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Abstract
Permafrost is a sub-ground phenomenon and therefore cannot be directly observed from 
space. It is an Essential Climate Variable and associated with climate tipping points. 
Multi-annual time series of permafrost ground temperatures can be, however, derived 
through modelling of the heat transfer between atmosphere and ground using landsurface 
temperature, snow- and landcover observations from space. Results show that the northern 
hemisphere permafrost ground temperatures have increased on average by about one 
degree Celsius since 2000. This is in line with trends of permafrost proxies observable 
from space: surface water extent has been decreasing across the Arctic; the landsurface 
is subsiding continuously in some regions indicating ground ice melt; hot summers 
triggered increased subsidence as well as thaw slumps; rock glaciers are accelerating in 
some mountain regions. The applicability of satellite data for permafrost proxy monitoring 
has been demonstrated mostly on a local to regional scale only. There is still a lack of 
consistency of acquisitions and of very high spatial resolution observations. Both are 
needed for implementation of circumpolar monitoring of lowland permafrost. In order to 
quantify the impacts of permafrost thaw on the carbon cycle, advancement in wetland and 
atmospheric greenhouse gas concentration monitoring from space is needed.
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Article Highlights 

•	 Trends from modelling results using landsurface temperature agree with a multitude of 
proxies observable from space

•	 Different proxies from observations since 2000 indicate widespread permafrost thaw 
across the Arctic and in mountains

•	 Understanding the implications of thawing permafrost is expected to advance with 
enhanced data availability and products

1  Introduction

Permafrost is an Essential Climate Variable (ECV; Global Climate Observing System 
GCOS (2016)). It is ground (soil or rock and included ice and organic material) that remains 
at or below zero degree Celsius for at least two consecutive years (Van Everdingen et al. 
1998). Permanently frozen ground can be found under 15% of the Northern Hemisphere’s 
exposed landsurface (Obu 2021). The area affected by permafrost increases to about 22 % 
when allowing discontinuities in distribution (commonly referred to as permafrost extent). 
In situ observations from boreholes show that ground temperatures are steadily increasing 
(Biskaborn et  al. 2019) which leads to degradation in transition zones. Permafrost thaw 
in high latitude lowlands is of specific concern due to storage of substantial amounts of 
carbon in the soils (Schuur et  al. 2015; Miner et  al. 2022). Ground ice melt is expected 
to trigger the release of methane (CH4

 ) and carbon dioxide (CO
2
 ), which leads to further 

warming at the global scale and therefore potentially further permafrost thaw (Schuur et al. 
2015). The release is considered the key impact of permafrost tipping (Lenton et al. 2008; 
Swingedouw et al. 2020). Gradual permafrost thaw, permafrost collapse through internal 
heat production as well as abrupt thaw on a local scale are distinguished in this context 
(McKay et al. 2022). Monitoring thaw as well as carbon cycle impacts is challenging with 
respect to in situ as well as remote observations. In situ observation of permafrost state on a 
global scale requires the establishment of borehole networks in a representative distribution 
what is currently not feasible (Biskaborn et al. 2015). Remote sensing is limited to surface 
expressions. Monitoring needs to address key parameters for permafrost and should also 
consider others from space-observable indicators. These include especially rock glacier 
kinematics for mountainous regions and a range of surface expressions in lowland area (e.g. 
thaw lake dynamics, thaw subsidence and mass movements). This overview article reviews 
types of satellite data and methods which can contribute to (1) the assessment of sub-
ground conditions and, specifically, key parameters, and (2) monitoring of environmental 
impact of thaw. In the latter case, both lowland and mountain permafrost (rock glaciers) are 
discussed. First, key parameters are introduced, then observation capabilities discussed and 
eventually information gained through space-borne remote sensing is summarized.

2 � Key Parameters and Monitoring Requirements

Parameters which are historically considered as essential for permafrost monitoring 
by GCOS are ground temperature and active layer thickness. The ground surface thaws 
during the unfrozen period, which is referred to as the active layer. It reaches its maximum 
towards the end of the thaw season (active layer thickness—ALT) and can range from 
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decimetres to metres. Sub-ground temperature as well as active layer thickness cannot be 
directly captured with remote sensing. The ECV Permafrost has therefore not been listed 
as ‘space-observable’ by GCOS (2016). Measurement accuracy requirements are thus so 
far formulated only with respect to in situ measurements. GCOS (2021) notes that current 
space-based approaches do not meet these requirements. The monitoring of related surface 
features in mountain areas (kinematics of rock glaciers) and terrain changes in lowlands 
(subsidence as property of the active layer) are, however, recommended for further 
investigation with satellite data. Rock glacier kinematics have been added recently to the 
GCOS list of ECV Permafrost key parameters (GCOS 2022).

Nevertheless, modelling of ground temperature using partially parameters observable 
from space (e.g. surface temperature, snow) has been developed over recent years (e.g. Obu 
et al. 2019; Fig. 1d) as it provides the best option for spatially continuous information. User 
requirements for gridded products have been collected through (Bartsch et  al. (2020b); 
National Research Council (2014), Tables 1 and 2) to complement the GCOS specifica-
tions for in situ measurements. In general at least annual time series are targeted (thresh-
old) representing mean annual ground temperature (MAGT) and maximum depth of the 
active layer (ALT).

Many applications make use of information on permafrost extent which reflects ground 
temperature spatial distribution. The measuring unit is defined as % within a grid cell. 
User requirements for permafrost extent have been reviewed with respect to potential 
future satellite missions (European Commission. Joint Research Centre. (2018); Table 3). 
Threshold and goal requirements are also addressed in the WMO OSCAR (World 
Meteorological Organization Observing systems Capability Analyses and Review Tool) 
database (Bartsch et  al. 2020b). Five days are suggested as the threshold for temporal 
sampling which deviates considerably from published expert suggestions (annual to 
decadal sampling, table 3).

A commonly used representation of permafrost extent is the map produced by Brown 
et al. (1997). The permafrost map covers the northern hemisphere north of about 30o N. It 
provides a generalized view of pre-1990 s conditions of permafrost fraction classified into 
four zones. It is commonly referred to as the IPA (International Permafrost Association) 
map (Fig.  1a) and is widely used. The zones can be also represented through fractions/
probabilities of permafrost presence derived from models (e.g. using ground temperature 
representing 2 m depth, Fig. 1a, d).

3 � Assessment of Sub‑ground Conditions

3.1 � Drivers and Proxies of Ground Temperature

Models utilize satellite-derived temperature observations from the surface to estimate 
ground temperature. Such an approach allows the retrieval on global scale (Obu et  al. 
(2019, 2021b); Fig. 1b, d). Landcover information together with snow is of high relevance 
for heat transfer between the ground and the atmosphere (e.g. Westermann et  al. (2017) 
and Trofaier et al. (2017)). Coefficients, for example, heat capacity and thermal conduc-
tivity, are selected according to landcover information (Westermann et al. 2015). Subgrid 
information on landcover is in addition required for the generation of ensembles of input 
parameters for permafrost modelling (Langer et  al. 2010). Satellite-derived landsurface 



1582	 Surveys in Geophysics (2023) 44:1579–1613

1 3

Fig. 1   Circumpolar representation of permafrost: a permafrost zones based on traditional mapping (Brown 
et  al. 1997), b Transient modelling of permafrost fraction using satellite-derived landsurface temperature 
representing a specific year (Obu et al. 2021b), c satellite radar-derived surface status converted to mean 
annual ground temperature (MAGT) (Kroisleitner et al. 2018) and d Equilibrium modelling of permafrost 
probability converted to permafrost zones using satellite-derived landsurface temperature representing an 
average of several years (Obu et al. 2019)
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temperature and landcover have been, for example, used with the permafrost model Cryo-
GRID (Obu et al. 2019). It could be determined that the actual area underlain by perma-
frost (permafrost area) accounts for approximately 14 million km2 (15% of the exposed 
landsurface area in the Northern Hemisphere) and globally 13.97 km2 (11%) (Obu 2021).

Landsurface temperature (LST) datasets based on MODIS (Moderate Resolution Imag-
ing Spectroradiometer) are currently the most frequently used due to good data availability 
(repeat intervals as well as length of record spanning more than 20 years, products start-
ing 2000). Hachem et al. (2012) found that LST derived from MODIS and daily near-sur-
face air temperatures are comparable. Permafrost applications require continuous records 
throughout the year. In case of thermal infrared, cloud gap filling is therefore required. 
Aspects of this issue are discussed in, for example, Hachem et al. (2009) and Westermann 
et  al. (2017). Clear sky bias has been also discussed for MODIS as well as Advanced 
Along-Track Scanning Radiometer (AATSR) LST products in comparison with passive 
microwave skin temperatures derived from the Advanced Microwave Scanning Radiometer 
for EOS (AMSR-E) and Special Sensor Microwave/Imager (SSM/I) data (Soliman et  al. 
2012). Passive microwave records can to some extent provide an alternative (André et al. 
2015) but the spatial resolution is much coarser. While infrared-derived products are in the 
order of 1 km or better, passive microwave information represents several tens of kilome-
tres. A practical solution is the combination of infrared products with climate reanalysis 
data to obtain spatially and temporal continuous records (Westermann et al. 2017). Reanal-
yses data are used for gap filling MODIS LST. MODIS LST can be used for bias correction 
of reanalyses data which also allows extension of records before availability of MODIS. 
Retrievals based on annual records by Obu et al. (2021b) starting 1997 (reanalyses data use 
before 2000 (ERA5), MODIS & ERA5 after 2000) show that ground temperature increase 
at 2 m depth is highest along the Arctic coastline (Miner et al. 2022). The overall trend for 
the northern hemisphere follows sea ice decline ( R2

= 0.75 ). The lower the minimum sea 
ice extent, the higher the temperatures in the ground (Fig. 2). A change of on average one 
degree Celsius at 2 m depth (referring to the area of permafrost extent maximum within 
the observation period, 1997–2019) coincides with a September sea ice decline of about 
2.5 million km2 . Continuity of thermal infrared acquisitions at a similar or better level is 
needed. A service could be potentially provided through Copernicus Sentinel missions 
(e.g. Sentinel-3 SLSTR).

Microwave records can provide an independent source to evaluate infrared-derived 
products and, in the case of passive microwave data, they can extent far back in time. 
Both active and passive sensor types are able to capture near-surface soil status (frozen or 
unfrozen) due to the sensitivity to dielectric properties. Freeze/thaw information has been 
shown to be suitable as proxy for sub-ground conditions (Park et  al. 2016; Kroisleitner 
et al. 2018). The number of frozen days per year is summed up and converted to potential 
ground temperature (empirical model calibrated with borehole in  situ measurements—
FT2T: Freeze Thaw to Temperature; Fig.  1c). The performance depends on landcover 
(Bergstedt and Bartsch 2017; Bergstedt et al. 2020a), wavelength (Kroisleitner et al. 2018), 

Table 3   Requirements for 
satellite-derived permafrost 
extent (European Commission. 
Joint Research Centre. 2018; 
National Research Council 2014)

Threshold Breakthrough Goal

Temporal sampling 10 years – Annually
Horizontal resolution 100 m 10 m 1 m
Accuracy 85% – 95%
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acquisition timing and the algorithm used to derive the surface state. Surface freeze/
thaw state is in general defined binary (yes/no), rather than fraction. Current freeze/thaw 
products aim at identification of an average surface state condition within a footprint or 
the completion of thaw and start of freeze/up [Kim et al. (2012) using SSMI, Naeimi et al. 
(2012) using ASCAT, Derksen et al. (2017) using SMAP, Rautiainen et al. (2016) using 
SMOS]. The average state has been exploited for permafrost mapping purposes (Park et al. 
2016; Kroisleitner et al. 2018). Results based on Metop ASCAT (FT2T approach) provide 
similar results compared to transient modelling using LST (Obu et al. 2021b)) for Russia as 
well as Canada (Fig. 3). Regions with specifically mountain ranges show larger deviations. 
In general ASCAT-based MAGT has often a negative bias as the insulating effect of snow 
is not considered in such an approach.

3.2 � Proxies for Active Layer Thickness

In situ, the active layer thickness (ALT) is obtained by probing with metal rods or as 
derivation of densely distributed thermistors in boreholes. Various techniques have been 
tested to obtain spatially distributed information from satellite data. Landcover-related 
information has been frequently used to make assumptions regarding active layer thickness. 
An empirical relationship is established and maps of potential ALT derived. Investigations 
have been made using optical as well as microwave satellite data. This includes the 
analyses of the normalized difference vegetation index (NDVI) (McMichael et  al. 1997; 
Kelley et al. 2004), landcover classes (Nelson et al. 1997; Peddle and Franklin 1993) as 
well as backscatter amplitude from X-band synthetic aperture radar [SAR; Widhalm et al. 
(2016, 2017)]. The consideration of derivatives of digital elevation models (DEMs) has 
been shown to be of added value (Peddle and Franklin 1993; Leverington and Duguay 
1996; Gangodagamage et  al. 2014). Hyperspectral analyses demonstrated that spectral 
resolution is important for such applications and even variations from year to year can 
be captured (Zhang et al. 2021). Properties of the active layer have been also investigated 
through airborne P-band SAR observations. This included retrieval of soil moisture content 

Fig. 2   Northern hemisphere (NH) permafrost temperature change at 2 m depth (dashed line; source tran-
sient modelling using landsurface temperature (reanalyses data and near infrared (MODIS, 1 km); Cryo-
GRID; Permafrost_cci v3, (Obu et  al. 2021b)) compared to sea ice extent for September (solid line; sea 
ice concentration data from 1979 to 2021 were obtained from https://​www.​meere​ispor​tal.​de (grant: 
REKLIM-2013-04, Spreen et al. (2008))

https://www.meereisportal.de
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as well as active layer thickness (Chen et al. 2019; Parsekian et al. 2021). In the latter case, 
there are, however, limitations in case of larger depths.

Soils, including the active layer, often contain ice. Ground subsides when this ice melts 
due to seasonal thaw or long-term changes. These changes are comparably small, in the 
order of a few centimetres. Especially of relevance as remote sensing technique is SAR 

Fig. 3   Regional ground temperature change (1  m depth) in permafrost regions of selected countries: 
comparison between surface status derived temperature (C-band scatterometer, Metop ASCAT; FT2T; 
Kroisleitner et  al. (2018), corrected for water fraction according to Bergstedt et  al. 2020, in  situ calibra-
tion dataset from Heim et al. (2021)) and transient modelling using landsurface temperature (near infrared, 
MODIS, 1 km; CryoGRID; Permafrost_cci v3, (Obu et al. 2021b))



1588	 Surveys in Geophysics (2023) 44:1579–1613

1 3

Interferometry (InSAR) as such subtle changes can be detected (e.g. Short et al. 2011; Liu 
et al. 2012; Rouyet et al. 2019; Strozzi et al. 2018; Fig. 4).

The through InSAR captured seasonal variations in ground displacements are expected 
to reflect changes in thaw depth and ALT, respectively (Liu et al. 2012). In case that the 
soil profile is uniform and is fully saturated, ALT can be directly inferred (Schaefer et al. 
2015). In other cases, models which reflect the varying soil layer properties and variations 
in wetness need to be used (e.g. Wang et al. 2018; Zhao et al. 2016). This does, however, 
require detailed knowledge of the soil stratigraphy, which is rarely available across the 
Arctic. A further challenge is the limited availability of in situ measurements of subsidence 
and active layer thickness at the same time. The performance of InSAR as well as different 
wavelengths has been, for example, assessed with in situ records in a case study for central 
Yamal, Russia (Bartsch et al. 2019). It could be demonstrated that both X-band and C-band 

Fig. 4   Subsidence map over Ilulissat (Greenland) from Copernicus Sentinel-1 InSAR from 30 April to 15 
September 2019 and time series of displacement in the line- of-sight direction on peat terrain close to the 
airport (see white star for position). Background map data source: Google, DigitalGlobe
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retrievals agree (1) with each other and (2) with the subsidence magnitude of in  situ 
observations. In addition, a larger annual subsidence is observed for years with higher 
ALT. A further issue that was raised is the comparability between different years when 
signal decorrelation does not allow year to year connection (Bartsch et al. 2019). As ice 
content in the active layer also relates to composition, such as soil organic carbon content 
and soil moisture, it has been shown locally to be connected to InSAR-derived subsidence 
(Wu et al. 2020; Chen et al. 2020). Drained lake basins, which are usually characterized by 
wetter soils than their surrounding, show relatively high subsidence (e.g. Liu et al. 2014; 
Strozzi et al. 2018).

4 � Ground Ice Melt Implications in Lowland Permafrost Regions

4.1 � Mass Movements

4.1.1 � Cryogenic Landslides and Solifluction

The majority of permafrost is located in lowland regions with moderate terrain. Mass 
movements are nevertheless abundant in these areas due to soil characteristics and local 
landscape morphology. Specifically the presence of massive ground ice is driving changes 
at the surface, specifically through thermokarst (see section 4.3). This ice can be deposits 
of former glaciations, e.g. moraine belts of the Laurentide ice sheet in NW Canada 
(Lewkowicz and Way 2019; Kokelj et  al. 2017), marine terraces, which often contain 
tabular ground ice (e.g. Yamal peninsula in Russia, Leibman et al. (2015)) or syngenetic 
Yedoma deposits with massive ice wedges (Strauss et  al. 2013; Andreev et  al. 2009). 
Melting ice lenses or ice wedges at the base of the active layer may lead to ground collapse 
and eventually slope failure. Retrogressive thaw slumps (RTS) are a common type of 
cryogenic landslide (Burn and Lewkowicz 1990). Their occurrence in relation to unusually 
warm conditions has been described for sites in Canada (Kokelj et al. 2017; Lewkowicz 
and Way 2019; Ward Jones et al. 2019), Alaska (Balser et al. 2014) and in Russia (Babkina 
et al. 2019; Kizyakov et al. 2013; Runge et al. 2022). RTS formation leads to vegetation 
removal which can be monitored with satellite data. As an example, more than 4000 thaw 
slumps have been initiated since 1984 over an area of 70.000 km2 (Lewkowicz and Way 
2019), covering an area of 64 km2 according to analyses of Landsat data. The vast majority 
of studies on mass movements in permafrost areas, especially with respect to thaw slumps, 
relies on landcover change detection with satellite data and visual interpretations. Tundra is 
in most parts of the Arctic characterized by vegetation coverage (e.g. Raynolds et al. 2019). 
Many disturbances result therefore in removal of vegetation and soils are exposed. As RTS 
are on average smaller than 2 ha, the spatial resolution of remote sensing data plays an 
important role in detecting these features. Recent studies have shown that Landsat can be 
suitable for analyses of RTS trends in remote regions (Nitze et al. 2018; Lewkowicz and 
Way 2019; Ward Jones et al. 2019; Runge et al. 2022). Copernicus Sentinel-2 with 10 m 
sampling can also capture smaller RTS as common, for example, on Yamal, Siberia (Lissak 
et al. 2020). Joint usage of Landsat and Sentinel-2 allows for efficient detection of events 
(Runge et al. 2022). Recently, new studies show the capabilities of deep learning methods 
in detecting RTS using PlanetScope cubesat data with a resolution of 3 m (Huang et al. 
2020, 2021; Nitze et al. 2021).
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Features larger than 20 ha, referred to as mega slumps, are less common but can be 
assessed in larger detail. Documented with satellite time series data is, for example, the 
Batagay mega slump in Siberia which has been potentially triggered by deforestation 
(Yanagiya and Furuya 2020). Thaw slumps often also occur adjacent to lakes, rivers and 
sea shore lines, where water bodies cause a geothermal disturbance and a frequent change 
of morphological gradients may trigger mass movements. These can extent into extensive 
retrogressive thaw slumps in unusually warm years (Babkina et al. 2019; Lewkowicz and 
Way 2019), which further grow upslope. Such changes are in general documented with 
very high-resolution satellite data and thaw slump extents derived manually (Segal et al. 
2016; Kokelj et al. 2017). Sediment yield and specifically dissolved organic carbon is high 
in adjacent lakes (Kokelj et al. 2021), which can be captured with multispectral satellite 
data (Dvornikov et al. 2018).

Further features in this context are active layer detachment slides (Lewkowicz and Way 
2019; Rudy et al. 2016). They are in general smaller than retrogressive thaw slumps but 
have similar spectral characteristics. Active layer detachment slides result in the formation 
of bare mineral scars (top of frozen ground) and depositional areas, where an earth mass 
shifts with vegetation. This leads to a shift in vegetation communities (e.g. Lantz et  al. 
2009). On continuous permafrost, vegetation succession starts once ground stabilizes. 
Certain vegetation communities establish in different parts of the geomorphological 
feature, depending on soil characteristics and in particular altered ground water flow 
(Khitun et al. 2015). The association of vegetation communities with successional stages 
allows to estimate the age of younger landslides and indicates the sites of possible ancient 
detachment. Potential monitoring with satellite data is, however, currently limited as 
very high spatial resolution multispectral time series would be required. Comparably 
small features are also solifluction lobes. Solifluction is the slow flow of saturated soil 
downslope, indicating that no frozen ground is present in the moving layer (Washburn 
1979). Lobes are present along many slopes with vegetation coverage in periglacial 
environments. Movement occurs seasonally and rates are in the order of a few centimetre 
per year. Vegetation remains present, so they cannot be clearly distinguished through 
landcover from their surrounding. Areas prone to solifluction can be, however, identified 
by combination of terrain parameters and vegetation patterns (e.g. NDVI) from satellite 
data (e.g. Bartsch et al. 2008a). Movement rates can be monitored with InSAR techniques 
(Rouyet et al. 2019).

The assessment of the variability of mass movements in permafrost, specifically the 
speed at which they occur and the surface feature that they can be associated with, requires 
a wide range of approaches for their monitoring. Seasonality overlaps in some case with 
long-term change. Only slow moving features such as rock glaciers and solifluction (e.g. 
Barboux et al. 2014; Rouyet et al. 2019) can be quantified with repeat pass InSAR. The 
applicability of bistatic SAR could be demonstrated for change detection in thaw slumps, 
which change rapidly (Zwieback et al. 2018), but such constellations are rarely available. 
Alternatively, a series of InSAR-derived elevation models could be used (Bernhard et al. 
2020). Repeat stereo photogrammetry and LiDAR are, however, commonly applied 
for local studies (Jorgensen et  al. 2016). Repeat stereo photogrammetry also allowed to 
identify the formation of pingo-like mounds and subsequent formation of large craters on 
the Yamal Peninsula (approximately 80  m deep and 30  m wide; Kizyakov et  al. 2015). 
Such features are the result of unusually warm years, which lead to the release of gas 
formed during the dissociation of gas hydrates, with the formation of a gas emission crater.
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4.1.2 � Coastal Erosion and Cliff‑top Retreat

Permafrost coasts are particularly affected by rising air temperatures with rapid ground 
ice melt and permafrost thaw, making the coast more susceptible to erosion (Irrgang 
et al. 2022). Coastal erosion along the Arctic coasts occurs at rates of on average 0.5 m 
per year (Lantuit et al. 2012) and in some places at more than 17 m per year (Jones et al. 
2018a, 2020). It poses a threat for settlements as well as archaeological sites. Irrgang et al. 
(2019) estimated that about 50% of cultural sites will be soon lost along the Yukon coast. 
Landcover change can only be partly used in an automated way to detect mass movements 
in case of coastal regions or riverbanks due to similarity of reflectance of shore areas. 
Aerial photographs, sporadic high-resolution satellite data and in some extreme cases 
Landsat data (30  m) are used to manually digitize coastlines and quantify their change 
over time. This technique allows in general only the detection of annual or decadal 
changes. The retrieval of coastline change from Landsat can be automatized when decadal 
timescales are considered (Bartsch et al. 2020a). Results need to be interpreted with care 
when erosion is supposed to be mapped as also submergence and isostatic rebound leads 
to coastline change at permafrost coasts (Boisson et  al. 2020). This technique could be, 
however, used for circumpolar implementation. Monitoring of seasonal behaviour with 
optical data is impeded by frequent cloud cover. SAR could provide an alternative but the 
spatial resolution is limited for this purpose in case of most available sensors. Stettner et al. 
(2017) demonstrated, however, the utility of X-band SAR (2.35 m nominal resolution) for 
retrogressive thaw slumps in association with river bank erosion in the Lena Delta. The 
rate of about 2.5 m over three weeks barely matches the resolution of the sensors and can 
only be retrieved by analysing the progression over the whole season. The method is only 
applicable for slopes facing directly towards the sensor as the detection principle relies on 
the foreshortening effect of radar data. Steep slopes appear brighter and can be therefore 
easily distinguished from surrounding tundra and river banks. The usually wet surfaces add 
to the magnitude of backscatter. A further disadvantage is, however, that actual positioning 
of the cliff-top which requires the existence of an elevation model valid for the time of 
acquisition. Rates are therefore relative but can give nevertheless valuable insight into 
seasonality and enable the identification of driving factors in these environments. Further 
developments are needed to expand the use of high-resolution SAR data to further analyse 
coastlines, which are not facing the sensor. Bartsch et al. (2020a) extended the approach 
of Stettner et al. (2017) to C- and L-band, and also tested the general ability to distinguish 
Arctic coastal landcover from the ocean. L-band has been identified as of high value under 
the consideration of incidence angle variations. Future L-band missions such as NISAR 
(Kellogg et  al. 2020) and ROSE-L (Davidson et  al. 2021) are thus of high interest for 
monitoring of Arctic coastal erosion.

4.2 � Long‑term Subsidence

Subsidence observations with InSAR techniques can be used in some cases for the retrieval 
of continuous time series over several years. This can document the loss of ground ice 
and is interpreted as climate change impact. An issue is, however, signal decorrelation, 
which occurs stronger for shorter wavelengths. Most available long-term application 
studies therefore make use of L-band data, specifically the Japanese ALOS (Advanced 
Land Observing Satellite) missions, due to the comparably long wavelength (22.9  cm, 
e.g. Liu et  al. 2012). But also C-band (wavelength  5.6  cm), specifically Sentinel-1, has 
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been demonstrated to be suitable for the retrieval of multi-annual time series in areas 
with limited vegetation growth (Strozzi et  al. 2018; Daout et  al. 2017; Fig.  4). InSAR 
techniques have been specifically used to monitor multi-annual thaw subsidence triggered 
by disturbance through fires (Liu et  al. 2014; Iwahana et  al. 2016; Michaelides et  al. 
2019; Yanagiya and Furuya 2020). Bartsch et al. (2019) describe subsidence deviations in 
anomalously warm years on central Yamal (Russia). Certain soils showed no difference to 
normal years, whereas some landscapes feature specifically high subsidence. It has been 
suggested that tabular ground ice at the base of the active layer causes these differences. 
Zwieback and Meyer (2021) confirmed such behaviour using actual ground ice in  situ 
data for sites across the Alaskan North Slope. Altimeter have been also investigated in this 
context (Muskett 2015), but have not shown to be suitable to detect the subtle changes 
typical for tundra. Current and near-future altimeter missions do not primarily target land 
topography applications. Uncertainties are too high to capture the majority of terrain 
variations related to permafrost thaw processes (Kern et al. 2020).

4.3 � Lake Change

Lakes are ubiquitous landscape features, which are dotting vast swaths of remote perma-
frost lowlands across the Arctic. The majority of lakes on Earth are located in the northern 
high latitudes (Lehner and Döll 2004). Many lakes are of glacial origin but a large frac-
tion of lakes in permafrost regions are so-called thermokarst lakes. Their formation and 
dynamics are closely bound to the degradation of permafrost, which is described by the 
thermokarst lake cycle (Grosse et al. 2013; Fig. 5). They are formed by thawing ground 
ice in permafrost, which creates a depression in the ground. This depression is then filled 
with water, e.g. from melting snow or rain. The newly developed ponds interact by slowly 
thawing the surrounding permafrost. Typically, this leads to expanding ponds, due to desta-
bilizing shorelines. Over decades, centuries and millennia little thaw ponds can transform 

Fig. 5   Evolution of lakes through thermokarst. Source PAGE21—Changing permafrost in the Arctic and its 
Global Effects in the twenty-first century, Alfred-Wegener-Institute for Polar and Marine Research
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into lakes. At the same time, permafrost beneath expanding ponds and lakes also starts to 
thaw and lakes are deepening over time. Thermokarst lake expansion is a self-reinforcing 
process. As shallow ponds and lakes ( <∼1.5 m depth) are still freezing to the bottom in 
winter, permafrost can still be preserved beneath these ponds and lakes. However, once 
lake bottoms are ice-free year round, e.g. by further lake deepening or warmer and wetter 
winter weather, permafrost thaw beneath the lakes is accelerating (Arp et al. 2011) causing 
a thaw bulb, also known as talik. Permafrost thaw, particularly beneath lakes, is a source 
for potent greenhouse gases (e.g. carbon dioxide and methane) due to the decomposition 
of once freeze-locked carbon (Walter Anthony et al. 2018). Due to its sheer number and 
dynamic behaviour, thermokarst lakes are a significant landscape feature to monitor with 
remote sensing. However, thermokarst lakes are also prone to drainage. As they cannot 
grow infinitely, they may get drained by coalescence of lakes, tapped by rivers or the coast, 
overflow and create a drainage channel, or penetrate through the permafrost. Drained lakes 
form basins, which may retain smaller lakes and ponds or dry out completely. Due to veg-
etation growth, refreezing and peat accumulation, drained lake basins are typically carbon 
sinks, partially offsetting carbon emissions by lake expansion (Walter Anthony et al. 2018). 
The so-called thermokarst cycle can repeat itself across millennia and consist of several 
generations, which becomes apparent with multiple nested drained lake basins (Fuchs et al. 
2019; Jones et al. 2022). In addition to long-term changes, thermokarst lakes also follow 
seasonal cycles with typically high water levels after snow melt, drying towards mid-sum-
mer and increasing lake levels in fall (Cooley et al. 2019).

Due to their abundance and importance on bio-geochemical cycles, lakes are a typical 
target in permafrost remote sensing. Traditionally, many studies focused on small study 
sites, where individual observations of aerial imagery and very high-resolution satellite 
data were compared to each other to analyse long-term changes (Riordan et  al. 2006; 
Sannel and Brown 2010; Necsoiu et  al. 2013; Muster et  al. 2017; Jones et  al. 2011). 
Although these approaches produce precise results, they are hardly comparable to each 
other, due to different sensors, spatial resolution, observation periods and limited spatial 
extent. In contrast to the very localized studies, coarser resolution data were used. Smith 
(2005) applied a large-scale analysis across different permafrost extents in NW Siberia 
and found clear patterns of draining lakes in discontinuous permafrost. As in other remote 
sensing applications, making Landsat data freely available Wulder et al. (2012) and Zhu 
et al. (2019) spawned many new applications including lake change analysis of thermokarst 
lakes. Landsat data were typically used to analyse lake changes across larger regions, 
such as the West Siberian lowlands (Karlsson et al. 2014), Tuktoyaktuk Peninsula in NW 
Canada (Olthof et  al. 2015; Plug et  al. 2008) or Alaska (Rover et  al. 2012). All studies 
have in common, that lake dynamics are only analysed for a certain region, but comparable 
analysis capabilities across the Arctic were still lacking. With the first true global water 
datasets, e.g. Global Surface Water Explorer (Pekel et  al. 2016) or the Aqua Monitor 
(Donchyts et  al. 2016) it became possible to compare lake surface water changes across 
the Arctic. However, their accuracy in Arctic areas was highly variable, as they did not 
have an Arctic focus. Nitze et  al. (2017) developed a lake change data product tailored 
to Arctic landscapes based on long-term trends of Landsat data, which was first tested 
in different regions in North America and Siberia and later four large transects (example 
subset in Fig. 6; Nitze et al. 2018). These results showed the diverse pathways and trends of 
lake dynamics across different regions, e.g. large lake drainage events along the boundaries 
of permafrost in Alaska or western Siberia. A study based on MODIS (500  m) trends 
concluded that surface water decline has exceeded surface water formation and expansion, 
leading to a net decrease in surface water since 2000 (Webb et al. 2022). Calibration and 
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validation for such an approach requires time series of high spatial resolution data which 
are still of limited availability. Satellite data have been also shown to support the automatic 
identification of drained lake basins (DLBs), although they can have different appearances 
(Bergstedt et  al. 2021). The analyses of DLB patterns provide insight into past changes, 
before the availability of satellite data, and also supports impact assessment of drainage. 
Although sensors, other than optical, might be a good alternative to overcome the typical 
limitations in high latitude regions, e.g. clouds, low sun-angle, polar night, active sensors 
like SAR are rarely used for lake area extent change mapping, although lake mapping 
has been shown feasible in permafrost environments (Bartsch et al. 2008b; Santoro et al. 
2015; Tian et al. 2016). Challenges for change mapping include emergent vegetation and 
sensitivity of the SAR response to wave action. Several SAR lake studies, however, focused 
on seasonal changes (Bartsch et al. 2012; Trofaier et al. 2013). SAR can be also applied 
for mapping lake ice extent and thickness (Engram et  al. 2013a; Duguay and Lafleur 
2003). Decreasing extent of ground fast ice over longer timescales indicates increasing 
temperatures (Surdu et al. 2014). Ground fast ice can be also mapped on circumpolar scale 
with SAR (Bartsch et al. 2017). High ground fast fraction indicates shallow lakes which are 
typically found on marine terraces and in Yedoma regions. Furthermore, SAR is also used 
to detect methane ebullition from thermokarst lakes using ice properties as proxy (Engram 
et al. 2013b).

Pond growth and shrinkage can be also observed in relation to ice wedge degradation. 
Monitoring requires very high spatial resolution time series which are rarely available. 
Liljedahl et  al. (2016) collected suitable datasets for several sites across the Arctic and 
concluded that melting at the tops of ice wedges over recent decades and subsequent 
decimetre-scale ground subsidence is a widespread Arctic phenomenon. In general, 
more use of very high-resolution imagery is needed to better understand ground ice and 
permafrost dynamics, because permafrost degradation occurs only at the metre scale over 
years (Jorgensen et al. 2016).

4.4 � Implications of Thaw for Carbon Fluxes

Tracking of methane and carbon dioxide in the atmosphere across the Arctic is challenging 
due to, for example, illumination conditions (Miner et  al. 2022). Past studies using 
satellite data have therefore mostly focused on identification of carbon pools and mapping 
areas with potentially high emissions. The retrieval of active layer thickness as based on 
landsurface temperature integration into models (Obu 2021) may allow for the assessment 
of microbial activity increase with respect to permafrost thaw across the entire Arctic 
(Brouillette 2021). The amount of carbon stored in the soils needs to be, however, known. 
The representation of the heterogeneity of tundra landscapes, specifically wet versus dry, is 
also needed (Lara et al. 2020). Satellite records have been investigated at local to regional 
scale in order to identify sources of carbon (soil organic carbon, wetland distribution) 
through landcover mapping (e.g. Schneider et  al. 2009; Hugelius et  al. 2011). This is 
usually facilitated through optical data, but C-band SAR has been shown promising as well 
for regional (75 m, Reschke et al. 2012) to circumpolar retrieval with medium resolution 
(500  m, Widhalm et  al. 2015; Bartsch et  al. 2016b). More complex classifications of 
wetlands integrate multiple sources but provide information on comparably coarse 
resolution (0.5 degree; Olefeldt et  al. 2021). One of the issues is that there is currently 
no circumpolar landcover map with sufficient spatial detail and thematic content available 
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to support upscaling of soil properties and fluxes (Bartsch et  al. 2016a). The technical 
feasibility through fusion of optical and SAR data has been, however, demonstrated (ESA 
GlobPermafrost prototypes, 10 m; scheme applied In Bartsch et al. (2019); Bergstedt et al. 
(2020b)). Local InSAR subsidence patterns have been also found to represent wetness 
gradients (e.g. Liu et al. 2010; Strozzi et al. 2018; Bartsch et al. 2019).

Temporal dynamics based on satellite records have been so far only considered with 
respect to inundation which can be derived at coarse scale (fraction) based on passive 
microwave observations (e.g. Watts et  al. 2014) and at medium resolution using indices 
from optical data (Webb et al. 2022). It has been also pointed out as crucial to consider 
different lake types for upscaling of methane emission from lakes (Matthews et al. 2020). 
In order to address wetting and drying processes open water fraction change, soil moisture-
related information is essential. In the Arctic, the landscape heterogeneity, especially the 
occurrence of lakes, has so far been a major limiting factor for retrieval of near-surface soil 
moisture time series using microwaves (Högström and Bartsch 2017; Högström et al. 2018; 
Wrona et al. 2017).

5 � Rock Glacier Kinematics

Mountain permafrost is widespread at all latitudes worldwide (Haeberli et al. 2010; Obu 
et  al. 2019). The cumulative deformation of the frozen ground through long-term creep 
can lead to the formation of distinct tongue-shaped features of viscous flow, which are up 
to a kilometre wide and several kilometres long. Such features are termed rock glaciers 
(Haeberli 1985; Martin and Whalley 1987; Barsch 1996; Berthling 2011). The detection, 
mapping and monitoring of rock glaciers using remote sensing methods represents one of 
the most convenient and effective approaches to study mountain permafrost.

The long-term preservation of ice content under a rocky active layer enables rock 
glaciers to creep over long time periods (Haeberli et al. 2006; Cicoira et al. 2020). Annual 
rates of motion of rock glaciers range from a few millimetres to several metres per year 
and vary within the annual cycle, from year to year, as well as at the decennial timescale 
(Delaloye et al. 2010; Delaloye and Staub 2016; Kaufmann and Kellerer-Pirklbauer 2015; 
Staub et  al. 2016; Eriksen et  al. 2018; PERMOS 2016). Creep rates of ice-rich frozen 
ground are particularly affected by climatic conditions through induced variations in the 
thermal conditions below freezing point, causing potential acceleration or deceleration of 
motion (Kääb et al. 2007; Sorg et al. 2015; Marcer et al. 2021). An increasing number of 
in situ studies have monitored the creep behaviour of active rock glaciers in the European 
Alps during the last decade (Delaloye and Staub 2016; Marcer et al. 2021; Scapozza et al. 
2014; Roer et al. 2008; Stoffel and Huggel 2012). Observations showed that a majority of 
the surveyed rock glaciers, irrespective of their size and velocity, responded sensitively and 
almost synchronously to inter-annual and decennial ground temperature changes. The creep 
rate of rock glaciers is thus considered a valuable indicator of environmental, in particular 
of climatic, and ground-thermal conditions. Besides their geomorphic and climatic 
significance, creeping frozen sediments can also be the source of rockfall and debris flows 
and thus evolve into local-scale natural hazards (Deline et  al. 2015; Schoeneich et  al. 
2014; Bodin et al. 2016; Kummert et al. 2017; Scotti et al. 2016). In addition, mountain 
permafrost also affects the water cycle in high mountains (Azócar and Brenning 2009).

The spatial distribution of rock glaciers is generally investigated through the use of geo-
databases defined as inventories. Today, although many regional rock glacier inventories 
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exist, they do not provide an exhaustive and systematic worldwide coverage (Jones et al. 
2018b; Brardinoni et al. 2019). Existing rock glacier inventories have various ages and have 
often been compiled using different methodologies. These largely depend on the availabil-
ity of appropriate source data, the experience of the cartographer and potential review pro-
cesses. Additionally, inventories may also differ due to varying objectives motivating each 
single study. Due to these factors, it is presently not possible to merge all existing invento-
ries into a single coherent and comparable database (Jones et al. 2018b; Brardinoni et al. 
2019). In order to address and overcome this issue, the IPA (International Permafrost Asso-
ciation) Action Group ‘Rock glacier inventories and kinematics (2018–2022)’ is develop-
ing widely accepted standard guidelines for inventorying rock glaciers on a global scale 
(Delaloye et al. 2018). This project is additionally motivated by the increasing emergence 
of open-access satellite imagery, which facilitates the development of new inventories and/
or the update of existing ones.

The growing availability of remotely sensed data also enables the systematic detec-
tion of rock glacier surface motion and consequently allows the integration of kinematic 
information in standardized rock glacier inventories. The activity of rock glaciers cannot 
be determined easily using only field observations or photographs, as rock glaciers are 
typically composed of several superimposed units of different generations and activity lev-
els and thus render a complex topography. Remote sensing techniques are thus key to a 

Fig. 6   Mean annual lake expansion rates on the Alaska North Slope from 1999–2014 based on lake change 
rates in Nitze et al. (2018). Lake expansion rates are strongly linked to changes in stratigraphy with rapid 
growth in the Outer Coastal Plain with very ice-rich fine-grained sediments
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better understanding of rock glacier kinematics and permafrost development. Documenting 
the kinematic attribute of rock glaciers and other bodies of frozen mountain sediments at 
regional scales is currently best done using satellite radar interferometry (Fig. 7), supported 
by optical and topographic data (Rignot 2002; Kenyi and Kaufmann 2003; Strozzi et al. 
2004). This method enables the detection of rock glacier motion of hundreds of individual 
landforms over large regions. The approach has been used to develop rock glacier motion 
inventories for the Swiss Alps (Kenner et al. 2019); Sierra Nevada, California (Liu et al. 
2013); northern Iceland (Lilleøren et al. 2013); Brooks Range, Alaska (Rick et al. 2015); 
Carpathians, Romania (Necsoiu et  al. 2016); northeastern Tien Shan, Xinjiang, China 
(Wang et al. 2017), Ile Alatau and Kungöy Ala-Too, northern Tien Shan (Kääb et al. 2021); 
and the dry Andes of Argentina and Chile (Villarroel et al. 2018). These studies mainly 
relied on satellite synthetic aperture radar (SAR) L-band data from the JERS-1 and PAL-
SAR-1/2 instruments and C-band data from the ERS-1/2, ENVISAT and Sentinel-1 sat-
ellites. The categorisation of the kinematic attribute consists of semi-quantitative classes 
of the multi-annual downslope displacement rate of the entire rock glacier body (Dela-
loye et al. 2018). In a recent inventory, more than 3,600 rock glaciers have been classified 
according to their kinematics using InSAR worldwide (Bertone et al. 2022). A large num-
ber of fast-moving rock glaciers (i.e. with kinematic attributes of ‘dm/yr to m/yr’ and ‘m/yr 
or higher’) are found in the Vanoise, Central Andes and Northern Tien Shan regions.

The creep velocity of frozen debris in cold mountains is expected to increase with 
ground temperature (Kääb et al. 2007; Arenson and Springman 2005; Arenson et al. 2015; 
Müller et al. 2016), although it is also influenced significantly by a number of other factors, 
such as the local topography, provision of ice and debris, temporal and spatial variations 
in ice content, rheology of the frozen debris, thickness of the creeping permafrost layer 
and advection, infiltration or internal production of water (Jansen and Hergarten 2006; 
Cicoira et al. 2019b; Kenner et al. 2019). Particularly the latter can enhance the response 
of creep rates of frozen debris to rising ground temperatures when approaching melting 
conditions (Delaloye and Staub 2016; Sorg et al. 2015; Ikeda et al. 2008; Arenson et al. 
2015; Hartl et al. 2016; Buchli et al. 2018; Cicoira et al. 2019a). Because changes in rock 
glacier motion are believed to be an indicator of mountain permafrost conditions, there is 
a growing interest in their monitoring (Delaloye et al. 2018; Bertone et al. 2022). So far, 
most of the velocity measurements of rock glaciers are based on terrestrial geodetic surveys 

Fig. 7   Rock glacier monitoring: a Distelhorn rock glacier (Mattertal, Switzerland) with position of the time 
series (black dot), image data are from Google, DigitalGlobe. b Copernicus Sentinel-1 interferogram from 
02.08.2018 to 08.08.2018, 2 � ⇔ 2.8  cm. The white arrow indicates the satellite line-of-sight. c Velocity 
along the maximum slope direction from Copernicus Sentinel-1 InSAR
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(Delaloye et al. 2010; Marcer et al. 2021; Scapozza et al. 2014; Roer et al. 2008; Stoffel and 
Huggel 2012). This is due to the long and irregular acquisition time intervals of past SAR 
missions that prevented any previous worldwide monitoring of rock glacier kinematics. 
With the emergence of the Copernicus  Sentinel-1 constellation in 2015, however, this 
issue was overcome, as SAR images of the same orbit are now regularly acquired every six 
days over Europe and every 12 days over other mountainous areas worldwide (Torres et al. 
2012). Sentinel-1 InSAR can thus strongly complement worldwide in situ measurements of 
active rock glacier kinematics (Strozzi et al. 2020). The recent acceleration of rock glaciers 
at sites in Switzerland could be documented (Fig. 7). In order to retrospectively reconstruct 
rock glacier surface velocities at longer timescales reflecting climatic cycles (i.e. at roughly 
decennial timescales) and thus reaching back into the last century, other remote sensing 
methods such as offset tracking are employed, relying on historic and modern ground, air 
and satellite imagery (Scapozza et  al. 2014; Kääb 2008; Kaufmann 2012; Monnier and 
Kinnard 2017).

6 � Summary and Conclusions

Space observable parameters related to ground temperature, specifically landsurface 
temperature and surface status, have been shown to be applicable for circumpolar to global 
assessment of permafrost (Table  4), although still at limited spatial detail (1  km). Time 
series can be produced on global scale combining satellite records with reanalyses data 
and modelling heat transfer. Trend patterns can be observed which are in line with in situ 
observations. Northern hemisphere ground temperature changes from year to year correlate 
with sea ice concentrations. Land and sea cryosphere change need to be continuously 
jointly monitored facilitating early warning of tipping elements in the climate system. 
Continuity of landsurface temperature measurements needs to be ensured and improved 
(specifically spatial resolution) to meet science requirements.

Abrupt thaw has been identified as a regional impact tipping point at 1.5 ◦C over a 200-
year timescale (McKay et al. 2022). Ground temperature time series need to be therefore 
complemented by monitoring of further local surface features which reflect abrupt thaw 
such as lakes and drained lake basins, thaw slumps, coastal erosion and ground subsidence 
(Table 4). The utility of satellite data has been proven at local to regional scale in all cases, 
but circumpolar implementation is still lacking. General drying (water surface loss) can 
be already observed across the Arctic using indices from medium resolution observations. 
Regional studies indicate also increasing thaw slump activities throughout the last 20 
years. The use of satellite data for assessment of permafrost as a tipping element has been 
nevertheless so far limited (Swingedouw et  al. 2020). Recent advances have been made 
with, e.g. the Copernicus Sentinel missions, InSAR techniques and also machine learning. 
However, much higher spatial resolution observations are required for detailed analysis 
of landscape processes in heterogeneous tundra environments. Commercial satellite data 
with high (e.g. PlanetScope: 3.15 m) or very high-resolution (Worldview, GeoEye: < 1 m) 
will further help to detect even small disturbances, but data accessibility remains limited. 
Although applicable SAR data are accessible through the Copernicus Sentinel-1 missions, 
utility remains limited due to acquisition strategies which disadvantage northern latitude 
permafrost regions.
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Carbon stored in the ground needs to be quantified in order to assess the impact of per-
mafrost thaw on the carbon cycle. Soil saturation conditions (wetland distribution) need to 
be monitored in addition in this context in order to facilitate upscaling of methane emis-
sions. Landcover has been shown as a suitable proxy at local to regional scale, but circum-
polar implementation at sufficient spatial and thematic detail is still lacking.

The state of the art for documenting the kinematic attribute of rock glaciers at regional 
scales and monitoring the rate of motion of rock glaciers at a local scale is the use of 
satellite radar interferometry. However, higher spatial and temporal resolution should be 
considered for future missions.
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