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Optimisierung der nichtlinearen Pulskompression in einer Multi-Pass-Zelle

Mit dem Ziel Präzisionsspektroskopie an hochgeladenen Ionen durchzuführen, trans-
ferrieren wir einen Frequenzkamm vom Nahinfraroten über die Erzeugung hoher Har-
monischer ins extrem ultraviolette. Um die Ausbeute der hohen Harmonischen zu
steigern, verbreitern wir die nahinfraroten Pulse spektral für eine zeitliche Pulskom-
pression.
In einer Multi-Pass-Zelle mit Herriott-Konfiguration werden die Pulse in einen nich-
linearen Kristall fokussiert, wo sie Selbstphasenmodulation erfahren. Wiederholte
Durchgänge verbreitern das Spektrum schrittweise, während die Materialdispersion
durch gechirpte Spiegel teilweise kompensiert wird. Um die komprimierten Pulse
zu charakterisieren und zu optimieren, wird ein Frequency Resolved Optical Gating
(FROG) Aufbau entworfen und implementiert.
Die eingehenden Pulse besitzen eine Pulsdauer von 225 fs, Satellitenpulse und eine ku-
bische spektrale Phase. Darüber hinaus werden die Leistungsverluste der leeren Multi-
Pass-Zelle um 38% verringert; auf eine Transmission von 92%. Yttrium-Aluminium-
Granat verbreitert das Spektrum um einen Faktor von zwei, wobei vorherige Ergebnisse
mit Quarzglas um 15% übertroffen werden. Bemerkenswert ist die stabile Ausgangsleis-
tung der Multi-Pass-Zelle. Ein erstes FROG-Spektrogramm zeigt, dass die Pulse einen
räumlichen Chirp in oder nach der Multi-Pass-Zelle aufsammeln, was weiterer Unter-
suchung bedarf.
Die spektrale Verbreiterung ist vielversprechend, um in einer zukünftigen Post-
Kompression die mit Quarzglas erzielte Pulsdauer von 90 fs zu unterbieten. Darüber
hinaus ermöglicht ein breiteres Spektrum die Anregung einer größeren Anzahl von
Übergängen in hochgeladenen Ionen.

Optimisation of a Nonlinear Pulse Compression Multi-Pass Cell

Striving for precision spectroscopy on highly charged ions (HCI), we employ high har-
monic generation (HHG) to transfer a near-infrared (NIR) frequency comb to the ex-
treme ultraviolet (XUV). Aiming to increase the harmonic yield, we spectrally broaden
the NIR pulses for temporal compression.
Within a Herriott-type multi-pass cell (MPC), pulses are focused into a nonlinear
crystal, where they experience self-phase modulation. Multiple passes incrementally
broaden the spectrum, while the material dispersion is partially compensated using
chirped mirrors. To characterise the compressed pulses and optimise them, a set-up
for Frequency Resolved Optical Gating (FROG) is designed and implemented. The
initial pulses exhibit a duration of 225 fs featuring satellite pulses; their spectral phase
is cubic. Further, we reduce the empty MPC’s power losses by 38%, reaching a total
transmission of 92%. Yttrium aluminium garnet broadens the spectrum by a factor of
two, surpassing our previous results with fused silica by 15%. Notably, the cell output
power remains stable. A first FROG trace reveals that the pulses become spatially
chirped in or after the MPC, requiring further investigation.
Looking ahead, the spectral broadening is promising for a future post-compression
with pulse durations well below the previously obtained 90 fs. Additionally, a broader
spectrum enables access to a wider range of HCI transitions.
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1 Introduction

1.1 Precision spectroscopy

Laser precision spectroscopy is a quickly advancing domain in physics. It provides
a deeper understanding of fundamental physics, such as interactions between the
atomic core and shell electrons, nuclear dipole moments [1] or a possible variation of
the fine-structure constant α [2]. Another application is building even more precise
clocks than the current time standard; at PTB in Germany a Caesium fountain
clock with an uncertainty of six billionths of a second per year [3]. More precise
clocks open the way for understanding various fundamental phenomena which
cause frequency shifts at relative frequency uncertainty of below 10−18 1. One of
them is the gravitational redshift which could be observed across a 1mm height
difference with a strontium lattice clock [5]. The degree of attainable information
about fundamental phenomena scales with precision, accordingly researchers make
a lot of effort to that extent. The relative frequency uncertainty of a clock is
inversely proportional to its transition frequency, therefore choosing transitions
with high frequencies is profitable. From the standard microwave regime (up to
3 × 1011Hz) one could switch to transitions from the near-infrared (NIR) (2.4 ×
1014Hz to 4×1014Hz) up to the x-ray regime (from 3×1016Hz to 3×1019Hz) [6], [7].
One challenge is to generate and determine NIR to x-ray frequencies accurately as
they are orders of magnitudes faster than can be electronically counted. Further,
an extremely narrow atomic transition has to be excited. To these extents the
development of the frequency comb has been essential. [8]

110−18 is a relative frequency uncertainty for a quantum-logic clock with a single aluminum ion
[4]
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1.2 Frequency comb

1.2 Frequency comb

Electronic transitions in and beyond the optical regime are interesting candidates
for more precise atomic clocks and other applications. Therefore measuring these
frequencies accurately is desirable, but as nearly 5 × 1014 oscillations per second
can not be counted electronically, other solutions have to be found. In metrol-
ogy laboratories highly complex harmonic frequency chains filling several rooms
were engineered for the sole purpose of measuring one particular optical frequency.
Theodor W. Hänsch and John L. Hall saw the potential to replace these frequency
chains with a frequency comb which granted them the nobel prize in 2005.[8]
For an infinite train of pulses with duration ∆t, the Fourier transform gives dis-
tinctive peaks with equal spacing of the fixed pulse repetition frequency of the
laser oscillator frep in the frequency domain. Exemplary for a pulse duration of
∆t = 50 fs, the spectrum spans approximately ∆f = 20THz which can be further
broadened to 320THz in a nonlinear optical medium [9]. The frequency fn of
the n-th comb tooth can be calculated from the repetition frequency frep and the
carrier envelope offset frequency fCEO

fn = nfrep + fCEO. (1.1)

The carrier envelope offset (CEO) frequency fCEO results from the carrier to en-
velope phase ϕCEP which slips due to dispersion in a cavity from pulse to pulse.
Such a pulse train in the time-domain is visualised in Figure 1.1 in the top panel.
The bottom panel depicts the pulse train’s comb-shape in the frequency domain.
It is essential to determine the frequency offset fCEO in order to know the exact
frequency of every comb tooth. This can be achieved by first broadening the spec-
trum to span over an octave and then using a nonlinear crystal to frequency-double
the lower frequency teeth. Those newly generated overtones contain twice fCEO.
Therefore, comparing them to the original comb lines using a beat note retrieves
fCEO. Stabilising the thus determined fCEO will stabilise each comb tooth.

Due to this exact and absolute knowledge of every comb tooth’s frequency, a
frequency comb is the analogue of a ruler in precision spectroscopy. It can be
tuned, e.g. to match an atomic transition, via both its repetition rate and its
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1.2 Frequency comb
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Figure 1.1: A frequency comb in the time (top) and frequency domain (bottom).
The real part of the electric field is depicted as pulses with the same
envelope (dashed line) and repetition rate frep = 1/Trep. The carrier
offset phase ϕCEP slips from pulse to pulse. The intensity of the fre-
quency peaks follows the envelope centered at the carrier frequency
fc = ωc/(2π). Figure from [10].
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1.2 Frequency comb
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Figure 1.2: Schematic of the semi-classical three-step model for HHG. (1) Tunnel
ionisation of an atom in a very strong electromagnetic field. (2) Tra-
jectory of the free electron which reverses its direction after half of an
optical period. (3) Recombination of the returned electron and ion
under emission of a high energetic photon. Figure from [10]

carrier envelope offset.
[1], [8], [9]

XUV frequency comb Briefly summarised, an XUV frequency comb is based on
the transfer of a commercial NIR frequency comb to the XUV employing high har-
monic generation (HHG). The HHG process can be understood in a semi-classical
manner following the three-step model in Figure 1.2 for atomic gases. An intense
laser field modifies the Couloumb potential of an atom such that an electron might
tunnel through. The free electron in the oscillating laser field follows a classical
trajectory. For a suitable time of the tunnel emission the trajectory might bring
the free electron back to the atom. In a recombination process a high energy pho-
ton is emitted. [10], [11], [12], [13]
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1.3 Vision of the experiments at MPIK

1.3 Vision of the experiments at MPIK

The goal of the experiments, led by J. R. Crespo López-Urrutia at the Max-Planck-
Institut für Kernphysik (MPIK), is precision spectroscopy on highly charged ions
(HCI). HCI are interesting to study, as their atomic transitions being scantly sensi-
tive to external electro-magnetic fields and black body radiation, have the potential
to be measured with an extremely high precision. Atomic transition frequencies
depend on the fine structure constant α whose possible variation is fascinating to
probe as it is required in some higher dimensional models to unify gravity with
the other three forces of nature [14]. A challenge using HCI is that the majority
of them inhibit no metastable states in the optical regime necessary for laser cool-
ing. Further, their highly forbidden, thus spectrally very narrow, transitions are
shifted to the extreme ultraviolet (XUV) where there are no coherent light sources
available to probe transitions with the desired accuracy. [14]
Therefore, at MPIK the expertise from the production of HCI in an electron beam
ion trap (EBIT), the trapping and cooling in a linear Paul trap and XUV spec-
troscopy will be combined in the beamline shown in Figure 3.1. In a compact
EBIT at room-temperature, an electron-beam can ionise atoms up to iron to the
hydrogen-like state and atoms up to xenon to the helium-like and lithium-like
state. [15] Afterwards, a deceleration beam line leads to a superconducting linear
Paul trap which traps the HCI in a laser-cooled beryllium 9Be+ crystal where they
are sympathetically cooled down to the mK regime [16]. Currently in progress
are further improvements of this set-up aiming for ground state cooling of HCI
[17]. The future goal is its connection to an XUV frequency comb to perform
spectroscopy on the HCI. We currently work on realising a stable operation of the
XUV frequency comb. To this extent, this work aims to provide a suitable and
well-defined laser pulse for HHG.

1.4 Motivation

To increase the HHG yield, beforehand compressing the pulse in the time domain
is favourable. We have implemented a pulse compression scheme based on the
Kerr effect in a nonlinear medium using a multi-pass approach. This work aims

5



1.5 Starting point

to optimise this pulse compression multi-pass cell (MPC) with the aid of pulse
characterisation. For the pulse characterisation part, I designed and built a Fre-
quency Resolved Optical Gating (FROG) set-up. For the pulse compression part,
I implemented several improvements, such as a change of the nonlinear medium.

Why are shorter pulses advantageous for us? Aiming for precision spec-
troscopy on HCI, we employ the HHG process whose yield increases with the
pulse’s peak power. For a fixed average power, the pulse’s peak power can be
enhanced by reducing the pulse duration. Moreover, a shorter pulse duration de-
creases the gas ionisation which takes place before the intensity level for HHG is
reached. This in turn decreases ionisation-induced effects, further improving the
HHG yield [18]. A higher yield favors attaining higher harmonic orders. Another
advantage appears from the fourier-linked broader spectrum of a time-shortened
pulse: The frequency comb transferred from the NIR to the XUV also covers a
broader spectral range, thereby attaining more HCI transitions.
The main advantage of temporal pulse compression in an MPC instead of in waveg-
uides is a high power compatibility as the critical power of self-focusing of a non-
linear medium can be exceeded. Additionally, it promotes spatial homogeneity of
the beam. [19]

Why is pulse characterisation necessary? Pulse characterisation provides valu-
able spectral, temporal and phase information. The pulse shape and duration no-
tably impact its peak power and, consequently, the yield of HHG. By employing
pulse characterisation before and after our MPC, we can effectively monitor the
achieved spectral broadening and temporal compression.

1.5 Starting point

Previously, our group had obtained first pulse compression results with the MPC
by using an autocorrelator to measure the pulse duration. The MPC with two
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Figure 1.3: Previous FROG trace. For each time delay between the pulse and it’s
copy a spectrum is shown in a logarithmic colour scale. Its inherent
feature, a symmetry with respect to zero delay, is violated. Presumably
the experimental realisation was the cause. [21]

plates of fused silica, each 6.35mm thick, compressed the pulse at 55W average
power to ∼ 90 fs [10], [20]. Our big aim is to compress the pulse even further, to
around 30 fs. To this extent, firstly, we need to attain stable output powers for
input powers exceeding 55W. Secondly, improving the power transmission, which
was only ∼ 85% for the empty cell [20], is desirable. Therefore, a more accurate
and detailed pulse characterisation before and after the MPC is essential.
Before this work, in 2022, pulse characterisation was only possible based on re-
trieval from an asymmetric, noisy FROG trace in Figure 1.3 which yielded a pulse
duration of (183± 3) fs before the MPC [21].

Even though several measurements yielded the same trace, necessitating profound

7



1.6 Approach

noise corrections the pulse shape is not accurately retrieved. This works aims to
obtain more symmetric and less noisy experimental data.

1.6 Approach

To improve the temporal compression in the MPC, in this work we employ YAG
instead of fused silica, since it has a higher nonlinear coefficient. Additionally, we
customised new curved mirrors for the MPC which have a higher reflectivity and
negative group delay dispersion (GDD). Dispersion-induced temporal broadening
of the pulse reduces the highly intensity dependent nonlinear interaction pass by
pass. Therefore, a partial direct chirp compensation should ensure improvements
in efficiency. Further, improving the mode-matching before and the alignment in
the MPC is a part of this work.

For the pulse characterisation, I designed and realised a FROG set-up. One main
improvement is a reduced distance between its components2 for a higher experi-
mental accuracy. Moreover, the set-up is placed on a separate breadboard which
can be flexibly removed. In a next step, the noise correction of the FROG data
and the subsequent pulse retrieval is studied.

This thesis begins with an overview of the theoretical background, followed by
a description of the experimental set-up. The subsequent section presents and
analyses the experimental results, leading to a conclusion and a discussion of future
prospects.

2reduced distance between the split-and-delay line and the BBO crystal
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2 Theoretical Background

2.1 Ultrashort laser pulses

2.1.1 Wave description

Light in vacuum fulfills the electromagnetic wave equation

∇2E⃗ − 1

c20

∂2E⃗

∂t2
= 0 (2.1)

where the electric field E⃗(t, r⃗) depends on the time t and position r⃗. c0 is the
speed of light in vacuum, which is fundamentally related to the electric ϵ0 and
magnetic constant µ0 with c0 = 1/

√
ϵ0µ0. For an electromagnetic wave in matter,

the velocity of light c, the electric permittivity ϵ and magnetic permeability µ in
the medium have to be taken into account. They are connected to the refractive
index n with c/n = 1/

√
ϵµ. Further, in matter a polarisation or magnetisation

of the medium and source properties can play a role, as will be explained in the
following chapter about nonlinear optics.
Remaining in the vacuum case, the electromagnetic wave equation has a simple,
real solution which is a monochromatic plane wave

E⃗(r⃗, t) = E⃗0(r⃗) · cos(ωt− k⃗r⃗ + ϕ(r⃗)) (2.2)

with amplitude E⃗0, angular frequency ω, wavevector k⃗ and position dependent
phase ϕ(r⃗). A more general complex monochromatic solution is denoted by

E⃗(r⃗, t) = E⃗0(r⃗) · ei(ωt−k⃗r⃗) (2.3)

where the calligraphic representation illustrates the complex valuedness. The com-
plex amplitude is given by E⃗0(r⃗) = E⃗0 · eiϕ(r⃗). The real part of the Representation
2.3 equals the Solution 2.2. As the Wave Equation 2.1 is linear, the superposi-
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2.1 Ultrashort laser pulses

tion principle is applicable. It states that two solutions E⃗(r⃗, t1) and E⃗(r⃗, t2) form
another solution with scalars a and b as E⃗(r⃗, at1 + bt2) = aE⃗(r⃗, t1) + bE⃗(r⃗, t2).
Therefore multiple solutions at different angular frequencies can be added to ob-
tain more refined electric field shapes. This sets the basis for Fourier analysis.
[6], [22]

2.1.2 Fourier description

In the following the polarization (vectorial treatment) and spatial dependence of
the electric field E(t) are dropped for simplicity.
A complex spectrum of a time dependent function E+(t) can be defined through
the Fourier transform

E+(ω) = F{E+(t)} =

∫ ∞

−∞
E+(t)e−iωtdt. (2.4)

Applying the inverse Fourier transform to the complex spectrum retrieves the
time-dependency

E+(t) = F−1{E+(ω)} =
1

2π

∫ ∞

−∞
E+(ω)eiωtdω. (2.5)

From the formalism of the inverse Fourier transform result negative frequency
components. Therefore it is convenient to introduce a complex electric field E+(t)

in a way that it is the Fourier transform of

E+(ω) =

{
E(ω) ω ≥ 0

0 ω < 0
. (2.6)

With similarly defined E−(t) and E−(ω) the real electric field E(t) and its complex
spectrum E(ω) are

E(t) = E+(t) + E−(t),

E(ω) = E+(ω) + E−(ω).

10



2.1 Ultrashort laser pulses

The complex spectrum can be written as a spectral amplitude |E(ω)| with a spec-
tral phase ϕ(ω)

E(ω) = |E(ω)| · eiϕ(ω). (2.7)

A similar representation is useful for the complex electrical field. A case with
a spectral amplitude which is centered around a carrier frequency ωc and whose
magnitude is only significant in an interval ∆ω ≪ ωc is of interest in practice.1

Therefore, one writes with the real field envelope A(t) and complex field envelope
A(t)

E+(t) =
1

2
A(t)ei(ϕCEP+ϕ(t)+ωct) =

1

2
A(t)eiωct, (2.8)

where the spectral phase is split into a time-independent "carrier envelope phase"
ϕCEP, a carrier frequency contribution ωct and a time-dependent phase ϕ(t). The
time derivative of the spectral phase is the instantaneous angular frequency ω(t)

of the electric field

ω(t) = ωc +
dϕ(t)

dt
. (2.9)

If the last term is nonzero, the instantaneous frequency deviates from the carrier
frequency. This is called a frequency modulation or chirp of the pulse. Therefore
knowledge about the electric field’s time-dependent spectral phase is the key in
order to determine the chirp of a pulse. For a positive curvature of the spectral
phase, d2ϕ/dt2 > 0, the pulse is said to be up-chirped. A negative curvature implies
a down-chirped pulse. Both of these cases are represented in Figure 2.1 where the
real part of the electric field, its intensity and spectral phase are displayed in the
time domain.
[23]

1If this condition is fulfilled the slowly varying envelope approximation is valid.
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2.1 Ultrashort laser pulses
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Figure 2.1: Illustration of an up- and down-chirped pulse. The real part of the
electric field (a), the intensity (blue) and spectral phase (brown) (b) of
the up-chirped pulse. Similarly, (c) and (d) for a down-chirped pulse.
The rainbow colors illustrate the instantaneous frequencies. Figure
from [24].
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2.1 Ultrashort laser pulses

2.1.3 Dispersion

Generalising from the previously discussed vacuum case to light propagation in
media, dispersion needs to be included in the description of the electrical field from
Equation 2.3. In dispersive media, the index of refraction n is frequency dependent,
leading to a speed of light in the medium of c(ω) = c0/n(ω). Consequently, the
wavenumber k has to be replaced by the frequency dependent propagation constant

β = n(ω)
ω

c0
, (2.10)

simplifying to the one-dimensional case

E(z, t) = E0(z) · ei(ωt−βz). (2.11)

For ultrashort laser pulses, the propagation constant β is Taylor expanded around
the pulses’ carrier frequency ωc

β(ω) = β(ωc) + (ω − ωc)
dβ

dω

∣∣∣∣
ωc︸ ︷︷ ︸

=vg
Group Velocity

+
1

2
(ω − ωc)

2 d2β

dω2

∣∣∣∣
ωc︸ ︷︷ ︸

=GVD
Group Velocity

Dispersion

+ · · ·

If the group velocity dispersion (GVD) is negligible, the group velocity vg is the
velocity at which the envelope of the pulse travels. A GVD will change the shape
of the envelope, either broadening or shortening a pulse in the time-domain. If
GVD > 0 the medium exhibits normal dispersion meaning higher frequency com-
ponents travel slower than lower ones. This equals an up-chirp effect which is illus-
trated in Figure 2.1. The opposite occurs for anomalous dispersion with GVD < 0

equaling a down-chirp effect. A group delay dispersion (GDD) for a certain optical
element with length l is defined as GDD = GVD · l [25].
[22], [26]
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2.2 Nonlinear optics

2.1.4 Pulse shapes

In this work, the pulse duration τp is defined as the full width at half maximum
(FWHM) of the temporal intensity profile |A(t)|2. Similarly, the spectral width
∆ωp is defined as the FWHM of the spectral intensity profile |A(ω)|2. Some stan-
dard waveforms are listed in Table 2.2.
As the Fourier transform links the temporal and spectral shape of a pulse, also
pulse duration τp and spectral width ∆ωp are connected by

∆ωp · τp ≥ 2π · cB. (2.12)

The minimum duration-bandwidth product depends on a numerical constant cB

which differs from pulse shape to pulse shape (see Table 2.2). The equality holds
for so-called "Fourier limited" pulses which are unchirped.
[23]

Shape Intensity profile τp Spectral profile ∆ωp cB

Gauss exp(−2(t/τG)
2) 1.177τG exp(−(ωτG/2)

2) 2.355/τG 0.441

Sech2 sech2(t/τs) 1.763τs sech2(πωτs/2) 1.122/τs 0.315

Lorentz 1/(1 + (t/τL)
2) 1.287τL exp(−2|ω|τL) 0.693/τL 0.142

Table 2.2: Examples of standard pulse profiles. For each intensity profile its cor-
responding spectral profile, pulse duration τP , bandwidth ∆ωp and nu-
merical constant cB are listed. [23]

2.2 Nonlinear optics

In this chapter, the effects of placing a medium in a high intensity light field will
be treated. From a macroscopic point of view, a dielectric material responds to
an externally applied field E⃗ with a polarisation P⃗ . This macroscopic polarisation
is the sum of all atomic responses. For small external fields, the restoring atomic
forces can be assumed to be proportional to the elongations of the electrons from
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2.2 Nonlinear optics

their equilibrium positions. This is described by the model of the Lorentz Os-
cillator. For field strengths in the regime of atomic electric fields, approximately
5×1011V/m, nonlinearities arise [26]. These nonlinearities are responsible e.g. for
the dependence of a material’s refractive index on the light intensity (Kerr effect)
or the alteration of frequency when light passes through a medium. In general, the
polarisation direction i and direction of the electric field are not identical. They
are linked by a susceptibility tensor χ(n) of nth rank,

Pi = ε0

(∑
j

χ
(1)
ij Ej +

∑
j,k

χ
(2)
ijkEjEk +

∑
j,k,l

χ
(3)
ijklEjEkEl + ...

)
. (2.13)

The elements of the susceptibility tensor give the strength of the polarisation
response. The elements rapidly decrease with increasing tensor order n. Therefore,
to observe nonlinearities very intense electric fields, in the order of the interatomic
electric fields 5× 1011V/m, have to be applied.
In the following, only parametric interactions are considered which excludes energy
exchanges between the medium and the waves. Further, only stationary continuous
waves, in contrast to pulsed light, are treated. Assuming a homogeneous, isotropic
(P⃗ ∥ E⃗) dielectric medium, the nonlinear wave equation

∇2E⃗ − 1

c20

∂2E⃗

∂t2
= µ0

∂2P⃗

∂t2
. (2.14)

has to be satisfied. This can be rewritten as a nonlinear partial differential equation
containing the speed of light in the medium with refractive index n = c0/c and
the nonlinear part of the polarisation P⃗nl = χ(2)E⃗2 + χ(3)E⃗3 + ... where χn is the
remaining element of the susceptibility tensors under the assumptions of isotropy
and homogeneity.
Rewriting Equation 2.14 as

∇2E⃗ − 1

c2
∂2E⃗

∂t2
= −S⃗,

allows the interpretation of

S⃗ = −µ0
∂2P⃗nl

∂t2
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2.2 Nonlinear optics

as a source term which radiates into a linear medium with refractive index n. This
nonlinear partial differential equation can be approached with the iterative Born
Approximation or Coupled Wave Theory.
[22]

2.2.1 Second Harmonic Generation

The standard example of second harmonic generation (SHG) is frequency doubling
of light in a nonlinear crystal. In this case, only the second order nonlinearity is
of importance. Further assuming an incident monochromatic wave in z-direction
E⃗ = E⃗0 · cos(ωt − kz) with amplitude E⃗0, angular frequency ω and wave vector
k⃗ = k · e⃗x, Equation 2.13 for the polarisation reduces to

Px = ϵ0
(
χ(1)
xz E0 cos(ωt− kz) + χ(2)

xzzE
2
0 cos

2(ωt− kz)
)
. (2.15)

Using cos2 x = 1
2
(1 + cos(2x)) and dropping the indices of the susceptibility, one

can constate that the polarisation contains three different terms:

Px(z = 0) = ϵ0

(
χ(1)E0 cos(ωt) +

1

2
χ(2)E2

0 +
1

2
χ(2)E2

0 cos(2ωt)

)
. (2.16)

The first term at angular frequency ω is responsible for Rayleigh scattering, the
second one is a constant and the third one is the overtone wave at 2ω. This term,
whose intensity scales proportionally to the intensity of the incident wave, is the
one relevant for SHG. Figure 2.3 illustrates these different terms arising in the case
of frequency doubling in a nonlinear crystal with the above simplifications.
These microscopic polarisations of the individual atoms have to be in phase at
each location in the medium to interfere constructively to a macroscopic wave.
Therefore, the phase velocity of the incident wave and its overtone in the medium
must be equal which generally is not the case due to dispersion. There are different
methods to compensate for the dispersion such as utilising the temperature de-
pendence of the refractive index or birefringence. A birefringent crystal allows to
tune the phase velocity which depends on the propagation direction, polarisation
with respect to the crystal’s optical axis and light frequency.
[1], [22]
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E(t)

P(2)

= +

DC Second-harmonic

Figure 2.3: Illustration of SHG with a monochromatic sine-wave as incident wave
in red. The second order polarisation can be split as in Equation 2.16
into a constant term and one oscillating at doubled frequency. Adapted
from [22].

Phase-matching in a birefringent crystal

Phase-matching in the case of SHG refers to the phases of the fundamental wave
and its overtone, as their constructive interference is essential for a macroscopic
SHG signal. The critical phase-matching length lc is defined as the distance after
which the overtone shows a phase lack of π with respect to the fundamental wave,

lc =
λ0

2 (n(2ω)− n(ω))
. (2.17)

This means that from the critical phase-matching length onwards the overtone
interferes destructively until a distance of 2lc is reached. [1]
Considering SHG as a photon interaction process, two photons, labelled one and
two, from the incoming wave interact in the nonlinear medium to generate a third
photon, labelled SHG. Conservation of energy is ensured by the frequency matching
condition ω1 + ω2 = ωSHG = 2ω, the frequency of the second harmonic ωSHG has
to be twice the initial frequency of the photons ω = ω1 = ω2. The momentum
conservation reduces to the phase-matching condition for the wavevectors (in the
medium)

k⃗1 + k⃗2 = k⃗SHG. (2.18)
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2.2 Nonlinear optics

In the example above, two photons from the same beam interact, therefore k⃗1 =

k⃗2 = k⃗ and k⃗SHG = 2k⃗.
The photon interaction picture highlights that there are nearly no limitations for
employing SHG over wide spectral regions. Only phase-matching requirements
and the medium’s transparency pose minimal constraints.
[22]
For collinear SHG, one obtains from Equation 2.18

2
ωn(ω)

c0
=

ωSHGn(ωSHG)

c0
, (2.19)

by using |⃗k| = ωn(ω)
c0

. This yields the SHG phase-matching condition

n(ω) = n(2ω). (2.20)

The refractive index n of the nonlinear material varies with the wave’s frequency,
a phenomenon known as dispersion. Consequently, the phase-matching condition
for SHG is generally not satisfied. In practise, often birefringence of anisotropic
media is used to compensate the effect of dispersion which is called critical phase-
matching. The simplest anisotropic media are uniaxial media. Uniaxial refers the
crystal exhibiting anisotropy along a single direction, the optical axis, while all
directions perpendicular to it are equivalent. As light travels along the optical
axis, all potential polarisations remain perpendicular to it. Therefore, the optical
axis is known as the ordinary axis, inhibiting a polarisation-independent refractive
index no(ω).Propagation directions that differ from the optical axis are termed
extraordinary, as the refractive index n(θ, ω) in these cases depends on the po-
larisation of the light. Specifically, it is influenced by the polarisation component
of the light that is parallel to the optical axis. θ refers to the angle between the
propagation direction of the wave and the optical axis of the crystal. For θ = 90◦,
the respective refractive index ne varies the most from the ordinary value no. The
relation between the refractive index for an extraordinary wave and the angle θ

describes an ellipse

1

n2(θ, ω)
=

cos2 θ

n2
o(ω)

+
sin2 θ

n2
e(ω)

. (2.21)
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For a beta barium borate (BBO) crystal the experimental refractive index dataset
over its full transparency range (0.188− 5.2 µm) is fitted by

n2
o(λ) = 1 +

0.90291 · λ2

λ2 − 0.003926
+

0.83155 · λ2

λ2 − 0.018786
+

0.76536 · λ2

λ2 − 60.01
, (2.22)

n2
e(λ) = 1 +

1.151075 · λ2

λ2 − 0.007142
+

0.21803 · λ2

λ2 − 0.02259
+

0.656 · λ2

λ2 − 263
(2.23)

with the wavelength λ in µm [27]. At a wavelength of 1039 nm, one obtains no ≈
1.655 and ne ≈ 1.542, whereas, at its second harmonic (λ = 519.5 nm), no ≈ 1.675

and ne ≈ 1.556 . Since the extraordinary refractive index is smaller than the
ordinary one, BBO is called a negative uniaxial crystal.
There exist two different types of light interactions in a nonlinear medium: When
two waves impinge on the medium, they exhibit either the same, referred to as
Type I, or orthogonal polarisation, known as Type II. When a wave with a specific
polarisation is focused on the medium, this results in a Type I interaction. For
a Type I interaction the refractive index of an ordinary fundamental wave has to
equal to the refractive index of an extraordinary second harmonic wave under a
certain crystal angle θ. This can be visualised in index ellipsoid figures which are
built up from spheres for the refractive index of the ordinary wave and ellipsoids for
the refractive index of the extraordinary waves, both for the fundamental frequency
ω and its overtone. For an uniaxial crystal, the index ellipsoid can be reduced to
two dimensions.

Figure 2.4 shows a schematic index ellipsoid for BBO at λ = 1039 nm though not
to scale. An intersection in this case can only be found for an ordinary wave at the
fundamental frequency and an extraordinary one at the second harmonic. This
intersection occurs at the phase-matching angle θ of the crystal’s optical axis with
respect to the propagation direction. For BBO at λ = 1039 nm, it is θ = 23.0◦.
With phase-matching in a birefringent crystal, one has laid the basis for observing
an SHG signal. How to further fine tune the SHG process in order to increase its
efficiency is treated in the following subsection.
[1], [22], [27]
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x

θ

no(2ω)

no(ω)

ne(ω)
ne(2ω) x

y

Figure 2.4: Index Ellipsoid for Type I phase-matching in a negative uniaxial crys-
tal. The x-axis represents the extraordinary axis, while the y-axis rep-
resents the ordinary axis. According to Equation 2.21, the variation
of the refractive index n with the polarisation angle for an extraor-
dinary wave of fixed frequency forms an ellipse with half-axes no and
ne. For an ordinary wave of fixed frequency, no is independent of the
polarisation angle, resulting in a circular shape. Here, the fundamental
frequency ω is represent in black and its second harmonic 2ω in green.
The ordinary wave at ω (black circle) intersects the extraordinary wave
at 2ω (green ellipse) for the phase-matching angle θ (red).
Adapted from [22].

20
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Efficiency of SHG

The efficiency of SHG is defined as the ratio of the SHG wave intensity I(2ω) to
the fundamental wave intensity I(ω),

ηSHG =
I(2ω)

I(ω)
. (2.24)

The interpretation of the nonlinear part of the polarisation as a source as in Equa-
tion 2.15 means that this source term is proportional to the amplitude of the
second-harmonic. Inserting the polarisation for an incident monochromatic wave,
Equation 2.16, it results for the 2ω contribution in I(2ω) ∝ (χ(2)ω2I(ω))2. Taking
into account that one has a coherent superposition of atomic polarisations in the
interaction volume of length L, I(2ω) ∝ L2. Further rewriting I(2ω) = P/A as
incident power P per cross-sectional area A of the interaction volume, one arrives
at

ηSHG ∝
(
χ(2)ω2

)2 L2

A
P. (2.25)

To enhance the SHG efficiency, high laser intensities are advantageous which is
where pulsed lasers come into play. [22]

2.2.2 Kerr effect

With high intensity light fields third order nonlinearities can not be neglected
anymore. For media which exhibit a centrosymmetric structure, the leading non-
linearity is of third order,

Pnl ≈ χ(3)E3. (2.26)

They are called Kerr media. Their nonlinear polarisation component at the fre-
quency ω can be seen as an incremental change in susceptibility therefore, also as
an incremental change ∆n for the refractive index,

∆n =
3

4n2
0c0

χ(3)︸ ︷︷ ︸
n2

·I (2.27)
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with the light intensity I = c0nϵ0/2 · |E(ω)|2. n2 is the Optical Kerr Coefficient
which is a part of the total, now intensity dependent, refractive index n(I)

n(I) = n+ n2I. (2.28)

The optical Kerr effect can lead to several self-action effects important for nonlinear
pulse compression: Self-focusing, self-trapping and laser beam breakup. For self-
focusing, the nonlinear material acts as a positive lens since the high intensity
center of the beam sees a larger refractive index than its periphery (assuming n2 is
positive). Balancing self-focusing and diffraction effects, light can propagate at a
constant diameter which is called self-trapping. This occurs at the critical power
for self-trapping

Pcrit =
π(0.61)2λ2

0ϵ0
8n0n2

(2.29)

with the vacuum wavelength λ0 of the laser. For powers above Pcrit, self-focusing
occurs, and if P ≫ Pcrit the beam will split into many components (due to imper-
fections of the laser wavefront), called laser beam break-up.
[22], [26], [28]

Self-focusing

Since self-focusing is a significant consequence of the Kerr effect, the following
section presents the mathematical formulae relevant in practice. Using Fermat’s
principle as a starting point one can approximately deduce a characteristic self-
focusing distance zsf for the diffraction-free case with beam waist w0 to

zsf =
2n0w

2
0

λ0

1√
P/Pcrit

. (2.30)

For a more general case with arbitrary power and beam-waist, the distance of the
position z(w0) to the entry point into the nonlinear medium is introduces as zmin.
With this and the beam waist at the entry point w, one has

zsf =
1
2
k0w

2√
P/Pcrit − 1 + 2zmin/k0w2

0

(2.31)
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2.3 Pulse compression

where k0 = n0ω/c0 is the angular wave number. The above discussion is only valid
for continuous wave lasers and has to be adapted for pulsed laser beams with a
moving focus model: The self-focusing distance zsf varies with the instantaneous
input intensity of the pulse. Therefore, the focal point will sweep through the
medium following the temporal evolution of the pulse.
[26]

Self-phase modulation

Self-phase modulation (SPM) is another consequence of the Kerr effect as a phase
shift is induced by the beam travelling through the nonlinear medium. In the
following, the medium is assumed to be thin in order to have no reshaping of the
pulse and the response of the medium to be instantaneous. Focusing on the time-
dependent component of the phase shift resulting from the optical Kerr coefficient
n2

ϕnl(t) = −n2I(t)k0L, (2.32)

one observes that it is directly proportional to the length L of the nonlinear medium
and the pulse intensity I(t). Following the treatment of Section 2.1 about ultra-
short laser pulses and introducing an instantaneous frequency as in Equation 2.9,
the phase shift from the Kerr effect (Equation 2.32) introduces a frequency mod-
ulation, also known as chirp. Since the temporal and spectral pulse profiles are
connected by the Fourier transform (Equation 2.4), this chirp commonly leads to
spectral broadening of the pulse.
[22], [26]

2.3 Pulse compression

Ultrashort laser pulses may be further compressed in the time domain in several
ways. The most straight-forward approach would use a linear dispersive element
such as a grating or prism to remove the chirp of a pulse. If the pulse is already
unchirped, meaning transform-limited, a phase modulator which keeps the pulse
duration constant while introducing spectral broadening and a chirp might be
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2.3 Pulse compression

applied. [22] For intense ultra short pulses it is favorable to make use of nonlinear
dispersion based on the Kerr effect due to a higher power efficiency [19]. At laser
powers in the same order of magnitude as Pcrit (the critical power for self-trapping
of a material) self-focusing sets an upper limit of the nonlinear medium’s thickness.
This in return limits the acquired nonlinear phase (see equation 2.32) which is the
chirp of the pulse after having passed the medium. At this point the usefulness
of a multi-pass approach through the nonlinear medium to step wise accumulate
nonlinear phase is evident in the frame work of compressing intense ultrashort
pulses. The next section presents the multi-pass approach for the case of a bulk
nonlinear material in a simple geometry, the Herriott cell. Afterwards a brief
overview of other techniques to compress intense ultrashort pulses is given.

2.3.1 Bulk multi-pass cell (MPC)

Bulk multi-pass cells have been successfully employed for ultrashort pulse compres-
sion within the peak power range from 10MW to 1GW. [19] A straightforward
geometry for a multi-pass setup is the Herriott cell, shown in Figure 2.5. This con-
figuration features two curved mirrors with identical radii of curvature, denoted
as CM1 and CM2. The mirrors face each other with a nonlinear bulk material po-
sitioned between them. A laser beam, introduced at a slight angle to the central
axis connecting the mirrors, can be confined within this setup.
The laser beam can be coupled in and out of the cell through various methods,
such as using two small scraper mirrors, SM1 and SM2. Figure 2.5 is a schematic
representation and not to scale; in practice, the nonlinear medium would typically
be much smaller than the curved mirrors, and the laser paths would be tightly
focused in the center.

Beam propagation in a Herriott cell

In a Herriott cell, transverse eigenmodes exist, and the cell is designed to pre-
serve the Gaussian beam q-parameter. As such, it can be treated with the same
formalism as an optical cavity. Here, only the q-parameter of the eigenmode is
presented; for details on deviations, refer to [10], [20] and [29]. The q-parameter is
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SM1

nonlinear
medium

CM1 CM2

SM2

Figure 2.5: Schematic of a Herriott cell geometry adapted for the use as a multi-
pass cell. Two curved mirrors CM1 and CM2 face each other with a
nonlinear medium in between. The laser beam (red) is trapped cavity-
like in the cell. It is coupled in and out with scraper mirrors SM1 and
SM2. Adapted from [10].
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fully defined by the radii of curvature of the mirrors R and the length of the cell
L, e.g. the mirror distance as

q = −R

2

√
C (C − 2). (2.33)

with the ratio C = L/R. The cell length has to fulfill 0 < L < 2R in order to be
in the stable cavity range. [19] The q-parameter allows the prediction of curvature
and beam size. Especially the focal spot radius w0 and the spot radius at the
mirror position wm are of practical importance

w2
0 =

Rλ

2π

√
C (2− C), (2.34)

w2
m =

Rλ

π

√
C

2− C
. (2.35)

[19]

Laser spot pattern

In this section the laser spot pattern on the first MPC mirror (the mirror where
the beam is in- and outcoupled, CM1 in Figure 2.5) is detailed. This laser spot
pattern illustrated in Figure 2.6 is characterised by several key quantities:

• n number of round trips: One round trip starts at the first mirror, includes
a first pass through the nonlinear element, then a reflection at the second
mirror, a second pass through the nonlinear element, and ends back at the
first mirror.

• ϕ angle of spot displacement: The angle by which the laser spot position on
one mirror changes after one round trip is represented by ϕ. Figure 2.6 a)
illustrates how the laser spot with coordinates (xn, yn) advances by ϕ after
each round trip.

• m number of semicircles: This is the number of semicircles the spots span on
the first mirror from incoupling to outcoupling. In our Herriott cell design,
where outcoupling occurs on the opposite side of the mirror from incoupling,
m must be an odd number.
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2.3 Pulse compression

Figure 2.6: Schematic laser spot pattern on the first MPC mirror a) One round
trip ∆n = 1 advances the spot (xn, yn) by an angle of ϕ. b) Complete
spot pattern for n = 11 and m = 3, which implies ϕ = 49.1◦. Figure
from [10].

These quantities are related by ϕ = mπ(n−1)/n which stems from the q-parameter
preservation [19]. Figure 2.6 b) shows the case of 22 passes (n = 11) with a choice
of m = 3, resulting in ϕ = 49.1◦.
Building on the previous subsection, theory also establishes a relationship between
the angle ϕ and the ratio,C = L/R, of cell length to the mirror’s radii of curvature

C = 1− cos(ϕ/2) (2.36)

[29]. Therefore, when assuming a fixed radius of curvature, the specific choice of
a combination of n and m directly determines the required cell length L.

Nonlinear phase accumulation

Building on the geometric analysis of the Herriott cell, the following section delves
deeper into the nonlinear effects and their stepwise accumulation. Although non-
linearity has an impact on the previously deduced optical mode, J. Schulte and
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colleagues have experimentally demonstrated that the q-parameter is barely in-
fluenced by the input power [30]. Therefore, also valid for our experiment, the
nonlinear effects on the q-parameter are assumed to be negligible.

To quantify spectral broadening, the B-integral is a useful measure. Here it is
defined as the accumulated on-axis nonlinear phase

B :=
2π

λ

∫
n2Ip(z)dz (2.37)

where Ip(z) represents the laser peak intensity along the optical axis z [19]. For
a Gaussian beam with Rayleigh length zR and a nonlinear medium with a length
less than the Rayleigh length (L < zR), the laser intensity varies by only a few
percent within the medium. Therefore, Equation 2.37 can be approximated as

Bpass ≈
4n2Pp

λπ

L

w2
0

· π (2.38)

with the pulse peak power Pp. It is important to note that a narrower waist will
not necessarily lead to an increased B-integral if L < zR is not met, as the pulse
intensity will decrease significantly over the crystal length. The B-integral has
been named Bpass to emphasis that only one pass of the nonlinear medium has
been considered until here. "The B-integral per pass within an MPC containing a
bulk plate as nonlinear medium is usually kept small (e.g., below π/5)." [19] The
B-integral accumulates with each pass, so the total B-integral after n round trips,
denoted as Bn, is Bn = 2nBpass. For a Gaussian beam, the B-integral is directly
linked to the spectral broadening factor

bn =
∆ωout

∆ωin
=

√
1 +

B2
n

3
√
3

(2.39)

which gives the ratio between in- ∆ωin and outgoing bandwidth ∆ωout of the laser
pulse.
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Key parameters

This section provides a brief overview of the key parameters of the MPC that
influence its pulse compression, following closely the description in [20]. These
parameters must be tailored to the application and pulse specifics.

• Nonlinear medium: The pulse’s peak power and the desired spectral broad-
ening factor form the basis for selecting a nonlinear medium with an appro-
priate optical Kerr coefficient n2. A key advantage of the MPC is its ability
to allow the pulse’s peak power to exceed the critical power for self-focusing
of the nonlinear medium [31]. Fused silica is a commonly chosen medium
[19], [30].

• Curved mirrors: The radii of curvature R of the mirrors set the maximum
cell length and must balance compactness with lower peak intensities at the
mirrors’ focus. The mirrors’ circumferences must accommodate the spot
pattern with sufficient spacing.

• Inter-mirror distance L: With fixed radii of curvature, the inter-mirror dis-
tance determines according to Equation 2.34 the focal spot radius which in
turn influences the B-Integral (Equation 2.38). Additionally, it affects the
angle ϕ of spot displacement on one mirror per round trip (Equation 2.36),
establishing a set number of spots per circle. Along with the outcoupling
requirement of an odd number of semicircles m, these factors narrow down
the possible number of round trips n. To sum up, the inter-mirror distance
determines the spectral broadening factor within a narrow margin 2. For
R = 250mm, these dependencies on the cell length are illustrated in Figure
2.7.

• Dispersion compensation: The nonlinear element introduces dispersion that
must be managed [31]. If dispersion is too high, the pulse’s peak power will
diminish pass by pass, reducing the B-integral per pass nonlinearly. To coun-
teract this undesired effect, chirped MPC mirrors can be used. Conversely,

2assuming a fixed pulse peak power, nonlinear element, cell length and radii of curvature

29



2.3 Pulse compression

480 482 484 486 488 490 492 494 496
cell length L (mm)

85

90

95

100

105

110

115

120

125

wa
ist

 a
t f

oc
us

 w
0 (

m
)

8
9
10
11
12
13
14
15
16
17

sp
ot

s p
er

 c
irc

le

Figure 2.7: Dependencies on the MPC cell length for a radius of curvature R =
250mm. The waist at the focus is dependent on the cell length from
Equation 2.34 and the spots per circle from Equation 2.36. There is a
stability edge at L = 500mm.

if dispersion per pass is fully compensated, thus compressing the pulse tem-
porally, the pulse’s peak power would increase with each pass. Again, this
is an undesired effect as modulation instabilities would occur. The goal is
to partially compensate for the nonlinear element’s dispersion. Therefore,
a post-compression stage must be added after the MPC to compensate for
the remaining dispersion and attain the Fourier-transform limit for the pulse
duration [31].
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2.4 Pulse characterisation

2.3.2 Other techniques

As previously detailed, an MPC containing a bulk nonlinear medium serves as
a suitable tool to compress ultrahort pulses with peak powers that exceed the
medium’s critical power of self-focusing. Another variant of the MPC is the gas-
filled MPC, which employs a noble gas filling instead of a bulk nonlinear element.
Gas-filled MPCs are designed for even higher peak powers, ranging from approxi-
mately 10MW to around 80GW [19]. This significant power handling capability is
attributed to gases having a three orders of magnitude higher critical self-focusing
threshold compared to bulk materials [30]. Moreover, gas-filled MPCs offer sev-
eral advantages, reduced losses due to the absence of optical interfaces, no risk
for damage to the nonlinear medium, and broad transparency windows across the
spectrum [19].

Stepping away from MPCs, waveguides represent the standard pulse compression
scheme for ultrashort pulses. Like MPCs, waveguides can be categorised into
solid-based waveguides, primarily fused silica fibers, and gas-filled waveguides.
However, fused silica fibers are constrained to peak powers of around 4MW due to
self-focusing effects. On the other hand, gas-filled waveguides can accommodate
peak energies of GW and beyond for pulses lasting a few hundred femtoseconds.
This energy range presents a gap where MPCs offer a valuable solution.

2.4 Pulse characterisation

Measuring ultrashort pulses presents a significant challenge due to the absence of
electronic devices for direct measurement. For example, the temporal resolution of
PIN photodiodes is limited to 20 ps, and streak cameras only achieve a resolution
of 400 fs. For shorter pulses, it is impossible to reference the pulse with an external
electronic reference; thus, the pulse itself can take on the role of a reference. An
intuitive approach would be measuring the intensity I(t, τ) = c0ϵ0[E(t)+E(t+τ)]2

of a pulse E(t) and its by the time τ delayed copy with a detector with integration
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time T ,

SD =< I(t, τ) >=
1

2T

∫ +T

−T

I(t, τ)dt. (2.40)

The signal SD of the detector is obviously independent of τ and the pulse shape
for T >> τ [1]. Also for a very fast detector resolving I(τ), only spectral not
temporal information can be retrieved with a Fourier transform [32]. Therefore,
another step is necessary, which is introducing a nonlinear interaction before the
detection. The most obvious choice is SHG as the efficiency of nonlinear effects
rapidly decreases with higher orders. [1]
In the following section, the case of SHG in an uniaxial birefringent crystal is
implied. Other techniques are discussed in the section thereafter.

2.4.1 Autocorrelation

One can transfer the following principles for monochromatic waves with Fourier
analysis to more complex pulse shapes. The starting point is the polarisation of a
nonlinear medium in the case of a monochromatic wave for SHG, Equation 2.16.
In case only the second harmonic is filtered, one can write the signal electric field
strength of the second harmonic as

Esig(t, τ) ∝ E(t)E(t− τ). (2.41)

Inserting the signal intensity Isig(t, τ) into the expression for the detector signal
(Equation 2.40) gives the mathematical expression of a convolution

SD ∝
∫

I(t)I(t− τ)dt. (2.42)

For a known pulse shape, the autocorrelation can thus provide information about
the pulse duration τp. As demonstrated by R. Trebino, for more complex and
unknown pulse shapes, the information retrievable from the autocorrelation is
very limited.
[33]
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Figure 2.8: Typical basic pulse shapes and their computed SHG FROG traces.
The upper panels depict the intensity I (blue line) and the phase Φ
(dashed blue line) as functions of time t. The middle row of panels
display intensity I (green line) and the phase Φ (dashed green line)
in the spectral domain ω. The SHG FROG traces plot time t on the
x-axis versus frequency ω on the y-axis. The associated intensities are
plotted on a colour scale from orange (low) to purple (high). Figure
from [34].
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Figure 2.9: Typical pulse shapes and their computed SHG FROG traces. The
upper panels depict the intensity I (blue line) and the phase Φ (dashed
blue line) as functions of time t. The middle row of panels display
intensity I (green line) and the phase Φ (dashed green line) in the
spectral domain ω. The SHG FROG traces plot time t on the x-axis
versus frequency ω on the y-axis. The associated intensities are plotted
on a colour scale from orange (low) to purple (high). Figure from [34].
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2.4.2 Frequency Resolved Optical Gating (FROG)

Resolving the autocorrelation signal spectrally can bridge the gap to obtain more
information about (complex) ultrafast pulses. This method of Frequency Resolved
Optical Gating (FROG) has been first detailed by Rick Trebino in 1993 [34].
For each delay τ , a spectrum is plotted along the y-axis, with intensity values
represented on a colour scale. This plot, termed a FROG trace, is given by

IFROG(ω, τ) = |
∫ ∞

−∞
Esig(t, τ) exp(−iωt)dt|2. (2.43)

From a FROG trace, one can retrieve the pulses electric field E(t).

Typical pulse shapes and their computed FROG traces

For an intuition how the SHG FROG traces are linked to the pulse shape, Fig-
ure 2.8 shows the computed FROG traces associated with the typical basic pulse
shapes, namely a Fourier-Transform limited Gaussian, a Gaussian with negative
(positive) chirp and a self-phase modulated one. Figure 2.9 introduces slightly
more complex pulse shapes, specifically including cubic and quartic spectral phases,
as well as double pulses (in and out of phase). It should be noted that the SHG
FROG traces are by construction symmetrical with respect to zero delay.
[34]

Advantages

FROG offers several advantages, including its versatility across a wide range of
wavelengths, pulse durations, and complexities, along with the simplicity of its
apparatus. Moreover, it is a robust and accurate method, resilient to noise, and
provides feedback on the quality of the retrieval, helping to identify and address
systematic errors. The last point is a probabilistic argument resulting from the
over definition of the FROG trace. If one measures the number of N data points
both spectrally and with respect to delay, in total N2 data points are available to

35



2.4 Pulse characterisation

retrieve 2N values, the electric field strength and its phase for each wavelength.
This leads to the retrieval problem treated in the next paragraph. [34], [35]

Pulse retrieval from the FROG trace

The initial proposed retrieval by R. Trebino [34] is the Principal Component Gen-
eralised Projections Algorithm (PCGPA) which uses two sets of solutions and
projects in each step to the closest point in the other set. The first set of solutions
solves Equation 2.41, whereas the second is a solution to Equation 2.43. As these
two sets of solutions for FROG are not convex, the projection is not necessarily
unique. Further, the temporal resolution is limited by the spectral bandwidth ex-
perimentally obtainable, since a quadratic N ×N FROG trace is required.
These difficulties can be overcome by applying the extended Ptychographical It-
erative Engine (ePIE) which is an algorithm from ptychography demonstrated
by Sidorenko and coworkers in 2016 [36]. It offers significantly faster retrieval,
increased robustness to noise, and enables retrieval from partial spectrograms,
thereby reducing experimental acquisition time [36]. Therefore, in this thesis only
ePIE will be further detailed and used.
In a nutshell, ePIE starts with an initial guess E(0)(t) for the electric field of the
pulse. Then, based on a comparison to the measured trace IFROG(ω, t) this guess
will be iteratively improved until certain stopping criteria are fulfilled.
A stopping criterion can be defined using the FROG error G, which represents the
root mean square deviation of the (as yet unnormalised) FROG intensity after the
k-th iteration I

(k)
FROG,

G =

√√√√ 1

N2

N∑
i,j=1

|IFROG(ωi, τj)− αI
(k)
FROG(ωi, τj)|2. (2.44)

Here, IFROG(ωi, τj) represents the normalised measured trace for each data point
with indexes i, j from 1 to N . α is a real-valued parameter that minimises the
FROG error to ensure renormalisation. For noise-free data, the limits of the ma-
chine error result in G ∼ 10−7, in experiments with N = 128 for SHG typically
G < 0.5% [34]. In practice, the minimisation of the FROG error is limited by
noise and experimental deviation from a physically valid trace (e.g. distortions,
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systematic errors, stray light) [35]. Further stopping criteria may include a maxi-
mum number of iterations, maximum iteration time and a stagnation count [37].

For a more detailed understanding of the iterative process aimed at refining the
guess for the electric field, refer to Figure 2.10. In the upper right corner the initial
guess, based on the retrieval amplitude N-grid algorithm (RANA), is depicted.
Subsequently, an internal loop proceeds over the delay steps, labelled j = τ ·∆t,
in a random order s(j). It is worth highlighting that this internal loop is the heart
of the algorithm which will be elucidated in the following.
For each delay step, the signal intensity Ψs(j)(t) with the current guess is computed
in the time domain and Fourier transformed to the spectral domain. Then, the
signal intensity is modified to Ψ‘s(j)(ω) including the measured trace Is(j)(ω) and
inversely transformed to the time domain. Following that, the crucial step is
creating a new guess for the electric field of the next delay step s(j) + 1. This is
done by modifying Es(j) according to the difference of the modified signal intensity
Ψ‘s(j)(t) and the original one, Ψs(j)(t). For faster convergence, a random update
strength α between 0.1 and 0.5 is introduced.
The new guesses for every delay step add up to a the electric field guess of the next
iteration step i, E(i)(t). Optionally, this new electric field guess can be modified
with an independently measured spectrum Ispec(ω) according to

E ′(i)(ω) = E(i)(ω) + β

(√
Ispec(ω)E

(i)(ω)

|E(i)(ω)| − E(i)(ω)

)
(2.45)

with a random update strength β.3

[36]

Accuracy of the retrieved FROG trace Ambiguities of the SHG FROG method
are the direction of time and a global phase of the pulse [36]. As experimental
data usually contains noise and systematic errors, it is generally not among the
set of physically valid FROG traces. Therefore, it will converge to the nearest
physically valid trace which is not necessarily equivalent to the trace of an ideal

3This way of updating the electric field guess with an independently measured spectrum is my
version.
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measurement. Thus, a noise correction and symmetrisation with respect to zero
delay prior to the retrieval process is beneficial [21]. A quantitative measure for the
convergence of the retrieval algorithm, the FROG error, Equation 2.44, has already
been introduced. However, the FROG error can only be seen as an indicator
for the accuracy and necessitating an additional visual comparison between the
experimentally obtained and the retrieved trace [35]. A consistency check of the
FROG trace can be done by computing the frequency marginal M(ω)

M(ω) =

∫ ∞

−∞
IFROG(ω, τ)dτ (2.46)

which should have a functional form identical to the autoconvolution (denoted by
an asterisk) of the pulse spectrum I(ω−ω0) centered around the carrier frequency
ω0,

MSHG(ω − 2ω0) = I(ω − ω0) ∗ I(ω − ω0). (2.47)

[35]

2.4.3 Other techniques

The preceding section on FROG implied the case of SHG in an uniaxial bire-
fringent crystal. In the following, first alternative FROG implementations are
outlined. Secondly, alternatives to FROG itself are presented.
A variation of SHG FROG which is easier to align is the interferometric Frequency
Resolved Optical Gating (iFROG) [21]. In this setup, both the pulse and its de-
layed counterpart are directed onto the nonlinear crystal along the same path,
rather than being separately focused onto distinct spots within the crystal. Con-
sequently, the electric field strength of the signal results from the summation of
the complex electric fields, as opposed to the summation of their intensities as in
previous configurations. With the representation of the complex electric field as a
real field envelope A(t) and a phase contribution of the carrier frequency ωc as in
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𝚿′
𝒔 𝒋 𝒕
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𝑰𝒔 𝒋 (𝝎) for this delay

Inverse Fourier 
transform

New guess for the electric field for each delay step j
α-strength of update, randomly selected from uniform distribution between 0.1 & 0.5 E(0)(t)

Initial guess with RANA (retrieval
amplitude N-grid algorithm

Signal intensity for each
delay step j 
(not normalised)Internal loop over delay

steps 𝒋 = 𝝉 ⋅ 𝚫𝒕 in random
order s(j)

E(i)(t)

Figure 2.10: Illustration of the internal loop in the ePIE retrieval algorithm. The
loop starts in the upper right corner with the initial guess and iterates
over all delay steps j. Upon completion, a new electric field guess
E(i)(t) is obtained, serving as the starting point for the next iteration
of the loop. Equations from [36], design adapted from [21].
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Equation 2.8 where Φ(t) = Φ(t− τ) is assumed, one gets

Esig,iFROG(t, τ) ∝ (E(t) + E(t− τ))2 ∝ (A(t) + A(t− τ)e−iωcτ )2. (2.48)

The phase difference ωcτ overlays an interferometric pattern to the previously
treated noncollinear FROG traces. A modified ePIE retrieval algorithm is avail-
able for the interferometric case, developped by S. Kokh [21]. The downside to
an easier alignment are longer data acquisition times to resolve the interference
pattern.
[38]
A compact implementation of SHG FROG is called GRENOUILLE which stands
for grating-eliminated no-nonsense observation of ultra-fast laser-light E-fields. In
the GRENOUILLE set-up, the split-and-delay line is replaced by a Fresnel biprism
and the group velocity mismatch in a thick nonlinear crystal takes the function of
a spectrometer. Contrarily, in the standard SHG FROG a thin crstal is required
since phasematching should be fulfilled for the complete pulse spectrum. However,
GRENOUILLE comes with drawbacks, including reduced spectral resolution and
potential pulse distortion caused by group velocity dispersion, particularly for ul-
trashort pulses. [39]
Another version, not needing a split-and-delay line, is called a single-shot set-up.
The idea is to mix two pulses at an angle in the nonlinear crystal obtaining a range
of delays along the crystal plane [40], [41].
Instead of SHG, one can also use third harmonic generation (THG). Generally this
results in a weaker signal, but it removes the time ambiguity which is present in
an SHG FROG trace. There are various THG FROG beam geometries which each
have their advantages and disadvantages depending on the pulse specifications.
[34]
R. Trebino and colleagues stated in 2020: "FROG was the first and remains the
most powerful and popular pulse-measurement technique" [42]. However, for very
weak pulses nonlinear effects might not be measurable anymore. Moreover, with
very complicated pulses a FROG retrieval might require extensive computing re-
sources. In these cases, spectral interferometry (SI) and its self-referenced version
spectral phase interferometry for direct electric-field reconstruction (SPIDER) be-
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come of interest. For SI, a completely known reference pulse which contains the
spectrum of the unknown pulse is required. The basic idea is to overlay the refer-
ence and unknown pulse in a beam splitter and detect the spectrum. The unknown
pulse can be reconstructed easily from the resulting spectral interference pattern.
SPIDER does not need a known reference pulse, instead uses a frequency shifted
version of the unknown pulse. For SPIDER, a careful calibration is required and
stability proofs to be challenging.
[42]
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3 Experimental Set-Up

This chapter details, in a first section, how the laser pulse is prepared before it
enters the MPC. Up to this point, the laser pulses have been directed either to
the MPC or to the XUV generation set-up. The desired goal of utilising the
in the MPC compressed pulses for XUV generation has yet to be realised. The
second section is dedicated to the MPC itself, including mode-matching and post-
compression set-ups. The third sections explains the FROG set-up detailing how
a variably delayed pulse copy is generated, the SHG on a removable breadboard
and the spectrometer recording the FROG traces.

3.1 Laser pulse preparation for XUV generation

This description follows J.-H. Oelmann [10] and J. Nauta [11].
Figure 3.1 shows a schematic overview: The starting point is a commercial fre-
quency comb (Menlo Systems, FC1000-250) with a 14 nm FWHM spectral band-
width centered around 1039 nm. The pulse train with up to 12W of average power
is composed of 24 ps long pulses with a repetition rate frep = 100MHz that can be
adjusted by 1%. The repetition rate can be stabilized to a fractional uncertainty
of 10−12 within one second.
In the next step, the near-infrared frequency comb is amplified using the con-
cept of chirped-pulse amplification. This is realised in a rod-type large-mode-area
(LMA) Yb-doped fiber (aeroGAIN rod module 2.0 PM85, NKT photonics) which
is backward pumped with continuous wave light at 976 nm of a fiber-coupled laser
diode with 250W power (D4F2S22-976.3-250C-IS58.1, DILAS) coupled in with
an off-axis parabolic mirror (OAP). The comb laser is protected from backward
reflections by two high power Faraday isolators (ISO) (PAVOS Ultra-05–I-1015-
1065, Soliton and HPKT-I-1042, IPOptica). Two half-waveplates (WPH10M-1030,
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CW pump 
diode

 
Yb-doped 
LMA fiberOAP

75W, 185 fs 

  

976 nm, 250 W

1039 nm, 12 W
24 ps, 100 MHz

Camera

80 W
24 ps

Grating
compressor

λ/2 ISOλ/2

Comb laser

ISO

RR

RR G

PM

To MPC

Figure 3.1: Schematic overview of the laser system before the MPC and subse-
quent HHG generation stage. The NIR comb laser is amplified in
a Yb-doped large-mode-area (LMA) fiber which is diode-pumped via
an off-axis parabolic mirror (OAP). Two Faraday isolators (ISO) pre-
vent backward coupling. A grating compressor consisting of a pair of
retroreflectors (RR) and a grating (G) removes the pulse’s chirp. The
185 fs long pulse with 75W is reflected on the picking mirror (PM)
with a vertical offset towards the MPC. Figure from [10].
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3.1 Laser pulse preparation for XUV generation

Figure 3.2: Mode-matching telescope for the MPC. The incoming beam (red) is
attributed a specific waist by the combination of a diverging lens (lens
1, f = −75mm) and a collimating lens (lens 2, f = 175mm). Lens 3
(f = 500mm) tunes the focus position. The outgoing beam (green) is
collimated by lens 4 (f = 150mm) and lens 5 (f = −75mm).

Thorlabs), labelled λ/2, are used to adjust the polarisation before the fiber and
second isolator. A grating compressor compresses the pulses from 24 ps to ∼ 200 fs.
This is achieved by a grating (1158 2818 6.35 H, Gitterwerk GmbH), labelled G,
fanning out the different frequency components in space resulting in them having
a slightly different paths length between a pair of retroreflectors (RR). A picking
mirror (PM) with a vertical offset reflects the pulse to an MPC. In the MPC,
the Fourier transform-limited pulses from the grating compressor are spectrally
broadened before undergoing temporal compression to reach the reduced Fourier
transform limit. Subsequently, they are directed to the HHG cavity for XUV
generation.
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Mode-matching

telescope

Gas inlet/outlet

Post-compressor

Amplified comb laser 

Periscopes

Monitoring 

window

Figure 3.3: Design of the in- and outcoupling to the MPC. The amplified near-
infrared frequency comb laser is guided by a periscope from 81mm to
123.3mm beam height. A mode-matching telescope focuses the beam
in the center of the MPC to a desired waist. The MPC itself can
be pressurised through the gas in- and outlet and observed from the
outside through a monitoring window. After exciting the MPC, the
beam is collimated and sent to a post-compressor consisting of chirped
mirrors. Another periscope reduces the beam height to its original
value. It can be placed either before (as in the figure) or after a post-
compressor. Adapted from [20].
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incoupling mirror
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(water cooled)
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Figure 3.4: Sectional view of the MPC design with exemplary beam path. The
cell can be pressurised and vacuumised using the gas in- and outlet.
Its design allows for a closed operation with rotary feedthroughs and
monitoring windows. The beam enters through the incoupling window
onto the incoupling mirror and scraper mirror. Then, it propagates
back and forth between curved mirror 1 and 2, each time passing the
crystal until outcoupled by the second scraper mirror. It leaves the cell
via the outcoupling mirror through the outcoupling window. Adapted
from [10].
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3.2 MPC

As seen in Figure 3.3 the MPC is inside an air-tight pipe which can be pressurised
and vacuumised through gas inlets. Firstly, the beam height of the amplified and
compressed comb laser is increased from 81mm to 123.3mm. Secondly, the beam
is mode-matched in a telescope as shown in Figure 3.2: A diverging lens (lens 1,
LC4513-B f = −75mm, Thorlabs) in combination with a collimating lens (lens 2,
LA4924-B f = 175mm, Thorlabs) determine the beam waist. For a slight change
in beam waist a change in focal length from f = 150mm to f = 200mm can
be employed. A third lens (LA4184-B f = 500mm, Thorlabs) is used to tune
the focus position. The lenses are mounted in adjustable mounts (ST1XY-A/M,
Thorlabs) on a rail.
Thirdly, the beam is guided in the MPC by a mirror (Turning mirror 45°, 141501,
Layertec) through an incoupling window (AR-coated fused silica, �25mm, 111042,
Layertec).
The interior design of the MPC is visualised in Figure 3.4: A mirror (BB07-E03,
Thorlabs) on a 2-axis kinematic mount (POLARIS-K19S4, Thorlabs) guides the
beam onto the incoupling scraper mirror (�6.35mm, 107290, Layertec) where
Figure 3.5 allows a closer view. The scraper mirrors are glued on aluminium
arms, which can be adjusted in length and turned using an inlet into a mir-
ror mount (Polaris-K05, Thorlabs). The incoupling scraper reflects the beam
through the crystal mount onto the second curved mirror (R = 250mm, �50mm,
GDD = −200 fs2 custom-made, Layertec). The beam propagates in between the
curved mirrors until it is outcoupled by an identical scraper construction onto the
outcoupling mirror (BB07-E03, Thorlabs). Additionally, apertures are installed
before the curved mirrors (not shown in the figure) to avoid back-reflections hitting
the mirror mounts. The cell length is roughly adjustable with a moveable adapter
for the mirror mount (POLARIS-K50S4/M, Thorlabs) of the second curved mirror.
The fine adjustment is done with a translation stage (custom UHV version of 9062-
COM-M, Newport) covering 12.7mm below the first curved mirror. Similarly, the
crystal mount is adjustable by the same stage model. Rotary feedthroughs allow
stage adjustments in closed cell operation. Cooling of the curved mirrors and the
crystal mount is ensured by cooling clamps with copper links. Further, the main
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structure can be water-cooled with channels in the bottom. The spot pattern on
the curved mirrors can be imaged from the top with silver mirrors and the upside
monitoring windows in Figure 3.4 with a camera.
Exiting the MPC is similar: A mirror (Turning mirror 45°, 141501, Layertec)
guides the beam through two lenses, (lens 4, LA4874-B f = 150mm, Thorlabs)
and (lens 5, LA4513-B f = −75mm, Thorlabs) for collimation before the post-
compression set-up.

As a nonlinear material, we employ YAG elements (undoped YAG111, �25mm,
AR< 0.15% at 1005 nm to 1055 nm, Item M0058641, Altechna) with thicknesses
of 5 or 6.6mm, or combinations thereof. YAG has an optical Kerr coefficient of
n2 = 6.2 × 10−16 cm2/W, which is more than twice that of fused silica [31]. The
critical power of YAG is 1.5MW [31], which our laser pulse would exceed with an
average power starting from 30W, assuming a pulse duration of 200 fs.

3.3 FROG set-up

A FROG set-up requires the generation of a variably delayed pulse copy. Therefore,
I adapted an existing split-and-delay (SAD) line in our experiment, detailed in the
next section. Further, I designed and built a compact breadboard containing the
FROG components, described thereafter.

3.3.1 Split-and-delay line

Our experiment contains a SAD line based on a Mach-Zehnder interferometer for
pump-probe experiments with polarisation shaping [10]. The for interferometric
FROG adapted version is shown in Figure 3.6.
The incoming pulse with tunable polarisation enters the box in the upper right
corner onto a 50:50 beamsplitter cube (BS011, Thorlabs). The transmitted part
passes a waveplate which is used to fine tune its polarisation such that both FROG
pulses have the same intensity. Next the transmitted part is variably delayed
in a retroreflector consisting of two mirrors (BBSQ1-E03, Thorlabs) on top of a
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silver mirror

incoupling mirror

copper link

translation stage

translation stage

scraper mount

scraper mirrors
cooling clamp
scraper mount

copper link

copper links

outcoupling mirror

crystal mount

Figure 3.5: Close view of the MPC inside design with exemplary beam path. the
incoupling mirror guides the beam (red) onto the small scraper mirror
connected with an arm to the scraper mount. Then, the beam prop-
agates back and forth between the curved mirrors and passes through
the crystal until it is outcoupled by the second scraper, followed by
the outcoupling mirror. The position of curved mirror 1 and the crys-
tal can be fine-tuned with translation stages. The curved mirrors, the
scrapers and the crystal mount are cooled by cooling clamps with cop-
per links. The silver mirror is used for imaging the spot pattern on the
curved mirror with a camera from above. Adapted from [10].
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To FROG

retroreflector
on a stage

mirrors

waveplate

periscope

beamsplitter cubes

incoming
pulse

Figure 3.6: Design of the split-and-delay (SAD) line for FROG. The incoming
pulses are splitted at a 50:50 beamsplitter cube. The transmitted part
passes a waveplate before being variably delayed in a retroreflector on
top of a translation stage. The reflected part is guided by two mirrors
onto the second beamsplitter cube which mixes both pulse parts again.
From the second beamsplitter cube there are two ways to exit the box,
upwards onto the FROG breadboard with a periscope or horizontally.
Adapted from [10] with the kind help of Yannick Steinhauser.

translation stage (Q-545 Q-Motion® Precision Linear Stage, Physik Instrumente
(PI)) with a movement range of 26mm and step size of 6 nm. The relative time
delay τ of a pulse obtained by a stage movement of distance d is τ = 2d/c.
The at the first beam splitter reflected part is guided by two mirrors (Turning
mirror 45◦, 141501, Layertec) onto the second 50:50 beamsplitter cube (BS011,
Thorlabs) which mixes both pulse parts again. From the second beamsplitter
cube there are two ways to exit the box, horizontally or upwards onto the FROG
breadboard. For the latter, I designed a fixed periscope with a glued-in mirror
(Turning mirror 45◦, 141501, Layertec) at 45° angle.
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3.3.2 FROG breadboard

A breadboard for FROG, to be flexibly attached on top of the SAD line, was
designed by me. This setup allows for pulse measurements when needed while
conserving space. Figure 3.8 shows the model of the breadboard whose optical
set-up is condensed in Figure 3.7. With a home-built periscope, the light pulse
E(t) and its time-shifted copy are directed onto the breadboard. The periscope’s
bottom-part has a broadband dielectric mirror (BB1-E03, Thorlabs) glued in at a
45◦ angle directing the light upwards. Its top-part can contain one or two sepa-
rately adjustable mirrors (BBSQ1-E03 in mount KMSS/M, Thorlabs) for interfer-
ometric or non-collinear FROG respectively. The beam height with respect to
the breadboard is 71.7mm. To obtain this height the breadboard can be slightly
moved in the plane to ensure the upcoming light hits the periscope at the correct
beam height. The breadboard position on top of the SAD box can be marked by
screwing two metal blocks at the breadboard bottom to the boxes’ walls.
The working principle of the FROG breadboard is illustrated in Figure 3.7: First,
the light is focused by a lens (f = 75mm, LA1608-B, Thorlabs) into a BBO crystal
(BBO-652H, EKSMA optics, �12.7mm) with a thickness of d = 1mm. The crys-
tal is mounted in a home-built one-inch mount allowing for a defined rotation in a
two-axis crystal mount (POLARIS-K1VS2, Thorlabs). Before the crystal, a polar-
ising beam splitter cube (PBS12-1064-HP, Thorlabs) can be added to filter out the
small amount of light whose polarisation changed when passing the beam splitters
in the SAD line. This process helps improve the phase-matching of the two pulses.
A collimation lens (f = 75mm, LA1257A, Thorlabs) guides the light to a dielec-
tric mirror (DMSP1500, Thorlabs). The mirror transmits a 95% of the infrared
and reflects the generated SHG onto a fiber coupler (PAF-X-15-A, Thorlabs). A
single-mode fiber (custom made SM450 FC/APC to SMA) transmits the green
SHG light to a spectrometer. We employ an off-the-shelf spectrometer (Qmini
VIS, AFBR-S20M2VI, Broadcom) or a home-built echelle-grating spectrometer
[24] which is detailed in the next section.
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Figure 3.7: Schematic optical set-up of the FROG breadboard. The light pulse
E(t) and its by τ time-shifted copy are focused into a BBO crystal for
SHG. A collimation lens guides the light to a dielectric mirror which
transmits the main part of the infrared and reflects the green second
harmonic onto the fiber coupler. Adapted from [24].

3.3.3 Spectrometer

To resolve the second harmonic a home-built Czerny-Turner-Spectrometer is em-
ployed. Its description follows [24]. In Figure 3.9, the optical scheme and design
of the spectrometer are shown. The second harmonic is incoupled into the alu-
minium box of the spectrometer with a single-mode fiber (P2-460B-PCSMA-1)
with 4.2µm mode diameter. It hits a prism mirror (MRA20-E02, Thorlabs Inc.),
passes a bandpass filter (wavelengths range 485 nm − 565 nm, FGV9, Thorlabs
Inc.) and is collimated by a first curved mirror (600mm radius of curvature, 092-
0125R-600, EKSMA Optics). An echelle grating with a line density of 92mm−1

at an angle of incidence of about π/2 spectrally resolves the colours. A second
curved mirror (600mm radius of curvature, CM750-500-P01, Thorlabs Inc.) colli-
mates the spectrum onto a line camera (pixel size: 14 µm×56 µm, LC100, Thorlabs
Inc.). The line camera is operated by a home-written python library and records
a 2048 pixel spectrum.
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3.3 FROG set-up
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Figure 3.8: Design of the FROG breadboard with beam path for interferometric
FROG. The upcoming infra-red laser pulse and its time delayed copy
(red, left-side) are reflected horizontally by an adjustable mirror. A
focusing lens focuses the pulses onto a BBO crystal in a rotable mount
on top of a translation stage. The thereby generated SHG is shown
in green. Only the SHG part of the collimated light is reflected on a
dichroic mirror, then guided to a fiber coupler.
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3.3 FROG set-up
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Figure 3.9: Schematic overview a) and design b) of the home-built Czerny-Turner-
Spectrometer. The fiber-incoupled light hits a prism mirror, is band-
pass filtered and reflected on a first curved mirror towards the echelle
grating. Here the spectral components are reflected under a slightly
different angle and mapped by a second curved mirror onto a line cam-
era. Adapted from [24].
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3.3 FROG set-up

Calibration

The spectrometer has been calibrated with an Iron-Neon calibration lamp (P826,
Photron Pty Ltd.). The recorded spectrum, an average of 10 scans with an in-
tegration time of 400ms, is shown in Figure 3.10. The peaks have been fitted
by Gaussian distributions in order to determine the pixel number of the maxima
which are indicated by grey lines in the plot. To relate the pixel positions to wave-
lengths for the second x-axis, a quadratic regression has been done in Figure 3.11.
The peak around 1650 pixels has not been taken into account as its shape deviates
from a Gaussian and there is no corresponding transition in the FeNe spectrum.
The other peaks could be related to the literature values of [43].
A quadratic regression of Figure 3.11 yields the wavelength λ in dependence of the
pixel position x

λ(x) = −1.229 · 10−7 nm

px2
· x2 + 8.193 · 10−3nm

px
· x+ 511.970 nm (3.1)

with a quadratic mean squared error of 4.2× 10−2 nm.
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Figure 3.10: Calibration of the Czerny-Turner-Spectrometer with the spectrum of
a FeNe-Lamp. Red spectrum recorded with 400ms integration time
of the line camera and averaged over 10 scans. The peaks are fitted
with Gaussian functions whose maximum is indicated by the grey
vertical lines. (The peak around 1650 pixels was not used as its shape
deviates from a Gaussian and there is no corresponding transition in
the spectrum of FeNe.) Comparing the spectrum to the theoretical
expectation [43] yields the corresponding wavelength axis.
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Figure 3.11: Calibration of the Spectrometer with the spectrum of a FeNe-Lamp.
The quadratic regression relates the in Figure 3.10 determined pixel
values of the peaks to their literature values from [43].
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4 Results and Discussion

4.1 Pulse characterisation before the MPC

In this section the laser pulse is characterised after the pulse preparation stage,
explicitly after the grating compressor (see Figure 3.1). In the following this mea-
surement position will simply be called "before the MPC". The pulse character-
isation is effected firstly with a commercial autocorrelator and secondly with the
self-built FROG set-up.

4.1.1 Autocorrelation

Figure 4.1 presents the autocorrelation of a commercial autocorrelator (pulseCheck
15, APE). The commercial autocorrelator uses the same measurement principle as
a FROG apparatus: One pulse is variably delayed relative to a second pulse,
thereafter, they are overlapped in a nonlinear crystal. The power of their second
harmonic is measured over the delay. Unlike FROG, this setup does not resolve
the power spectrally, requiring an assumption of the pulse shape to estimate the
pulse length. A Gaussian profile was assumed in this analysis, yielding a pulse
duration of τ = (187±2) fs. Nevertheless, the Gaussian fit falls short of accurately
modeling the low-power regions, suggesting a more complex pulse shape.

4.1.2 FROG

In the following, the FROG results recorded with the self-designed set-up are pre-
sented. Starting from a raw FROG trace, first a noise correction is applied and
then the retrieval process optimised.
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4.1 Pulse characterisation before the MPC
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Figure 4.1: Autocorrelation measured before the MPC with a commercial autocor-
relator. The SHG power (blue) is depicted over the time delay between
the two pulses. Assuming a Gaussian pulse shape (black), the pulse
duration is retrieved as τ = (187 ± 2) fs. Visibly a Gaussian fit does
not represent the low power regions properly which indicates a more
complex pulse shape. The code for this plot was generated with the
assistance of [44].
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Figure 4.2: Pulse spectrum measured before the MPC. The power (blue) depending
on angular frequency ω and corresponding wavelength is fitted by a
Gaussian (black) which resulted in a bandwidth of ∆ω = (16.22 ±
0.11)THz. This translates to a wavelength bandwidth of ∆λ = (9.2±
0.2) nm. The code for this plot was generated with the assistance of
[44].

For comparison with the FROG results, a measured pulse spectrum is illustrated in
Figure 4.2. The spectrometer (Qmini NIR, AFBR-S20M2NI, Broadcom, spectral
resolution 0.8 nm) recorded for each wavelength a corresponding power (blue line).
Considering its later detailed use for retrieval optimisation, the spectrum is fitted
by a Gaussian (black line) over angular frequency ω. The fit yields a bandwidth
of ∆ω = (16.22 ± 0.11)THz which corresponds to a wavelength bandwidth of
∆λ = (9.2± 0.2) nm.

The raw FROG trace is shown in the left panel of Figure 4.3. For each delay
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4.1 Pulse characterisation before the MPC

between the two pulses a spectrum is depicted as a vertical line using a logarithmic
colour scale for its intensity values. For the following features, noise corrections
have been applied:

Symmetry Symmetry with respect to delay is an inherent feature of an SHG
FROG trace. Thus all retrieved traces will be symmetrical, therefore this
symmetry is enforced on the measured trace. Firstly, the center of mass of
the frequency marginals (Equation 2.46) has been defined as the zero delay
symmetry axis. Then, an arithmetic mean of the two values with the same
delay distance to this symmetry axis has been employed.

Stray light Since the spectrum around zero delay is broader than in a separate
spectral measurement (see Figure 4.2), stray light, especially at high powers,
in the spectrometer is the assumed cause. Hence, for each delay column an
intensity correction is substracted. This intensity correction is the sum of
the 90 least intensities per column which in total contains 4096 intensities.
Afterwards, all negative values are set to zero.

Noise The vertical lines and isolated clusters in the raw trace are likely noise or
artefacts. However, they could be a part of the trace to some extent since
some retrieved traces do contain isolated clusters. Consequently, a balance
had to be struck to ensure the elimination of these vertical lines and isolated
clusters was sufficiently rigorous, yet not deleting too many trace features.
This was done by setting pixels with more than four non-zero neighbors to
zero, employed 90 times in a row.

The next step is the pulse retrieval form the noise-corrected trace using the ePIE
retrieval algorithm, detailed previously in Figure 2.10. The traces spectrum in Fig-
ure 4.3 does not show a Gaussian profile when comparing the estimated integrals
over the delay at each wavelength. Hence, the spectrum measured before the MPC
from Figure 4.2 is included into the retrieval process with a randomised update
strength between 0.05 and 0.08. After 78 iterations the FROG error stabilised
at G = 1.49 × 10−3. Figure 4.4 shows a comparison between the thus retrieved
trace (b) and the noise-corrected ePIE-input (a). The FROG error alone is not a
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4.1 Pulse characterisation before the MPC
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Figure 4.3: Raw trace (left panel) versus noise corrected FROG trace (right panel)
measured before the MPC. For each delay between the two pulses a
spectrum is depicted as a vertical line using a logarithmic colour scale
for its intensity values. The following noise corrections have been ap-
plied: To enforce symmetry with respect to zero delay an arithmetic
mean is employed. Since the spectrum around zero delay is broader
than in a separate spectral measurement (see Figure 4.2), stray light
at high powers in the spectrometer is the assumed cause. Therefore,
a stray light correction has been applied, which subtracts in each col-
umn (containing 4096 values) its 90 least values, then setting negative
values to zero. The vertical lines and isolated clusters in the raw trace
are likely noise or artefacts, but could to some extent be a part of the
trace. Thus, a noise clean-up setting pixels with more than four non-
zero neighbors to zero has been employed 90 times in a row. The code
for this plot was generated with the assistance of [44].
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4.1 Pulse characterisation before the MPC
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Figure 4.4: Noise corrected FROG trace from 4.3 (a) with its corresponding re-
trieved trace (b) using the ePIE algorithm with the option of including
the spectrum measured before the MPC (see Figure 4.2) into the re-
trieval process with a random update strength between 0.05 and 0.08.
After 78 iterations the FROG error stabilised at G = 1.49× 10−3. The
retrieved trace resembles the original, though there are differences in
the fringes. The code for this plot was generated with the assistance
of [44].
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4.1 Pulse characterisation before the MPC
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Figure 4.5: The retrieved pulse shape corresponding to the noise-corrected raw
trace in Figure 4.3 is depicted in the spectral (a) and temporal do-
main (b). In (a) the pulse’s spectral density (PSD) (blue) shows a dip
at around 1040 nm in contrast to the expected Gaussian distribution.
Some features vary from retrieval to retrieval: The depth of the dip (by
about 100%), the form of the peak at about 1039 nm and the height
of the thin peak at about 1041 nm (by about 200%). The latter is
the peak of the spectrum measured before the MPC included in the
retrieval process. The spectral phase (orange dotted in (a)) and the
temporal phase (orange dotted in (b)) most resemble the theoretic case
of a cubic spectral face in Figure 2.9. The intensity distribution (blue
in (b)) determines a full width at half maximum (FWHM) of 234 fs
from the width without employing a fit. For 19 retrievals of this trace,
the pulse duration remains in the interval 210 fs to 240 fs. Further a
train of post-pulses which is ambiguous to a train of pre-pulses. The
code for this plot was generated with the assistance of [44].
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4.1 Pulse characterisation before the MPC

sufficient criterion for the retrieval’s accuracy. Due to this, the visual agreement
between input and retrieved trace needs to be analysed. This analysis is combined
with the analysis of the retrieved pulse shape in Figure 4.5. (a) shows the power
spectral density (PSD) (blue line) and spectral phase (orange dotted line) over
the wavelength. In (b) the corresponding intensity (blue line) and phase (orange
dotted line) are depicted in the temporal domain. A full width at half maximum
(FWHM) of 234 fs is deduced from the temporal width without employing a fit.
It varies from retrieval to retrieval in the range 210 fs to 240 fs.

At delay zero, the maximum intensity of the retrieved trace, with respect to the
noise-corrected raw trace, is shifted by approximately 0.3 nm to ∼ 521.5 nm. This
leads to a maximum PSD at about 1043 nm in Figure 4.5 (a). Whereas, in the
spectrum measured before the MPC (see Figure 4.2) the maximum intensity is at
1040.2 nm which is more than 2 nm lower than in the noise-corrected raw trace.

At 1040 nm the PSD in Figure 4.5 (a) inhibits a dip. The depth of this dip varies
from retrieval to retrieval. Additionally, the shape of the peak at 1039 nm varies
slightly from retrieval to retrieval. Thus the retrieval in the wavelength range of
about (520.0±0.5) nm is ambivalent. It could be a sign for less reliable data in that
wavelength range, which corresponds to a certain pixel range of the line camera in
the home-built echelle spectrometer.
At 1041 nm the PSD in Figure 4.5 (a) shows a thin peak. The height of this peak
varies significantly, sometimes tripling, from retrieval to retrieval. This variation
results from the inclusion of the spectrum measured before the MPC into the re-
trieval with a randomised update strength.
At 521.5 nm of the noise-corrected raw trace the delay width is with about 1000 fs
about 600 fs more narrow than for adjoining wavelengths. This dip in delay width
has only been retrieved partially, and its presence is not influenced by the inclu-
sion of the spectrum measured before the MPC in the retrieval process. The delay
width dip has no representation in the retrieved PSD as the latter originates from
the integral over the delay not the delay width.
The retrieved trace exhibits more features in the fringes compared to the noise-
corrected raw trace, suggesting that the noise correction may have eliminated some

65



4.2 Pulse compression in the MPC using YAG

inherent characteristics of the fringes. However, since the fringes are at very low
intensities, their impact on the retrieval process is likely minimal.
An additional advantage of a FROG measurement over an autocorrelation is the
access to phase information. In Figure 4.5, the spectral phase (orange dotted line
in (a)) and the temporal phase (orange dotted line in (b)) closely align with the
theoretical scenario of a cubic spectral phase in Figure 2.9. A cubic spectral phase
comes with a train of post-pulses. It’s important to note that a train of post-pulses
is indistinguishable from a train of pre-pulses in an SHG FROG.

Upon reviewing the progress made in this work compared to the starting point il-
lustrated in Figure 1.3, the previously observed wavelength-dependent noise is no
longer apparent. However, stray light has increased in intensity. Notably, the sym-
metry of the raw trace has significantly improved. These improvements stem from
a shortened path length between the split-and-delay-line and the FROG set-up,
which reduces the impact of tip-and-tilt effects on the delay stage. Additionally,
employing 50:50 beam splitters instead of polarising beam splitters in the SAD
line helps minimise changes in polarisation effects.

In summary, an autocorrelation initially estimated the pulse duration to be τ =

(187 ± 2) fs, suggesting a pulse shape more complex than Gaussian. Symmetry,
stray light, and noise corrections were applied prior to pulse retrieval, affecting
some inherent trace information.
The retrieved PSD exhibits a maximum near 1043 nm and a dip around 1040 nm,
its shape varying across retrievals. This diverges from an independently mea-
sured Gaussian distribution peaking at 1040.2 nm. In the temporal domain, the
210 fs to 240 fs long pulse features a train of post- or pre-pulses. This closely
resembles the theoretical scenario of a cubic spectral phase as shown in Figure 2.9.

4.2 Pulse compression in the MPC using YAG

This section details the pulse compression results of the MPC with two 5mm

thick YAG plates at its center. Achieving the optimal beam waist at the focus in-
volves balancing a smaller beam waist, which increases spectral broadening, with
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4.2 Pulse compression in the MPC using YAG

a larger beam waist, which facilitates easier outcoupling due to fewer spots. A
target beam waist at focus of w0 = 100µm was chosen, corresponding to a cell
length of 493mm and 11 spots per circle. In the case of m = 3, I managed to fit
14 spots on the first curved mirror, excluding the spots on the in- and outcoupling
scraper mirrors, resulting in 30 passes. In the experiment, the beam exhibited a
slight ellipticity (w0,x = 83µm, w0,y = 103µm) and experienced slight changes in
collimation with increasing power (an increase of 4µm for a power increase from
0.7W to 6.4W).
This cell configuration enables an analysis of power transmission, spectral broad-
ening, and the resulting pulse shape, as discussed in the following sections.

4.2.1 Power transmission

Figure 4.6 presents the power transmission of the MPC with 30 passes through
two 5mm thick YAG plates (represented by orange dots) compared to the empty
cell (represented by blue dots) as a function of the input power. The impact
of the mode-matching telescope (specifically the in- and out-coupling parts) has
been accounted for by assuming no significant power-dependent changes from its
baseline transmission of 96.9% at laser powers below 500mW. An error-bar has
been representingly obtained at 30W by taking into account the power changes
during a time span of 20min and reproducibility.
In the empty cell, the transmission remains relatively steady at around 92%, while
in the presence of YAG plates, the transmission decreases by 8% as the input power
increases from 12W to 66W. This reduction in transmission is likely caused by
misalignment of the cell due to the nonlinear Kerr effect and thermal expansion.

Comparing these power transmission results with the starting point, specifically the
results obtained with two plates of fused silica in [20], reveals some key differences.
First, it should be noted that the MPC configuration varied slightly, featuring a
beam waist of approximately 95µm and 34 passes. Therefore, the power transmis-
sion with two fused silica plates ∼ 81% and in an empty cell ∼ 85% as reported in
[20] would be around 2% better for only 30 passes. Thus, overall, the transmission
of the empty cell appears to have improved by about 5%. Contrary, the transmis-
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Figure 4.6: Power transmission of the MPC with 30 passes. The transmission of
the cell containing two 5mm thick YAG plates (orange dots) decreases
slightly with increasing laser power whereas, the transmission of the
empty cell remains approximately constant. The error-bar has been
obtained by taking into account the power changes during a time span
of 20min and reproducibility. The impact of the mode-matching tele-
scope (specifically the in- and out-coupling parts) has been accounted
for by assuming no significant power-dependent changes from its base-
line transmission of 96.9% at laser powers below 500mW. The code
for this plot was generated with the assistance of [44].
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4.2 Pulse compression in the MPC using YAG

sion with substrates is decreased by over 3%. The cause might be different surface
properties of the two substrates.
Previously, with fused silica, misalignments occurred at input powers above 55W,
leading to a rapid decrease in output power and making stable operation unattain-
able [20]. Notably, despite a slight drop in transmission, the cell could still be
operated stably up to the maximum possible input power of 66W. This improve-
ment is probably attributed to the reduction in the number of passes from 34 to
30. As a result, the slight alignment changes due to SPM are less likely to cause
clipping at the scrapers.

4.2.2 Spectral broadening

The spectral broadening of the pulse after 30 passes through two 5mm thick YAG
plates is shown in Figure 4.7. The spectra were captured using a spectrometer
(Qmini NIR, AFBR-S20M2NI, Broadcom) with a spectral resolution of 0.8 nm,
without post-compression. Panel (a) displays the logarithmic PSD for each wave-
length, with each colour representing a different incident (or input) power level.
The spectra were recorded under various spectrometer settings, so each spectrum
has been normalised and scaled according to its respective incident power. Panel
(b) presents a logarithmic colour mesh of the PSD for each incident power. This
representation highlights the increase in bandwidth as incident power rises. At
an incident power of 57.3W, significant spectral components can be seen across
the full 40 nm range. The Gaussian spectral shape evolves into two distinct peaks
with side fringes as the incident power increases. The maximum intensity shifts
to 1030 nm at 57.3W.
According to theoretical considerations, what bandwidth gain can we expect?
Given the retrieved pulse duration of 210 nm to 240 nm and an average input power
of 58.3W, the pulse’s peak power is calculated as Pp = (2.50 ± 0.16)MW. Us-
ing Equation 2.38, the B-integral per pass is Bpass = 0.190 ± 0.012π. Applying
Equation 2.39 leads to a spectral broadening factor of bn = 7.9 ± 0.6. Given the
bandwidth of the spectrum measured before the MPC as ∆λ = (9.2 ± 0.2) nm,
the theoretical expectation for the output bandwidth is (72.7± 6.5) nm. However,
as shown in Figure 4.8, we are far from this theoretical expectation. The band-
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4.2 Pulse compression in the MPC using YAG

Figure 4.7: Spectral broadening in the MPC using two YAG plates with a com-
bined thickness of 10mm. In a) the power spectral density (PSD) is
shown across the wavelength spectrum, with different colors represent-
ing varying incident power levels. As the incident power increases, no-
table effects are observed: side fringes emerge, the bandwidth expands,
and there is a shift in the maximum of the PSD. In b) these features
are visualised in a colour mesh. For each combination of wavelength
and incident power a logarithmic colour scale denotes the normalised
PSD. The code for this plot was generated with the assistance of [44].
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4.2 Pulse compression in the MPC using YAG

width, previously defined as full width at half maximum, is not an appropriate
measure for evaluating the spectrally broadened shape. Likely, the chirp per pass
has not been adequately compensated, resulting in a reduction of pulse peak power
and significantly lowering the spectral broadening effect with each pass. Further,
imprecise mode-matching might reduce the obtained spectral broadening. Impre-
cision in mode-matching can result from the power-dependent Kerr lensing, but
also from a power-dependent change of the input beams focus size and position or
from the beam’s ellipticity.
This paragraph evaluates the obtained spectral broadening in comparison with

the initial starting point—the fused silica results from [20]. Figure 4.8 presents
a comparison plot of the earlier results with 34 passes through two slightly off-
centered 6.35mm thick fused silica plates at an input power of 54.1W, compared
to my YAG results.
The spectra are normalised to their total power density (area under the PSD
curve), with their PSD plotted against wavelength. My main result, involving 30
passes through two 5mm thick YAG plates at an input power of 57.3W, is illus-
trated as the yellow shaded area. As a measure for the spectral broadening the
standard deviation σ is employed, which is related to the FWHM of a Gaussian
by σ ≈ FWHM/2.355 [45]. Thus σ = 3.9 nm for the initial pulse before the MPC
of Figure 4.2. In comparison, the main result with σ = 8.3 nm is more than twice
broader.
The input power varies slightly among the different results, making it essential
to estimate the input power dependence. Thus, the same configuration with 16%

less input power is represented by the sandy brown line, showing slightly reduced
PSD in the wings and an increase in maximum wavelength position by approxi-
mately 1 nm. This spectrum with σ = 7.7 nm bears a closer resemblance to the
yellow shaded main result than the other spectra, despite the highest input power
difference. Hence, slight variations in input power do not significantly affect the
main findings of this comparison. Under the same theoretical MPC configuration,
but without improvements in mode-matching and prior beam collimation, the use
of one 6.6mm thick YAG plate (chocolate brown line) leads with σ = 6.7 nm to
significantly less broadening.
Additionally, another improvement, the use of chirped curved mirrors in the cell,
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Figure 4.8: Comparison of different spectral broadening results in the MPC. The
normalised PSD is plotted against wavelength, with my primary re-
sult—30 passes through two 5mm thick YAG plates at an input power
of 57.3W—illustrated as the yellow shaded area. To assess the de-
pendence on input power, the same configuration with 16% less input
power is shown by the sandy brown line, resembling the primary result
the most. The use of one 6.6mm thick YAG plate with 9% less input
power (chocolate brown line) reduces a measure for spectral broaden-
ing, the standard deviation, from 8.3 nm to 6.7 nm.
34 passes through two slightly off-centered 6.35mm thick plates of fused
silica (blue line) at 6% less input power exhibit slightly more broaden-
ing than the single YAG plate, but with σ = 7.2 nm still 15% less than
the primary result with two YAG plates. Fused silica results from [20].
The code for this plot was generated with the assistance of [44].
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4.3 Pulse characterisation after the MPC

had not yet been implemented in the following fused silica results from [20]. 34
passes through two slightly off-centered 6.35mm thick plates of fused silica (blue
line) at 6% less input power exhibit with σ = 7.2 nm slightly more broadening
than the single YAG plate, but still 15% less than my primary result with two
YAG plates.
Overall, the various improvements and the switch from fused silica to YAG have
successfully achieved the goal of increasing spectral broadening; the standard de-
viation increased by 15%.

4.3 Pulse characterisation after the MPC

In this section, the MPC compressed pulse is characterised using the FROG set-
up. As previously described, in the MPC the pulses pass through two YAG plates
with a total thickness of 10mm, 30 times. Subsequently, a wedge (BSF10-B,
Thorlabs) reflects 0.6% of the outgoing pulse power into the FROG setup without
any prior post-compression. The FROG trace, shown in Figure 4.9, was recorded
with an off-the-shelf spectrometer (Qmini VIS, AFBR-S20M2VI, Broadcom) with
a spectral resolution of 0.8 nm, at an MPC input power of 57W. The spectrom-
eter was changed, because the spectrum exceeded the current calibration range,
512 nm to 528 nm, of the home-built echelle spectrometer. This change of spec-
trometer reduced the number of data points per spectrum from 2048 to 215. The
trace’s intensity is depicted on a logarithmic scale for each combination of delay
and wavelength. Here, the delay axis is not centered at the center of mass of the
delay marginal as for all previous cases, but at the previously determined zero de-
lay position. The wavelength range of the trace is broader, approximately 25 nm,
compared to the previous range of about 9 nm (see Figure 4.2). The most notable
observation is the asymmetry of the trace with respect to zero delay, which is un-
expected in an SHG trace.

The only known cause of such asymmetry is spatial chirp, as described by S.
Akturk and colleagues [46]. They established that a linear spatial chirp results in a
shear of the trace; however, the observed trace in this case appears more complex,
suggesting the presence of a nonlinear spatial chirp. The wedge in our set-up
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4.3 Pulse characterisation after the MPC

after the MPC might introduce a spatial chirp; if this occurs, it is observed only
for the broadened spectrum at higher powers. Further investigation is required to
understand and eliminate this chirp from the trace to apply the retrieval algorithm.
To sum up, the FROG trace is asymmetric only for the compressed pulse at high
input powers, associated with a spatial chirp.
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Figure 4.9: FROG trace after the MPC with two YAG plates with a total thickness
of 10mm and an input power of 57W. For each delay between the pulse
copies and each wavelength the corresponding intensity is depicted by a
logarithmic colour scale. The wavelength range of the trace is broader,
approximately 25 nm, compared to the previous range of about 9 nm
(see Figure 4.2). Consequently, this trace was captured using an off-
the-shelf spectrometer, offering 215 values per spectrum, rather than
the home-built echelle spectrometer.A notable feature of this trace is
the asymmetry with respect to zero delay, which is unexpected in an
SHG trace. The only known cause of such asymmetry is a spatial chirp,
as described in [46]. Further investigation is required to understand and
eliminate this chirp from the trace to apply the retrieval algorithm. The
code for this plot was generated with the assistance of [44].
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5 Conclusion and Outlook

This research aimed to optimise the pulse compression within a MPC through
pulse characterisation by FROG. A pulse duration of 210 fs to 240 fs with post-
pulses results in an achievable pulse peak power in the MPC of about 2.5MW,
notably lower than the previously estimated 4MW [10]. Employing YAG instead
of fused silica increases nonlinear effects, thus improving spectral broadening.

Comparing the FROG traces for pulse characterisation with the starting point
(Figure 1.3), it is evident that their symmetry and noise level have significantly
improved. The observed pulse shape can be attributed to the scenario of a cubic
spectral phase in Figure 2.9. In future experiments, it might be advantageous to
align the FROG in a non-interferometric setup for faster data acquisition.
The temporal pulse compression in our MPC had begun with a minimal pulse
duration of ∼ 90 fs at 55W input power [20] aiming for 30 fs. Improvements
in mode-matching, alignment and changing to curved mirrors with a higher re-
flectivity increased the power transmission of the empty cell by ∼ 5% to 92%.
Transitioning from fused silica to YAG, which boasts a more than twofold higher
optical Kerr coefficient [31], increases the necessity for a direct chirp compensa-
tion. Hence, the new curved mirrors were designed for this purpose with a GDD of
−200 fs2 each. Additionally, the cell’s output power is now stable up to the maxi-
mum input power of 66W, likely attributed to reducing the number of passes from
34 to 30. The MPC has more than doubled the pulse’s spectral width. Compared
to the previous results with fused silica, spectral broadening increased by 15%,
although it remains notably below theoretical expectations. This discrepancy sug-
gests firstly, that the per-pass chirp compensation provided by the curved mirrors
is insufficient for the 10mm thickness of YAG, resulting in significant reductions in
the pulse’s peak power and consequently, the Kerr effect. Hence, exploring options
such as reducing the thickness of YAG warrants further investigation. Secondly,
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inaccuracies in mode-matching affect the spectral broadening. Thus, a future di-
rection of work involves monitoring power-dependent changes in mode-matching
by imaging the transmission of the second curved mirror and compensating for
them.
A FROG trace of the pulse after the MPC without a post-compression revealed
a notable asymmetry with respect to zero delay. This asymmetry is attributed to
a spatial chirp, likely of a nonlinear nature. Investigating and understanding this
spatial chirp before implementing post-compression techniques is advisable.
Generally, the pulse characterisation has shown that the pulse’s peak energy, at
2.5MW, remains below the critical power of self-focusing for fused silica, 4.3MW

[31]. Implying that conventional waveguides could serve as a viable alternative to
our MPC. However, future plans to introduce a new fiber amplifier before pulse
compression will surpass the peak powers compressable by waveguides, thus ne-
cessitating the continued use and optimisation of the MPC.

Pulse compression in the MPC aims to achieve higher pulse peak powers, thereby
increasing the yield of HHG. Through the HHG process, we transition our NIR
frequency comb to the XUV region. Thus, a higher HHG yield allows to attain
higher harmonic orders. Additionally, the broader spectrum resulting from pulse
compression allows us to reach more HCI transitions. The implementation of a
FROG set-up paves the way for monitoring the HHG process in real-time with a
fast autocorrelation or a FROG trace. Well-characterised carrier light would allow
for optimising and error spotting during the HHG process.
These capabilities are a significant advancement in precision spectroscopy on HCI,
offering the potential to uncover new insights into the fine-structure constant and
atomic clocks. What other fields will benefit from employing high power pulse
compression MPCs?
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BBO beta barium borate. 8, 19, 51–53
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EBIT electron beam ion trap. 5
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https://physics.nist.gov/cgi-bin/ASD/lines1.pl?spectra=Fe+1%3B+Ne&output_type=0&low_w=512&upp_w=527.5&unit=1&submit=Retrieve+Data&de=0&plot_out=0&I_scale_type=1&format=0&line_out=0&en_unit=0&output=0&bibrefs=1&page_size=15&show_obs_wl=1&show_calc_wl=1&unc_out=1&order_out=0&max_low_enrg=&show_av=2&max_upp_enrg=&tsb_value=0&min_str=&A_out=0&intens_out=on&max_str=&allowed_out=1&forbid_out=1&min_accur=&min_intens=&conf_out=on&term_out=on&enrg_out=on&J_out=on
https://www.openai.com/chatgpt
https://mathworld.wolfram.com/FullWidthatHalfMaximum.html
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