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Abstract
EMOKINE is a software package and dataset creation suite for emotional full-body movement research in experimental 
psychology, affective neuroscience, and computer vision. A computational framework, comprehensive instructions, a pilot 
dataset, observer ratings, and kinematic feature extraction code are provided to facilitate future dataset creations at scale. 
In addition, the EMOKINE framework outlines how complex sequences of movements may advance emotion research. 
Traditionally, often emotional-‘action’-based stimuli are used in such research, like hand-waving or walking motions. Here 
instead, a pilot dataset is provided with short dance choreographies, repeated several times by a dancer who expressed dif-
ferent emotional intentions at each repetition: anger, contentment, fear, joy, neutrality, and sadness. The dataset was simul-
taneously filmed professionally, and recorded using XSENS® motion capture technology (17 sensors, 240 frames/second). 
Thirty-two statistics from 12 kinematic features were extracted offline, for the first time in one single dataset: speed, accel-
eration, angular speed, angular acceleration, limb contraction, distance to center of mass, quantity of motion, dimensionless 
jerk (integral), head angle (with regards to vertical axis and to back), and space (convex hull 2D and 3D). Average, median 
absolute deviation (MAD), and maximum value were computed as applicable. The EMOKINE software is appliable to other 
motion-capture systems and is openly available on the Zenodo Repository. Releases on GitHub include: (i) the code to extract 
the 32 statistics, (ii) a rigging plugin for Python for MVNX file-conversion to Blender format (MVNX=output file XSENS® 
system), and (iii) a Python-script-powered custom software to assist with blurring faces; latter two under GPLv3 licenses.
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Summary & background

Summary

EMOKINE is a software and dataset creation framework 
for highly controlled kinematic datasets of emotionally 
expressive full-body movements. The primary novelty of 
this framework is that it provides the research commu-
nity with a set of 12 readily computed kinematic features 
(32 statistics in total) that can be used out-of-the-box by 
researchers in order to model emotional expressivity in 
full-body movement. For the first time, these 12 features 
are presented together: speed, acceleration, angular speed, 
angular acceleration, limb contraction, distance to center 
of mass, quantity of motion, dimensionless jerk (integral), 
head angle (with regards to vertical axis and to back), and 
space (convex hull 2D and 3D). A pilot dataset accompa-
nies this article, of realistic full-body movement stimuli, 
which have been designed and instantiated with all other 
parameters controlled so that most of the variability stems 
from the different expressed emotions. The pilot data for 
EMOKINE were recorded via the XSENS® system, how-
ever, the software is also appliable to data obtained from 
other motion-capture systems with minimal to no changes.

Based on the creation procedure of this pilot dataset, we 
describe a process by which such a dataset creation can be 
scaled up in the future, while ensuring mandatory levels of 
experimental control that are key for datasets to be used in 
experimental psychology and affective neuroscience with 
human participants (Christensen & Calvo-Merino, 2013; 
Christensen & Jola, 2015), and ensuring the technical 
detail required for datasets in computer vision and related 
disciplines. Importantly, instead of following the model of 
traditional datasets in emotion science that comprise emo-
tional-‘action’-based stimuli, like hand-waving or walking 
motions, the EMOKINE pilot dataset contains complex 
sequences of movements: 6-s-long dance choreographies. 
A dancer choreographed a series of short, simple ballet-
movement-inspired dance sequences of approximately 6 s 
in length, which corresponds to eight counts in dance nota-
tion. Then she performed the sequences six times each, 
expressing a different emotional intention at each repeti-
tion – namely anger, contentment, fear, joy, neutrality, 
and sadness. Classically, most datasets include only the 
‘basic’ emotions proposed by Paul Ekman and colleagues 
(Ekman, 1973/2015; Ekman & Friesen, 1971) – namely, 
anger, fear, joy, neutrality, and sadness. We extended the 
spectrum of expressed emotions in the EMOKINE pilot 
dataset by also adding the emotion ‘contentment’, which 
is another positive-valence emotion like joy, but of low 
arousal; symmetrical to what anger (negative valence, high 
arousal) is to sadness (negative valence, low arousal).

The EMOKINE suite includes:

(a) a detailed step-by-step procedure guide to create 
EMOKINE datasets at scale;

(b) a pilot dataset (recorded with the XSENS® system) 
with four different visual presentations for each video 
stimulus – namely (i) avatars, (ii) full-light displays 
(FLDs) with blurred face, (iii) point-light displays 
(PLDs), and (iv) silhouettes;

(c) the raw kinematic data for each stimulus of the pilot 
dataset, obtained via the XSENS® motion capture 
(LINK) system (via 17 sensors distributed on the body, 
recorded at 240 frames/second);

(d) the code to obtain 32 statistics from the 12 kinematic 
features;

(e) human observers’ emotion recognition rates and value 
judgments, which confirm the intended emotional cat-
egories of the pilot dataset.

The pilot dataset of EMOKINE is available for down-
load on the Zenodo repository and the software on GitHub. 
Releases on GitHub include:

(a) an extensive repository of code to extract the 32 sta-
tistics of the 12 kinematic features – namely, speed, 
acceleration, angular speed, angular acceleration, limb 
contraction, distance to center of mass, quantity of 
motion, dimensionless jerk (integral), head angle (with 
regards to vertical axis and to back), and space (convex 
hull 2D and 3D). Average, median absolute deviation 
(MAD) and maximum value were computed for each;

(b) A MVNX rigging plugin for Python that allows Blender to 
convert MVNX files to a Blender-friendly format (MVNX 
= output file of the motion capture XSENS system);

(c) Python-script-powered custom software to assist with the 
process of blurring faces. The latter two have been released 
under GPLv3 licenses, and all are available for download 
on GitHub (see data availability statement, Section 11).

The GitHub readme file includes an explanation on how to 
apply the EMOKINE software to data obtained from other sys-
tems. In particular, points (a) and (c) can be applied to any data 
including keypoint positions with minimal to no change. Point 
(b) naturally depends on the MVNX format (which is given by 
the XSENS system), but it can be ignored for other formats.

Background

Investigating emotion recognition competence is important 
due to its significance for psychosocial functioning (Cosmides 
& Tooby, 2000; Darwin, 1872/2009; Ekman, 1973/2015; 
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Ekman & Friesen, 1971). In the fields of emotion psychology, 
affective neuroscience, and computer vision, such research 
often relies on datasets that comprise stimuli of pictures or 
videos of facial and bodily expressions of emotions. Yet, 
compared to the extensive existing research on the recogni-
tion of emotions from facial expressions (Byron et al., 2007; 
Elfenbein & Ambady, 2002; O'Boyle Jr et al., 2011; Rosete & 
Ciarrochi, 2005; Rubin et al., 2005; Scherer & Scherer, 2011; 
Walter et al., 2012; Zuskin et al., 2007), the bodily channel of 
emotional expression has received less empirical attention, 
despite important calls to extend emotion perception research 
to this domain (Aviezer et al., 2012; Bellot et al., 2021; de 
Gelder, 2006, 2009; Keck et al., 2022; McCarty et al., 2017; 
Vaessen et al., 2018). Less stimulus materials are available, 
and available datasets suffer from limitations (discussed in, 
e.g., Christensen & Calvo-Merino, 2013; Christensen & Jola, 
2015; Smith & Cross, 2022). Besides, most full-body datasets 
of emotional expressions show actors performing different 
emotional actions; for instance, punching a fist in anger, sink-
ing to the floor in sadness, jumping with joy (Atkinson et al., 
2004; Crane & Gross, 2013; Dael et al., 2012; Gross et al., 
2010). However, this approach likely measures the ability to 
recognize familiar prototypical actions indicative of differ-
ent emotions, rather than perceptual sensitivity to emotional 
expressions (Shafir, 2016; Shafir et al., 2013). In order to 
avoid such confounding effects and investigate the manifesta-
tion of different emotions in one same human movement, a 
same-sequence approach can be a valid alternative, where a 
set of different movements are repeated several times, with 
each repetition corresponding to the expression of a different 
emotion. In other words, the expressor in every repetition 
performs the exact same reference movements, with the only 
source of intentional variability in the kinematics being due 
to the intended expression of a different emotion.

Therefore, walking, pointing, drinking, knocking, or throw-
ing movements have recently been proposed as a valid move-
ment alternative for emotion recognition and emotion percep-
tion research (Crane & Gross, 2007; Dekeyser et al., 2002; 
Heberlein et al., 2004; Krüger et al., 2018; Ma et al., 2006; 
Pollick et al., 2001; Roether et al., 2009; Vanrie & Verfail-
lie, 2004). Yet, such movements are rather simple and may 
be confounded with stereotypical assumptions about these 
movements. For example, in everyday life, walking patterns 
are typically associated with how much someone is rushing 
or with the existence of injuries. With the objective of reduc-
ing contextual cues from movement stimulus materials, and 
movement towards more varied patterns of movements, dance 
movements have recently been proposed as stimulus materials. 
Dance is, par excellence, an instance of emotionally expressive 
full-body movement (Boone and Cunningham, 1998; Boone 
and Cunningham, 2001; Christensen et al., 2019; Kirsch et al., 
2016; Dittrich et al., 1996; Orgs et al., 2016; Van Dyck et al., 
2017; Van Dyck et al., 2013; Van Meel et al., 1993). Dance 

choreographies can be created to be more varied than simple 
walking or throwing movements. Besides, compared to walk-
ing and throwing movements, using choreographies that are 
novel to participants in emotion perception research reduces 
possible familiarity effects. Besides, professional dancers are 
trained to express different emotional states with one same 
dance gesture and can therefore serve as models for stimulus 
materials (Christensen et al., 2019; Karin, 2016; Karin et al., 
2016). It is relevant to note that we are not proposing that 
same-sequence stimuli should completely replace emotional-
action-based stimuli in emotion research. We propose that 
these options are alternative stimuli materials and should be 
chosen depending on the research question. Here we focus on 
the advantage of same-sequence stimuli materials.

This same-sequence-different-emotional expressivity 
in dance movements is comparable to language. The same 
sentence can be spoken to sound either angry or happy to 
a listener, depending on how the expressor modulates their 
voice with their breathing and the muscles of their vocal tract 
(Bänziger et al., 2009; Scherer & Scherer, 2011; Scherer 
et al., 2017). How a dancer performs one same dance move-
ment sequence, at several repetitions, with different emotional 
intentions, has previously been found to convey these intended 
emotional states to human observers, even to those without 
dance experience (Christensen et al., 2017; Christensen et al., 
2019; Christensen et al., 2014; Christensen et al., 2023). In 
classical emotion-recognition tasks with dance movements, 
average recognition rates are, generally, above chance level, 
and vary between 18.04% (Christensen et al., major revisions), 
and 48% (Christensen et al., 2023; Smith & Cross, 2022).

With the advances of filming and motion-capture tech-
nologies of the past decades, new horizons have opened up 
for the digitization and analysis of full-body movement.

By combining these recent technologies with the same-
sequence-different-emotion approach, the EMOKINE frame-
work offers a novel route for emotion perception research 
with full-body movement. The stimuli design is based on 
previous datasets of dance movements that did, however, not 
include motion-capture technology (Christensen et al., 2023; 
Christensen et al., 2017; Christensen et al., major revisions; 
Christensen et al., 2019; Christensen et al., 2014; Smith & 
Cross, 2022).

Objectives

We had four objectives with EMOKINE:

(1) To create a pilot dataset of simple dance movement 
sequences, with each sequence performed by a dancer six 
times, each with a different intended emotion out of a pool 
of six possible emotions – namely anger, contentment, 
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fear, joy, neutrality, and sadness. The novelty of this work 
is that this same-sequence–different-emotion experimen-
tal design was complemented by time-resolved, whole-
body kinematics data, measured by motion-capture tech-
nology. Please note that this dataset was created to enable 
the development of the EMOKINE suite and contains por-
trayals from only one dancer. To ensure generalizability 
in future research using the EMOKINE software, datasets 
should include portrayals from more than one dancer.

(2) To render these pilot stimuli in four visual presenta-
tions for further study: (i) videos showing an avatar 
performing the movements, extracted from the XSENS 
propriety software (avatar videos); (ii) videos show-
ing the dancer in full light, but with blurred face, to 
avoid emotion recognition from the face (full-light dis-
plays; FLDs); (iii) videos showing point-light displays 
(PLDs), which have been rendered with a Blender-
based algorithm (Blender Community, 2018); and (iv) 
videos showing black-and-white silhouettes, where the 
movement has been extracted from a greenscreen back-
ground to show only a white silhouette moving in front 
of a black background (silhouette videos).

(3) To compute a total of 32 statistics of 12 kinematic 
features, for the first time, in one single dataset with 
same-sequence stimuli materials and make the software 
freely available.

(4) To obtain emotion-recognition judgments and beauty 
ratings from human participants for all the created 
stimuli mentioned above. The emotion-recognition 
judgments were obtained to validate the pilot dataset 
in terms of the intended emotional expression of the 
dancer. Beauty judgments were obtained to encourage 
the use of aesthetic judgment as an implicit emotion 
recognition task with future datasets. Previous research 
has shown that while emotion-recognition rates for a 
stimulus set may be low, significant differences can usu-
ally be found between stimuli intended to express dif-
ferent emotions (Christensen et al., 2023; Christensen 
et al., 2019), making aesthetic judgment (e.g., beauty, 
liking, etc.) an interesting implicit emotion-recognition 
task for the future.

Method

Ethical approval for the experiment was in place through the 
Umbrella Ethics approved by the Ethics Council of the Max 
Planck Society (Nr. 2017_12). For the observer experiment 
(performed online via the platform Prolific®; Peer et al., 
2021; Stanton et al., 2022), informed consent was obtained 
from all participants, and was given online through a tick-
box system. All methods were performed in accordance with 
the relevant guidelines and regulations.

Open science statement

In accordance with the framework for open and reproducible 
science (Munafò et al., 2017), all measures that we collected 
in the study are reported here.

Participants

Participant pilot dataset creation (one dancer)

One female former professional dancer with 20 years of 
ballet dance experience choreographed and performed the 
dance movement sequences.

Participants’ online experiment

In total, 172 participants (57 male, one other) participated in 
the human emotion-recognition task (mean age = 35.89 years, 
SD = 11.93, range, 18–65). From the original sample, 22 
participants were excluded due to technical issues (the video 
stimuli did not play), or for not passing attention checks (on 
two of the emotion-recognition trials, cartoon videos were 
shown with very obvious emotional expressions (Sponge 
Bob crying a river of tears; correct response: sad; and Mikey 
Mouse’s head turning red and exploding; correct response: 
angry). The experiment took approximately 50 min and par-
ticipants were paid via the Prolific platform (£8/h). Partici-
pants had an average of 1.5 years of hobby dance experience 
(SD = 5.05, range, 0–40). We had set the Prolific® filter to 
return only participants whose first language was English, to 
ensure complete comprehension of study instructions.

To determine the sample size, we used G*Power 3.1. 
(Faul et al., 2007). Because the stimuli of the EMOKINE 
dataset were presented to participants in four different types 
of visual presentations (avatars, full-light displays (FLDs), 
point-light displays (PLDs), silhouettes), there was a total 
of 216 stimuli. Rating this many stimuli could have led to 
participant fatigue. To avoid this, we opted for dividing stim-
uli randomly into four sets and determined the sample size 
for each group of participants for these four sets of stimuli. 
Subsequently, we confirmed that the percentage of correct 
responses given by participants in these four different groups 
to the stimuli was equivalent. We choose a threshold for a 
large effect size of d = .80 (Cohen, 1988) because large 
effect sizes indicate that the research finding has practical 
significance. We had initially planned to compare the per-
centage of correct responses between the four groups with 
an independent t  test. As a result, the suggested sample 
size calculation for independent samples t test (effect size 
= .80; alpha = .05; power = .90) was 28 per group. How-
ever, we tested at least 30 participants on each of the four 
sets to ensure full randomization (30 can be divided by six 
emotions, 28 cannot). Due to technical difficulties, the final 
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number of participants in each group was; group 1: N = 36; 
group 2: N = 32; group 3: N = 33; group 4: N = 31.

Materials

Hardware

Motion capture was performed by means of the MVN Link 
system (XSENS®, 2020, 2023). Motion capture in this con-
text is the act of recording the motion through time of a set 
of landmarks (also called keypoints) that are representative 
of a full-body human pose. This technology has matured 
mainly via two different approaches: optical solutions, in 
which markers on the body allow to locate the keypoints, 
and inertial/magnetic solutions, in which a set of sensors 
is placed on the body. Both approaches have advantages 
and disadvantages, but it is generally understood that while 
optical systems provide very high positional precision, iner-
tial systems are more robust, versatile, and provide more 
stable acceleration readings (Lim et al., 2016; Skogstad 

et al., 2011). We are using the latter method in the current 
research.

The XSENS® system combines inertial and magnetic 
sensors with advanced algorithms and biomechanical mod-
els to provide highly reliable and accurate readings with high 
spatio-temporal resolution (Schepers & Giuberti, 2018). 
This allows an optimal assessment of kinematic parameters 
for complex movement such as dance.

In its full-body configuration, the MVN Link system pro-
vides kinematic information from 23 keypoints via a set of 
17 wireless sensors embedded on different parts of a spandex 
suit that fits the dancer’s body. This setup is designed to 
allow for highly free and complex motion.

The keypoints are called “segments” in the XSENS Man-
ual (see Sections 7.2.5 and 15.4 for more details; XSENS 
Manual, 2020). For an overview of the 17 sensors and how 
they translate into information about the 23 keypoints, see 
Table 1 and Fig. 1 (reproduced from the XSENS manual, 
Section 15.4. (XSENS Manual, 2020), and the XSENS fact 
sheet about the biomechanical model; XSENS, 2023).

Table 1  The 23 body keypoints provided by the XSENS® software

Overview of the keypoints that were provided by the XSENS system and were used in subsequent analyses. This table has been reproduced from 
the XSENS manual, Section 15.4. In its “full-body” configuration, the MVN Link system from XSENS provides information for 23 keypoints 
(called “segments” in the XSENS Manual, see Sections 7.2.5 and 15.4; XSENS Manual, 2020), based on the computations via the 17 sensors, 
placed throughout the body. Reproduced with permission from the XSENS manual, Section 15.4. (XSENS Manual, 2020), and the XSENS fact 
sheet about the biomechanical model (XSENS, 2023)

Keypoint 
number

Segment Label (Bone) Description Joint

1 Pelvis Segment between both hip joints and joint L5S1 jL5S1
2 L5 Segment between joints jL5S1 and jL4L3 jL4L3
3 L3 Segment between joints jL4L3 and jL1T12 jL1T12
4 T12 Segment between joints jL1T12 and jT9T8 jT9T8
5 T8 Segment between joints jT9T8 and jT1C7 jT1C7
6 Neck Segment between joints jT1C7 and jC1Head jC1Head
7 Head End segment above joint jC1Head jRightC7Shoulder
8 Right shoulder Segment between joints jRightC7Shoulder and jRightUpperArm GH jRightShoulder
9 Right upper arm Segment between joints jRightUpperArm GH and jRightElbow jRightElbow
10 Right forearm Segment between joints jRightElbow and jRightWrist jRightWrist
11 Right hand End segment after joint jRightWrist jLeftC7Shoulder
12 Left shoulder Segment between joints jLeftC7Shoulder and jLeftUpperArm GH jLeftShoulder
13 Left upper arm Segment between joints jLeftUpperArm GH and jLeftElbow jLeftElbow
14 Left forearm Segment between joints jLeftElbow and jLeftWrist jLeftWrist
15 Left hand End segment after joint jLeftWrist. jRightHip
16 Right upper leg Segment between joints jRightHip and jRightKnee jRightKnee
17 Right lower leg Segment between joints jRightKnee and jRightAnkle jRightAnkle
18 Right foot Segment between joints jRightAnkle and jRightToe jRightBallFoot
19 Right toe End segment after joint jRightToe. jLeftHip
20 Left upper leg Segment between joints jLeftHip and jLeftKnee jLeftKnee
21 Left lower leg Segment between joints jLeftKnee and jLeftAnkle jLeftAnkle
22 Left foot Segment between joints jLeftAnkle and jLeftToe jLeftBallFoot
23 Left toe End segment after joint jLeftToe.
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The XSENS® recording and filming took place in the Art-
Lab foyer of the Max Planck Institute for Empirical Aesthet-
ics in Frankfurt am Main, Germany, in front of a standard 6 
× 3m chroma-key greenscreen background (LTT Junior Truss 
system with Premium green Buehnenmolton). This allowed 
for the creation of additional visual preparations of the 
stimuli, such as silhouette videos. For this, dedo-stage lights 
(AX3 light drop; 15W RGBW CREE LED) were used to 
illuminate the entire greenscreen and to minimize shadows.

To produce additional visual presentations of the dataset 
(FLDs and silhouettes), the dancer was also filmed using a 
camera Canon EOS 5D Mark IC camera with a Canon EF 
24–105 mm f/4 L IS USM lens (settings: e.g., framerate (raw) 
at 50 fps and framerate (output) at 25 fps. White balance: 
5000k, shutter speed: 1/100 sec, and ISO: 400. Video format: 
H.264, aspect ratio: 16:9, and resolution: 1920 × 1080).

Postproduction of the video footage was done on a 15-inch 
MAC Book Pro (2017; Processor: 2.9-GHz Quad-Core Intel 
Core i7; Memory:  16  GB 2133-MHz LPDDR3; Graph-
ics: Radeon Pro 560 4 GB; Intel HD Graphics 630 1536 MB.

Software

The XSENS® company provides proprietary software that 
allows calibrating and monitoring the setup during record-
ings, as well as reading the sensors with a framerate of up to 
240 Hz, and also the ability to edit and export the recorded 
data in various formats including video, and to MVNX (a 
form of XML; see the XSENS Manual (2020), chapters 6 

to 10, for more details). The MVNX provides raw sensor 
data, as well as refined readings for positions, accelerations, 
and angles of the full-body keypoints (for more details, see 
the XSENS Manual, 2020, chapter 15). This data format 
contains all essential information and is open, so it can be 
further processed without any proprietary restrictions.

The point-light display (PLD) stimuli were rendered 
using Blender (Blender Community, 2018), an open-source 
3D rendering engine that allows flexible creation and editing 
of scenes, including positioning and configuration of cam-
era viewpoints, and recording of sequential data into vari-
ous formats (including video). Specifically, we developed 
a Python plugin that allows Blender to process the MVNX 
sequences and convert them into a Blender-friendly format, 
based on hierarchical relationships between different move-
ments in a human skeleton (a process called “rigging”). We 
have released our MVNX rigging plugin to GitHub under 
GPLv3 license (see data availability statement, Section 11).

We also developed custom software to assist with the 
process of blurring faces, in the form of a series of Python 
scripts that make use of third-party, open-source deep learn-
ing models to first detect the dancer's head (Wu et al., 2019), 
and then identify the pixels that correspond to the face (more 
details are provided in the following sections). We have also 
released these scripts to GitHub under GPLv3 license, with 
the hope that they can be useful to the community (see data 
availability statement, Section 11).

Finally, the software Adobe After Effects 2019 and 
Adobe Premiere Pro 2019 were used for rendering the 

Fig. 1  Sensors and segments (keypoints) of the XSENS MVN bio-
mechanical model. Note: (A) The large green spheres on the model 
illustrate the location of the 17 sensors embedded in the spandex suit 
of the XSENS Link System. (B) The small blue spheres on the model 

illustrate the joints that are used to compute the 23 segment (key-
point) values, shown with arrows and numbers, via the biomechanical 
model of the XSENS software.  Reproduced with permission from 
the XSENS fact sheet about the biomechanical model; XSENS, 2023)
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video clips in postproduction. The online survey tool 
Limesurvey® was used for the observer experiment, and 
the experiment was launched via the Prolific® online 
platform.

Overall procedure

The recording of the pilot stimuli was carried out by a team 
of five researchers and three filmmakers. The recording pro-
cedure followed the recommended standard practice by the 
XSENS Company (see the XSENS Manual, 2020); chap-
ters 7 and 8), including body measurements and a calibra-
tion routine, before the start of each recording session. At 
the end of each calibration, the dancer was instructed which 
sequence to perform and which emotion to express, based 
on an a priori established list of choreographies and emo-
tion orders. The dancer proceeded to say the name of the 
sequence and the emotion out loudly. Then, clapped twice to 
signal the beginning of the sequence and to secure the align-
ment of XSENS®, video and audio recordings. As specified 
in more detail in section "Stimuli (of the pilot dataset)", 12 
separate choreographies were created for the EMOKINE 
pilot dataset (i.e., 12 different sequences of movements). 
Each of these 12 choreographies was then performed by the 
dancer six times, to express a different emotion at each rep-
etition. Hence, each emotion was expressed once for each of 
the 12 choreographies. The order of the ‘emotion takes’ for 
each sequence was always: neutrality, joy, contentment, sad-
ness, fear, and anger. If the dancer was not satisfied with the 
performance (e.g., made a mistake in the choreography, or 
felt that the emotion was not expressed), a second (or third) 
‘emotion take’ was performed of the same movement until 
the dancer agreed with the performance. If the dancer made 
a mistake in the choreography, the stimulus was discarded 
without further analysis. If the dancer felt the emotion was 
not expressed, the “best” sequence of these duplicate takes 
was chosen by the dancer.

Subsequently, the recordings were rendered in the four 
different visual presentations. This coarse parameterization 
was devised in order to enable research into how emotion 
recognition and beauty ratings are affected by these four 
different levels of information detail in the representation 
of emotional kinematics.

Procedure for human observer experiment

Four separate experiments were set up to allow the 216 
stimuli to be rated by four separate groups of participants. 
Stimuli were divided randomly, but equally between the 
experiments, to include the same number of stimuli of each 
type of visual presentation. To ensure that ratings would be 
equivalent across all four experiments, one sequence (i.e., 6 
stimuli × 4 visual presentations = 24 stimuli) was selected 

and presented in all four experiments, for an interrater reli-
ability check. For the order of stimuli presentation during 
the experiment, visual presentation was blocked, but stimuli 
and blocks were randomized across participants.

Participants watched the stimuli one by one, and rated, 
first, what emotion they recognized in the movement (forced 
choice task; anger, contentment, fear, joy, neutrality, sad-
ness), and then, how beautiful they found the movement 
(Likert scale; 0 = not beautiful; 100 = very beautiful). Par-
ticipants could only watch each stimulus once and were then 
asked to provide their rating. As this was an online experi-
ment operated via Prolific®, viewing angle and distance 
were not controlled. However, filters on Prolific were set so 
that the experiment could only be performed on a computer 
desktop (not on a tablet or mobile phone). Figure 2 sets out 
one trial of the observer experiment.

After the four blocks (with breaks in between), partici-
pants were asked to fill in three questionnaires: the Aesthetic 
Responsiveness Assessment (AReA) (Schlotz et al., 2020), 
the Interpersonal Reactivity Index (IRI) (Davis, 1980), and 
demographics questions. The questionnaire data are not pre-
sented here.

Pilot dataset specifications

Stimuli (of the pilot dataset)

Originally, 12 dance sequences were created by the dancer. 
However, three of these were deemed not good enough 
by the dancer and therefore discarded before any further 
analysis, yielding a total of nine sequences included in the 
subsequent computations presented here. Each sequence 
was performed six times to express a different emotional 
intention at each repetition, namely, anger, contentment, 
fear, joy, neutrality, sadness; i.e., 9 sequences × 6 emotions 
= 54 emotional dance movement stimuli. In addition, for 
each sequence, the dancer did a seventh repetition of the 
sequence, during which she explained the movements while 
doing them, like an instruction video for a dance class; yield-
ing nine explanation videos (used elsewhere; Schmidt et al., 
2023), yet the videos are provided here as part of the full 
EMOKINE dataset). Therefore, the total number of stimuli 
in the EMOKINE dataset is 63 (see Fig. 3).

Seven of the nine sequences that had been choreographed 
involved only arm movements, while the lower body was 
held relatively still (only one step to the side). The two 
remaining sequences involved some side steps (“second-
position” in the ballet syllabus). However, as a first step 
towards quantifying the kinematics of emotional expressiv-
ity in dance, the dancer kept most of the emotional expres-
sivity in the EMOKINE dataset to the arms, following pre-
vious dataset creations (that did not use motion capture), 
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which has focused on the arms only (Sawada et al., 2003) 
(see Table 2 for an overview of the choreographies of each 
sequence’s movements).

In post-production, all 63 pilot stimuli (the 54 emotional 
stimuli plus the nine explanation videos) were rendered in 
four different visual presentations (avatars, full-light displays 
(FLDs), point-light displays (PLDs), silhouettes). None of 
the stimuli contains facial information, there is no costume, 
color, or music in the clips. Each clip was faded in and out 
and contains one full dance phrase (eight counts in dance 
theory) (see Fig. 4 for the four visual presentations).

The EMOKINE pilot dataset is available for download 
online, and a selection of stimuli has been used in pub-
lished work (Schmidt et al., 2023). However, please note 
that this dataset was created to enable the development 
of the EMOKINE software and contains portrayals from 
only one dancer. To ensure generalizability of results 
from future research using the EMOKINE software, new 
datasets should be created that include portrayals from 
more than one dancer. We hope that the details about the 
stimuli creation procedure set out above may help this 
endeavor.

Fig. 2  One trial of emotion recognition experiment with human 
observers. Note: Sample trial from the human observer experiment. 
Stimuli were shown one by one (here, a silhouette video). Partici-
pants were instructed to guess the emotion the dancer was expressing 

(forced choice task; anger, contentment, fear, joy, neutrality, sadness), 
and to rate how beautiful they found the movement (slider question; 0 
= not beautiful; 100 = very beautiful)

Fig. 3  Pilot dataset creation. Note: The dancer wore an XSENS® 
Motion Capture Suit LINK while performing nine different sequences 
of choreographed movements (see Table 2). She repeated these chore-
ographies seven times each. Six times she performed the movements 
with different emotional intentions at each repetition (anger, content-

ment, fear, joy, neutrality, sadness). The seventh time she explained 
the movements, as for a dance class instruction. The latter stimuli 
were included in a different experiment (Schmidt et al., 2023), but are 
also included in the present dataset for sake of completeness
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Table 2  Movement sequences of the nine EMOKINE pilot dataset choreographies

Choreographies of the nine movement sequences included in the EMOKINE dataset. The movements contained in each sequence are set out in 
this table using Western classical ballet vocabulary

Sequence no. Sequence movements Repetitions

Seq1 Arms: bras-bas position move up to both arms in 2nd position, palms down, elbows lead. Then, back to bras-bas. Port-de-
bras to 1st position, and back to bras-bas. Legs: remain feet parallel, first position.

seq1_angry
seq1_content
seq1_fearful
seq1_joy
seq1_neutral
seq1_sad
seq1_explanation

Seq2 Arms: Move from bras-bas via port-de-bras to first position, open to second, then allongé arms slightly over 180 degrees, 
palms turn downward, then back to bras-bas position. Legs: remain feet parallel, first position.

seq2_angry
seq2_content
seq2_fearful
seq2_joy
seq2_neutral
seq2_sad
seq2_explanation

Seq3 Arms: bras-bas position move up to both arms in 2nd position, palms down, elbows lead. Then rotate to open 4th allongé, 
leading with the left arm front, right arm back, then rotate the right arm front, left back. Legs: remain feet parallel, first 
position.

seq3_angry
seq3_content
seq3_fearful
seq3_joy
seq3_neutral
seq3_sad
seq3_explanation

Seq4 Arms: from bras-bas position move right arm though 1st position, up to 5th. Then left arm follows the same path. Both arms 
open simultaneously to 2nd position (held elbows in 2nd), subtle allongé and close arms in bras-bas. Make a final allongé 
movement from bras-bas to 5th position, palms turned out, elbows supple (“swan arms”). Legs: remain feet parallel, first 
position.

seq4_angry
seq4_content
seq4_fearful
seq4_joy
seq4_neutral
seq4_sad
seq4_explanation

Seq5 Arms: from bras-bas position move right arm though 1st position, up to 5th. Then left arm follows the same path. Both arms 
lower back down simultaneously to 1st position, then open in second position, allongé, close in bras-bas. Legs: remain feet 
parallel, first position.

seq5_angry
seq5_content
seq5_fearful
seq5_joy
seq5_neutral
seq5_sad
seq5_explanation

Seq6 Arms: from bras-bas position move both arms to 1st position (elbows held), then allongé arms to open 4th position croisé to 
the right, pass through 1st position, then to open 4th position croisé to the left. Back to 1st position and move arms back 
down to bras-bas with elbows held. Legs: remain feet parallel, first position.

seq6_angry
seq6_content
seq6_fearful
seq6_joy
seq6_neutral
seq6_sad
seq6_explanation

Seq7 From parallel 0-position, arms bras-bas: arms and legs together: Slide through plié to the right, to an open wide second 
position (legs), while arms go from bras-bas to 1st position. Rotate to arms croisé open allongé 4th position, legs, right leg 
tendu derriere. Pass back through 2nd position, arms 1st. Rotate to left, again, arms croisé open allongé 4th position, legs, 
right leg tendu derriere. Back to 2nd position legs, plié, arms open to second position, stretch arms allongé as legs stretch 
second position. Close in from second position turned out, right leg slides back in, to parallel 0-position.

seq7_angry
seq7_content
seq7_fearful
seq7_joy
seq7_neutral
seq7_sad
seq7_explanation

Seq8 From parallel 0-position, arms bras-bas: arms and legs together: step with the left leg to an open efface 4th position with the 
legs, while arms go up, through 1st position to 5th position. Open arms to 2nd position, allongé arms to an open third (left 
arm back, right arm croisé front), then pass back through 2nd position with the arms and make an open third again, to the 
other side (right arm back, left arm effacé front). Arms back to second position. Then, at the same time, close arms to bras-
bas and step left leg back to parallel 0-position.

seq8_angry
seq8_content
seq8_fearful
seq8_joy
seq8_neutral
seq8_sad
seq8_explanation

Seq9 Arms and legs together: step out with left foot to an open second, left arm makes a sweeping movement, port-de-bras through 
1st position to second, but upper body tilted, so left hand almost touches floor. Again, simultaneously, left arm closes up to 
5th position, and does cambré to the right while left leg stretches, so a diagonal line between left toe and left arm is formed. 
Right leg is 2nd position plié, head looks to the left. Left arm opens to 2nd position, while legs plié in 2nd position. Then 
arm makes a fast port-de-bras through bras-bas then 1st and up to 5th, while legs do a balancé (a round shape is created in 
the air). During the movement, the right arm and hand are fairly still, right hand resting lightly on the lower right hip. When 
left arm reaches second position again, freeze and legs close back to 0-position and arms back to bras-bas.

seq9_angry
seq9_content
seq9_fearful
seq9_joy
seq9_neutral
seq9_sad
seq9_explanation
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Full‑light displays (FLDs) with blurred face

For the full-light displays (FLDs) with blurred face, videos 
were rendered by importing them into Adobe Premiere 
Pro. The videos were trimmed to the start and end points 
of the movements with the help of a dancer (academic 
dance sequences have specific start and end points that 
are only detectable for the expert). Each clip was ren-
dered into a separate file in an uncompressed format and 
the title was added, as specified verbally by the dancer 
during the recording. In this saving procedure, the sound 
track (ambient noise) of the clips was removed. Then, all 
rendered files were imported to Adobe After Effects. The 
“Keylight” effect was used to set the background to be a 
shade of grey.

Blurring the face required locating the pixels that cor-
respond to the face, which can be a very time-consuming 
task if done manually for video datasets. To speed up the 
process, we developed rigging software for a semi-automated 
pipeline. Each video was split in consecutive, deinterlaced 
image frames that were processed separately. For each image, 
the Detectron2 deep learning model for human keypoint 
estimation was used (Wu et al., 2019). Since we only had a 
single person on static background, averaging any detected 
keypoints for the nose, eyes and ears provided a very robust 
estimation of the head position, and given that the dancer was 
always more or less centered and at the same distance from 
the camera, a fixed-length frame of 140 × 140 pixels around 
the estimated head position was used, in order to extract a 
patch containing the head. This allowed the face segmenta-
tion model by Nirkin and colleagues (2017) to produce a 
binary mask that accurately matched the actual face at pixel 
level. This binary mask was then translated from the head-
patch back to the main image. The resulting masks for the 
whole dataset were then grouped and paired with the cor-
responding videos in order to blur the faces at the regions 
where the masks were active.

Silhouettes

To render the footage into silhouette dancer videos, all 
footage was imported into Adobe Premiere Pro as before. 
Here, the “Keylight” effect was added, and settings adapted 
to remove the background from each clip, and the “Level” 
effect (setting: output black = 255) was added to each clip 
to color the extracted foregrounds white (the visible dancer 
silhouette). “Opacity” keyframes were then added to the 
beginning and the end of each clip to allow for a fade-in 
and fade-out of each clip (eight frames). Finally, each clip 
was rendered as a separate file in H264 format (see Fig. 2).

Point‑light displays (PLDs)

The point-light display (PLD) videos were created using the 
XSENS output data, MNVX (Blender Community, 2018; 
XSENS Manual, 2020). The MNVX file contains informa-
tion about the skeleton (bone geometry and connections), 
and each “frame” (240 frames per second) contains kine-
matic information about the position and angle of the bones. 
We wrote a custom Blender plugin (Blender Community, 
2018) that read each MVNX file and created a skeleton 
with the corresponding geometry and connections. Then, 
the module read the frame information and created an ani-
mation. Based on previous models for marker placement, 
namely the frontal view of the Plug-In Gait Model (Kainz 
et al., 2017; Piwek et al., 2016), we identified a series of 
key landmarks on the skeleton, and attached a white sphere 
to each landmark, in order to create the “light points” that 
convey the information about the movements. For the video 
rendering, we positioned a virtual camera “in front of” the 
PLDs with an angle, position and focal length that closely 
resembled the data obtained with the video camera (for an 
example of the result, see Fig. 3). Then, the skeleton was 
made transparent (making it black on a black background) 
and the spheres bright white (increasing the contract), 

Fig. 4    The four visual presentations of the EMOKINE pilot data-
set. Note. (A) One dancer performed nine dance sequences of eight 
counts six times with six different emotional intentions, while wear-
ing an XSENS® Motion Capture Suit in front of a greenscreen. Film-
ing was done with a Panasonic camera. (B) Full-light display (FLD) 
dancer with blurred face: Background grey set with Adobe After 
Effects Keylight effect. Face blurred with automated computational 
methods (Cheng et  al., 2019; Nirkin et  al., 2017). (C) XSENS® 

Avatar dancer: Extracted from XSENS® system propriety soft-
ware (XSENS Manual, 2020). (D) Point-light display (PLD) dancer: 
XSENS® output data with skeleton information (MNVX) fed into a 
customized Blender module and white spheres attached to skeleton 
(Blender Community, 2018; Schepers & Giuberti, 2018). (E) Silhou-
ette dancer: Adobe After Effects Keylight effect used to remove back-
ground (greenscreen). Adobe After Effects Opacity function used to 
color foreground (dancer) white
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allowing to extract the pixel-position of each point in the 
rendering. Videos were faded in and out.

XSENS avatar dancer

The XSENS® avatar dancers were extracted from the pro-
priety software of the XSENS® system (XSENS Manual, 
2020).

Data formats (of the pilot dataset)

Beyond the already-discussed four modalities for the stimuli, 
we include with the EMOKINE pilot dataset, several modal-
ities of data records that we recommend to use in the future, 
as they may help with downstream tasks. The pilot files 
are available on Zenodo (see Section 11; Data Availability 
Statement), and consist of the following file formats MVNX, 
comma-separated values, and camara position (CamPos). 
Extensive details are provided in the readme files along with 
the data and software on Zenodo and GitHub.

MVNX files

We include the raw MVNX motion capture recordings, as 
produced by the XSENS® software for the pilot dataset.

Comma‑separated values (CSV) files

To facilitate easy integration with other data analysis tools, 
we recommend converting a subset of the MVNX files into 
comma-separated value (CSV) files. For each sequence and 
emotion, we extract per-keypoint time series for position, 
orientation, velocity, angular velocity, acceleration, angu-
lar acceleration, center of mass and foot contacts. In the 
EMOKINE software package, we provide the script and 
instructions to perform this conversion.

Camera position (CamPos) files

While the positional data in the MVNX files is provided in a 
global three-dimensional frame of reference, the stimuli are 
rendered from a specific camera perspective. We use Blender 
to extract the positions of the bones and PLD spheres rela-
tive to the camera, as x/y/depth coordinates, where x goes 
from 0 (leftmost pixel) to 1 (rightmost pixel), y from 0 (bot-
tom pixel) to 1 (top pixel) and depth is provided in meters. 
The result, dubbed here CamPos (for camera positions), is 
provided as JSON files containing the time series in frames 
at 60 Hz, where each frame contains the camera-relative 
positions. This can be useful for example in analyzing kin-
ematic features from the perspective of the observer. In the 
EMOKINE software package, we also provide the script and 
instructions to produce these files.

Using the EMOKINE software with data obtained from other 
motion‑capture systems

Although the EMOKINE pilot dataset was recorded via 
the XSENS system, most of the EMOKINE software pro-
vided here can be directly applied to data obtained from 
other motion capture systems with little to no modifica-
tion. Specifically, only the files “1a_mvsn_to_csv.py” and 
“1b_mvnx_blender.py” are relevant to the MVNX formatted 
data. These data are then converted to tabular format (see 
GitHub repository for examples), which is then consumed by 
the remaining scripts (together with plain video data when-
ever needed, e.g., for the file “2b_face_blur.py”). Research-
ers intending to use this software with motion capture data 
from other systems simply need to ensure that their data fol-
lows the same tabular format, and that they have video data 
available whenever needed (e.g., for face blur or silhouette 
extraction).

Kinematic features

Making use of the Silhouette, MVNX, and CamPos data 
modalities, we compute a series of kinematic features. We 
extracted 32 statistics from 12 kinematic features. We group 
the extracted kinematic features in the following categories: 
Speed and Acceleration (speed, acceleration, angular speed 
and angular acceleration; Section "Speed and acceleration"), 
Expansion/Contraction (limb contraction, distance to center 
of mass; Section "Expansion/contraction"), Movement 
Activity (quantity of motion, QoM, ratio; Section "Move-
ment activity"), Fluidity/Smoothness (dimensionless jerk 
(integral); Section "Fluidity/smoothness"), Body Tilt (head 
angle, with regards to vertical axis and with regards to back; 
Section "Body tilt"), and Space (convex hull 2d and 3D; 
Section "Space"). For each of these, we computed the per-
sequence average, median absolute deviation (MAD) and 
maximum value as described above.

The resulting computed features for each sequence and 
emotion are provided in the EMOKINE dataset, and the 
script and instructions to compute them from the raw data 
are included in the EMOKINE software package. In Sec-
tion "Validation of kinematic features and results of observer 
experiments", we demonstrate the usefulness of these fea-
tures and the meaningfulness of the EMOKINE data through 
a series of quantitative and qualitative analyses.

Before we outline each kinematic feature in detail, we 
give an overview of the math behind the kinematic features. 
More formally, for each sequence s(t) ∈ S (from the 63 total 
in the EMOKINE dataset S ), we have {K(s)

i
(t)}12

i=1
 nonnega-

tive scalar features, where t ∈ {0,… , Ts} indicates discrete 
time with a duration of Ts frames. Thus, K(s)

i
(t) ∶ S ↦ ℝ

Ts
>0
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is the kinematic feature of sequence s out of a total of 12 
kinematic features, represented by a nonnegative vector of 
dimension Ts.

Some of the kinematic features were extracted directly 
from the MVNX files as provided by the XSENS software 
(see Section "Pilot dataset specifications" for more details), 
while others were extracted from the CamPos data (see Sec-
tion 3.3.3.) and the silhouette stimuli videos (see Section 
"Silhouettes"). In the following sections, we describe in 
detail how kinematic features were extracted and/or com-
puted. This information is summarized in Tables 3 and 4.

We aggregate each kinematic feature across time t  to 
obtain a single scalar statistic that summarizes the kinemat-
ics of each sequence s . The following aggregation techniques 
are used in multiple features:

• Average: K
(s)

i
∶=

1

Ts

∑Ts
t=1

K
(s)

i
(t)

• M e d i a n  a b s o l u t e  d e v i a t i o n  ( M A D ) : 

K̃
(s)

i
∶= median

t

(
|������

t

(
K

(s)

i
(t)
)
− K

(s)

i
(t)|

)

• Maximum:K̂(s)

i
∶= max

t

(
K

(s)

i
(t)
)

Qualitatively, the K(s)

i
(t) features tell us “how much” of 

a given feature is given at each timepoint. Then, the main 
difference between these three aggregations is their sensi-
tivity to outliers: K̂(s)

i
 is the most sensitive, and K̃(s)

i
 is the 

least sensitive. The average: K
(s)

i
 lies inbetween. Varying 

sensitivity to outliers is important if a sequence relies on 
punctual strong phenomena to convey crucial information 
(e.g., a short burst in velocity in a generally slow sequence 
will still have a large maximum), or conversely, to recover 
the underlying information in cases, where the sequence is 
exposed to outliers (e.g., if a movement is supposed to be 
smooth, but is slightly shaky, or contaminated with noise).

Speed and acceleration

Speed is one of the most frequently explored kinematic 
parameters, and research suggests that it plays a substantial 
role in an observer’s ability to distinguish between specific 
kinds of emotional expressivity. The majority of this work 
suggests that slow movements are associated with sadness, 
and in some cases with expressions of neutrality and fear, 
while fast movements are typically associated with happi-
ness (or joy) and anger (Bernhardt & Robinson, 2007; Crane 
& Gross, 2007; Crane & Gross, 2013; Gross et al., 2010; 
Halovic & Kroos, 2018; Masuda et al., 2010; Montepare 
et al., 1999; Roether et al., 2009; Smith & Pollick, 2022).

Acceleration is less studied in relation to observer judge-
ments of emotional expressivity in the kinematics litera-
ture. But in a study conducted by Sawada and colleagues, 
a similar pattern emerged across these movement features. 
Namely, they found that high acceleration in arm movements 
was associated with anger, and low acceleration was associ-
ated with sadness (Sawada et al., 2003). We here provide a 
series of speed and acceleration related features for to enrich 
emotional kinematics research in the future; speed (Section 
"Speed"), acceleration (Section "Acceleration"), angular 
speed (Section "Angular speed") and angular acceleration 
(Section "Angular acceleration").

Speed

Velocity is a vector provided by the MVNX system that 
points in a specific 3D direction, and speed is the “length” 
of the vector. This length tells us how fast is a given key-
point moving in that direction, in meters per second. More 
formally, if the position in meters of a given joint j in the 
3D space at time t is:

Where x is aligned (and pointing to) the magnetic north, y 
is aligned (and pointing to) the west, and z is pointing up (for 
more details, see the XSENS Manual (2020; section 23.8). 

pj(t) =

⎛⎜⎜⎝

x

y

z

⎞⎟⎟⎠

Table 3  Formulas for kinematic feature extraction

Summary of the computations used to extract the kinematic features. 
Some were extracted directly from the MVNX files, as provided by 
the XSENS® software (see Section 3.3. for more details), while oth-
ers were extracted from the CamPos data (see Section 3.3.3.) and the 
silhouette stimuli videos (see Section "Silhouettes"). We refer the 
reader to Sections "Speed and acceleration" for the comprehensive 
definitions of the quantities

Name Source Formula Unit

Speed MVNX vj(t) ∶=∥ ∇tpj(t)∥2
m

s

Acceleration MVNX aj(t) ∶=∥ ∇2
t
pj(t)∥2

m

s2

Angular speed MVNX ω̇ξ(t) ∶=∥ ∇tωj(t)∥2
rad

s

Angular acceleration MVNX ω̈ξ(t) ∶=∥ ∇2
t
ωj(t)∥2

rad

s2

Limb contraction MVNX lc(t) ∶=
1

4

(
∥ ph(t) − pa(t)∥2 +⋯

)
m

CoM distance MVNX mj(t) ∶=∥ pj(t) − μ(t)∥2 m

Quantity of motion Silhouette
q(t) ∶=

|Qδ(t)|1
|f (t)|1

∅

Dimensionless jerk MVNX
𝜆j(t) ∶=

(Ts)
5

Δ2
p

∫ Ts
t=0

ȧj(t)
2 ∅

Head angle wrt. back MVNX α(t) ∶= cos−1
(
uab(t)

⊤ubc(t)
)
rad

Head tilt wrt. vertical MVNX β(t) ∶= cos−1
(
u↑(t)

⊤ubc(t)
)

rad

Convex hull 3D MVNX volume
(
C3D(t)

)
m3

Convex hull 2D CamPos area
(
C2D(t)

)
∅
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Then, the velocity v is the derivative of the position with 
respect to time ( ∇t ), and our speed feature is the Euclidean 
norm of the velocity, i.e. ‖vj(t)‖2:

Note that, in discrete time, this quantity could be approxi-
mated by computing p(t+Δt)−p(t)

Δt

 , where Δt is a small amount 
of discrete time (e.g., one frame), but in this case it is not 
necessary since it is provided directly by the MVNX file, and 
estimated by the XSENS system using a proprietary algo-
rithm; see XSENS Manual (2020; section 23.8). We provide 
the average, MAD and maximum velocity for each joint j 
and sequence s in EMOKINE.

Acceleration

For each joint and timepoint we define the acceleration aj(t) 
as a three-dimensional vector, encoding the rate of change 
in the speed with respect to time. Our acceleration feature 
is then the Euclidean norm of that vector i.e., ‖aj(t)‖2 with:

The acceleration vectors aj(t) are also estimated through 
the XSENS proprietary algorithm (XSENS Manual, 2020; 
section 23.8) and provided directly through the MVNX files. 
The acceleration is conceptually associated to the “force” 
applied to a joint. As with the speed feature, the Euclidean 
norm does not convey information about the directionality. 
We provide the average, MAD and maximum acceleration 
for each joint j and sequence s in EMOKINE.

Angular speed

Joints not only have positions, but they also have orienta-
tions. A joint can change position without changing orien-
tation (e.g., walking with a straight head), and vice versa 
(rotating the neck while standing still). The angular speed 
focuses on the orientation: It measures the change of “angle” 
as a function of time, so instead of meters per second, we 
have radians per second. If a dancer is rotating a full circle 
per second, then the angular speed of their body would be 
2� radians per second ( 2� radians = 360 degrees).

In the XSENS system, each keypoint is considered the 
beginning of a segment (can be thought of as a "bone") with 
its own, local three-dimensional coordinate system. When 

vj(t) = ∇tpj(t) =

⎛
⎜⎜⎝

∇tx

∇ty

∇tz

⎞
⎟⎟⎠

aj(t) = ∇2
t
pj(t) = ∇tvj(t) =

⎛⎜⎜⎝

∇2
t
x

∇2
t
y

∇2
t
z

⎞⎟⎟⎠

the subject stands in T-pose, all local coordinate systems are 
aligned with the global system (see Fig. 92 in section 23.5 
of the XSENS Manual,  2020). Then, the segment rotations 
follow the Z (flexion/extension), X (abduction/adduction), Y 
(internal/external) convention (see XSENS Manual, 2020; 
section 23.6, for exhaustive details). More formally, for each 
segment ξ , the orientation in radians ωξ(t) is given as a three-
dimensional vector in Euler representation, which varies as 
a function of time:

Then, the angular speed feature is the Euclidean 
norm of the derivative of ��(t) with respect to time, i.e., 
ẇξ(t) = ‖∇tωξ(t)‖2 , given in rad

s
 . Like the rest of quantities 

presented so far, this quantity is estimated by the XSENS 
proprietary algorithm, and directly provided via the MVNX 
file. Analogously to the linear velocity previously discussed, 
the Euclidean norm retains the information about the amount 
of angular speed, but does not contain information about 
the specific directions. We provide the average, MAD and 
maximum angular velocity for each joint j and sequence s 
in EMOKINE.

Angular acceleration

Analogously to the case of linear acceleration, angular 
acceleration is the second derivative of angle with respect 
to time, i.e., ẅξ(t) = ‖∇2

t𝜔𝜉(t)‖2 . Like the rest of quantities 
presented so far, this quantity is estimated by the XSENS 
proprietary algorithm, and directly provided via the MVNX 
file. The Euclidean norm retains the information about the 
amount of angular acceleration but does not contain infor-
mation about the specific directions. We provide the average, 
MAD, and maximum angular velocity for each joint j and 
sequence s in EMOKINE.

Expansion/contraction

Body expansion and contraction is another kinematic feature of 
movement commonly explored in emotion perception research. 
However, unlike with speed, the results in this area do not pre-
sent such a clear pattern of associations, likely because many 
datasets used in this area focus on emotional actions (instead of 
the same-sequence approach proposed in EMOKINE).

Of the available literature, most research in this area seems 
to agree that expansion is associated with happiness or joy, 
and some suggest that it also leads to the perception of anger 
(Camurri et al., 2003; Gross et al., 2010; Gross et al., 2012; 

ωξ(t) =

⎛
⎜⎜⎝

ωx

ωy

ωz

⎞
⎟⎟⎠
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Masuda et al., 2010; Montepare et al., 1999; Shafir, 2016; Shi-
kanai et al., 2013; Wallbott, 1998). Castellano and colleagues’ 
study is a notable exception in that they found anger to be asso-
ciated with contraction instead (Castellano et al., 2007). How-
ever, contraction is more commonly noted to align with the 
perception of fear and sadness (Camurri et al., 2003; Masuda 
et al., 2010; Shafir et al., 2016; Shikanai et al., 2013; Wallbott, 
1998), and in some cases with neutral expressivity (Montepare 
et al., 1999). For body expansion/contraction, the EMOKINE 
framework includes limb contraction (Section "Limb contrac-
tion") and distance to center of mass (Section "Distance to 
center of mass (CoM)").

Limb contraction

Limb contraction regards the positions of five keypoints: head, 
right hand, left hand, right toe and left toe (Poyo Solanas et al., 
2020). Respectively: 

(
ph(t), pa(t), pb(t), pc(t), pd(t)

)
 . Then, 

at each timepoint , this metric consists in the mean Euclidean 
distance between each of the four extremity endpoints and the 
head, i.e.,

This metric is a proxy for body contraction, with the 
idea that contracted bodies tend to have shorter distances 
between the limb endpoints and the head, while expanded 
poses tend to have longer distances. We provide the average 
and MAD limb contraction for each joint j and sequence s 
in EMOKINE.

Distance to center of mass (CoM)

At each timepoint t  , and together with the joint positions 
pj(t) , the XSENS system also estimates and retrieves the 
position of the person's center of mass μ(t) , in meters, which 
is a “weighted average” among all the points in the body, 
thus representing the idea of its “central point”. For each 
sequence in EMOKINE and for each keypoint j , we compute 
the CoM distance between each keypoint position pj(t) and 
the CoM as follows:

We then compute and retrieve the average and MAD.

Movement activity

Movement activity has been examined in a number of ways 
in the kinematics literature depending on the particular 
movement stimuli used. For example, in studies exploring 
the kinematics of walking motions it is typically measured 
via step frequency (e.g., Crane & Gross, 2007). More often, 

l
c(t) =

1

4

�‖ph(t) − pa(t)‖2 + ‖ph(t) − pb(t)‖2 + ‖ph(t) − pc(t)‖2 + ‖ph(t) − pd(t)‖2
�

mj(t) =∥ pj(t) − �(t)∥2

however, it is quantity of motion that is assessed. Research 
in this area, as with speed, suggests that high movement 
activity is typically associated with the portrayal of joy and 
anger and low movement activity is associated with sad-
ness, fear, and sometimes neutral expressivity (Bernhardt 
& Robinson, 2007; Camurri et al., 2003; Crane & Gross, 
2007; Crane & Gross, 2013; Gross et al., 2010; Halovic 
& Kroos, 2018; Masuda et al., 2010; Montepare et al., 
1999; Roether et al., 2009; Shikanai et al., 2013). Wallbott 
(1998) is an exception to this, in that they found variations 
in movement activity to distinguish between happiness 
with different levels of intensity; high activity was associ-
ated with “elated joy”, but the more general “happiness” 
was associated with low movement activity. Based on this 
research, the EMOKINE framework includes Quantity of 
Motion (QoM) as a measure of movement activity (Section 
"Quantity of motion (QoM)").

Quantity of motion (QoM)

Unlike the other quantities presented so far, the QoM is 
not extracted from the MVNX sequential data. Instead, the 
input are silhouette videos at 25 fps, where each frame is a 
Boolean matrix f(t) ∈ {0, 1}1080×1920 , with pixel values of 
0 corresponding to the background, and values of 1 to the 
dancer. The QoM is a time-dependent feature that can be 
intuitively understood as a ratio between how much has the 
silhouette moved in the recent past, in proportion to how big 
the silhouette is right now (Castellano et al., 2007). More 
formally, given a time span of δ frames, we make use of 
the boolean operations of pixel-wise union ( ∨ ), intersection 
( ∧ ), negation ( ¬ ) and sum ( | ⋅ |1 ) to define the QoM q(t) as 
follows:

The Boolean array Qδ(t) ∈ {0, 1}1080×1920 , also called the 
silhouette motion mask, is active for the pixels that were 
active immediately before the current time and are not cur-
rently active. Thus, it encodes the “recent activity”: it is all 
zeros if there is no movement, and it contains more active 
pixels as movement increases.

Then, the QoM is the ratio between the sum of active 
pixels in Qδ(t) and the sum of currently active pixels. Note 
that the QoM is a full-body quantity and does not depend 
on a given joint. Therefore, for each sequence, we provide 
only one scalar average, MAD, and integral QoM. While the 
average QoM is trivially the integral divided by the number 

Qδ(t) =
(⋁δ

i=1
f (t − i)

)
∧ ¬f (t)

q(t) =
||Qδ(t)

||1
|f (t)|1
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of frames, we included both here for convenience, since the 
integral depends on the sequence length and is a quantity of 
interest in the literature.

Fluidity/smoothness

Comparatively, there is less research examining the role of 
movement fluidity in the perception of emotional expressiv-
ity, but there does exist some evidence to suggest that move-
ment fluidity is associated with happiness or joy, while stiff or 
low-fluidity motion is associated with anger (Montepare et al., 
1999) and other negative valence emotions like grief and 
fear (Camurri et al., 2003). For the EMOKINE framework, 
we computed dimensionless jerk (integral), as a measure of 
movement fluidity/smoothness (Section "Dimensionless jerk 
(integral)").

Dimensionless jerk (integral)

Based on Hogan & Sternad (2009), this feature proposes a 
variation of the jerk, which is the time-derivative of accel-
eration (Hogan & Sternad, 2009):

In order to quantify smoothness in trajectories from t1 to 
t2 the integral of the square jerk is typically used in the litera-
ture, i.e., ∫ t2

t1
ȧj(t)

2 . One major problem with this, as pointed 

ȧj(t) = ∇taj(t) = ∇3
t
pj(t) =
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out by Hogan & Sternad (2009), is that this yields a high-
order polynomial unit of length

2

time5
 being sensitive to noise and 

changes in scale. They propose a dimensionless variant, 
where the integral is multiplied by (t2−t1)

5

Δ2
p

 , where �
p
 is the 

extent of the length achieved between t1 and t2 (i.e., if in a 
sequence the individual moves more, �

p
 will be larger for 

that sequence). The result yields a notion of movement 
smoothness that is normalized against duration and size, and 
(by design) it is also void of any units, hence the dimension-
less characterization. For each sequence s, we provide the 
dimensionless jerk between t1 = 0 and t2 = Ts , i.e.:

Note that this feature is full-body and does not depend 
on specific joints.

Body tilt

Most of the research exploring tilt or angularity within body 
motion or positioning has focused on the head. There is com-
pelling evidence to suggest that a downward or forward-tilted 
orientation of the head is uniquely associated with the por-
trayal of sadness (Crane & Gross, 2007; Masuda et al., 2010; 
Shafir et al., 2016; Wallbott, 1998), and these works suggest 
other patterns that may emerge. Wallbott (1998) suggests that 
having the head oriented backwards is associated with elated 
joy, raised shoulders are associated with both elated joy and 
hot anger, and raised arms are associated with each of the 

λj(t) =

(
Ts
)5

Δ2
p

∫

Ts

t=0

ȧj(t)
2

Fig. 5  Foreground statistics. Note: Illustrations of the foreground 
statistics of all videos together (each unit on the y-axis is one video). 
We see a quite homogenous distribution of the dancer (= the fore-
ground) across videos. Foreground ratios. This statistic indicates the 
ratio of the foreground with regards to the background. We see a con-
centrated distribution which indicates that there is not a big variation 
across stimuli of this set. Camera positions (CamPos) for horizon-
tal minima and maxima. This figure answers the question of whether 

the dancer moves ‘out’ of the frame of the video horizontally, i.e., to 
the sides (x-axis). We see a quite symmetrical distribution around the 
center of the videos, and to the sides, with a very slight bias to the 
left. Camera positions (CamPos) for vertical minima and maxima. 
We see that the dancer occupies the vertical space quite homogene-
ously (x-axis). The high values are due to the arm movements up over 
the head, apart from that all camera positions are roughly at the same 
height
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following: elated joy, cold anger, hot anger, and terror. Mas-
uda et al. (2010) found that reclined posture is associated with 
pleasure, and that a mixture of reclined and straight posture is 
associated with relaxation. Shafir and colleagues (2016), on 
the other hand, found that a reclined tilt to the upper body is 
associated with fear. For the EMOKINE framework, we com-
puted the head tilt with regards to the back (Section "Head 
tilt with respect to back") and with regards to the vertical axis 
(Section "Head tilt with respect to vertical").

Head tilt with respect to back

For the computation of this kinematic feature, we consider 
the three-dimensional positions for three keypoints: T8 ver-
tebra, neck and head, dubbed here pa(t) , pb(t) , and pc(t), 

respectively. Then, we define the unit vectors going from T8 
to the neck, and from neck to head, as:

Then, the head tilt with respect to the back α(t) is the 
angle between uab(t) and ubc(t) , which can be computed as: 
𝛼(t) = cos−1

(
uab(t)

⊤ubc(t)
)
 , in radians, since the dot product 

between 2 unit vectors yields their cosine. This cosine is always 
non-negative, since we do not expect an angle larger than 90 
degrees. We provide the average and MAD of �(t) across time.

uab(t) =
pb(t) − pa(t)

∥ pb(t) − pa(t)∥2

ubc(t) =
pc(t) − pb(t)

∥ pc(t) − pb(t)∥2

Fig. 6  Histograms of kinematics that depend on silhouette images. 
Note: Frequencies of frames occupied by the dancer in space. Figure 
shows two illustrative stimuli as examples, sequence 1 (perfect align-
ment) and sequence 7 (good alignment except for the avatar stimulus). 
The illustrations for all 54 stimuli are in the appendix of the paper. 
The computation of the frequencies of frames occupied for the stimuli 
silhouettes,  convex hull,  point-light displays (PLDs), and avatar 
stimuli depend on silhouette images. Silhouettes of the stimuli and 
CamPos (camera position) of the convex hull are calculated with the 
coordinates of the PLD (in Blender). The column with the avatar is 
from the XSENS® software. Across the columns, we see that the dis-
tribution of a single video is very equal among different modalities of 
videos, which indicates a very good alignment. It makes sense, since 
PLDs, convex hull and silhouettes are all from the same source, and 
they clearly show the same distribution. The silhouette occupies most 

space, then convex hull, avatar, PLDs. However, the illustration also 
shows a defect of the avatar (extracted from XSENS® software – the 
software is automatically adjusting the camera position. In videos 7–9 
the dancer turns the upper body, which is corrected by the software 
so the camera position remains frontal throughout. This results in the 
very symmetric histograms in that column, while the other columns 
show movement also to the sides. As long as no turns are in the move-
ment, the four stimuli modalities are aligned in terms of the frequen-
cies of frames occupied by the dancer in space. There are no units 
on the axes because this is the horizontal and vertical space that the 
dancer occupies. The scale on the right side of the histograms shows 
the log of the frequency (color = log frequency of frames; 4 = fre-
quency is 100 (np.log(freq)) = 4.61). The log scale allows seeing more 
differentiation the distribution of frames occupied by the dancer in 
space
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Head tilt with respect to vertical

This feature is similar to the head tilt with respect to the 
back, but instead we measure the angle between ubc(t) and 
the global vertical:

This yields our desired feature, in radians: 
𝛽(t) = cos−1

(
u↑(t)

⊤ubc(t)
)
 . We also provide the average and 

MAD as aggregation statistics.

Space

The kinematic features in relation to space, in the context 
of this paper, refer to the physical area used by the dancer 
when performing the movement sequences. Previous research 
exploring space in this way as a kinematic parameter suggests 
that large travel distances (i.e., using a high proportion of the 
movement space) is associated with joy, and low travel dis-
tances (i.e., using a low proportion of the space) is associated 
with sadness (Sawada et al., 2003). It has also been suggested 
that movement in a variety of directions (i.e., a wider range in 

u↑(t) =
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the movement space used) is associated with anger (Masuda 
et al., 2010). As measures of space within the EMOKINE 
framework, we provide the convex hull 2D (Section "Convex 
hull 3D") and 3D (Section "Convex hull 2D").

Convex hull 3D

Given the pj(t) locations for all body keypoints J  at a given 
time t , the convex hull is the smallest convex envelope that 
contains all points. For example, if a person is extending 
their arms and legs in a t-pose and we take a frontal image 
of their keypoints, the corresponding 2D convex hull would 
be a convex polygon going from the head, to the hands, then 
from each hand to its respective foot, and then connecting 
the feet. In 3D, it follows the same principle but it also takes 
depth into account, yielding a convex polytope, where the 
vertices are the pj(t) keypoint positions. The convex hull 
can be used as a proxy for how much space is the person 
effectively occupying.

Formally, given the set of all keypoints J  , the 3D convex 
hull can be defined as the set (Boyd & Vandenberghe, 2004):

C3D(t) =

{∑
j

�jpj(t)|j ∈ J, � ≥ 0,
∑
j

�j = 1

}

Fig. 7  Kinematics that depend on silhouette images as a function 
of emotion. Note: Qualitative histograms illustrating the distribu-
tions of the silhouette-dependent kinematics average limb contrac-
tion,  average head angle with respect to vertical,  average head 
angle with respect to back,  average quantity of motion (QoM), 
mean convex hull 2D, and  mean convex hull 3D. The kinemat-
ics are plotted separately for each emotion (angry, content, fearful, 
happy, neutral, sad) across all videos. Comparing the distribution of 

each kinematic feature across the different emotions (column wise, 
top to bottom), we observe differences in the distributions, as a func-
tion of intended emotion. For example, the distribution of the mean 
head angle for angry videos (top graph) is left skewed, while it is 
right skewed for sad videos (bottom graph). The y-axis shows num-
ber of videos. The x-axis is the scale of the respective kinematic (see 
label on the bottom of each column)
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And the c3D(t) feature we provide is the volume of C3D(t) , 
in cubic meters m3 (since the MVNX input positions pj(t) are 
given in meters). We used the SciPy Python library to com-
pute this feature. Apart from the average and MAD aggre-
gated statistics, we provide the following 2 aggregations:

• Global convex hull c3D
(
1,… , Ts

)
 : This is the convex 

hull obtained from all points in a given sequence (as opposed 
to a specific timepoint), i.e., it covers all the locations where 
any keypoints has been at any time.

• Union of convex hulls 
⋃Ts

t=1
c3D(t) : The main difference 

with the global convex hull, is that the union of convex hulls is 
a subset of the global convex hull, and is not necessarily convex: 
if the dancer jumps from the bottom left corner of the screen to 
the bottom right corner, the bottom center of the screen is part 
of the global convex hull, but not of the union of convex hulls. 
The reason is that there is no single timepoint where the bottom 
center is being covered, but if we consider all timepoints at once, 
we need to connect the left and right corners through the bottom 
center, thus making it part of the global convex hull.

Convex hull 2D

We compute this feature analogously to the 3D convex hull 
described before. The difference for this version is that we 
use the CamPos two-dimensional coordinates as source 
for this feature, i.e., two-dimensional vectors ρj(t) ∈ [0, 1]2 
given in coordinates relative to the camera, going from (0, 0) 
for the bottom-left corner to (1, 1) for the top-right corner 
(i.e., it is a dimensionless ratio). The resulting convex hull 
is then a convex polygon (Boyd & Vandenberghe, 2004):

And the computed feature c2D(t) is the surface of this 
polygon. Since the horizontal and vertical CamPos coor-
dinates go from 0 to 1, the result is itself a (dimensionless) 
ratio between 0 and 1, telling how much of the total screen 
is covered by the convex hull of the dancer.

As with c2D(t) , we provide four aggregations: average, 
MAD, global convex hull and union of convex hulls. We 

C2D(t) =
{∑

j
�j�j(t)|j ∈ J, � ≥ 0,

∑
j
�j = 1

}

compute the surface of the 2D convex hull using the Python 
Shapely library.

Validation of kinematic features and results 
of observer experiments

A series of validations of our kinematic and observer data 
are provided in this section. First, we provide a series of 
illustrations of the distributions of our kinematic features 
across the stimuli of the dataset. This is to compare the 
alignment of the stimuli between each other, to ensure that 
they are equivalent (e.g., between different visual presenta-
tions), and that differences emerge, where differences were 
expected (e.g., between different intended emotional expres-
sions) (Section "Computational tests"). Second, we provide 
statistical tests of the observer ratings. In particular, we test 
that emotion recognition is above chance level (i.e., that 
the stimuli transmit the emotions that they were intended 
to transmit by the dancer), for all visual presentations, and 
we confirm that the beauty ratings vary as a function of 
the intended emotions by the dancer (Section "Results of 
observer experiments").

Computational tests

We here provide a series of illustrations of computational 
validations, using either silhouette-dependent images or 
the keypoint-dependent data (that we retrieved from the 
XSENS® sensors) from our stimulus set. We use:

• foreground statistics to show that stimuli are balanced 
and within frames (Section "Foreground statistics").

• qualitative histograms (silhouettes) to show that stimuli 
are aligned with each other (Section "Qualitative histo-
grams (silhouette-dependent kinematics)").

• kinematic histograms to show that the stimuli and fea-
tures yield meaningful signal, not random noise (Section 
"Qualitative histograms (keypoint-dependent kinemat-
ics)").

Foreground statistics

The foreground statistics describe the distribution of 
space occupied by the dancer (= the foreground) across 
videos. Using the silhouette images of the stimuli, we 
see a very homogenous distribution of the foreground 
throughout all videos for our three metrics (foreground 
ratios, and camera position limits for horizontal and verti-
cal distributions). These results indicate that the videos 
of the stimuli set are equivalent in terms of foreground 

Fig. 8  Distance to the center of mass. Note: Distance from center of 
mass (CoM). Histograms for each of the 23 keypoints given by the 
XSENS® system, across the six emotions (angry, content, fear-
ful, joy, neutral, sad). The further away from the center of mass the 
keypoint is (pelvis = very close; hands = very far), the distribution 
changes. We also see that the legs remain relatively stable through-
out, which is in accordance with the choreographies set out in Table 2 
above: the movements were mostly confined to the arms, with little 
leg movement. We also observe that the distributions vary across 
emotions, especially for the arms, which again is in accordance with 
the intention of the dancer during stimuli creation, where the inten-
tion was to confine the expressivity mostly to the arms

◂
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distribution (see Fig. 5 for illustration and a short descrip-
tion of the findings).

Qualitative histograms (silhouette‑dependent kinematics)

We use qualitative histograms (silhouette images of the vid-
eos) to show that the stimuli are aligned with each other. We 
computed the frequencies of frames occupied for the silhou-
ettes, convex hull, point-light displays (PLDs), and (D) the 
avatar stimuli, which all depend on silhouette images. The 
Silhouette occupies most space, then convex hull, avatar, 
PLDs. The histograms show a nice alignment across all four 
modalities. However, they also show a defect of the avatar 
(extracted from XSENS® software) – the software is auto-
matically adjusting the camera position. In videos 7–9, the 
dancer turns the upper body, which is corrected by the soft-
ware so the camera position remains frontal throughout. This 
results in the very symmetric histograms in that column, 
while the other columns show movement also to the sides. 
This means that as long as no turns are in the movement, 
the four modalities are aligned in terms of the frequencies 
of frames occupied by the dancer in space (see Fig. 6 for 
illustration and a short description of the findings for two of 
the nine sequences; sequence 1 and 7). The illustrations for 

the remaining sequences are in the appendix of the paper 
(see Figs. 15, 16, 17, 18, 19).

We use another series of qualitative histograms to explore 
visually the kinematics of average limb contraction, mean 
head angle (with respect to vertical and back), average 
quantity of motion (QoM), mean convex hull 2D and mean 
convex hull 3D. We plotted these separately for each emo-
tion (angry, content, fearful, happy, neutral, sad), across all 
videos (see Fig. 7 for illustration and a short description of 
the findings).

Qualitative histograms (keypoint‑dependent kinematics)

For the keypoint-dependent kinematics (retrieved from the 
XSENS® sensors), we provide illustrations for the dis-
tance to the center of mass (Fig. 8) and average acceleration 
(Fig. 9). The figures show histograms for each of the 23 key-
points across the six emotions (angry, content, fearful, joy, 
neutral, sad). The distance to center of mass figure shows 
that the further away from the center of mass the keypoint 
is (pelvis = very close; hands = very far), the distribution 
changes. We also see that the legs remain relatively stable 
throughout, which is in accordance with the choreographies 
set out in Table 2 above: the movements were mostly con-
fined to the arms, with little leg movement. Hence, these 
distributions confirm the choreographies. We also observe 
that the distributions vary across emotions especially for the 
arms, which again is in accordance with the intention of the 

Fig. 9    Mean acceleration. Note: Mean acceleration. Histograms for 
each of the 23 keypoints given by the XSENS® system, across the six 
emotions (angry, content, fearful, joy, neutral, sad). Acceleration 
changes are evident across emotions especially for arms and pelvis 
and the head. The legs remain relatively stable throughout, which is 
in accordance with the choreographies set out in Table 2: the move-
ments were mostly confined to the arms, with little leg movement

◂

Fig. 10  Emotion recognition rate: Main effect of visual presenta-
tion. Note: Observer emotion recognition scores as a function of vis-
ual presentation was above chance level (16.67%) for all four visual 
presentations (dotted line illustrates chance level). Observer emotion 
recognition was highest for FLDs than for all other visual presenta-
tions, while PLDs had the lowest observer emotion recognition rates. 
Observer recognition rates for avatars and silhouettes were higher 
than recognition rates of PLDs. Observer recognition rates for avatars 
and silhouettes did not differ between each other. ** p > .001. * p 
> .02. Bars show averages; error bars represent SE. Dotted line rep-
resents emotion recognition chance level at 16.5%. FLD = full-light 
displays; PLDs = point-light displays

Fig. 11  Emotion recognition rate: Main effect of emotion. Note: 
Observer emotion recognition scores as a function of emotion 
(regardless of visual presentation) was above chance level (16.67%) 
for five of the emotions intended for the dancer (anger, content, joy, 
neutral, sad), but not for fear (dotted line illustrates chance level). 
Observer emotion recognition rates were highest for angry videos > 
neutral videos > sad videos > joyful video > content videos > fearful 
videos. There were significant differences between all pairs of emo-
tions (all ps > .01), except between the pairs anger-neutral, content-
fear, and sad-neutral. Brackets indicate significant differences, all p > 
.001, except the pair anger-sad, which was p = .015
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dancer during stimuli creation, where the intention was to 
confine the expressivity mostly to the arms (see Figs. 8 and 
9 for illustrations and a short description of the findings).

The remaining keypoint-dependent kinematics are pro-
vided in the appendix; for dimensionless jerk, see Fig. 20, 
for angular acceleration, see Fig. 21, and for angular veloc-
ity, see Fig. 22.

Results of observer experiments

As described in Sections "Participants’ online experiment" 
and "Procedure for Human Observer Experiment", human 
observers performed an emotion recognition task and an aes-
thetic judgment task on all pilot stimuli. We here provide a 
technical test to ensure that:

• Intended emotional expression was recognized above 
chance level (Sections "Chance level analysis: Visual 
presentation", "Chance Level Analysis: Emotion Cate-
gory", and "Chance Level Analysis: Visual Presentation 
x Emotion Category").

• Beauty ratings depended on the intended emotional 
expression of the dancer (Section "Observer experiment 
beauty ratings").

Chance level analysis: Visual presentation

Chi-square t tests were used to determine whether observer 
recognition rates were above chance for the four visual pres-
entations (four levels; avatars, full-light displays (FLDs), 
point-light displays (PLDs), silhouettes; chance level: 
100%/6 emotion categories = 16.67%). Results showed that 
the stimuli of all four visual presentations had been recog-
nized above chance level (all ps < .001).

To explore whether there was a difference between the 
four visual presentations in terms of emotion recognition 
accuracy, we performed a 1 x 4 RM ANOVA with the fac-
tor visual presentation (four levels; avatars, FLDs, PLDs, 
silhouettes), and the dependent variable percent of correct 
responses (‘correct responses’ = when observers guessed the 
emotion that the dancer was intending while performing the 
movements). There was a main effect of visual presentation 
(F(3,393) = 21.352, p < .001, partial η2 = .140). Estimated 
marginal means showed that FLD videos were recognized 
best (EMM = 39.82%; SE = 1.12), followed by avatar videos 
(EMM = 36.45%; SE = .98), then silhouette videos (EMM = 
36.20%; SE = 1.10), and finally PLDs (EMM = 30.77%; SE 
= .98). Bonferroni corrected pair-wise comparisons showed 

Fig. 12  Visual presentation x emotion for percentage of correct 
responses. Note: Illustrating observer emotion recognition rates for 
the different emotions between the different visual presentations, 
for all emotion categories. For the avatars, all emotions were recog-
nized above chance (all ps > .050), except for fear (p = .363). For 
the FLDs, all emotions were recognized above chance (all ps > .016), 

except for content (p = .071). For the PLDs, emotions were recog-
nized above chance (all ps > .001), except for content (p = .226), fear 
(p = .315) and joy (p = .898). For the silhouettes, emotions were rec-
ognized above chance (all ps > .050), except for fear (p = .643). Bars 
show emotion averages; dotted line illustrates chance level; error bars 
represent SE. FLD full-light displays; PLDs point-light displays

Fig. 13    Beauty ratings: Main effect of visual presentation. Note: 
Observer beauty ratings as a function of visual presentation from 0 
(not beautiful) to 100 (very beautiful). Observer beauty ratings were 
highest for silhouette stimuli followed by FLDs that did not dif-
fer between each other (p = .280), followed by avatar stimuli, and, 
finally, PLDs which all differed significantly between each other (all 
ps > .001). Bars show averages; error bars represent SE. FLD full-
light displays, PLDs point-light displays
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Table 4   Confusion matrix: EMOKINE avatar stimuli

Intended 

emotion by 

dancer

Decoded emotion by human observers (%) Responses (%)

Clip name Angry Content Fear Joy Neutral Sad Incorrect Correct

seq1_angry Angry 66.67 6.67 6.67 6.67 13.33 0.00 33.33 66.67

seq2_angry Angry 59.85 5.30 3.79 20.45 8.33 2.27 40.15 59.85

seq3_angry Angry 88.89 0.00 2.78 0.00 5.56 2.78 11.11 88.89

seq4_angry Angry 86.11 0.00 2.78 0.00 8.33 2.78 13.89 86.11

seq5_angry Angry 50.00 3.13 15.63 12.50 18.75 0.00 50.00 50.00

seq6_angry Angry 28.13 9.38 9.38 12.50 34.38 6.25 71.88 28.13

seq7_angry Angry 42.42 12.12 3.03 15.15 21.21 6.06 57.58 42.42

Seq8_angry Angry 51.52 6.06 9.09 15.15 18.18 0.00 48.48 51.52

seq9_angry Angry 51.61 6.45 6.45 19.35 16.13 0.00 48.39 51.61

seq1_content Content 0.00 19.35 16.13 9.68 0.00 54.84 80.65 19.35

seq2_content Content 20.45 12.12 3.03 36.36 22.73 5.30 87.88 12.12

seq3_content Content 2.78 30.56 11.11 5.56 22.22 27.78 69.44 30.56

seq4_content Content 2.78 19.44 0.00 13.89 44.44 19.44 80.56 19.44

seq5_content Content 0.00 28.13 6.25 21.88 21.88 21.88 71.88 28.13

seq6_content Content 0.00 21.88 3.13 6.25 31.25 37.50 78.13 21.88

seq7_content Content 3.03 30.30 0.00 15.15 36.36 15.15 69.70 30.30

seq8_content Content 3.03 36.36 3.03 0.00 30.30 27.27 63.64 36.36

seq9_content Content 0.00 12.90 3.23 48.39 19.35 16.13 87.10 12.90

seq1_fearful Fear 3.23 29.03 19.35 6.45 19.35 22.58 77.42 22.58

seq2_fearful Fear 6.82 16.67 12.12 18.94 29.55 15.91 84.09 15.91

seq3_fearful Fear 2.78 13.89 16.67 0.00 33.33 33.33 66.67 33.33

seq4_fearful Fear 2.78 19.44 11.11 0.00 33.33 33.33 66.67 33.33

seq5_fearful Fear 0.00 12.50 28.13 0.00 21.88 37.50 62.50 37.50

seq6_fearful Fear 12.50 9.38 12.50 9.38 25.00 31.25 68.75 31.25

seq7_fearful Fear 0.00 12.12 15.15 6.06 27.27 39.39 60.61 39.39

seq8_fearful Fear 0.00 6.06 21.21 0.00 30.30 42.42 57.58 42.42

seq9_fearful Fear 3.23 25.81 6.45 9.68 41.94 12.90 87.10 12.90



7521Behavior Research Methods (2024) 56:7498–7542 

Table 4  (continued)

seq9_joy Joy 12.90 12.90 6.45 58.06 9.68 0.00 41.94 58.06

seq1_neutral Neutral 3.23 29.03 9.68 3.23 38.71 16.13 61.29 38.71

seq2_neutral Neutral 6.82 20.45 4.55 18.94 43.18 6.06 56.82 43.18

seq3_neutral Neutral 0.00 25.00 2.78 0.00 52.78 19.44 47.22 52.78

seq4_neutral Neutral 0.00 13.89 0.00 0.00 69.44 16.67 30.56 69.44

seq5_neutral Neutral 0.00 31.25 6.25 0.00 56.25 6.25 43.75 56.25

seq6_neutral Neutral 0.00 15.63 9.38 6.25 50.00 18.75 50.00 50.00

seq7_neutral Neutral 3.03 21.21 0.00 3.03 51.52 21.21 48.48 51.52

seq8_neutral Neutral 0.00 18.18 12.12 3.03 42.42 24.24 57.58 42.42

seq9_neutral Neutral 6.45 16.13 3.23 12.90 58.06 3.23 41.94 58.06

seq1_sad Sad 0.00 16.13 9.68 0.00 3.23 70.97 29.03 70.97

seq2_sad Sad 3.03 20.45 3.03 9.85 29.55 34.09 65.91 34.09

seq3_sad Sad 2.78 16.67 5.56 5.56 22.22 47.22 52.78 47.22

seq4_sad Sad 2.78 13.89 2.78 2.78 30.56 47.22 52.78 47.22

seq5_sad Sad 0.00 18.75 6.25 0.00 25.00 50.00 50.00 50.00

seq6_sad Sad 0.00 6.25 9.38 3.13 9.38 71.88 28.13 71.88

seq7_sad Sad 0.00 15.15 0.00 9.09 12.12 63.64 36.36 63.64

seq8_sad Sad 0.00 12.12 6.06 0.00 6.06 75.76 24.24 75.76

seq9_sad Sad 0.00 6.45 3.23 12.90 35.48 41.94 58.06 41.94

seq1_joy Joy 0.00 25.81 9.68 12.90 16.13 35.48 87.10 12.90

seq2_joy Joy 13.64 9.09 4.55 27.27 36.36 9.09 72.73 27.27

seq3_joy Joy 13.89 16.67 8.33 5.56 27.78 27.78 94.44 5.56

seq4_joy Joy 0.00 27.78 5.56 19.44 36.11 11.11 80.56 19.44

seq5_joy Joy 3.13 31.25 3.13 34.38 18.75 9.38 65.63 34.38

seq6_joy Joy 9.38 15.63 0.00 6.25 53.13 15.63 93.75 6.25

seq7_joy Joy 9.09 21.21 3.03 12.12 33.33 21.21 87.88 12.12

seq8_joy Joy 9.09 12.12 9.09 36.36 15.15 18.18 63.64 36.36

Avatar stimuli. Percent of responses as a function of intended emotion of 54 avatar stimuli. Left side columns indicate clip name and the intended 
emotional expression by the dancer when performing the movement (“Intended Emotion by dancer”). The percentages of emotion judgments 
made by the human observers in the experiment are represented in each of the columns under the label “Decoded emotion”. The confusion 
matrix illustrates the distribution of the given emotion judgment for each of the different emotion options. The grey shading indicates when 
intended and decoded emotion correspond. The two columns on the right set out the total incorrect and correct responses for each clip (i.e., when 
the intended and the decoded emotion where the same -correct-, or not -incorrect-)
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Table 5   Confusion matrix: EMOKINE full-light displays (FLDs) stimuli

Clip name

emotion by 

dancer

Angry Content Fear Joy Neutral Sad Incorrect Correct

seq1_angry Angry 80.65 6.45 0.00 3.23 6.45 3.23 19.35 80.65

seq2_angry Angry 49.24 7.58 9.09 19.70 11.36 3.03 50.76 49.24

seq3_angry Angry 58.33 5.56 13.89 2.78 13.89 5.56 41.67 58.33

seq4_angry Angry 83.33 0.00 5.56 2.78 5.56 2.78 16.67 83.33

seq5_angry Angry 75.00 6.25 0.00 0.00 15.63 3.13 25.00 75.00

seq6_angry Angry 40.63 3.13 6.25 3.13 25.00 21.88 59.38 40.63

seq7_angry Angry 48.48 6.06 9.09 3.03 24.24 9.09 51.52 48.48

Seq8_angry Angry 60.61 6.06 6.06 9.09 15.15 3.03 39.39 60.61

seq9_angry Angry 48.39 3.23 6.45 12.90 29.03 0.00 51.61 48.39

seq1_content Content 3.23 25.81 3.23 19.35 19.35 29.03 74.19 25.81

seq2_content Content 14.39 14.39 3.03 34.85 25.00 8.33 85.61 14.39

seq3_content Content 0.00 11.11 19.44 11.11 13.89 44.44 88.89 11.11

seq4_content Content 2.78 16.67 25.00 5.56 11.11 38.89 83.33 16.67

seq5_content Content 0.00 31.25 0.00 6.25 21.88 40.63 68.75 31.25

seq6_content Content 0.00 6.25 9.38 15.63 25.00 43.75 93.75 6.25

seq7_content Content 9.09 24.24 6.06 30.30 27.27 3.03 75.76 24.24

seq8_content Content 3.03 33.33 6.06 12.12 30.30 15.15 66.67 33.33

seq9_content Content 3.23 41.94 3.23 19.35 19.35 12.90 58.06 41.94

seq1_fearful Fear 10.00 16.67 13.33 3.33 26.67 30.00 70.00 30.00

seq2_fearful Fear 12.12 9.85 18.18 16.67 14.39 28.79 71.21 28.79

seq3_fearful Fear 0.00 8.33 41.67 0.00 5.56 44.44 55.56 44.44

seq4_fearful Fear 5.56 19.44 33.33 0.00 16.67 25.00 75.00 25.00

seq5_fearful Fear 9.38 6.25 18.75 0.00 37.50 28.13 71.88 28.13

seq6_fearful Fear 15.63 3.13 15.63 0.00 21.88 43.75 56.25 43.75

seq7_fearful Fear 0.00 21.21 27.27 0.00 33.33 18.18 81.82 18.18

seq8_fearful Fear 0.00 15.15 30.30 0.00 15.15 39.39 60.61 39.39

seq9_fearful Fear 6.45 25.81 6.45 12.90 19.35 29.03 70.97 29.03

seq1_joy Joy 9.68 22.58 0.00 12.90 22.58 32.26 87.10 12.90
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Table 5  (continued)

seq2_joy Joy 18.32 8.40 5.34 37.40 22.14 8.40 62.60 37.40

seq3_joy Joy 11.11 19.44 11.11 0.00 16.67 41.67 100.00 0.00

seq4_joy Joy 2.78 13.89 11.11 33.33 30.56 8.33 66.67 33.33

seq5_joy Joy 0.00 6.25 12.50 53.13 21.88 6.25 46.88 53.13

seq6_joy Joy 9.38 15.63 12.50 21.88 21.88 18.75 78.13 21.88

seq7_joy Joy 3.03 27.27 3.03 9.09 30.30 27.27 90.91 9.09

seq8_joy Joy 6.06 18.18 3.03 36.36 15.15 21.21 63.64 36.36

seq9_joy Joy 12.90 12.90 0.00 48.39 22.58 3.23 51.61 48.39

seq1_neutral Neutral 3.23 12.90 0.00 0.00 48.39 35.48 51.61 48.39

seq2_neutral Neutral 7.58 23.48 2.27 15.15 40.91 10.61 59.09 40.91

seq3_neutral Neutral 0.00 33.33 0.00 2.78 52.78 11.11 47.22 52.78

seq4_neutral Neutral 0.00 19.44 0.00 0.00 69.44 11.11 30.56 69.44

seq5_neutral Neutral 3.13 6.25 0.00 3.13 71.88 15.63 28.13 71.88

seq6_neutral Neutral 0.00 15.63 3.13 9.38 53.13 18.75 46.88 53.13

seq7_neutral Neutral 0.00 18.18 6.06 6.06 51.52 18.18 48.48 51.52

seq8_neutral Neutral 0.00 27.27 0.00 9.09 54.55 9.09 45.45 54.55

seq9_neutral Neutral 0.00 19.35 3.23 12.90 61.29 3.23 38.71 61.29

seq1_sad Sad 0.00 6.45 3.23 3.23 3.23 83.87 16.13 83.87

seq2_sad Sad 4.55 11.36 5.30 13.64 22.73 42.42 57.58 42.42

seq3_sad Sad 0.00 22.22 13.89 0.00 5.56 58.33 41.67 58.33

seq4_sad Sad 0.00 33.33 5.56 2.78 16.67 41.67 58.33 41.67

seq5_sad Sad 0.00 21.88 6.25 3.13 18.75 50.00 50.00 50.00

seq6_sad Sad 0.00 6.25 9.38 3.13 18.75 62.50 37.50 62.50

seq7_sad Sad 0.00 15.15 0.00 3.03 18.18 63.64 36.36 63.64

seq8_sad Sad 0.00 15.15 0.00 0.00 6.06 78.79 21.21 78.79

seq9_sad Sad 0.00 9.68 6.45 6.45 6.45 70.97 29.03 70.97

Full-light displays (FLDs) stimuli. Percent of responses as a function of intended emotion of 54 FLD stimuli. Left side columns indicate clip 
name and the intended emotional expression by the dancer when performing the movement (“Intended emotion by dancer”). The percentages 
of emotion judgments made by the human observers in the experiment are represented in each of the columns under the label “Decoded emo-
tion”. The confusion matrix illustrates the distribution of the given emotion judgment for each of the different emotion options. The grey shading 
indicates when intended and decoded emotion correspond. The two columns on the right set out the total incorrect and correct responses for each 
clip (i.e., when the intended and the decoded emotion where the same -correct-, or not -incorrect-)
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Table 6   Confusion matrix: EMOKINE point-light displays (PLDs) stimuli

Intended 

emotion by 

dancer

Decoded emotion by human observers (%) Responses (%)

Clip name Angry Content Fear Joy Neutral Sad Incorrect Correct

seq1_angry Angry 58.06 6.45 3.23 3.23 22.58 6.45 41.94 58.06

seq2_angry Angry 43.94 4.55 6.06 22.73 15.91 6.82 56.06 43.94

seq3_angry Angry 88.89 0.00 0.00 0.00 8.33 2.78 11.11 88.89

seq4_angry Angry 72.22 5.56 0.00 0.00 16.67 5.56 27.78 72.22

seq5_angry Angry 40.63 9.38 9.38 9.38 21.88 9.38 59.38 40.63

seq6_angry Angry 40.63 6.25 12.50 3.13 31.25 6.25 59.38 40.63

seq7_angry Angry 30.30 6.06 3.03 9.09 36.36 15.15 69.70 30.30

Seq8_angry Angry 45.45 6.06 3.03 9.09 27.27 9.09 54.55 45.45

seq9_angry Angry 32.26 9.68 12.90 19.35 25.81 0.00 67.74 32.26

seq1_content Content 0.00 12.90 3.23 6.45 32.26 45.16 87.10 12.90

seq2_content Content 8.33 12.88 6.06 25.00 40.15 7.58 87.12 12.88

seq3_content Content 2.78 5.56 11.11 2.78 38.89 38.89 94.44 5.56

seq4_content Content 0.00 22.22 5.56 8.33 41.67 22.22 77.78 22.22

seq5_content Content 0.00 15.63 6.25 9.38 43.75 25.00 84.38 15.63

seq6_content Content 0.00 12.50 6.25 3.13 34.38 43.75 87.50 12.50

seq7_content Content 6.06 18.18 0.00 6.06 54.55 15.15 81.82 18.18

seq8_content Content 3.03 15.15 9.09 3.03 45.45 24.24 84.85 15.15

seq9_content Content 6.45 19.35 3.23 29.03 35.48 6.45 80.65 19.35

seq1_fearful Fear 6.45 25.81 19.35 3.23 19.35 25.81 74.19 25.81

seq2_fearful Fear 6.82 12.12 9.09 19.70 34.85 17.42 82.58 17.42

seq3_fearful Fear 0.00 5.56 16.67 0.00 27.78 50.00 50.00 50.00

seq4_fearful Fear 0.00 8.33 27.78 0.00 38.89 25.00 75.00 25.00

seq5_fearful Fear 0.00 21.88 3.13 6.25 34.38 34.38 65.63 34.38

seq6_fearful Fear 0.00 3.13 21.88 0.00 18.75 56.25 43.75 56.25

seq7_fearful Fear 3.03 21.21 9.09 3.03 42.42 21.21 78.79 21.21

seq8_fearful Fear 6.06 0.00 24.24 3.03 33.33 33.33 66.67 33.33

seq9_fearful Fear 3.23 9.68 16.13 6.45 32.26 32.26 67.74 32.26
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Table 6  (continued)

seq1_joy Joy 9.68 6.45 16.13 12.90 29.03 25.81 87.10 12.90

seq2_joy Joy 14.39 7.58 6.82 25.76 35.61 9.85 74.24 25.76

seq3_joy Joy 27.78 5.56 2.78 2.78 47.22 13.89 97.22 2.78

seq4_joy Joy 2.78 25.00 11.11 2.78 36.11 22.22 97.22 2.78

seq5_joy Joy 9.38 15.63 6.25 18.75 28.13 21.88 81.25 18.75

seq6_joy Joy 0.00 3.13 3.13 0.00 78.13 15.63 100.00 0.00

seq7_joy Joy 9.09 15.15 6.06 9.09 30.30 30.30 90.91 9.09

seq8_joy Joy 18.18 30.30 3.03 12.12 33.33 3.03 87.88 12.12

seq9_joy Joy 9.68 12.90 6.45 45.16 25.81 0.00 54.84 45.16

seq1_neutral Neutral 3.23 9.68 0.00 0.00 38.71 48.39 61.29 38.71

seq2_neutral Neutral 4.55 15.91 5.30 16.67 44.70 12.88 55.30 44.70

seq3_neutral Neutral 0.00 11.11 0.00 2.78 52.78 33.33 47.22 52.78

seq4_neutral Neutral 0.00 11.11 8.33 0.00 58.33 22.22 41.67 58.33

seq5_neutral Neutral 0.00 18.75 0.00 3.13 53.13 25.00 46.88 53.13

seq6_neutral Neutral 0.00 6.25 0.00 3.13 65.63 25.00 34.38 65.63

seq7_neutral Neutral 0.00 9.09 0.00 6.06 45.45 39.39 54.55 45.45

seq8_neutral Neutral 0.00 6.06 12.12 9.09 45.45 27.27 54.55 45.45

seq9_neutral Neutral 9.68 16.13 3.23 9.68 51.61 9.68 48.39 51.61

seq1_sad Sad 3.23 6.45 0.00 0.00 9.68 80.65 19.35 80.65

seq2_sad Sad 8.33 15.91 6.06 16.67 41.67 11.36 88.64 11.36

seq3_sad Sad 0.00 19.44 0.00 2.78 22.22 55.56 44.44 55.56

seq4_sad Sad 0.00 19.44 2.78 0.00 38.89 38.89 61.11 38.89

seq5_sad Sad 0.00 21.88 12.50 6.25 25.00 34.38 65.63 34.38

seq6_sad Sad 0.00 6.25 12.50 3.13 12.50 65.63 34.38 65.63

seq7_sad Sad 0.00 3.03 0.00 0.00 27.27 69.70 30.30 69.70

seq8_sad Sad 0.00 9.09 9.09 3.03 24.24 54.55 45.45 54.55

seq9_sad Sad 0.00 6.45 6.45 9.68 38.71 38.71 61.29 38.71

Point-light display (PLD) stimuli. Percent of responses as a function of intended emotion of 54 PLD stimuli. Left side columns indicate clip 
name and the intended emotional expression by the dancer when performing the movement (“Intended emotion by dancer”). The percentages 
of emotion judgments made by the human observers in the experiment are represented in each of the columns under the label “Decoded emo-
tion”. The confusion matrix illustrates the distribution of the given emotion judgment for each of the different emotion options. The grey shading 
indicates when intended and decoded emotion correspond. The two columns on the right set out the total incorrect and correct responses for each 
clip (i.e., when the intended and the decoded emotion where the same -correct-, or not -incorrect-)
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Table 7   Confusion matrix: EMOKINE silhouette stimuli

Intended 

emotion by 

dancer

Decoded emotion by human observers (%) Responses (%)

Clip name Angry Content Fear Joy Neutral Sad Incorrect Correct

seq1_angry Angry 77.42 6.45 0.00 0.00 6.45 9.68 22.58 77.42

seq2_angry Angry 40.15 4.55 11.36 28.03 12.12 3.79 59.85 40.15

seq3_angry Angry 44.44 5.56 11.11 13.89 13.89 11.11 55.56 44.44

seq4_angry Angry 75.00 2.78 2.78 11.11 2.78 5.56 25.00 75.00

seq5_angry Angry 75.00 0.00 3.13 9.38 12.50 0.00 25.00 75.00

seq6_angry Angry 34.38 6.25 3.13 12.50 28.13 15.63 65.63 34.38

seq7_angry Angry 42.42 24.24 0.00 9.09 24.24 0.00 57.58 42.42

Seq8_angry Angry 51.52 6.06 12.12 18.18 12.12 0.00 48.48 51.52

seq9_angry Angry 32.26 9.68 12.90 29.03 12.90 3.23 67.74 32.26

seq1_content Content 3.23 35.48 0.00 9.68 6.45 45.16 64.52 35.48

seq2_content Content 8.33 12.12 9.09 39.39 23.48 7.58 87.88 12.12

seq3_content Content 0.00 22.22 16.67 5.56 22.22 33.33 77.78 22.22

seq4_content Content 0.00 22.22 0.00 19.44 55.56 2.78 77.78 22.22

seq5_content Content 0.00 34.38 3.13 15.63 18.75 28.13 65.63 34.38

seq6_content Content 0.00 28.13 0.00 15.63 18.75 37.50 71.88 28.13

seq7_content Content 12.12 39.39 0.00 21.21 27.27 0.00 60.61 39.39

seq8_content Content 0.00 27.27 0.00 12.12 36.36 24.24 72.73 27.27

seq9_content Content 0.00 25.81 3.23 22.58 25.81 22.58 74.19 25.81

seq1_fearful Fear 3.23 9.68 22.58 0.00 29.03 35.48 64.52 35.48

seq2_fearful Fear 6.82 16.67 16.67 22.73 20.45 16.67 83.33 16.67

seq3_fearful Fear 8.33 27.78 25.00 2.78 8.33 27.78 72.22 27.78

seq4_fearful Fear 0.00 11.11 27.78 5.56 19.44 36.11 63.89 36.11

seq5_fearful Fear 0.00 28.13 6.25 9.38 37.50 18.75 81.25 18.75

seq6_fearful Fear 18.75 6.25 15.63 9.38 9.38 40.63 59.38 40.63

seq7_fearful Fear 0.00 24.24 21.21 15.15 21.21 18.18 81.82 18.18

seq8_fearful Fear 0.00 15.15 18.18 3.03 24.24 39.39 60.61 39.39

seq9_fearful Fear 0.00 29.03 6.45 25.81 22.58 16.13 83.87 16.13
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Table 7  (continued)

seq1_joy Joy 9.68 16.13 3.23 25.81 25.81 19.35 74.19 25.81

seq2_joy Joy 18.94 12.88 3.79 43.94 15.91 4.55 56.06 43.94

seq3_joy Joy 8.33 19.44 8.33 8.33 25.00 30.56 91.67 8.33

seq4_joy Joy 2.78 25.00 8.33 11.11 33.33 19.44 88.89 11.11

seq5_joy Joy 6.25 3.13 3.13 65.63 18.75 3.13 34.38 65.63

seq6_joy Joy 15.63 15.63 3.13 15.63 40.63 9.38 84.38 15.63

seq7_joy Joy 12.12 33.33 0.00 15.15 27.27 12.12 84.85 15.15

seq8_joy Joy 6.06 36.36 0.00 45.45 6.06 6.06 54.55 45.45

seq9_joy Joy 3.23 19.35 0.00 58.06 16.13 3.23 41.94 58.06

seq1_neutral Neutral 3.23 29.03 3.23 3.23 38.71 22.58 61.29 38.71

seq2_neutral Neutral 5.30 15.91 4.55 25.00 42.42 6.82 57.58 42.42

seq3_neutral Neutral 0.00 33.33 0.00 2.78 47.22 16.67 52.78 47.22

seq4_neutral Neutral 0.00 25.00 5.56 2.78 44.44 22.22 55.56 44.44

seq5_neutral Neutral 3.13 28.13 0.00 3.13 40.63 25.00 59.38 40.63

seq6_neutral Neutral 0.00 31.25 9.38 6.25 43.75 9.38 56.25 43.75

seq7_neutral Neutral 0.00 12.12 3.03 6.06 60.61 18.18 39.39 60.61

seq8_neutral Neutral 0.00 33.33 12.12 3.03 42.42 9.09 57.58 42.42

seq9_neutral Neutral 0.00 19.35 3.23 6.45 70.97 0.00 29.03 70.97

seq1_sad Sad 3.23 12.90 3.23 3.23 12.90 64.52 35.48 64.52

seq2_sad Sad 6.82 13.64 1.52 21.21 25.00 31.82 68.18 31.82

seq3_sad Sad 2.78 22.22 13.89 2.78 19.44 38.89 61.11 38.89

seq4_sad Sad 0.00 27.78 0.00 5.56 13.89 52.78 47.22 52.78

seq5_sad Sad 0.00 34.38 0.00 12.50 15.63 37.50 62.50 37.50

seq6_sad Sad 0.00 15.63 0.00 9.38 15.63 59.38 40.63 59.38

seq7_sad Sad 0.00 24.24 3.03 3.03 12.12 57.58 42.42 57.58

seq8_sad Sad 0.00 18.18 9.09 3.03 0.00 69.70 30.30 69.70

seq9_sad Sad 0.00 25.81 3.23 12.90 19.35 38.71 61.29 38.71

Silhouette stimuli. Percent of responses as a function of intended emotion of 54 silhouette stimuli. Left side columns indicate clip name and the 
intended emotional expression by the dancer when performing the movement (“Intended emotion by dancer”). The percentages of emotion judg-
ments made by the human observers in the experiment are represented in each of the columns under the label “Decoded emotion”. The confu-
sion matrix illustrates the distribution of the given emotion judgment for each of the different emotion options. The grey shading indicates when 
intended and decoded emotion correspond. The two columns on the right set out the total incorrect and correct responses for each clip (i.e., when 
the intended and the decoded emotion where the same -correct-, or not -incorrect-)
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that some of these differences were significant. FLDs were 
recognized above all others (all ps > .018). Avatars and 
silhouettes were recognized equally well (p = 1.00), and 
emotions expressed in the PLDs were recognized below all 
other visual presentations (all ps > .001). These results are 
illustrated in Fig. 10.

Chance level analysis: Emotion category

Chi-square t tests were used to determine whether observer 
recognition rates were above chance for the six emotion 
categories (chance level: 100% / 6 emotion categories = 
16.67%). The stimuli of the emotion categories anger, con-
tent, joy, neutral, sad (regardless of visual presentation) had 
been recognized above chance level (all ps > .014), while 
fear had not (p = .645).

To explore whether there were differences between recog-
nition rates as a function of the different emotion categories 
intended by the dancer, we performed a 1x6 RM ANOVA 
with the factor emotion category (six levels; anger, content, 
fear, joy, neutral, sad), and the dependent variable percent 
of correct responses (‘correct responses’ = when observers 
guessed the intended emotion). There was a main effect of 
emotion category (F(5,655) = 99.457, p < .001, partial η2 = 
.432). The observer recognition rates were highest for angry 
videos (EMM = 53.91%; SE = 1.98) > neutral videos (EMM 

= 49.432%; SE = 2.17) > sad videos (EMM = 48.04%; SE 
= 1.86) > joyful video (EMM = 26.39%; SE = 1.32) > 
content videos (EMM = 19.76; SE = 1.24) > fearful videos 
(EMM = 17.30%; SE = 1.36). Bonferroni corrected pairwise 
comparisons showed that recognition rates for angry, neutral 
and sad stimuli were highest and did not differ between each 
other (all ps < .227) but differed significantly from all other 
emotions (all ps > .001). Further, emotion recognition rates 
for joyful videos was higher than for fearful videos (p > 
.001). All comparisons are illustrated in Fig. 11.

Chance level analysis: Visual presentation x emotion 
category

For each visual presentation, Chi-square t tests were used 
to compare emotion recognition rates for each emotion 
against the chance level of 16.67%. For the avatars, all 
emotions were recognized above chance (all ps > .050), 
except for fear (p = .363). For the FLDs, all emotions were 
recognized above chance (all ps > .016), except for con-
tent (p = .071). For the PLDs, emotions were recognized 
above chance (all ps > .001), except for content (p = .226), 
fear (p = .315), and joy (p = .898). For the silhouettes, 
emotions were recognized above chance (all ps > .050), 
except for fear (p = .643). For an overview of the results 
see Fig. 12.

Confusion matrices emotion ratings

Four confusion matrices were computed, one for each 
visual presentation. They represent the observers’ emotion 
judgments as a function of intended and decoded emotion. 
The advantage of confusion matrices is that the ‘confused’ 
responses (i.e., the wrong emotion judgments) for a stimulus 
can be compared across all emotion categories at a glance 
(see Banse & Scherer, 1996; Scherer & Scherer, (2011), for 
a detailed explanation). These matrices are set in Tables 3 
and 4 for avatars, in Table 5 for FLDs, in Table 6 for PLDs 
and in Table 7 for silhouettes.

Observer experiment beauty ratings

A 1 × 4 RM ANOVA was conducted with the factor 
visual presentation (four levels; avatars, full-light dis-
plays (FLDs), point-light displays (PLDs), silhouettes). 
The dependent variable was ‘Beauty rating’ on a scale 
from 0 (not beautiful) to 100 (very beautiful). There was 
a main effect of visual presentation (F(3,393) = 35.336, 
p < .001, partial η2 = .212). Estimated marginal means 
(EMM) showed that silhouette stimuli were rated as most 
beautiful (EMM = 54.35; SE = 1.33), followed by FLD 
stimuli (EMM = 53.91; SE = 1.33), then avatar stimuli 

Fig. 14   Beauty ratings: Main effect of emotion. Note: The bars show 
observer beauty rating averages across visual presentations (0; 100) 
were highest for sad stimuli (EMM = 54.46; SE = 1.33) > content 
stimuli (EMM = 53.23; SE = 1.31) > joyful stimuli (EMM = 52.46; 
SE = 1.30) > fearful stimuli (EMM = 52.10; SE = 1.33) > anger 
stimuli (EMM = 49.32; SE = 1.31) > neutral stimuli (EMM = 48.01; 
SE = 1.31). Brackets show significant differences in beauty ratings 
between emotion categories, all ps > .001, except for the comparison 
joy-sad, which was p = .017 (Bonferroni corrected). Error bars repre-
sent SE
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(EMM = 50.17; SE = 1.34), and, finally, PLDs (EMM = 
47.93; SE = .93). Bonferroni corrected pair-wise com-
parisons showed that FLDs and silhouette beauty ratings 
did not differ significantly between each other (p = .280), 
but all other comparisons were significant (all ps > .001). 
FLDs and silhouettes being rated as more beautiful than 
avatars and PLDs, PLDs being rated the least beautiful 
(see Fig. 13).

A 1 × 4 RM ANOVA was conducted with the factor 
emotion (six levels; anger, content, fear, joy, neutral, sad). 
The dependent variable was ‘beauty rating’ on a scale 
from 0 (not beautiful) to 100 (very beautiful). There was 
a main effect of emotion (F(5,655) = 32.562, p < .001, 
partial η2 = .199). Descriptively, the observers’ beauty 
ratings were highest for sad stimuli (EMM = 54.46; SE 
= 1.33) > content stimuli (EMM = 53.23; SE = 1.31) > 
joyful stimuli (EMM = 52.46; SE = 1.30) > fearful stimuli 
(EMM = 52.10; SE = 1.33) > anger stimuli (EMM = 
49.32; SE = 1.31) > neutral stimuli (EMM = 48.01; SE = 
1.31). Bonferroni corrected pair-wise comparisons showed 
that there were significant differences in beauty ratings 
between most categories (all ps > .001, except for the 
comparison joy-sad, which was p = .017; Bonferroni cor-
rected). There was no significant difference between anger 
and neutral, nor between fear and joy. Also, the beauty rat-
ings to the emotion contentment did not differ from those 
for fear, joy, and sadness (see Fig. 14 for an illustration of 
these results).

Discussion and conclusion

We provide the EMOKINE software, computational frame-
work, and pilot dataset of emotional movement for research 
in experimental psychology, affective neuroscience and 
computer vision. The key contribution of the project to the 
wider community is a computational framework comprising 
a detailed plan, software, and code for creation of highly 
controlled emotional body movement datasets at scale in the 
future. Comprehensive procedure instructions and kinematic 
feature extraction code are provided via releases on GitHub. 
The pilot dataset and its renderings into four different vis-
ual presentations (avatars, full-light-displays, point-light-
displays, and silhouettes), along with observer ratings and 
the kinematic data are available on Zenodo under a Creative 
Commons Attribution 4.0 International License.

A series of computational validations and an observer 
experiment confirmed the validity of the EMOKINE 
pilot dataset and the creation procedure. Besides these 
validations provided here, the dataset has been shown 
to be useful to assess research questions in health psy-
chology, for example, about how dance breaks during 
work hours may improve mood and motivation (Schmidt 
et al., 2023). Datasets created following the EMOKINE 
suite may be particularly useful for addressing ques-
tions about which kinematic features drive high emo-
tion recognition and/or misclassifications. Yet for future 
large scale experiments, we remind researchers that the 
EMOKINE pilot dataset was only created with a single 
dancer and only contains nine movement sequences. For 
generalizability and scaling up, creating datasets with 
several dancers as models and more sequences would 
be advisable. 

Foreground statistics showed that stimuli were balanced 
and within frames, qualitative histograms (silhouettes) con-
firmed that stimuli were aligned with each other, kinematic 
histograms indicated that the stimuli and features yielded 
meaningful signals, not random noise.

The observer experiment confirmed that emotional 
expression was recognized above chance level in the pilot 
dataset. Emotion recognition was highest for full-light dis-
plays (FLDs), than for all other visual presentations, while 
point-light displays (PLDs) had the lowest emotion recogni-
tion rates. Observer recognition rates for avatars and silhou-
ettes were higher than recognition rates of PLDs. Observer 
recognition rates for avatars and silhouettes did not differ 
between each other. With regards to the emotion categories, 
observer emotion recognition rates were highest for angry 
videos (> neutral videos > sad videos > joyful video > con-
tent videos > fearful videos). We present confusion matri-
ces, one for each visual presentation, which represent the 
observers’ emotion judgments as a function of intended and 
decoded emotions. Confusion matrices allows to compare 
‘confused’ responses (i.e., the wrong emotion judgments) 
for a stimulus across all emotion categories at a glance, fol-
lowing previous work in the field (Scherer & Scherer, 2011). 
With regards to aesthetic judgment, observer beauty ratings 
were highest for silhouette stimuli followed by FLDs, fol-
lowed by avatar stimuli, and, finally, PLDs. Furthermore, 
aesthetic judgment was highest for sad stimuli (> content 
stimuli > joyful stimuli > fearful stimuli > anger stimuli > 
neutral stimuli).
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Pilot stimuli intended to express fear were hardest to 
recognize for observers, and average recognition across 
fearful stimuli was not above chance for any of the visual 
presentations except in the FLDs; an effect that has pre-
viously been reported with other stimuli sets (Atkinson 
et al., 2007; Camurri et al., 2003; Christensen et al., 2023; 
Christensen et al., major revisions; Dahl & Friberg, 2007; 
Pasch & Poppe, 2007; Smith & Cross, 2022). Contentment, 
the emotion added to this dataset was recognized above 
chance in the visual presentations avatar and silhouettes, 
but surprisingly not in FLDs and PLDs.

Importantly, as described in previous work, also in the 
EMOKINE pilot dataset, aesthetic judgment (i.e., beauty) 
differed significantly between all emotions. This adds 
another datapoint to previous findings that suggest that 
aesthetic judgment can be an implicit emotion recognition 
task (Christensen et al., 2019; Christensen et al., 2023; 
Christensen et al., major revisions).

Creating future datasets based on the procedure set 
out above has three main advantages. First, as shown 
with the EMOKINE pilot dataset creation procedure, we 
propose to use complex movements. A dancer repeated 
several choreographies six times each, maintaining the 
same movements, but expressing different emotional 
intentions at each repetition. Traditionally, emotional 
‘actions’ are often used in emotion datasets (e.g., jump-
ing of joy or recoiling in fear), which makes the emo-
tion rather obvious. For EMOKINE, the dancer used 
exactly the same dance choreography to express six dif-
ferent emotional intentions, thus, increasing the useful-
ness of the dataset to assess subtle kinematic features 
in emotional movement that is not emotional actions. 
Second, the EMOKINE dataset creation procedure 
proposes to include more emotional intentions. Here, 
we included six emotional intentions, namely anger, 
contentment, fear, joy, neutrality, and sadness. Classi-
cally, datasets rarely contain the emotion contentment 
(Ekman, 1973/2015; Ekman & Friesen, 1971), which 
increases the usefulness of EMOKINE. ‘Contentment’ is 
another positively valenced emotion like joy, yet of low 
arousal; symmetrical to what anger (negative valence, 
high arousal) is to sad (negative valence, low arousal). 
Third, the EMOKINE software provides, for the first 

time, thirty-two statistics from twelve kinematic features 
that can be obtained from one same dataset, namely, 
speed, acceleration, angular speed, angular acceleration, 
limb contraction, distance to center of mass, quantity of 
motion, dimensionless jerk (integral), head angle (with 
regards to vertical axis and to back), and space (convex 
hull 2D and 3D). Average, median absolute deviation 
(MAD) and maximum value were computed for each.

Future iterations of the dataset creation plan may take 
into account that the four visual presentations were not 
parametrically varied, but could be, using the kinematic 
data to vary the visual presentation of the stimuli, and 
also to control the exact length of the stimuli. Further, 
the XSENS avatar rendering was not 100% overlapping 
with the other visual presentations because the position-
ing of the legs was not fixed by the software, causing 
the avatar to move slightly unnaturally with less com-
mon arm and leg movement combinations. Finally, we 
acknowledge the WEIRD focus of this dataset creation, 
and suggest exploring non-Western dance with the same 
procedure as e.g., Christensen et al. (major revisions).

The EMOKINE software and pilot dataset is the out-
come of a proof-of-principle dataset creation procedure 
for highly controlled kinematic video datasets of emotion-
ally expressive full-body movement sequences. The pilot 
data for EMOKINE was recorded via the XSENS® sys-
tem, however, with small alterations that we have outlined 
above and on the GitHub repository, the software can be 
used with data obtained from other motion capture sys-
tems too. The novelty of EMOKINE lies in the successful 
integration of the experimental control requirements for 
psychology and affective neuroscience research involving 
human participants and, simultaneously, ensuring the tech-
nical intricacies required for datasets in computer vision 
and related fields.

Appendix

This section contains several additional histograms from our 
Computational Tests Section "Computational tests".

See Figs. 15, 16, 17, 18, 19, 20, 21, 22.
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Fig. 15  Histograms of kinematics that depend on silhouette images (Sequence 1–2)
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Fig. 16  Histograms of kinematics that depend on silhouette images (Sequence 3–4)
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Fig. 17  Histograms of kinematics that depend on silhouette images (Sequence 5–6)
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Fig. 18  Histograms of kinematics that depend on silhouette images (Sequence 7–8)
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Fig. 19  Histograms of kinematics that depend on silhouette images (Sequence 9)



7536 Behavior Research Methods (2024) 56:7498–7542

Fig. 20  Dimensionless jerk
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Fig. 21  Angular acceleration
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Fig. 22  Angular velocity
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