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Abstract

We present an efficient first-principles based method geared towards reliably pre-

dicting the structures of solid materials across the periodic table. To this end, we

use a density functional theory (DFT) baseline with a compact, near-minimal min+s

basis set, yielding low computational costs and memory demands. Since the use of

such small basis set leads to systematic errors in chemical bond lengths, we develop a

linear pairwise correction (LPC), available for elements Z = 1-86 (excluding the lan-

thanide series), parameterized for use with the PBE exchange-correlation functional.

We demonstrate the reliability of this corrected approach for equilibrium volumes

across the periodic table and the transferability to differently coordinated environ-

ments and multi-elemental crystals. We examine relative energies, forces and stresses

in geometry optimizations and MD simulations.
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I. Introduction

In materials science, first-principles simulations are the state-of-the-art approach for ob-

taining detailed atomistic insight into the structure and properties of bulk materials, surface-

adsorbate systems, interfaces and nanoparticles. To this end, Kohn-Sham density func-

tional theory (KS-DFT) methods employing generalized gradient approximation (GGA)

functionals, such as the Perdew–Burke-Ernzerhof (PBE) functional,1 are extremely popu-

lar. PBE reliably describes equilibrium structures, vibrational spectra, binding and cohesive

energies for a broad range of materials.2 However, to capture the behaviour of structurally

complex systems (e.g. defects, interfaces, and amorphous phases), large simulation cells

are required, with concomitantly large demands of CPU time and memory. Additionally, to

describe dynamic properties or finite-temperature effects, molecular dynamics (MD) sim-

ulations with millions of simulation steps are required. Such simulations are hindered by

the computational cost of typical DFT calculations.

In terms of computational scaling, the bottleneck of KS-DFT calculations lies in the so-

lution of the KS eigenvalue problem. Commonly used direct eigensolvers, such as ELPA,3

scale cubically (O (N 3)) with system size. This cubic scaling KS solution step therefore dom-

inates the total cost of the self-consistent field (SCF) cycle in the limit of large simulation

cells. Considerable research is being directed towards more cost-efficient ways to solve

the eigenvalue problem. These efforts include iterative eigensolvers (e.g. SLEPc4) with

better than cubic scaling or density matrix solvers (e.g. NTPoly5) that bypass the diagonal-

ization step to reach linear scaling. Both iterative eigensolvers and density matrix solvers

only reach their full potential when applied to sufficiently large sparse matrices, though

(e.g. for lower dimensional systems and/or insulators), whereas the computational cost

is unfavourable for small to medium-sized systems and dense bulk systems with small

band-gaps (metals and semiconductors). Here they are still outperformed by direct eigen-

solvers. Consequently, despite significant progress in hardware and algorithms, KS-DFT

calculations for systems with thousands of atoms are in general far from routine.
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Semiempirical electronic structure methods are low-cost alternatives to DFT, which

overcome its computational limitations. Popular semiempirical methods in quantum chem-

istry include the PMn methods (e.g. PM6,6 etc.), the extended tight-binding methods

GFNn-xTB (GFN-xTB,7 GFN2-xTB8), and the density functional tight-binding (DFTB) ap-

proach.9–11 These semiempirical methods offer low computational cost but lack the ro-

bustness and transferability of first-principles methods, typically relying on system-specific

parameterizations.

Improved robustness and accuracy can be obtained when semiempirical methods are

built on top of a first-principles baseline. This is for example done in the HF-3c method,12

which is presently the most cost-efficient method of a set of "3c" methods developed by

Grimme and co-workers.13 Specifically, the HF-3c method uses Hartree-Fock (HF) in com-

bination with a near-minimal basis set.12 Clearly, the lack of electron correlation and basis-

set incompleteness introduces significant errors in energies and geometries. HF-3c corrects

these with three atom-pairwise empirical corrections. These include corrections for the dis-

persion interaction, the basis set superposition (BSSE) error and a short-range basis cor-

rection targeting the basis set incompleteness error (BSIE).12 Notably, the "3c" approach

has also been extended to DFT, e.g. with the PBEh-3c14 and r2scan-3c15 methods. How-

ever, all 3c methods are tailored to obtaining geometries and thermodynamic properties of

molecular systems. Yet, there is a similar demand for cost-efficient methods for obtaining

reliable geometries of inorganic bulk systems at the DFT level, e.g. for initial screenings

in materials discovery or for generating training data for machine learning (ML) poten-

tials. The current work therefore introduces such an approach for bulk materials within

the FHI-aims DFT code.16
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II. Method

As a basis for the proposed method, we employ a cost-efficient, first-principles model us-

ing the semilocal PBE functional with a near-minimal basis set termed min+s. Since we

observed systematic underbinding at this level of theory (and consequently overestimated

lattice constants), we propose a simple empirical correction term. Together, the min+s

basis set and the proposed linear pairwise correction (LPC) represent a robust and cost ef-

ficient method for structural relaxations of materials across the periodic table. The method

is described in detail below.

A. PBE/min+s baseline

1. Basis set specification

In FHI-aims, KS orbitals are expressed in terms of numeric atom-centered orbital (NAO)

basis functions ϕi:
16

ϕi(r ) =
ui(r)

r
Ylm(Ω) (1)

with localized numerical tabulated radial functions ui(r) and spherical harmonics Ylm(Ω).

For each element, the NAO basis set is hierarchically constructed from a minimal free-atom

basis set by iteratively adding additional radial functions until a required level of energy

convergence is reached. FHI-aims provides predefined numerical settings for different

levels of convergence. These settings define a set of NAO basis functions and correspond-

ingly adjusted integration grids, multipole expansions for the Hartree potential, etc. The

most commonly used settings in FHI-aims are termed light and tight. For GGA function-

als, such as PBE, the tight settings are essentially fully converged and recommended for

highly precise energy calculations, whereas the light settings are much more cost-efficient

and often used for structural relaxations and ab initio molecular dynamics.16 For large

systems, where the solution of the KS equations dominates the computational cost, even

4

https://doi.org/10.26434/chemrxiv-2024-x59gl ORCID: https://orcid.org/0000-0002-0862-5289 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-x59gl
https://orcid.org/0000-0002-0862-5289
https://creativecommons.org/licenses/by-nc/4.0/


light settings can become computationally prohibitive in terms of CPU time and memory

consumption, however.

In this work, we employ a cost-efficient near-minimal NAO basis set, which we denote

as min+s. The min+s basis consists of a minimal set of basis functions (which includes the

full valence shell of the corresponding element) and one additional s-type function, which

grants some amount of radial flexibility to the basis set at negligible computational cost.

All basis functions are localized within a basis set cutoff inherited from the light settings,

where the cutoff is chosen to be as small as possible without significantly affecting the

accuracy of computations. For completeness, the min+s basis set cutoffs for each element

are provided in the Supplementary Information. To further reduce the computational cost,

only the chemically relevant valence and shallow-core electrons are considered by using

the frozen core approximation in the solution of the KS equations. Here, we are using

the implementation by Yu et al. (FC99+C+V) with an energy cutoff of -100 eV (if not

otherwise stated).17,18

5

https://doi.org/10.26434/chemrxiv-2024-x59gl ORCID: https://orcid.org/0000-0002-0862-5289 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2024-x59gl
https://orcid.org/0000-0002-0862-5289
https://creativecommons.org/licenses/by-nc/4.0/


2. Computational cost
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Figure 1: Scaling behaviour of the computational cost for self-consistent field (SCF) itera-
tions employing the min+s, light, and tight settings as a function of system size for CsPbBr3

supercells with 5, 150, 320, 625, 1080, 2560 atoms. a) Comparison of the number of basis
functions, highest tracked memory usage and total runtime. b) Subtimings for the first SCF
iteration with the min+s and tight basis sets. The 5, 150, 320, 625, 1080 and 2560-atom
supercells have been computed on 2 nodes with 40 CPUs each with large memory nodes
192 GB on the HPC cluster Cobra (processor type: Intel Skylake 6148, processor clock: 2.4
GHz). For min+s settings 5-atom computations were excluded due to ELPA errors from too
small matrices for the chosen number of CPUs. For light and tight settings the 2560-atom
supercell could not be computed due to memory limitations.

In Fig. 1a, the computational cost of the min+s basis set is compared to the light and

tight settings for a single SCF iteration on CsPbBr3 supercells with up to 2560 atoms.

PBE/min+s reduces the total wallclock time on average to 52% and 21% compared to

PBE/light and PBE/tight. Beyond the runtime, large-scale simulations are also often lim-
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ited by their memory demand. Here, PBE/min+s reduces the required memory usage on

average to 15%, 28% compared to PBE/light and PBE/tight, respectively. The computa-

tional time and memory savings due to min+s are thereby mainly due to the reduced

number of basis functions and lighter integration grids (compared to tight). However,

the overall reduction varies according to the contained elements, as well as the size and

density of the examined system. Generally, the savings are largest for elements with low

atomic numbers and decrease for heavy elements with many core orbitals. In this respect

CsPbBr3 is far from the best case scenario. Nevertheless, the min+s settings clearly lead to

substantial savings compared to the light and especially tight settings.

To obtain better insight into the time savings for different system sizes, we examine

the major contributors to the total wallclock time of the first SCF iteration in Fig. 1b.

For small system sizes the major contributors to the total time are linear scaling grid-based

computational steps (Hartree potential, density update, integration step). For large system

sizes the cubic scaling KS solution dominates. By using the min+s basis set (Fig. 1b,

right) instead of the tight basis set (Fig. 1b left), the computational cost for both grid-

based computational steps and the KS solution is decreased, yielding lower computational

cost for small, medium and large-scale systems. Even better, the relative savings increase

with increasing system size (see Supplementary Information Tab.1) due to the increased

sparsity of matrices obtained with the min+s basis set. Crucial for enabling large-scale

computations is the crossover point, for which the cost of the cubic scaling KS solution

exceeds the linear scaling grid-based computational steps. PBE/min+s shifts this crossover

point to significantly larger system sizes (around 1000 atoms). In turn, this pushes the KS

bottleneck to larger system sizes and enables cost-efficient large-scale simulations.
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3. Basis set incompleteness errors for crystals

Table 1: Test set of 128 materials including noble gases,19 ionic binary compounds,20 cova-
lent semiconductor binary compounds,20 metalloids,19 metals19 and molecular elemental
crystals.19

Bonding type Number of materials Materials
Noble gases 6 He, Ne, Ar, Kr, Xe, Rn19

Ionic 21 alkali halides AB with A = Li, Na,
K, Rb, Cs and B = F, Cl, Br, I20

Covalent 37 AlAs(ZB), AlN(WUR), AlN(ZB),
AlP(ZB),AlSb(ZB), BAs(ZB),
BP(ZB), CdS(WUR), CdS(ZB),
CdSe(WUR), CdSe(ZB),
CdTe(ZB), GaAs(ZB),
GaN(WUR), GaN(ZB), GaP(ZB),
GaSb(ZB), HgS(ZB), HgSe(ZB),
HgTe(ZB), InAs(ZB), InN(WUR),
InP(ZB), InSb(ZB), MgO(RS),
MgS(RS), MgSe(RS), PbS(RS),
PbSe(RS), PbTe(RS), SiC(ZB),
ZnO(WUR), ZnS(WUR),
ZnS(ZB), ZnSe(ZB), ZnTe(ZB),
C(DIA)20

Metalloid 8 B, Si, Ge, As, Se, Sb, Po, Te19

Metallic 47 Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr,
Ba, Sc, Y, Lu, Ti, Zr, Hf, V, Nb, Ta,
Cr, Mo, W, Mn, Tc, Re, Fe, Ru, Os,
Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au,
Zn, Cd, Hg, Al, Ga, In, Sn, Tl, Pb,
Bi19

Molecular elemental crystals 9 H2, O2, N2, F2, P, S, Cl2, Br2, I2
19
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Figure 2: Energy-volume curves for bulk silicon obtained with a) PBE/min+s and b)
PBE/min+s/LPC, both relative to PBE/tight. The ∆-values show the dissimilarity of
the E(V) curves obtained from PBE/min+s and PBE/min+s/LPC compared to PBE/tight.
The equilibrium volumes obtained with PBE/min+s, PBE/min+s/LPC and PBE/tight are
marked by dots and crosses.

Noble
gases

Ionic Covalent Metalloid Metallic Molecular
 elementals

Bonding type

0
10
20
30
40

V/
V 0

 to
 P

BE
/ti

gh
t (

%
)

PBE/min+s
PBE/min+s/LPC

Figure 3: Performance of PBE/min+s and PBE/min+s/LPC for equilibrium volumes of
bulk systems with different bonding types, relative to PBE/tight (dataset see Tab.1). The
mean errors and standard deviations are indicated in black. The original data is plotted on
the left side of each distribution.

Using the compact min+s basis clearly leads to computational advantages, but this in-

evitably has negative effects on the predictive accuracy of the calculations, due to basis

set incompleteness errors (BSIE). For example, it has been observed that small basis sets

lead to systematically overestimated bond lengths in organic molecules.12,21 To examine
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whether similar systematic trends can be observed in solids, we computed energy-volume

curves and derived equilibrium properties (such as equilibrium volumes V0) of bulk crys-

tals across the periodic table. Note that for simplicity we will use the term BSIE for the

discrepancy between min+s and tight settings in the following, although there are also

(smaller) contributions from grid densities and other factors to this difference.

For illustration, the PBE/min+s and PBE/tight energy-volume curves of bulk silicon

in the diamond crystal structure are shown in Fig. 2a. The corresponding equilibrium

volumes are obtained from a Birch–Murnaghan equation-of-state fit,22,23 performed using

the atomic simulation environment (ASE).24 This reveals that PBE/min+s overestimates

the equilibrium volume V0 of silicon by 6%, compared to PBE/tight. Beyond this, the

BSIE also impacts the shape of the energy volume curve. This discrepancy in shape and

equilibrium volume between two energy-volume curves can be assessed with the ∆-value

introduced by Lejaeghere et al.:19

∆=

√

√

√

∫

∆E2(V )dV

∆V
. (2)

These ∆-values will be used as an optimization target further below.

Importantly, the overestimation of equilibrium volumes due to BSIE is not just observed

for silicon, but for a wide range of elements and bonding types including ionic, covalent,

metallic, and molecular systems. This is shown for a dataset of 128 crystals in Fig. 3,

(see Tab. 1). The volumes are commonly overestimated by 5-10%, and in some cases by

more than 40%. Analyzing the BSIE for different bonding types, we find that the error is

smallest for systems which are reasonably similar to free atoms, such as noble gases or ionic

materials. In contrast, the overestimation increases for more complex bonding situations,

e.g. in covalent, metallic and molecular systems. This can be rationalized by considering

that the minimal basis set is obtained from isolated atom calculations in the NAO scheme.

A near minimal basis is thus well suited for free atoms (the limit of infinite volume in
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an energy volume curve), and the BSIE will be more pronounced for smaller volumes.

Overall, this results in underbinding and an overestimation of equilibrium volumes.

B. Linear pairwise correction (LPC) for BSIE

1. Method definition

Having observed the systematic BSIE effect on energy volume curves, we now aim to cor-

rect the potential energy surface (PES) in such a way that overestimated bond lengths

are shortened without adversely affecting the PES and the related thermodynamic ensem-

ble. To this end we draw on the literature of minimally-invasive biases that have been

developed for large-scale biomolecular simulations. In particular, Pitera and Chodera in-

troduced a linear form of bias based on a maximum entropy argument, which distorts the

unbiased statistical ensemble the least.25,26 With this goal in mind, we define a simple

linear pairwise correction (LPC) eLPC,AB, which is fast to evaluate and easy to parameterize:

eLPC,AB = cZAZB
· (rAB − rcut,ZAZB

) (3)

with rAB = |r AB| being the absolute distance between atoms A and B, cZAZB
denoting the

element-pair dependent correction strength (with cZAZB
≥ 0), and rcut,ZAZB

denoting an

element-pairwise cutoff radius. The latter provides a measure for the onset of the cor-

rection, which should be short-ranged and act mainly on directly bonded atoms, while

interactions between next-nearest neighbors and beyond are removed by a switching func-

tion (see below). The effect of the LPC on the silicon energy-volume curve is shown in

Fig. 2b. This confirms that the underbinding is corrected, without otherwise distorting the

potential energy surface.

To avoid the need for parameterizing all element-pairs in the periodic table, the pair-

wise parameters cZAZB
and rcut,ZAZB

are determined by via arithmetic means of the contribut-
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ing species:

cZAZB
=

cZA
+ cZB

2
, (4)

rcut,ZAZB
=

rcut,ZA
+ rcut,ZB

2
. (5)

The use of the arithmetic mean is a common choice for cutoff radii. It is, e.g., also used

for Lennard-Jones potentials. For the correction strength cZAZB
, use of the geometric mean

was also explored. However, this proved problematic in cases where the parameterization

yielded values of cZA
close to zero (see below). With the geometric mean, all pairwise

corrections involving these elements would be zero, while the arithmetic mean is more

well behaved in this case.

The full correction term ELPC is obtained by summing up the pairwise corrections eLPC,AB

for each atom pair AB, multiplied by the aforementioned switching function:

ELPC =
1
2

Nunit
∑

A

Nsuper
∑

B ̸=A

eLPC,AB · fswitch(rAB, rcut,ZAZB
). (6)

The switching function fswitch of width w = 0.5 Å is given by:27

fswitch(rAB, rcut,ZAZB
) =



























1 if rAB < rcut,ZAZB
- w

1
2 ( cos (πw · (rAB − rcut,ZAZB

+w))+1 ) if rcut,ZAZB
- w ≤ rAB ≤ rcut,ZAZB

0 if rAB > rcut,ZAZB

.

(7)

fswitch ensures a smooth transition to zero as rcut,ZAZB
is approached. This in turn leads

to continuous derivatives, which enables force and stress evaluations. Finally, the total

corrected energy Emin+s/LPC consists of the first-principles energy EPBE/min+s obtained with

the PBE/min+s baseline and the LPC correction term ELPC:

Emin+s/LPC = EPBE/min+s + ELPC. (8)
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Expressions for LPC forces and stresses are given in the Supplementary Information.

2. Parameterization

Clearly, the accuracy of the LPC ultimately depends on an appropriate parameterization

of the correction strength cZA
and the cutoff rcut,ZA

. The latter mainly serves to ensure that

the correction is applied to all relevant short-range interactions, while leaving long-range

interactions unaltered. For most elements, this can be achieved by setting rcut,ZA
to 2.5

times the corresponding elemental single-bond covalent radius (rcut,ZA
= 2.5rcov,ZA

), with

radii taken from Refs.28,29 Exceptions are made for some elements which require larger

cutoffs to cover the most common bonding situations. These exceptions include noble

gases for which van-der-Waals radii are used (rcut,ZA
= 2.5rvdW,ZA

with rvdW,ZA
for He, Ne,

Ar, Kr, Xe from Refs.30 and31). Furthermore, slightly larger cutoffs are used for S, Hg, Pb,

Se, Be (rcut,ZA
= 3rcov,ZA

), all of which display diverse bonding patterns in different crystal

polymorphs.

In contrast to the cutoffs, the correction strengths cZA
need to be more carefully tuned

for each element, in order to minimize the systematic underbinding caused by the BSIE.

To this end, a training set including a range of common homoelemental bonding situations

for each element (namely the dimer, graphite, diamond, ß-tin, bcc and fcc prototypes)

was used, as first reported in reference.32 This consistent set of structures covers coor-

dination numbers from 1-12 and is thus representative of the diverse bonding situations

encountered in solids. However, this diversity also has a downside, in that less important

high energy configurations (e.g. fcc oxygen) can dominate the error when optimizing the

parameters, leading to an unbalanced paramterizations.

To ensure that the LPC is robust for the important low energy configurations of each

element, the structures are therefore weighted according to a Boltzmann distribution cen-

tered on the energetically most stable structure (at the PBE/tight level), with the Boltz-

mann factor pi of structure i ∈ I = {dimer, graphite, diamond, ß-tin, bcc and fcc} given
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as:

pi =
1
Z

exp
�−∆Ei

kT

�

, (9)

with

∆Ei = E0,i −min({E0, j| j ∈ I}). (10)

and the normalization factor Z =
∑

j∈I exp
�−∆E j

kT

�

. Here, kT is the product of the Boltzmann

constant k and the temperature T . In the fitting procedure kT is fixed to 0.25 eV, which

provides a good balance between the correct description of low energy configurations and

a qualitative description of higher energy configurations. To further reduce the influence

of outliers (e.g. in many cases the dimers), structures with Boltzmann factors smaller than

ten percent are excluded from the fitting procedure.

Based on these structures, the cZA
parameters for all elements were optimized with the

Nelder-Mead method,33 34 for fixed rcut,A, minimizing the loss function L(cZA
) by summing

over the Boltzmann-factor pi (Eq. 9) weighted ∆i-values (Eq. 2) for each structure i in the

training set :

L(cZA
) =
∑

i∈I

∆i(Emin+LPC, EPBE/tight) · pi (11)

While this approach for reference data generation worked well for most elements, ex-

ceptions were made for H, O, N, F, Cl, Br, and I. This was necessary due to the fact that

these elements form molecular dimers, which dominate the loss function when following

the procedure described above. As the chemistry of molecular dimers is very different from

important classes of solids (i.e. hydrides, oxides, nitrides and halides), the corresponding

parameters were reoptimized for representative binary compounds, keeping the parame-

ters of the other elements fixed. For further details regarding the dataset, please refer to

the Supplementary Information.

Overall, we thus obtained LPC parameters for elements with Z = 1-86 (excluding the

lanthanide series) for use with the min+s basis set and the PBE functional. The min+s

basis set and the LPC correction are accessible through the corresponding species defaults
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in FHI-aims starting from version 231212 in species_defaults/defaults_2020/minimal+s,

which automatically include the keyword to enable the basis set error corrections (cur-

rently parameterized for use with the min+s basis set and the PBE functional) for energies,

forces and stresses.

III. Results and Discussion

Having defined the LPC, we first benchmark PBE/min+s/LPC for equilibrium volumes

of crystals against a PBE/tight reference. Subsequently, we examine the performance of

PBE/min+s/LPC for geometry optimizations and MD simulations.

Equilibrium volumes of crystalline solids

The performance of PBE/min+s/LPC is examined for a test set of monoelemental and

binary solid state systems categorized into predominantly ionic, covalent, metalloid and

metallic materials and molecular elemental solids (see Tab.1). For this test set, the equi-

librium volumes obtained with the PBE/min+s/LPC and PBE/min+s are compared to the

PBE/tight reference. As mentioned above, PBE/min+s overestimates most equilibrium vol-

umes, whereas PBE/min+s/LPC reduces the BSIE significantly and obtains reliable equi-

librium geometries for most materials, see Fig. 3.

Even though the LPC was mostly fitted on monoelemental reference structures, the

method is transferable to multi-elemental materials. Indeed, basis set errors are gener-

ally larger for monoelemental systems (mainly represented in the metallic, covalent and

molecular elementals classes) compared to poly-elemental (e.g. ionic) materials. Overall,

PBE/min+s/LPC shows the largest residual errors for molecular elemental dimer struc-

tures such as O2 or N2, where the performance is only slightly better than PBE/min+s.

This can be attributed to the fact that the LPC was fitted to binary compounds (such as

oxides and nitrides) for these elements, and is thus not well suited for the corresponding
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elemental molecular systems. Indeed, the results indicate that fitting on elemental dimers

would likely lead to an over-correction for solid binaries, vindicating the selected fitting

strategy.

It should be noted that the energy-volume curves are computed by applying uniform

strain to the cell. Under these conditions, the curves for molecular dimers mainly reflect a

stretching or compression of the covalent bonds in the dimers. In principle, one could also

compute energy-volume curves under the condition of fixed dimer geometries. In this case,

the curve would likely be dominated by the basis set superposition error (BSSE), which

leads to overbinding in non-covalent interactions. BSSE effects are not addressed by the

LPC correction, since they occur on a different lengthscale (i.e. on the order of van-der-

Waals radii) and have the opposite sign. When using a dispersion correction, BSSE effects

can be compensated to a certain degree by adjusting the damping factor and onset of

damping of the switching function. Furthermore a method analogous to the semiempirical

geometrical counterpoise correction (gCP) of Kruse and Grimme35 could be developed for

solids. These developments are beyond the scope of the current paper, however. At this

stage, the PBE/min+s/LPC method is not recommended for systems that are dominated

by van-der-Waals interactions.
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Figure 4: Performance of PBE/min+s and PBE/min+s/LPC for equilibrium volumes of 100
organo-metal halide perovskites ABX3 (structures from Ref.36) and 100 kesterites A2BCX4

(structures from Ref.37), relative to PBE/tight. The mean errors and standard deviations
are indicated in black. The raw data is plotted on the left side of each distribution.

To test the transferability of the PBE/min+s/LPC method further, we examined its

performance for a test set of 100 organo-metal halide perovskite materials ABX3 (struc-

tures from Ref.36) and 100 quarternary kesterite materials A2BCX4 (the first 100 structures

from Ref.37), see Fig. 4. Because these materials consist of three to four different ele-

ments and may include small organic molecules, this represents a challenging test for the

PBE/min+s/LPC method.

We find that PBE/min+s/LPC remains a consistent improvement over PBE/min+s here,

although the volumes are still overestimated by ca. 5% on average. The improvement is

particularly significant for the kesterites, where volumes are overestimated by up to 25% at

the PBE/min+s level. Notably, the residual error of PBE/min+s/LPC is fairly systematic, so

that most systems are still underbound. This points to limitations of the simple functional

form of the LPC, which cannot distinguish different crystal environments. Nonetheless, the
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current approach represents an improvement over the baseline, even in this extrapolative

setting.

Applications

One of the main use-cases for methods like PBE/min+s/LPC is the (pre-)relaxation of

medium to large simulation cells, e.g. in the context of ab initio thermodynamics studies

or materials screening.38 While we have established that the proposed method will yield

improved equilibrium volumes, the task of geometry optimization can potentially start

from structures that are far from equilibrium.

To demonstrate this, the relative volume deviations for full unit-cell relaxations of a

compressed and rattled 512-atom silicon supercell are shown in Fig. 5. The initial lattice

constant was 4.95 Å (corresponding to a volume compression of 26% in the 512-atom

supercell) and the atomic positions were randomly displaced from the diamond struc-

ture with a standard deviation of 0.21 Å. This cell was subsequently relaxed using the

rust-radius enhanced Broyden-Fletcher-Goldfarb-Shann (BFGS) algorithm,16,39,40 with a

convergence criterium of |Fmax| ≤ 0.01 eV/Å. Note that this medium-sized system was de-

liberately chosen to allow comparison with fully converged PBE/tight calculations. Even

here, the PBE/min+s based models show significant computational benefits, with 3-4 times

lower memory demands and calculation times. Full timings and memory usage statistics

of each method are provided in the Supplementary Information.
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Figure 5: Geometry optimization path obtained with LPC corrected PBE/”minimal+s” (en-
ergy cutoff -200 eV), PBE/min+s and PBE/tight starting from a stretched and rattled
Si(DIA) 512-atom supercell. For each optimization step i the relative volume deviation
compared to the relaxed reference geometry (PBE/tight |Fmax| ≤ 0.01 eV/Å) is plotted.

To gauge how the LPC affects the shape of the PES far from equilibrium, we can exam-

ine the optimization paths PBE/min+s/LPC compared to PBE/min+s and PBE/tight, see

Fig. 5. We observe that the initial optimization steps are nearly identical for PBE/min+s/LPC

and PBE/min+s, displaying a fast expansion of the cell volume. In contrast, the PBE/tight

benchmark approaches the equilibrium volume at a gradual pace. After the first five steps,

the LPC correction steers the optimization towards the PBE/tight equilibrium volume, di-

verging from the PBE/min+s path, which overestimates the final relaxed volume by 7 %,

compared to a 1 % overestimation with PBE/min+s/LPC. This behaviour illustrates the

conservative nature of the LPC, in that it yields the correct results around equilibrium and

otherwise leaves the baseline method mostly unaffected. This is an important property,
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because it avoids the generation of spurious minima on the PES, which can result from

non-linear corrections.41,42

Top view Si(111) DAS 7x7

Side view Si(111) DAS 7x7

Second-layer atom

First-layer atom

Dumbbell atom

Rest atom

Dimer atom

Adatom

(a)

Rest atom configuration

Second-layer atom

First-layer atom

Rest atom

PBE/tight reference

(b)

Figure 6: a) The relaxed Si(111)-DAS 7x7 surface reconstruction relaxed at the
PBE/min+s/LPC level, in top and side view. The lower eight sub-surface layers are not
shown for clarity. The Si atoms are color-coded analogously to Ref.:43 dumbbell atoms
(orange), rest atoms (pink), dimer atoms (red), adatoms (green), bulk-like atoms in top
layer (dark blue) and second-layer atoms (light blue). The initial geometry was taken
from Ref.43 b) Relaxed rest atom configurations from the Si(111)-DAS 7x7 surface over-
layed with the PBE/tight reference (dark green).

Moving beyond bulk systems, it is also important to establish the transferability of the

LPC to surface systems. Surface slab calculations often require large supercells, in order

to accommodate complex reconstructions and obtain sufficiently bulk-like properties for

central atoms. An example for such a system is the Si(111)-dimer-adatom stacking fault

(DAS) 7×7 reconstruction.44 We use an initial structure with 1033 atoms obtained from

Ref.43 Therein, Shen et al. employed an ML force field to relax the structure, due to the

high computational cost of first-principles methods for such systems.
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We performed local relaxations of this surface structure, both at the PBE/min+s/LPC

and PBE/tight levels, with a convergence criterium of |Fmax| ≤ 0.01 eV/Å. Importantly, the

PBE/min+s/LPC structure displays all the characteristic features of the DAS 7×7 recon-

struction: two triangular faulted and unfaulted half unit cells with adatoms, rest atoms

and dimers, see Fig. 6. Beyond these qualitative features, the structure is also quanti-

tatively in good agreement with the PBE/tight benchmark: The distances between the

adatoms shown in deviates on average by 0.37 %, the dimer bond lengths by 1.7 %, and

the distances of the rest atoms to the atoms in the top layer deviate on by 2.1 %. Absolute

distance errors can be found in the Supplementary Information.

Structural relaxations yield the ground state geometry (or some meta-stable state) of

a system at T=0 K. In practice, we are often also interested in finite temperature proper-

ties, however. These can be accessed via molecular dynamics (MD) simulations, which by

definition also explore non-equilibrium regions of the PES.

To explore the performance of PBE/min+s/LPC in this setting, we performed MD sim-

ulations for bulk Copper at T=100 K, 300 K, 500 K, and 2000 K. For each method, a

108-atom fcc-Cu supercell was first relaxed and subsequently equilibrated for 3 ps in the

NVT ensemble (using the Nosé-Hoover thermostat), followed by 3 ps production runs in

the NVE ensemble. A 3 fs timestep was used throughout.

The corresponding radial distribution functions (RDFs) are shown in Fig. 7. Due to

its underbinding tendencies (and consequently too large unit cell), the PBE/min+s model

significantly overestimates interatomic distances at low to moderate temperatures (100 K,

300 K, 500 K). In contrast, the corrected PBE/min+s/LPC model faithfully reproduces

the PBE/light reference, albeit with slightly broadened features at 100 K and 300 K. This

trend reverses somewhat as the RDF features broaden with higher temperatures, so that

agreement between PBE/min+s/LPC and the reference is essentially perfect at 500 K, and

the RDF is slightly overstructured at 2000 K. Overall, these simulations show that the

LPC is also beneficial in molecular dynamics simulations, despite the focus on equilibrium
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volumes in the parameterization. Furthermore, these simulations indicate that the LPC has

no adverse affects on numerical stability of dynamics trajectory, as energy conservation

during NVE simulations is unaffected, see SI Fig. 4.
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Figure 7: Performance of PBE/min+s/LPC for MD simulations of bulk Copper compared
to PBE/min+s and PBE/light. Radial distribution functions for 108 atom supercells in the
NVE ensemble after equilibrating at T=100 K, 300 K, 500 K, 2000 K averaged over 600
snapshots after equilibration.

IV. Conclusion

In this paper, we proposed a semiempirical small basis set density functional method for

cost-efficient, large-scale material simulations denoted PBE/min+s/LPC. The method is

parameterized for elements up to radon (Z = 1-86, excluding the lanthanide series).

The method employs a well-balanced, near-minimal min+s NAO basis set, which leads
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to significant savings in terms of computational cost and memory demand, compared to

fully converged calculations. In order to address the systematic overestimation of bond

lengths caused by basis set incompleteness, a minimally-invasive pairwise correction is

used. The resulting method reliably provides accurate equilibrium volumes for mono-

and poly-elemental crystals in diverse bonding situations. Despite focusing on equilibrium

structures for the parameterization, PBE/min+s/LPC does not deteriorate the quality of

the baseline method when out of equilibrium (e.g. for distorted structures or in MD sim-

ulations). While the proposed method is geared towards use in the FHI-aims code, the

underlying concepts could easily be transferred to other codes using atom centered basis

functions.

We envision that methods like PBE/min+s/LPC will be useful in the space between

fully converged first principles methods (which offer high accuracy at high comutational

cost) and efficient ML potentials (which are computationally efficient but not always re-

liable, depending on the availability of adequate training data). For example, they can

be used for initial relaxations or MD trajectories to generate realistic atomistic configu-

rations for training an ML potential. In this case, the systematic volume errors of pure

PBE/min+s would be problematic, because they would bias the configurations away from

the target region. PBE/min+s/LPC can also be useful as a pre-relaxation method, when

fully converged DFT structures are required.
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