ϕI(Ne(μ̃e)) relative to the solution reference ϕS. Com-
mon intuitive inner potential references established in the field of
semiconductor band alignment55 are the electrostatic potential at a
point in the material (e.g., the center of the material), the average
over the electrostatic potential inside the material, or the alignment
of a characteristic state of the DOS, e.g., the conduction or valence
band edge or a deep electronic (core-level) state.30,56–60 While all
these schemes should be equivalent for macroscopic electrodes,61 we

found especially a spatial average of the electrostatic potential within
the 2D material

ϕI(Ne) = ∫
z2

z1
ϕ(Ne, z)dz

∫ z2
z1

dz
(11)

to lead to robust numerical results in the present study (see Sec. S4 A
of the supplementary material for comparison and discussion of the
effects of different choices of electrostatic referencing). In this case,
the finite difference estimate for CeDL, cf. Eq. (10), is evaluated as

CeDL(μ̃e) ≈ −
e
A

ΔNe

ΔϕI ∣
Ne(μ̃e)

. (12)

Figure 4 shows the obtained CeDL(μ̃e) contribution for the
three showcase metal chlorides. We obtain essentially no or only
a very weak dependence on the Brillouin sampling and Gaussian
smearing widths σ, and in the case of the metallic TiCl2 and small
bandgap semiconductor FeCl2 also, there is only a negligible varia-
tion of CeDL(μ̃e) over the entire potential range. In contrast, the large
bandgap insulator MgCl2 shows a pronounced increase in CeDL in
the negative charging regime (similarly observed also for MgBr2),
which is enhanced by using the HSE functional. We attribute this
anomalous behavior of CeDL(μ̃e) to the observed differences in the
electronic excess charge distributions for these materials under these
conditions, which is likely related to the large bandgap and/or the
low electronic stability/work function of −μ̃e ⪅ 2 eV (cf. Secs. S2 A
and S4 C of the supplementary material).

For all other halides with their smaller bandgaps (cf. Sec. S4
C of the supplementary material), the variations of CeDL(μ̃e) with
charge state are within a minimal 2 μF cm−2 and there is no sig-
nificant dependence on the Brillouin zone sampling and smearing.
Moreover, there are also only minor variations of CeDL(μ̃e) over
the studied set of metal halides. We can conclude that the capaci-
tance contribution of the electrochemical double layer is an essen-
tially material-independent constant with a value of about CeDL(μ̃e)
∼ 10 μF cm−2 within the presently employed implicit solvation
model.

FIG. 4. Electrochemical double-layer capacitance CeDL as a function of the
electron’s electrochemical potential μ̃e and relative to the point of zero charge
(PZC) for the three metal chlorides, TiCl2 (no bandgap), FeCl2 (small bandgap),
and MgCl2 (large bandgap). The results are again shown for a Brillouin zone
sampling at standard quality (SQ, black) and high quality (HQ, blue).
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2. The DOS capacitance CDOS
The relative robustness of CeDL(μ̃e) is in stark contrast to the

sensitivity observed for the DOS capacitance CDOS(μ̃e) in Fig. 5.
In order to be consistent with the finite difference evaluation of

C(μ̃e) and CeDL(μ̃e), we here also evaluate this contribution numer-
ically by computing at each charge state the differential change of
the Fermi level position ΔεF due to charging. In practice, we deter-
mine ΔεF consistent with the QE-internal routines using a bisection
method to find εF for a given target total number of electrons, where
Ne(ε) is given within the employed Gaussian smearing method by

Ne(ε) =∑
k,b

wk ⋅
1
2

erfc( εk,b − ε
σ
), (13)

with wk being the k-point weight, σ being the smearing width, and
εk,b being the energy of the Kohn–Sham eigenstate for k-point k
and band b. This allows us to compute explicitly a finite-difference,
broadened DOS consistent with the employed Gaussian smearing
method,

Dσ(ε) ≈
ΔNe(ε)

Δε
. (14)

It thereby makes essentially no difference to use self-consistently
determined Kohn–Sham energies εk,b at each according charge state
or to use εk,b computed for the charge neutral system throughout.
The effect of orbital relaxation on the DOS and DOS capacitance is
negligible, as we show in Figs. S39 and S40 of the supplementary
material. Finally, we also validated that the finite difference value
Dσ(εF(μ̃e)) agrees with directly computed, temperature broadened
DOS at HQ settings; cf. Figs. S14 and S15 of the supplementary
material.

As apparent from Fig. 5, the CDOS(μ̃e) capacitance contribu-
tion varies largely over the studied range of potentials and requires a
most accurate Brillouin sampling and small smearing width for con-
vergence. The effect of the latter can be rationalized from additional
free energy contributions Eσ = −σS(σ) introduced by smearing,54

which affects the electron chemical potential (see Sec. S2 D of the
supplementary material) approximately via

FIG. 5. Same as Fig. 4, but for the DOS capacitance CDOS.

μe ≈ μe,0 +
∂

∂Ne
(−σS(σ)) (15)

= μe,0 +
∂Eσ

∂Ne
. (16)

μe,0 signifies hereby the chemical potential at nominally vanishing
smearing, while the second term ∂Eσ

∂Ne
introduces a σ-dependent shift.

The latter term affects the charge-vs-chemical-potential relation as
well as the DOS capacitance, e.g., whenever ∂2Eσ

∂N2
e
≠ 0. An accord-

ing detailed analysis of smearing contributions within our HQ vs SQ
simulations can be found in Sec. S5 C of the supplementary material,
which underlines the importance of realistically small smearing
widths for semiconducting systems and their relative unimportance
for the metallic systems. Most notably, the analysis can explain the
observed closing-of-the-bandgap in the SQ settings (cf. Fig. 2) due
to the altered charge-vs-chemical-potential relation via ∂Eσ

∂Ne
(see Sec.

S5 C of the supplementary material for more details).
For the converged HQ parameter set, CDOS(μ̃e) values obtained

for the three metal chlorides differ widely and not surprisingly
CDOS(μ̃e) = 0 within the potential range corresponding to the
bandgap of FeCl2 and MgCl2. These distinct changes in magnitude
thereby nicely rationalize the differing behavior of the GC energet-
ics and total interfacial capacitance observed originally in Fig. 2.
In case of the metallic TiCl2, the CDOS(μ̃e) contribution is always
orders of magnitude larger than the CeDL(μ̃e) contribution. In the
capacitor series connection, it, therefore, plays no role for the total
interfacial capacitance, and C(μ̃e) is completely determined by the
essentially constant electrochemical double-layer capacitance that
is furthermore already converged at undemanding Brillouin sam-
pling settings. This large CDOS(μ̃e) across the full potential range,
therefore, justifies the constant capacitance assumption of the con-
ventional CHE+DL approximation and a simple parabolic potential
dependence of the GC energetics results. We emphasize that the par-
ticularly small variation of CeDL(μ̃e) is a direct consequence of the
employed implicit solvation model.13,62,63 While explicit solvation
models lead to somewhat larger variations at very high electrolyte
concentrations,64 the CHE + DL approximation remains useful for
understanding the experimentally relevant regime of intermediate
and low electrolyte concentrations.

The situation becomes a bit more complex for the two cases
with a bandgap. Here, CDOS(μ̃e) = 0 within the bandgap. This will
then always dominate the total capacitance and necessarily delay
any potential variation of EDFT(μ̃e) to potentials outside of this
range. This rationalizes the separation of the two branches of the
parabola in Fig. 2 for FeCl2 and MgCl2. With CDOS(μ̃e) rising to
finite values for potentials above or below the bandgap, it will ini-
tially exhibit similar magnitudes as CeDL(μ̃e). The total capacitance
then receives significant contributions from both capacitances and
will consequently exhibit the CDOS(μ̃e)-induced sensitivity to the
Brillouin sampling and smearing and a more complex potential
dependence imposed by the non-constancy of CDOS(μ̃e). The poten-
tial range over which C(μ̃e) shows this behavior depends on how
quickly and if at all CDOS(μ̃e) will take on values that are much
larger than CeDL(μ̃e). Once this happens, we are back to the sit-
uation seen for the metallic TiCl2, with a parabolic GC energy
variation resulting from the then again dominant constant CeDL(μ̃e).
As seen in Fig. 2, this happens over a relatively small potential range
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for FeCl2, whereas in the case of MgCl2, the two capacitance con-
tributions remain of comparable magnitude for a larger range of
potentials, especially within the SQ settings. The pronounced differ-
ence between the SQ and HQ behaviors thereby elucidates that the
initial slower increase in CDOS is mainly a smearing effect, whereas
the later decrease in CDOS in the negative charge range is a con-
sequence of the poorly sampled k-point grid (cf. Fig. S15 of the
supplementary material). A detailed display for the other materials
can be found in the supplementary material (Sec. S5). Furthermore,
the symmetry of the DOS around the bandgap and, correspondingly,
the symmetry of CDOS(μ̃e) largely vary. While for FeCl2, we find
a rather symmetric behavior, similar to graphene,30,65 CDOS(μ̃e) is
asymmetric for MgCl2. These trends can be directly mapped to the
form of the DOS of both materials (cf. Sec. S5 of the supplementary
material). Even though asymmetries can be observed also for some
other materials, we will show in Sec. III C that such details can be
neglected when considering the energetics.

C. CHE + DL approximation for 2D semiconductors
Even though the preceding analysis revealed a potential depen-

dence of C(μ̃e) for the 2D semiconductors that is generally more
complex than a piecewise constant behavior, we recall that the
assumption of a constant C0 in the CHE + DL approximation for
metals is also not strictly fulfilled. Nevertheless, the CHE + DL
approximation has proven quite accurate in a number of cases.20,23,24

In this spirit, the primary modification required for a CHE
+ DL application to gapped systems would be to replace the con-
stant capacitance assumption with a piecewise constant capacitance
assumption. Such a potential dependence of C(μ̃e) would result if
CDOS(μ̃e) switched in a stepwise fashion from 0 to a very large value
at the valence band edge and the conduction band edge potentials.
Outside of the bandgap potentials, the total capacitance is then given
by CeDL(μ̃e), which is approximated by a constant value CeDL that is
furthermore primarily given by the solvation model.

Translated to the GC energetics, this generalization of the CHE
+ DL approximation then takes the following form:

E
CHE+DL(μ̃e)

= EPZC(μ̃e) −

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ACeDL

2e2 (μ̃
cbe
e − μ̃ e)

2
if μ̃e > μ̃cbe

e ,

0 if μ̃cbe
e > μ̃e > μ̃vbe

e ,
ACeDL

2e2 (μ̃
vbe
e − μ̃ e)

2
if μ̃e < μ̃vbe

e ,

(17)

with two parabolic branches defined by CeDL and the positions
of valence and conduction band edges at the PZC μ̃vbe/cbe

e . Note
that in the case of a vanishing bandgap, this expression reduces to
the established CHE + DL approximation for metals if one identi-
fies CeDL = C0. With μ̃vbe/cbe

e , the expression also primarily depends
again on quantities that can accessibly be calculated in uncharged
supercells and at standard Brillouin zone sampling. As CeDL is not
strongly material dependent, a generic value for the employed solva-
tion model may be used for this remaining parameter. In Fig. 6, the
performance of this extended CHE + DL approximation is corre-
spondingly evaluated for the three showcase chlorides and simply
using the generic value CeDL = 10 μF cm−2 derived above for the

FIG. 6. Accuracy of the extended CHE + DL approximation for metals and gapped
system for the three metal chlorides, TiCl2 (no bandgap), FeCl2 (small bandgap),
and MgCl2 (large bandgap). Top panels: Comparison of the GC energy E (μ̃e) as
a function of the electron’s electrochemical potential μ̃e and relative to the point
of zero charge (PZC) (dots) with the CHE + DL approximation E CHE+DL

(μ̃e) and
using the generic value CeDL = 10 μF cm−2 (solid line). Bottom panels: Energy dif-
ference E CHE+DL

(μ̃e) − E (μ̃e). The energetic accuracy of the CHE + DL model
across the whole dataset is consistently within 7 meV/f.u. when compared to the
HQ reference results. All panels show data computed at standard quality (SQ,
black) and high quality (HQ, blue) Brillouin zone sampling.

present solvation model. For metal, semiconductor, and insulator,
the energetic accuracy is consistently within 7 meV/f.u. when com-
pared to the HQ reference results. As detailed in Figs. S47 and S48
of the supplementary material, a similar accuracy is obtained for
all other halides, which should be perfectly sufficient for standard
applications. As our benchmark study on 27 materials reveals the
negligible importance of orbital relaxation effects under charged
conditions (cf. Figs. S39 and S40 of the supplementary material),
it is straightforward to extend the model even to cases with pro-
nounced capacitance asymmetry, e.g., by considering more explicitly
DOS capacitance contributions from PZC calculations.

IV. SUMMARY AND CONCLUSION
Computing the potential-dependent GC energetics for a mind-

fully chosen test set of 2D (transition) metal halides, we obtained
fundamental differences between metallic and semiconducting sys-
tems. These differences involved not only the expectable effect of the
opening bandgap but also an increasing sensitivity to the numeri-
cal Brillouin zone sampling and smearing width. Even though the
results thus confirm the transferability of the recently introduced GC
constant-potential (Fermi level) methodology to 2D semiconduc-
tors, achieving converged such calculations will, therefore, become
a computational burden in practice. This provides further motiva-
tion to establish an extension of the computationally efficient CHE
+ DL approximation.

Our analysis traced the different behavior of gapped systems
back to an increased contribution of the DOS capacitance of the
electrode to the total interfacial capacitance. In the case of met-
als, the latter capacitance is dominated by the contribution from
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the electrochemical double layer, which does not require partic-
ular care in terms of Brillouin zone sampling or smearing width
to converge. Moreover, this quantity was not found to be partic-
ularly material specific across the studied set of 2D halides and is
well approximated by a constant CeDL = 10 μF cm−2 for the here
employed implicit solvation model for the aqueous environment.
For 2D semiconductors, it is, instead, the DOS capacitance contri-
bution that introduces a more complex potential dependence and
thus requires high Brillouin zone sampling accuracy and realistically
small smearing widths.

This understanding then motivates a straightforward and sim-
ple extension of the CHE + DL approximation. In the spirit of this
approximation for metals, this extension considers a piecewise con-
stant interfacial capacitance, with zero value for Fermi level positions
within the bandgap range and a finite value CeDL at Fermi level posi-
tions outside. Despite this simplicity, the extension was found to
show a reasonable accuracy across the entire halide test set. It also
only requires input quantities that can be computed in charge neu-
tral supercells and at undemanding Brillouin zone sampling settings,
which thus preserves the computational appeal of the CHE + DL
approximation for metals.

On a broader scope, the understanding that motivates this CHE
+ DL approximation aligns closely with the semi-classical picture
for extended semiconductors at applied potentials that lie within the
bandgap. In this case, similarly as here, application of an electrode
potential does not directly translate into an electrostatic potential
drop in the solution, as a dominant part of the applied potential
drops inside the electrode due to the buildup of a macroscopic space-
charge layer. As a corollary, this suggests that a simple augmentation
of adsorption energies obtained under PZC conditions with dipole-
field interactions—as valid for metallic systems due to the generic
single-parabola-energetics20,66,67—might break down here, as was
also put forward by Dominguez and Melander.68 This is supported
by recent constant inner potential calculations at semiconducting
electrodes,48 which equally suggest that their understanding and
accurate, ab initio-based description is still in its infancy.48 However,
we anticipate that an analysis route analogous to the one pursued
here based on a generic energy expansion may help us understand
better the constant inner potential methodology, the energetics, and
therewith the electrochemical behavior of extended semiconductor
electrodes in the future.

SUPPLEMENTARY MATERIAL

The supplementary file contains the following: Table S1/Fig. S1:
Lattice parameter for all studied structures. Figure S2: Valence and
conduction band edges for all materials. Figure S3: Bandgaps for all
materials. Figure S4: Valence band edge/Fermi level for all materials.
Figure S5: Influence of the DFT functional on DFT energy, electron
electrochemical potential, and differential capacitance of MgCl2.
Figure S6: Influence of the DFT functional on the DOS of MgCl2.
Figure S7: Influence of the DFT functional on the double-layer
capacitance of MgCl2. Figure S8: Influence of the DFT functional
on the electrostatic potential of MgCl2. Figure S9: Comparison of
HSE and PBE regarding the excess electron density and the onset of
the dielectric permittivity of MgCl2. Figure S10: Influence of spin-
polarization on the electron electrochemical potential and the DOS

of FeCl2, FeI2, and NiI2. Figure S11: Influence of spin-polarization
on the capacitances with the CHE + DL approximated energetics
of FeCl2, FeI2, and NiI2. Figure S12: K-point and Gaussian smear-
ing convergence for TiCl2, FeCl2, and MgCl2. Figure S13: K-point
and Gaussian smearing influence on the DOS for TiCl2, FeCl2, and
MgCl2. Figure S14: NSCF results and analytical DOS for TiCl2,
FeCl2, and MgCl2. Figure S15: Close view of Fig. S14 for MgCl2.
Figure S16: Comparison of Gaussian and Fermi–Dirac smearing
regarding DFT energy, electron electrochemical potential, and DOS
of TiCl2, FeCl2, and MgCl2. Figure S17: Comparison of Gaussian
and Fermi–Dirac smearing regarding the capacitances with the CHE
+ DL approximated energetics of TiCl2, FeCl2, and MgCl2. Figures
S18 and S19: DFT energies with respect to the cell charge for all
materials. Figures S20 and S21: Electron electrochemical potential
with respect to the cell charge for all materials. Figures S22 and
S23: Differential capacitance with respect to the cell charge for all
materials. Figure S24: Mean capacitance for all materials. Figure S25:
Mean capacitance in the negative/positive charge range for all mate-
rials. Figure S26: Double-layer capacitance as determined with three
different approaches vs differential capacitance for all materials. Fig-
ures S27 to S30: Electrostatic potential difference for the SQ and HQ
parameters for all materials. Figure S31: Mean double-layer capac-
itance for all materials. Figure S32: Mean double-layer capacitance
in the negative/positive charge range for all materials. Figures S33
and S34: Double-layer capacitance with respect to the cell charge for
all materials. Figure S35: Influence of the halide atom regarding the
excess electron density and the onset of the dielectric permittivity of
TiX2, FeX2, and MgX2. Figure S36: Comparison of FeCl2 and MgCl2
regarding the excess electron density and the onset of the dielectric
permittivity. Figure S37: Mean DOS capacitance for all materials.
Figure S38: Mean DOS capacitance in the negative/positive charge
range for all materials. Figures S39 and S40: DOS capacitance with
respect to the cell charge for all materials. Figures S41 and S42: DOS
for all materials. Figures S43 and S44: Derivative of the smearing
energy for all materials. Figures S45 and S46: Relative smearing error
of the DOS capacitance for all materials. Figures S47 and S48: Com-
parison of the GC energy with the CHE + DL approximation for all
materials.
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