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Abstract:  

With the feature of noninvasively monitoring the human brain, magnetic resonance imaging 
(MRI) has become a ubiquitous means to understand how the brain works. Specifically, T1-
weighted (T1w) imaging is widely used to examine the brain structure where the cortical 
thickness, surface area, and brain volumes have been investigated. These T1w-derived 
phenotypes undergo radical changes during childhood and adolescence, while remaining 
relatively stable during adulthood. However, stability over a short time (e.g. one year) during 
adulthood is still unknown. Additionally, how environmental factors such as time-of-day and 
different daylight lengths could impact the structural brain is also elusive. The main purpose 
of this study, therefore, was to assess the stability of T1w-derived phenotypes, i.e., cortical 
thickness, surface area, and brain volumes including subcortical volumes, and to explore the 
time-of-day and daylight length effects. Accordingly, three subjects in their late 20s, and 
early 30s and 40s were scanned repeatedly on the same scanner over one year from which a 
deep brain imaging dataset was constructed with 38, 40, and 25 sessions for subjects 1, 2, and 
3, respectively. The T1w-derived phenotypes demonstrated percentage changes within 5% 
and CVs (coefficients of variance) within 2% for the majority of brain regions. However, 
several brain regions did show larger variations with percentage changes around 10% and 
CVs around 5%, such as the temporal pole, the frontal pole, and the entorhinal cortex. More 
importantly, there were no significant effects of time-of-day and daylight length. Moreover, 
cortical thickness change was strongly and positively correlated with that of volume while 
being negatively correlated with that of surface area, illustrating their distinct roles in brain 
anatomy. Additionally, it was found that apparent head motion causes cortical thickness and 
volume to be underestimated and surface area to be overestimated. These results indicate that 
T1w-derived phenotypes are reasonably stable regardless of time-of-day or daylight length, 
but that head motion should be taken into consideration. 

Significance: 
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Assessing the measurement precision and within-subject stability of T1w-derived phenotypes 
is crucial for accurately estimating brain changes induced by treatments or interventions. 
Furthermore, understanding within-subject variation enhances our ability to predict behavior 
and associations with brain phenotypes, which rely heavily on between-subject variation. 

Keywords: dense sampling; cortical thickness; surface area; volume; T1w; time-of-day; 
daylight length
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Introduction 

Our understanding of how the human brain works has been substantially deepened over the 
last few decades (Finn, Poldrack, & Shine, 2023; Lerch et al., 2017; Poldrack & Farah, 2015). 
Specifically, magnetic resonance imaging (MRI), with the capability of obtaining in vivo 
brain images, has revolutionized our understanding of the brain structure (Lerch et al., 2017), 
function (Finn et al., 2023), and their associations with behavior (Genon, Eickhoff, & 
Kharabian, 2022; Wu, Li, Eickhoff, Scheinost, & Genon, 2023), genetics (Chen et al., 2012; 
Elliott et al., 2018; Grasby et al., 2020), and environment (Holz et al., 2023; Thompson et al., 
2020). Without any doubt, MRI has become a ubiquitous means of investigating the human 
brain both in basic brain research and clinical settings. 

MRI can provide various brain imaging modalities by exploiting different MRI sequences 
(Lerch et al., 2017), among which T1-weighted (T1w) brain imaging has been widely used to 
explore cortical and subcortical brain characteristics. For example, the phenotypes derived 
from the T1w images have been utilized to establish normal brain development trajectories 
(Bethlehem et al., 2022; Lemaitre et al., 2012; Sowell et al., 2003; Sowell et al., 2004; 
Vijayakumar et al., 2016) and uncover brain abnormalities (Frisoni, Fox, Jack, Scheltens, & 
Thompson, 2010). The T1w-derived phenotypes can be constructed with the surface-based 
algorithm, which has been predominantly used in structural brain research including several 
big data initiatives, such as the UK Biobank (Alfaro-Almagro et al., 2018), the Human 
Connectome Project (Glasser et al., 2013), and the Adolescent Brain Cognitive Development 
Study (Hagler et al., 2019). Therefore, the surface-based analysis will also be utilized in this 
study. Simply put, the surface-based algorithm will construct the pial and white matter 
surfaces in the subject’s native space, with which the phenotypes including the cortical 
thickness, area, and volumes can be calculated (Dale, Fischl, & Sereno, 1999; Fischl & Dale, 
2000; Fischl, Sereno, & Dale, 1999). 

These three abovementioned T1w-derived phenotypes have been ubiquitously used to 
investigate longitudinal brain development (Bethlehem et al., 2022), especially in childhood 
(Gilmore, Knickmeyer, & Gao, 2018; Sowell et al., 2004), adolescence (Sowell et al., 2004; 
Vijayakumar et al., 2016), and the elderly (Lemaitre et al., 2012; Sele, Liem, Merillat, & 
Jancke, 2021; Storsve et al., 2014) where the brain changes rapidly. Almost no studies, 
however, have focused on brain change during adulthood, which is reasonable since almost 
all the brain features will reach the plateau at this time and not change dramatically 
(Bethlehem et al., 2022). For example, the human cortical thickness peaks at 1.7 years 
(Bethlehem et al., 2022) which varies between 1 and 4.5 mm with an overall average of 
approximately 2.5 mm (Fischl & Dale, 2000). Furthermore, the total surface area peaks at 
10.97 years while cortical and subcortical gray matter volume peaks at 5.9 years and 14.4 
years, respectively (Bethlehem et al., 2022). After the peaks, the three T1-derived phenotypes 
remain relatively stable during adulthood and gradually decline in late life. Although it is 
considerably stable, the degree of stability across a short time (e.g. across one year) at 
adulthood is still largely unknown. Additionally, the influence of external environmental 
factors on the structural brain is still elusive. 

Although time-of-day effects have been documented in functional brain organization studies 
(Orban, Kong, Li, Chee, & Yeo, 2020), the impact on brain structure is still unclear. Some 
studies have reported associations between time-of-day and cortical measures (Karch et al., 
2019; Nakamura et al., 2015; Trefler et al., 2016). Specifically, the cortical thickness 
decreased from morning to afternoon (Trefler et al., 2016). In the same vein, the brain 
volume is larger during the morning than during the afternoon (Karch et al., 2019; Nakamura 
et al., 2015; Trefler et al., 2016). However, two of the studies employed a cross-sectional 
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design where between-subject variation could interfere with the reported time-of-day effect 
(Nakamura et al., 2015; Trefler et al., 2016). For example, in one study, each subject only had 
two data points for morning and afternoon sessions (Trefler et al., 2016), and the other just 
pooled the data from other datasets and separated them based on the collection time 
(Nakamura et al., 2015). Although one is within-subject design (Karch et al., 2019), they did 
not use the longitudinal pipeline as recommended (Reuter, Schmansky, Rosas, & Fischl, 
2012), which could hinder the robustness and reliability of the results. More critically, none 
of the studies showed the data distribution of the morning and afternoon sessions. Therefore, 
in this study, within-subject design together with the longitudinal processing pipeline will be 
adopted meanwhile the data distribution will be provided. 

Besides the time-of-day effect, the seasonal effect on functional brain organization has 
recently attracted some attention (M. Y. Wang, Korbmacher, Eikeland, & Specht, 2023b; 
Zhang, Shokri-Kojori, & Volkow, 2023). Specifically, daylight length comes out as a 
potential contributor (Di, Woelfer, Kühn, Zhang, & Biswal, 2022) to the functional brain 
organization (M. Y. Wang et al., 2023b). For example, the salience network, one of the 
resting-state brain networks, is larger when daylight length is short compared to when it is 
long (M. Y. Wang et al., 2023b). To the best of our knowledge, there is still no study 
investigating the daylight length effect on brain structure. Located in the Arctic Circle, the 
daylight length in Norway varies substantially throughout the year. Specifically, the daylight 
length of the place in Bergen can be as short as around 2 hours daylight and as long as around 
16 hours daylight, which makes it suitable for exploring the daylight length effect.  

The main aim of this study was to quantify the stability of cortical thickness, surface area, 
and brain volumes across one year, and to investigate the effects of time-of-day and daylight 
length. For this purpose, and to mitigate the influence of different scanners, field strengths 
(Han et al., 2006; Iscan et al., 2015), different processing platforms, software versions 
(Gronenschild et al., 2012), and inter-subject interference, three subjects were repeatedly 
scanned in this study across one year in the same scanner at the same location (M. Y. Wang, 
Korbmacher, Eikeland, & Specht, 2022, 2023a) where the data were processed with the latest 
released version of the software (FreeSurfer 7.2) on the same computer (M. Y. Wang et al., 
2023a). In addition, the image quality metrics were included as covariates since it is shown 
that image quality can affect measurements (Ducharme et al., 2016; Reuter et al., 2015).  

Methods 

Participants 

Three participants (Table 1) were scanned as part of a precision brain mapping project named 
the Bergen Breakfast Scanning Club (BBSC) project (Korbmacher et al., 2023; M. Y. Wang, 
Korbmacher, Eikeland, Craven, & Specht, 2024; M. Y. Wang et al., 2022, 2023a). The BBSC 
project aims to illustrate the individual precision brain networks and to examine the stability 
of MRI measurements over one year. For this purpose, the participants were scanned twice a 
week between February 2021 and February 2022 with two breaks (Jun. to Oct. 2021, and Jan. 
2022) where functional and structural MRI data (M. Y. Wang et al., 2022, 2023a) were 
collected. In total, there are 38, 40, and 25 T1w MRI sessions for subjects 1, 2, and 3, 
respectively. The exact dates of these sessions can be found in Table S1. 

All three participants speak at least two languages (their native languages, and English). 
Notably, the first participant has also been acquiring an additional language since January 
2021 and remained COVID-19 free during the period of data collection. The second 
participant contracted COVID-19 around December 2021, while the third participant had 
COVID-19 in approximately August 2021. 
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Table1. Basic demographic information of subjects 

 Sub1 Sub2 Sub3 

Gender Male Male Male 

Onset Age 31 27 40 

Laterality Right Right Right 

Regular caffeine 
consumption? 

No Yes Yes 

Regular nicotine 
consumption? 

No No No 

Data collection 

Data collection was embedded in the functional protocol of the BBSC project (M. Y. Wang et 
al., 2022, 2023a), which lasted around 25 minutes in total. The procedure of the data 
collection in the functional protocol is seven mins T1w MRI, 5 mins MR spectroscopy (MRS) 
data, and 12 mins rs-fMRI, where the data were collected with a 3T MR scanner (GE 
Discovery MR750) with a 32-channel head coil at the Haukeland University Hospital in 
Bergen, Norway. The other modalities in the BBSC project have been described previously 
(M. Y. Wang et al., 2023a). 

Seven-minute structural T1w images were acquired using a 3D Fast Spoiled Gradient-
Recalled Echo (FSPGR) sequence with the following parameters: 188 contiguous slices 
acquired, with repetition time (TR) = 6.88 ms, echo time (TE) = 2.95 ms, FA (flip angle) 
= 12°, slice thickness = 1 mm, in-plane resolution = 1 mm × 1 mm, and field of view 
(FOV) = 256 mm, with an isotropic voxel size of 1 mm3. 

Data processing 

Cortical thickness, area, and volume were computed with FreeSurfer 7.2 (freesurfer-darwin-
macOS-7.2.0-20210713-aa8f76b) (Dale et al., 1999; Fischl et al., 1999). First, each session 
was processed with the cross-sectional recon-all pipeline. Then, the results went through the 
longitudinal pipeline (Reuter et al., 2012), where an unbiased within-subject template space 
and image are created by using a robust, inverse consistent registration (Reuter, Rosas, & 
Fischl, 2010). For more details, please refer to the data processing part in the Supplementary 
Material. 

It has become common practice to report brain imaging results in a common brain atlas 
(Desikan et al., 2006; Yeo et al., 2011) to aggregate or contrast findings across different 
studies, among which the Desikan- Killiany (DK) atlas (Desikan et al., 2006) has become the 
common atlas used in the T1w brain imaging studies (Alfaro-Almagro et al., 2018; 
Bethlehem et al., 2022; Ducharme et al., 2016; Grasby et al., 2020; Hagler et al., 2019; Iscan 
et al., 2015; Lemaitre et al., 2012; Sele et al., 2021; Storsve et al., 2014; Vijayakumar et al., 
2016). The DK atlas was developed based on curvature-based information such as the 
sulcal/gyral representations and contains 34 cortical brain regions in each hemisphere 
(Desikan et al., 2006). In this study, therefore, cortical thickness, surface area, and volume 
were extracted from 68 brain regions. Additionally, 8 subcortical regions (thalamus, pallidum, 
amygdala, hippocampus, putamen, accumbens area, caudate nucleus, and lateral ventricles) 
were used for the subcortical brain volume analysis. 

Moreover, the T1w images were quality assessed with MRIQC 23.1.0 (Esteban et al., 2017), 
where the following image quality metrics (IQMs) were used (Fig. 1AB): contrast-to-noise 
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ratio (CNR); signal-to-noise ratio (SNR); white-matter to maximum intensity ratio 
(WM2MAX); coefficient of joint variation (CJV); entropy focus criterion (EFC); intensity 
non-uniformity (INU); foreground-to-background energy ratio (FBER); full-width half 
maximum (FWHM); residual partial volume effect feature (rPVE). 

CNR measures the difference in mean intensities between gray and white matter, normalized 
by the standard deviation of non-brain areas, with higher values indicating better contrast 
between gray and white matter (Magnotta, Friedman, & First, 2006). SNR quantifies the 
mean intensity within gray matter relative to the standard deviation outside the brain, where 
higher values denote higher quality (Magnotta et al., 2006). WM2MAX estimates the median 
white matter intensity against the 95th percentile of the entire image intensity, pinpointing 
hyperintensities such as those in carotid vessels and fat with ideal values falling between 0.6 
and 0.8 (Esteban et al., 2017). 

CJV was proposed as a measure for INU correction algorithms, higher CJV indicates head 
motion or INU artifacts, whereas lower values imply better quality (Ganzetti, Wenderoth, & 
Mantini, 2016). EFC uses Shannon entropy to measure image blurring due to head motion 
with lower values reflecting a superior image clarity (Atkinson, Hill, Stoyle, Summers, & 
Keevil, 1997). INU summary statistics (max, min and median) of the INU field (bias field) as 
estimated with the N4ITK algorithm (Tustison et al., 2010). Values closer to 1.0 are better, 
values further from zero indicate greater field inhomogeneity. 

FBER is defined as the mean energy of image values within the head relative to that outside 
the head with higher values indicating better images. The FWHM of the spatial distribution 
represents the image intensity values in voxel units where lower values are better with higher 
values indicating a blurrier image (Forman et al., 1995). The rPVE is a tissue-wise sum of 
partial volumes that fall in the range [5-95%] of the total volume of a pixel, computed on the 
partial volume maps, in which a lower rPVE is better (Esteban et al., 2017). 
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Fig. 1. Distributions and correlations of IQMs and percentage changes of different 
brain tissues from different pipelines. (A) Violin plots of the IQM distributions for each subject. 
(B) Correlation matrix between the IQMs, where the cnr, snr_total, and wm2max form one cluster 
representing the image intensity, the cjv, efc, and inu_med constructs another cluster representing 
head motion or related artifacts, and the fber, fwhm_avg, and rpve_gm form the last cluster 
representing the technique qualities. (C) Percentage changes along the data collections generated from 
the longitudinal and cross-sectional pipelines. The x-axis represents the time sequence of data 
collection while the y-axis depicts the percentage change. The gray dashed lines denote 2% 
percentage change. For subplots (A) and (C), the red color represents subject 1, the blue depicts 
subject 2, and the green represents subject 3. Contrast-to-noise ratio (CNR); signal-to-noise ratio 
(SNR); white-matter to maximum intensity ratio (wm2max); coefficient of joint variation (CJV); 
entropy-focus criterion (EFC); intensity non-uniformity (INU); foreground-to-background energy 
ratio (FBER); full-width half-maximum (FWHM); residual partial volume effect (rPVE). 

Data Analysis  

Coefficient of variance:  

The coefficient of variation (CV) is utilized to assess the consistency of T1w-derived brain 
phenotypes across different testing sessions: 
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where std denotes the standard deviation of the measurements taken during different sessions 
for the same subject, while mean refers to their average.  

CVs facilitate comparison of variability across varying units or scales. It has also been 
instrumental in assessing the stability of measurements over some time (Borga et al., 2020; 
Carbonell et al., 2022; M. Y. Wang et al., 2024; Y. Wang et al., 2021), where it is especially 
suitable for the within-subject design (M. Y. Wang et al., 2024). Lower CVs indicate less 
variability relative to the mean, signifying higher precision or consistency. Conversely, 
higher CVs indicate more variability relative to the mean, suggesting lower precision or 
consistency (M. Y. Wang et al., 2024). 

Linear mixed-effects models 

To evaluate the impact of time-of-day and daylight length on various brain metrics such as 
cortical thickness, surface area, and brain volumes, linear mixed-effects models were 
employed. These models designated cortical measurements as dependent variables, 
influenced by the independent variables of time-of-day and daylight length. To account for 
discrepancies among different brain regions, we used percentage changes of each T1-
weighted (T1w) derived phenotype, calculated as the deviation from the mean divided by the 
mean itself. 

Time-of-day was classified based on the data collection time, labeling sessions before noon 
as 'morning' and those after as 'afternoon.' The distribution of sessions was as follows: in sub1, 
there were 22 morning and 16 afternoon sessions; in sub2, 23 morning and 16 afternoon 
sessions; and in sub3, 15 morning and 10 afternoon sessions. Daylight length data, ranging 
from 120 to 948 minutes, was obtained from the weather station at Florida maintained by the 
University of Bergen (https://veret.gfi.uib.no/). The time-of-day indices and daylight length 
have been described in Table S1. 

To control the influence of the IQMs on the stability of T1w-derived phenotypes, the IQMs 
were used as covariates in the linear mixed-effects models. In addition, to alleviate the 
different scales of IQMs, the IQMs were normalized by subtracting the mean and being 
divided by the standard deviation. 

Then, the following model was used for the cortical thickness, surface area, and brain 
volumes within each subject: 

������	
����
���
� �� � ���	���������� � ���������� � ���	��������� � �������
� �	
���� !�� � "������ � # 

Where, β0 is the intercept; β1 to β12 are the fixed effect coefficients for each predictor; 
time_effect and region are fixed effects, with an interaction term included to examine the 
combined influence of day length and regional differences on cortical thickness; time_effect 
is time-of-day or daylight length; IQMs are included as covariates to control for various 
imaging and physiological parameters;  " (hemi) representing the random intercepts for each 
level of the hemisphere, and � is the residual error. 

To control for multiple comparisons, the modified Bonferroni correction method (Holm, 
1979) was applied. Statistical analyses and visualizations were done with R 4.3.2 (R Core 
Team, 2022), where the regression was modeled with lme4 (v1.1-35.1) (Bates, Mächler, 
Bolker, & Walker, 2015) and lmerTest (v3.1-3) (Kuznetsova, Brockhoff, & Christensen, 
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2017), and visualization was performed with ggplot2 (v3.5.0) (Wickham, 2016), ggseg 
(v1.6.6) (Mowinckel & Vidal-Piñeiro, 2020), and patchwork (v1.2.0). 

Results 

Longitudinal vs cross-sectional pipelines 

The CVs of longitudinal and cross-sectional processing pipelines from FreeSurfer are 
described in Table 2. Meanwhile, the percentage changes against the average of different 
brain tissues for each subject are illustrated in Fig. 1C.  

As shown in Table 2 and Fig. 1C, the CVs and percentage changes generated by the 
longitudinal processing pipeline are smaller than those of the cross-sectional pipeline, which 
indicates the longitudinal pipeline generates more reliable results. Therefore, the following 
results are derived from the longitudinal pipeline. 

Table 2. The longitudinal pipeline generates smaller CVs 

 Sub1 Sub2 Sub3 

 Longitu
dinal 

Cross-
sectional 

Longitudi
nal 

Cross-
sectional 

Longitudi
nal 

Cross-
sectional 

Total Brain 0.57 1.13 0.50 1.47 0.58 0.85 

Gray Matter 0.81 1.06 0.71 1.86 1.31 1.60 

Left - GM 0.89 1.17 0.80 1.97 1.40 1.61 

Right - GM 0.91 1.13 0.74 1.84 1.35 1.69 

White Matter 0.66 1.79 0.65 1.74 0.90 1.70 

Left - WM 0.69 1.86 0.63 1.76 1.20 1.72 

Right - WM 0.76 1.77 0.74 1.76 0.87 1.81 

All CVs are reported as percentages, where smaller is better. 
Total Brain: ‘BrainSegVolNotVent’ generated from FreeSurfer.  

Cortical Thickness 

Mean thickness for each brain region across sessions 

The mean cortical thicknesses of the three subjects were 2.59 mm, 2.70 mm, and 2.58 mm, 
respectively with a shared standard deviation of 0.02 mm (Table S2). In addition, subject 1 
showed a range of 1.59 to 4.04 mm, subject 2 with a range of 1.83 to 3.75 mm, and subject 3 
with a range of 1.50 to 4.03 mm (Table S2). Moreover, analysis of the cortical thickness 
distribution across various brain regions revealed a consistent ranking of regions within 
subjects, identifying the insula, entorhinal cortex, and temporal pole as the thickest regions 
for all subjects (Fig. 2AB and Table S2). Conversely, regions such as the lingual gyrus, 
cuneus, and pericalcarine cortex were consistently ranked as the thinnest across the subjects, 
as also shown in Fig. 2AB and Table S2. Furthermore, standard deviations ranged from 0.02 
to 0.15 mm, where the thickest brain regions had the largest standard deviations (Table S2). 
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Fig. 2. Mean cortical thickness, percentage change distributions along with IQMs, and 
percentage changes along the daylight length. (A) Average cortical thickness across all 
sessions of different brain regions for each subject where the unit is a millimeter. (B) Ranked brain 
regions are illustrated from the thinnest to the thickest (example data from sub1). All three subjects 
have the same the most three thinnest and thickest brain regions although the brain regions ranking in 
the middle vary. (C) The distribution of the percentage changes along with different IQMs, where the 
red, blue, and green dots represent subjects 1, 2, and 3, respectively. (D) Percentage change of 
thickness along different daylight lengths in the pericalcarine region for sub1, sub2, and sub3, 
respectively. No significant results for sub1 and sub2 whereas sub3 showed significant results. 

The stability and percentage changes for each brain region 

The distribution of percentage changes along the IQMs and percentage change is illustrated 
in Fig. 2C, which indicated that sub3 had two sessions with considerable apparent head 
motion evidenced by the larger CJV, EFC, INU, and smaller CNR values. These two sessions 
could lead to the larger percentage changes and CVs in sub3 as illustrated in Fig. 3. To 
confirm the assumption, the two sessions with excessive head motion indicated by the CJV 
(sessions 1 and 7) were excluded, after which the CVs (Table 3) and percentage changes 
(Sub3_qc in Fig. 3) significantly improved (left hemi: t33 = -7.6, p = 4.8 × 10-9, Cohen's d = 
1.3; right hemi: t33 = -7.13, p = 1.8 × 10-8, Cohen's d = 1.22).  

After quality control, the CVs of within-subject thickness ranged from 0.67 to 4.40, from 
0.74 to 2.64 for sub1, 0.67 to 3.24 for sub2, and 0.84 to 4.40 for sub3 (Table 3). Furthermore, 
the percentage changes in almost all brain regions across the three subjects were well-
constrained within the 5% as illustrated in Fig. 3. Several brain regions, however, showed 
larger CVs and percentage changes across all three subjects (Fig. 3 and Table 3), such as the 
temporal pole, frontal pole, pericalcarine, and entorhinal cortex. 
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Fig. 3. The CVs and percentage changes in the cortical thickness. The upper panel depicts 
the coefficient of the variant (CV) for each subject. The lower boxplots show percentage change 
against the average for each brain region and each subject. Sub3 represents the results from the 
original data while sub3_qc shows the results from the data after excluding two sessions with 
excessive head motion. The green lines are in the range of ±5 % while the red lines depict the range of 
±15%. All values in the boxplot are given as percentages. 

Table 3. The CVs of the cortical thickness based on the DK atlas 
 Sub1 Sub2 Sub3 

 Left Right Left Right Left Left_
qc 

Righ
t 

Right_qc 

transversetemporal 1.59 1.45 1.90 1.40 4.61 3.94 3.43 2.05 

temporalpole 1.85 2.25 2.72 3.24 4.71 4.40 3.26 3.28 

supramarginal 1.00 1.20 1.07 0.92 2.45 1.81 1.91 1.32 

superiortemporal 0.76 0.74 0.98 0.85 1.77 0.92 2.31 1.30 

superiorparietal 1.21 1.33 1.11 1.18 2.64 1.72 2.97 1.04 

superiorfrontal 0.98 0.92 1.11 1.14 1.78 1.42 2.19 1.43 

rostralmiddlefrontal 1.38 0.98 1.46 1.74 2.35 1.58 1.74 1.46 

rostralanteriorcingulate 1.36 1.38 1.21 1.51 1.35 1.22 1.47 1.23 

precuneus 1.33 1.09 1.12 1.00 1.90 1.28 2.66 1.15 

precentral 0.92 1.06 1.11 1.05 3.20 2.22 1.61 1.16 

posteriorcingulate 1.16 1.13 2.67 1.88 1.62 1.27 1.78 1.33 

postcentral 0.91 0.97 1.20 1.13 2.52 2.26 1.90 1.25 

pericalcarine 1.76 2.64 1.86 3.16 3.43 3.41 3.16 3.25 

parstriangularis 1.07 1.18 1.66 1.41 2.80 2.22 2.02 1.91 
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parsorbitalis 1.24 1.35 2.07 1.97 2.62 2.60 1.74 1.81 

parsopercularis 0.98 1.20 1.32 1.16 2.64 2.26 2.18 1.81 

parahippocampal 0.95 0.99 1.18 1.76 2.63 1.58 2.55 1.77 

paracentral 1.67 1.85 1.89 1.71 3.43 1.70 2.97 1.54 

middletemporal 0.83 0.86 0.97 0.91 2.65 1.17 2.67 1.29 

medialorbitofrontal 2.39 1.77 1.70 1.31 1.51 1.48 1.63 1.44 

lingual 1.16 1.14 1.12 1.62 1.39 1.06 2.09 2.14 

lateralorbitofrontal 1.23 1.36 1.67 1.33 2.24 2.14 2.63 1.91 

lateraloccipital 1.25 1.05 1.36 1.04 1.98 1.28 2.06 1.34 

isthmuscingulate 1.48 1.75 1.04 1.16 1.65 1.25 1.30 1.24 

insula 1.16 1.15 1.09 1.20 2.04 1.64 1.73 1.38 

inferiortemporal 1.10 0.88 1.09 0.72 2.32 1.22 2.49 1.10 

inferiorparietal 1.56 1.95 1.05 1.16 3.17 1.71 2.17 1.23 

fusiform 1.08 0.80 0.85 0.67 1.53 1.12 1.59 0.84 

frontalpole 2.28 2.11 2.94 2.14 1.83 1.30 4.01 2.87 

entorhinal 2.03 1.55 2.19 2.43 3.59 3.16 2.49 1.60 

cuneus 1.51 2.02 1.62 1.47 1.91 1.88 2.27 2.27 

caudalmiddlefrontal 1.69 1.23 1.36 1.45 2.04 1.88 1.92 1.41 

caudalanteriorcingulate 1.62 1.44 1.86 1.34 1.77 1.44 2.06 1.76 

bankssts 0.93 1.88 1.17 1.17 3.14 2.07 2.12 1.23 

average 0.72 0.66 0.68 0.68 1.67 0.95 1.45 0.83 

Percentage CVs after excluding the two sessions with excessive head motion. 

Time-of-Day  

The linear mixed-effects model did not generate any statistically significant results regarding 
the time-of-day effect within each subject in our dataset. The percentage changes for each 
brain region stratified by morning and afternoon sessions were illustrated in Fig. S1. 

Daylight length  

The linear mixed-effects model did not generate any statistically significant results regarding 
the daylight length effect within sub1 and sub2, but sub3 showed brain thickness decline (Fig. 
2D) in the pericalcarine (R2 = 0.15, β  = -1.46, t = -4.09, p = 3.55 × 10-3) along with the 
increase of daylight length.  

Surface Area 

Mean brain area across sessions for each brain region 

The total surface areas of one brain hemisphere are around 850, 912, and 908 cm2 for sub1, 
sub2, and sub3, respectively. Additionally, the range of the surface area of one brain region in 
each brain hemisphere is from 219.82 to 6815.53 mm2 for sub1, 298.30 to 8046.82 mm2 for 
sub2, and 248.83 to 8594.52 mm2 for sub3 (Table S3). The superior parietal, rostral middle 
frontal, and superior frontal cortices emerged as the consistently largest surface areas in all 
subjects (Fig. 4AB). In contrast, the entorhinal, transverse temporal, and frontal pole regions 
were invariably the smallest (Fig. 4AB and Table S3). 
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Fig. 4. Mean surface area, percentage change distribution along with IQMs, and 
longitudinal and time-of-day change. (A) Average surface area of different brain regions for 
each subject and the unit is millimeters per square. (B) Surface areas from the smallest to the largest 
(data from sub1). The three smallest and largest surface areas were the same in all three subjects, but 
the surface areas ranking in the middle varied. (C) The distributions of surface area percentage 
changes along with the IQMs, where the red, blue, and green dots represent subjects 1, 2, and 3, 
respectively. (D) The distribution of morning and afternoon sessions of the posterior cingulate cortex 
for each subject. 

The stability and percentage change for each brain region 

The distributions of percentage changes along with the IQMs are shown in Fig. 4C, where 
the distributions illustrated more skewed positive changes along with larger CJV and smaller 
CNR values in sub3. This could contribute to the large percentage change in surface area 
measurement in sub3 as illustrated in Fig. 5. Accordingly, if the outliers (sessions 1 and 7) 
are excluded, the CV (Table 4) and percentage changes (sub3_qc in Fig. 5) have been 
improved (left: t33 = -6.03, p = 4.4 × 10-7, Cohen's d = 1.03; right: t33 = -2.27, p = 7.9 × 10-5, 
Cohen's d = 0.73).  

The CVs of the within-subject area range from 0.41 to 7.25, where 0.41 to 4.52 for Sub1, 
0.49 to 7.25 for Sub2, and 0.53 to 5.34 for Sub3 (Table 4). Specifically, sub2 manifested a 
generally larger percentage change in the cingulate cortex (Fig. 5) and greater CVs (Table 4) 
than other brain regions along the data collections. Aside from the cingulate cortex in sub2 
and those abovementioned three cortices with greater percentage changes, almost all brain 
regions showed percentage changes within 5% across all three subjects (Fig. 5). Notably, 
several surface areas showed larger CVs and percentage changes across all three subjects, 
including the temporal pole, frontal pole, and entorhinal cortex (Fig. 5 and Table 4). 
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Fig. 5 CVs and percentage changes in surface area. The upper panel depicts the coefficient of 
the variant (CV) for each subject. The lower boxplot shows percentage changes for each brain region 
and each subject. Sub3 depicts the results generated from the original data while Sub_qc shows the 
results generated from the data after excluding sessions 1 and 7. The green lines are in the range of 
±5 % while the red lines depict the range of ±15%. The unit of all values in the boxplot is percentage. 

Table 4. The CVs of the surface area based on the DK atlas 
 Sub1 Sub2 Sub3 

 Left Right Left Right Left Left_
qc 

Righ
t 

Right_qc 

transversetemporal 1.56 1.77 1.99 2.26 4.04 3.42 4.04 1.91 

temporalpole 3.50 4.83 4.58 4.01 4.72 4.81 5.04 5.13 

supramarginal 0.61 0.65 0.63 0.82 1.40 0.53 1.16 0.74 

superiortemporal 0.59 0.40 0.73 0.64 1.38 0.90 0.99 0.73 

superiorparietal 0.72 0.59 0.82 0.92 2.79 0.91 2.76 0.91 

superiorfrontal 0.56 0.55 0.76 0.76 1.54 0.88 1.59 0.91 

rostralmiddlefrontal 1.10 1.24 1.01 1.21 1.36 1.05 1.03 0.92 

rostralanteriorcingulat
e 

1.46 2.24 2.15 2.27 2.38 1.83 2.06 1.80 

precuneus 0.46 0.52 0.68 0.67 1.58 0.83 1.82 0.77 

precentral 0.81 0.76 1.06 0.80 2.60 1.24 1.75 0.89 

posteriorcingulate 1.18 1.24 7.25 6.94 1.42 1.29 1.78 1.54 

postcentral 0.97 0.77 1.11 1.04 2.93 1.95 1.37 1.01 

pericalcarine 1.38 0.94 1.70 1.11 2.31 1.13 1.39 1.43 

parstriangularis 1.57 0.79 1.39 1.15 2.37 1.15 1.10 0.86 
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parsorbitalis 2.04 1.51 1.86 1.43 2.24 2.05 2.53 1.49 

parsopercularis 0.91 0.39 0.77 0.98 1.33 1.24 1.25 1.05 

parahippocampal 1.25 1.47 1.14 1.29 1.70 1.17 1.61 1.03 

paracentral 0.78 1.03 1.52 1.31 2.98 1.56 2.65 1.23 

middletemporal 1.22 1.66 0.86 0.78 1.30 0.95 0.97 0.80 

medialorbitofrontal 4.52 0.99 2.09 1.61 1.44 1.44 1.23 1.27 

lingual 1.39 1.30 1.50 1.65 1.53 1.33 1.99 2.01 

lateralorbitofrontal 0.97 1.13 1.57 1.76 2.38 1.96 2.26 2.27 

lateraloccipital 0.86 0.80 1.06 0.86 1.26 0.92 1.89 1.23 

isthmuscingulate 1.60 2.46 1.23 1.53 1.56 1.05 1.41 1.41 

insula 0.76 1.14 1.56 2.84 1.46 1.44 1.14 1.16 

inferiortemporal 0.53 0.85 1.11 0.77 1.23 1.25 1.13 1.04 

inferiorparietal 0.79 0.90 0.91 0.82 2.20 0.74 1.21 0.66 

fusiform 0.95 0.89 1.08 1.34 1.37 1.23 0.91 0.87 

frontalpole 3.20 3.80 1.98 1.95 2.99 2.15 5.77 3.80 

entorhinal 2.84 2.59 4.33 2.84 5.26 5.34 3.29 3.26 

cuneus 1.64 1.92 1.40 1.94 2.30 1.99 2.31 2.37 

caudalmiddlefrontal 0.58 0.55 0.77 1.29 1.12 1.11 1.29 1.08 

caudalanteriorcingulate 0.64 1.93 4.38 2.28 1.54 1.18 2.10 2.17 

bankssts 0.41 0.88 0.49 0.77 0.65 0.65 0.95 0.85 

Total 0.52 0.55 0.67 0.74 1.22 0.67 0.86 0.58 

Unit: percentage; ?h_qc: CVs after excluding the two sessions with excessive head motion 

Time-of-Day 

The linear mixed-effects model did not generate any statistically significant results regarding 
the time-of-day effect within sub3. However, in sub2, the posterior cingulate cortex (Fig. 4D) 
showed a higher percentage change during morning than afternoon sessions (R2 = 0.14, t = 
4.72, p = 1.91 × 10-4). Moreover, the percentage change in morning sessions is lower than 
that of the afternoon in the temporal pole region in sub1 (R2 = 0.09, t = - 4.18, p = 2.27 × 10-3) 
whereas the reversed pattern is in sub2 (R2 = 0.14, t = 4.02, p = 4.55 × 10-3). However, see the 
influence of outliers for further analysis (Fig. 9). The percentage changes for each brain 
region of morning and afternoon sessions were illustrated in Fig. S2. 

Daylight length  

The linear mixed-effects model did not generate any statistically significant results regarding 
the daylight length effect for any of the participants.  

Cortical Brain Volume 

Total volumes of different brain apartments 

The average and standard deviation of the total gray matter volumes, total white matter 
volumes, and the CSF volumes including the left and right hemispheres are described in  
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Table 5. 

Table 5. The values (Mean ± SD) of volumes of the different brain apartments 
 Sub1 Sub2 Sub3 

Gray Matter 477.87 ± 3.88 548.77 ± 3.89 507.50 ± 6.67 

Left - GM 236.60 ± 2.10 275.81 ± 2.21 254.96 ± 3.57 

Right - GM 241.27 ± 2.20 272.96 ± 2.03 252.54 ± 3.40 

White Matter 453.74 ± 2.99 515.36 ± 3.32 445.01 ± 4.01 

Left - WM 224.54 ± 1.55 258.50 ± 1.62 223.28 ± 2.68 

Right - WM 229.20 ± 1.75 256.86 ± 1.90 221.73 ± 1.92 

CSF 0.81 ± 0.04 1.22 ± 0.04 1.05 ± 0.04 

IntraCranialVol 
(ICV) 1525.148 1658.298 1555.418 

The unit of all values is cubic centimeters. 

Time change of the total volumes of different brain apartments 

There are no significant results regarding the time-of-day or daylight length change in the 
total volumes of different brain apartments. The distributions of the morning and afternoon 
sessions are shown in Fig. S3. 

Mean cortical brain volume across sessions 

For three subjects, brain volume of different regions varied from 731.53 to 21682.50 mm³ for 
sub1, 981.82 to 26338.03 mm³ for sub2, and 903.65 to 26170.17 mm³ for sub3 (Table S4). 
The intracranial volume (ICV) remained consistent for each subject in all sessions (sub1: 
1,525,148 mm³; sub2: 1,658,298 mm³; sub3: 1,555,418 mm³) after running the longitudinal 
pipeline. Ranking the volumes revealed that the superior frontal and rostral middle frontal 
cortices were the largest in all subjects (Fig. 6B). Conversely, the frontal pole and transverse 
temporal regions were consistently the smallest across all subjects (Fig. 6B and Table S6). 
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Fig. 6. Mean cortical brain volume, and percentage change distributions along with 
IQMs, and the data collections. (A) Average brain volume size of different brain regions for each 
subject where the unit is cubic millimeters. (B) Brain regions from the smallest to the largest (data 
from sub1). All three subjects have the same the most two smallest and largest brain volumes 
although the brain regions ranking in the middle vary.  (C) The distribution of the percentage changes 
along the IQMs, where the red, blue, and green dots represent subjects 1, 2, and 3, respectively. (D) 
Percentage changes of pericalcarine brain volumes plotted against daylight lengths for each subject. 

The stability and percentage changes for each brain region 

The distribution of the percentage changes against the IQMs is illustrated in Fig. 6C, where it 
manifested skewed negative changes with larger CJV and smaller CNR induced by the head 
motion in sub3. These two sessions could contribute to the large percentage change in the 
cortical brain volume measurement. Accordingly, if we exclude the outliers (sessions 1 and 
7), the CV (Table 6) and percentage change (sub3_qc in Fig. 7) have been significantly 
improved (left: t33 = -5.06, p = 7.6 × 10-6, Cohen's d = 0.87; right: t33 = -6.21, p = 2.6 × 10-7, 
Cohen's d = 1.06). 

The CVs of the within-subject brain volume range from 0.64 to 4.73 for sub1, 0.72 to 4.87 for 
sub2, and 0.86 to 4.99 for sub3 (Table 6). Furthermore, several brain regions showed larger 
CVs (Table 6) and percentage changes (Fig. 7), such as the temporal pole, pericalcarine, and 
entorhinal cortex. Moreover, aside from the abovementioned regions, the percentage changes 
are well confined within 5% in all subjects (Fig. 7). 
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Fig. 7. CVs and percentage changes in cortical brain volume. The upper panel depicts the 
coefficient of the variant (CV) for each subject. The lower boxplot shows the percentage change for 
each brain region and subject. Sub3 depicts the results generated from the original data while sub3_qc 
shows results after quality control. The green lines are in the range of ±5 % while the red lines depict 
the range of ±15%. All values in the boxplot are reported as percentages. 

Table 6. The CVs of the cortical brain volume based on the DK atlas 
 Sub1 Sub2 Sub3 

 Left Right Left Right Left Left_q
c 

Right Right_
qc 

transversetemporal 1.51 1.63 1.43 1.29 3.57 2.98 2.26 1.85 

temporalpole 1.96 1.99 2.63 2.96 4.96 4.99 3.31 2.96 

supramarginal 1.04 1.30 0.98 0.96 1.86 1.67 1.42 1.06 

superiortemporal 0.95 1.01 1.15 0.83 1.16 0.98 1.65 1.06 

superiorparietal 1.36 1.49 1.55 1.64 1.89 1.62 1.77 0.86 

superiorfrontal 1.05 1.10 1.20 1.08 1.56 1.59 1.48 1.31 

rostralmiddlefrontal 1.27 1.31 1.34 1.46 1.67 1.58 1.71 1.70 

rostralanteriorcingulat
e 

1.26 1.31 1.75 1.07 1.34 1.39 1.03 1.03 

precuneus 1.34 1.14 1.28 1.07 1.66 1.34 1.99 1.09 

precentral 1.45 1.32 1.66 1.37 2.27 2.09 1.02 1.00 

posteriorcingulate 1.05 1.20 4.83 4.87 1.97 1.92 1.35 1.00 

postcentral 1.58 1.45 1.44 1.98 1.87 1.87 1.41 1.08 

pericalcarine 1.83 3.54 2.20 3.94 3.99 4.05 3.95 4.12 

parstriangularis 1.03 1.43 1.29 1.09 1.97 1.91 1.87 1.87 
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parsorbitalis 1.47 0.98 2.13 1.81 1.87 1.95 2.08 1.78 

parsopercularis 1.21 1.28 1.30 1.11 2.32 1.94 2.31 1.82 

parahippocampal 1.38 1.51 1.69 1.53 2.23 1.81 2.63 1.92 

paracentral 1.77 1.70 2.00 2.14 2.55 1.70 2.03 1.39 

middletemporal 1.01 1.90 1.03 0.78 1.90 1.17 2.30 1.44 

medialorbitofrontal 4.73 2.63 2.71 1.62 1.90 1.85 1.57 1.47 

lingual 1.08 1.19 1.27 1.54 1.22 1.02 1.61 1.63 

lateralorbitofrontal 1.05 1.24 1.31 1.07 1.73 1.63 3.04 1.74 

lateraloccipital 1.38 0.93 1.18 1.23 2.02 1.44 2.06 1.53 

isthmuscingulate 1.12 1.40 1.13 1.62 1.44 1.12 1.39 1.45 

insula 1.19 1.33 1.17 1.64 2.34 2.00 1.51 1.23 

inferiortemporal 1.42 1.13 1.09 0.89 2.33 1.37 2.77 1.19 

inferiorparietal 1.15 1.51 1.11 1.13 2.20 1.50 1.62 1.07 

fusiform 1.31 0.64 0.89 0.72 1.41 0.95 1.57 0.90 

frontalpole 1.87 1.73 1.67 1.32 1.56 1.44 2.45 2.20 

entorhinal 2.88 2.22 2.42 3.74 3.35 3.36 3.79 3.09 

cuneus 1.25 1.90 1.55 3.26 1.45 1.47 1.71 1.55 

caudalmiddlefrontal 1.95 1.66 1.98 2.16 2.00 2.02 1.54 1.37 

caudalanteriorcingulate 1.49 1.23 3.76 1.85 1.80 1.69 1.54 1.40 

bankssts 0.77 1.84 1.03 0.98 2.40 1.55 2.26 1.28 

CVs in percentages after excluding the two sessions with excessive head motion 

Time-of-Day 

The linear mixed-effects model did not generate any statistically significant results regarding 
the time-of-day effect within each subject in our dataset. The distributions of the morning and 
afternoon sessions are shown in Fig. S4. 

Daylight length  

The linear mixed-effects model did not generate any statistically significant results regarding 
the time effect within sub1 and sub2, but sub3 showed brain thickness decline (Fig. 2D) in 
the pericalcarine (R2 = 0.20, β = -1.96, t = -5.70, p = 1.12 × 10-6).  

Subcortical volumes 

Mean subcortical volumes across sessions 

Subcortical structures encompassed the thalamus, caudate nucleus, putamen, pallidum, 
hippocampus, amygdala, and accumbens area. Subcortical brain volumes ranged from 721.54 
to 9063.16 mm3 for sub1, 607.53 to 10865.75 mm3 for sub2, and 497.60 to 7692.36 mm3 for 
sub3 (Table 7). The putamen and and thalamus consistently ranked as the largest subcortical 
structures, see Fig. S5 and Table 7. Additionally, the pallidum, amygdala, and accumbens 
area constantly ranked as the smallest subcortical structures across all three subjects (Fig. S5 
and Table 7). Table S5 depicts the average value and standard deviation of the subcortical 
structures along with the cerebellum, ventricles, brain stem, corpus callosum (CC), and CSF. 

Table 7. Mean and standard deviations of subcortical brain volumes 
  Sub1 Sub2 Sub3 

Thalamus L 9063.16±94.43 10865.75±76.00 7692.36±101.40 
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R 8628.22±120.11 10467.27±129.49 7426.36±99.28 

Putamen 
L 6174.55±43.24 5999.58±72.23 5111.26±66.52 
R 6458.49±75.02 6127.76±74.73 5247.80±80.06 

Hippocampus 
L 4296.58±39.89 4758.70±45.44 3679.56±56.31 
R 4398.27±31.41 4701.36±54.06 4006.50±73.39 

Caudate 
L 3789.69±42.54 4526.46±62.57 3750.78±37.03 
R 4227.56±48.17 4568.34±40.35 3773.77±33.81 

Pallidum 
L 2162.79±24.57 2129.04±28.34 1811.80±24.17 
R 2463.63±31.62 2106.66±27.91 1887.07±33.07 

Amygdala 
L 1618.33±26.01 1639.32±39.76 1554.44±27.71 
R 1883.15±27.96 1946.16±27.77 1834.68±36.75 

Accumbens area 
L 721.54±44.54 607.53±37.92 497.60±37.60 
R 872.33±20.61 884.08±23.81 725.29±24.23 

Total 
L 27826.64±126.86 30526.37±154.48 24097.79±155.04 

R 28931.65±208.29 30801.63±196.29 24901.48±177.96 

The unit of all values is the cubic millimeters. 

The stability and percentage changes for each subcortical brain region 

The CVs of the within-subject subcortex ranged from 0.64 to 6.17 for Sub1, 0.54 to 6.24 for 
Sub2, and 0.62 to 7.56 for Sub3 (Table 8). As depicted in the upper panel of Fig. 8, the 
subcortex including the thalamus, caudate, putamen, pallidum, hippocampus, amygdala, 
showed very small CVs  (< 2.5%) except the accumbens area (Table 8), especially the left 
side. In addition, Table S5 depicts the CVs of the subcortices along with the cerebellum, 
ventricles, brain stem, corpus callosum (CC), and CSF, where it is shown that the corpus 
callosum showed much higher stability as a whole than its parts such as the anterior, middle, 
and posterior (Fig. S6). 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 1, 2024. ; https://doi.org/10.1101/2024.06.01.596956doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.01.596956
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 8. CVs and percentage change in brain volume. The upper panel depicts the coefficient of 
the variant (CV) for each subject. The lower boxplots shows the percentage change for each brain 
region and each subject. The green lines are in the range of ±5 % while the red lines depict the range 
of ±15%. All values in the boxplots are reported as percentages. 

Table 8. The CVs of the non-cortical brain volume based on the DK atlas 
 Sub1 Sub2 Sub3 

 L R L R L R 

Thalamus 1.04 1.39 0.70 1.24 1.32 1.34 

Caudate 1.12 1.14 1.38 0.88 0.99 0.90 

Putamen 0.70 1.16 1.20 1.22 1.30 1.53 

Pallidum 1.14 1.28 1.33 1.32 1.33 1.75 

Hippocampus 0.93 0.71 0.95 1.15 1.53 1.83 

Amygdala 1.61 1.48 2.43 1.43 1.78 2.00 

Accumbens-area 6.17 2.36 6.24 2.69 7.56 3.34 

Total 0.46 0.72 0.51 0.64 0.64 0.71 

Time-of-day / Length-of-day 

There were no significant effects of time-of-day or daylight length in the percentage change 
of subcortex volumes. Additionally, the percentage changes were not correlated with any 
IQMs. The percentage changes for each brain region along the data collection were illustrated 
in Fig. S5. 

The influence of the outliers 

As depicted in Fig. 1A, sub3 manifested excessive head motion in two sessions (sessions 1 
and 7) indicated by the CJV values. Accordingly, after excluding these two sessions, the CVs 
(Tables 3, 4, 6) and the percentage changes (Sub3_qc in Figs. 3, 5, 7) have been substantially 
improved for all the T1w-derived phenotypes, which have been covered by the preceding 
results. 

Moreover, it is shown that sub1 and sub2 manifested larger and smaller percentage changes 
in the afternoon sessions compared to the morning ones, respectively. If the time-of-day 
effect exert its power, it should show the similar effect showing the similar pattern not the 
reversed pattern across most of subjects. Furthermore, the significant results were heavily 
driven by the last one or two data points, and after excluding these one or two data points, the 
significant results vanished (Fig. 9 BD).  
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Fig. 9. The influence of outliers on final results. (A) Percentage changes of surface areas in the 
temporal pole in sub1 where percentage changes are larger in the afternoon than in the morning. (B) 
Percentage changes showed no significant differences in sub1 after excluding just one afternoon 
session. (C) Percentage changes of the surface areas in the temporal pole in sub2 where the 
percentage changes are smaller in the afternoon than the morning. (D) Percentage changes showed no 
significant differences in sub2 after excluding just two afternoon sessions. 

Correlation within and between different phenotypes 

In order to explore which brain regions covaried, correlation matrices were computed within 
and between each phenotype. 

Within phenotypes, the average correlation coefficients of thickness (Fig. 10A), area (Fig. 
10B), and volume (Fig. 10C) were 0.25, 0.23, and 0.27, respectively. Moreover, between 
phenotypes, the average correlation coefficients (without the diagonal lines) of thickness-
volume (Fig. 10D), thickness-area (Fig. 10E), and area-volume (Fig. 10F) were 0.26, -0.09, 
and -3.4 × 10-4, respectively. More importantly, the correlation coefficients between brain 
regions (the diagonal lines in Fig. 10DEF) are positive for thickness-volume, negative for 
thickness-area, and almost none for area-volume (Table 9). The distribution of correlation 
coefficients of each phenotype association is depicted in Fig. S6. 
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Fig. 10. Correlation matrices within and between different phenotypes. Correlation 
matrices for (A) Thickness, (B) Surface area, (C) Brain volume, (D) Thickness and volume, (E) 
Thickness and area, and (F) Area and volume. 

Table 9. The correlation coefficients across different phenotypes 
 Thickness-Volume Thickness-Area Area-Volume 

pericalcarine 0.96 -0.22 -0.02 

precuneus 0.91 -0.48 -0.18 

parsopercularis 0.90 -0.20 0.11 

paracentral 0.89 -0.62 -0.27 

inferiortemporal 0.87 -0.02 0.14 

inferiorparietal 0.87 -0.57 -0.28 

bankssts 0.87 -0.10 0.20 

transversetemporal 0.84 -0.77 -0.38 

superiorparietal 0.83 -0.66 -0.23 

lateraloccipital 0.82 -0.49 -0.06 

superiorfrontal 0.82 -0.41 0.11 

superiortemporal 0.80 -0.51 -0.04 

supramarginal 0.80 -0.43 0.04 

caudalmiddlefrontal 0.79 -0.24 0.18 

lingual 0.78 -0.65 -0.13 

fusiform 0.78 -0.23 0.26 

parstriangularis 0.77 -0.37 0.09 
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precentral 0.77 -0.59 -0.01 

middletemporal 0.76 -0.22 0.35 

lateralorbitofrontal 0.76 -0.36 0.01 

rostralmiddlefrontal 0.76 -0.07 0.45 

temporalpole 0.74 -0.45 -0.06 

frontalpole 0.73 -050 -0.13 

postcentral 0.72 -0.55 0.11 

parsorbitalis 0.69 -0.31 0.32 

parahippocampal 0.67 -0.22 0.28 

cuneus 0.65 -0.70 -0.04 

rostralanteriorcingulat
e 0.62 -0.59 0.07 

insula 0.60 -0.35 0.44 

medialorbitofrontal 0.50 -0.31 0.59 

isthmuscingulate 0.46 -0.63 0.18 

entorhinal 0.43 -0.51 0.22 

caudalanteriorcingulate 0.33 -0.36 0.65 

posteriorcingulate -0.35 -0.70 0.88 

Discussion 

In this study, the within-subject stability of T1w-derived phenotypes encompassing cortical 
thickness, surface area, and brain volume were examined. We showed that the longitudinal 
pipeline of FreeSurfer generated more stable results compared to the cross-sectional pipeline. 
Furthermore, the stability of T1w-derived phenotypes was quite high with CVs and 
percentage change within 5%. Moreover, apparent head motion lead to underestimation of 
cortical thickness and volume and an overestimation of surface area. Furthermore, percentage 
changes in the cortical thickness strongly correlated with cortical volume while they 
correlated negatively with surface area. In addition, outliers in data distribution even with one 
or two data points could sway the final results, highlighting the importance of reporting the 
distributions of measurements. 

The longitudinal pipeline generates more reliable within-subject results, where it showed 
much smaller CVs (Table 1) and smaller percentage changes (Fig. 1C) compared with the 
cross-sectional pipeline. The longitudinal pipeline was proposed in 2012 by the FreeSurfer 
team, and since then it has been recommended to analyze longitudinal datasets (Reuter et al., 
2012). Specifically, the longitudinal pipeline creates and utilizes an unbiased within-subject 
template space and images to generate a robust, inverse consistent registration, which will 
significantly boost the stability and statistical power (Reuter et al., 2012). Indeed, our results 
are well in line with this argument. Accordingly, we also advocate the longitudinal pipeline 
should be used when analyzing longitudinal datasets. 

The characteristics of the T1w-derived phenotypes  

Cortical thickness is one of the phenotypes that is of great interest in human brain research 
regarding its role in defining normal cortical maturation (Bethlehem et al., 2022) and its 
abnormality of various neurological and mental disorders (Bethlehem et al., 2022; Frisoni et 
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al., 2010; Lemaitre et al., 2012; Thompson et al., 2020). In our dataset, cortical thickness 
ranged from 1.50 to 4.03 mm which falls well within the known bounds of 1 and 4.5 mm 
(Fischl & Dale, 2000) indicating the validity of our dataset. Furthermore, it is shown that the 
cortical thickness increases along the posterior-anterior axis (Fig. 2A), which is in 
concordance with the pattern documented in previous studies (Fischl & Dale, 2000; Hutton, 
De Vita, Ashburner, Deichmann, & Turner, 2008). Specifically, more detailed information 
has emerged based on the DK atlas, where we found that the insula, entorhinal cortex, and 
temporal pole are the thickest while the lingual gyrus, cuneus, and pericalcarine cortex are the 
thinnest (Fig. 2B). What’s more, it is shown that the thickest brain regions possess the largest 
standard deviations which agrees well with previous studies (Fischl & Dale, 2000; Hutton et 
al., 2008). Previous studies have also shown that the intersubjective standard deviations can 
be around 0.5mm (Fischl & Dale, 2000; Hutton et al., 2008). Complement that, we found the 
within-subject standard deviations are much smaller, where most of them lie well below 0.05 
mm with the thickest brain regions possessing the largest standard deviation of around 0.10 
mm. These results indicate that the cortical thickness measurement is very stable across a 
short time (about a year) in adults.  

The surface area and brain volume are the other two phenotypes that can be constructed from 
the T1w images which can be used as a proxy index of the brain size (Genon et al., 2022). It 
is shown that there are big variations between subjects regarding brain sizes where sub2 has 
the largest brain size followed by sub3 and sub1. This result highlights the importance of 
counterbalancing the brain size when comparing volume or surface area in a region between 
subjects. For example, it is common practice that ICV should be divided when comparing 
brain volumes between subjects instead of using absolute values (Bethlehem et al., 2022; 
Malone et al., 2015). Even though the brain size varies, based on the DK atlas, the biggest 
and smallest surface areas and brain volumes are the same within the three subjects. For 
example, regarding surface area, the superior parietal, rostral middle frontal, and superior 
frontal cortices are the largest while the entorhinal, transverse temporal, and frontal pole 
regions are the smallest. Moreover, the superior frontal and rostral middle frontal cortices are 
the largest for the cortical brain volume whereas the frontal pole and transverse temporal 
regions are the smallest. Additionally, for subcortical brain volume, it is shown that the 
thalamus and putamen are the largest and the pallidum, amygdala, and accumbens area are 
the smallest. The DK atlas was developed based on curvature-based information such as the 
sulcal representations and the anatomic curvature (Desikan et al., 2006), therefore, the 
different size of the surface area and brain volume in different brain regions represent their 
own territories constrained by the curvature boundaries.  

T1w-derived phenotypes are stable across one year 

It is found that the T1w-derived phenotypes including the cortical thickness, surface area, and 
brain volume in the vast majority of the brain regions are stable, where CVs are well 
constrained at 2% and the percentage change values are well within 5% over one year. CV 
and percentage change values have been used to evaluate the stability given that they are 
unitless and suitable for comparing variables with different sizes (Borga et al., 2020; 
Carbonell et al., 2022; M. Y. Wang et al., 2024; Y. Wang et al., 2021). CV is the division 
between standard deviation and average, where the smaller va. In the same vein, percentage 
change is the division between discrepancy from the average and the average, where smaller 
values denote high stability and less variation. Generally, a measurement is considered 
reliable or stable when CVs are within 5 % or percentage changes are within 10% (Borga et 
al., 2020; Carbonell et al., 2022; M. Y. Wang et al., 2024; Y. Wang et al., 2021). For example, 
using CVs, it is found that the stability of brain metabolites such as N-acetyl-aspartate was 
reasonably high with CVs around 4% (M. Y. Wang et al., 2024). Therefore, the 2% of CVs in 
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this study indicate that the T1w-derived phenotypes encompassing cortical thickness, surface 
area, and brain volume are fairly stable. In addition, the percentage change of 5% is sensible 
since it is estimated that during normal aging the phenotypes such as the cortical brain 
volume decreases at a rate of approximately between 0.5 to 1 % annually in adulthood 
(Lemaitre et al., 2012; Sele et al., 2021; Storsve et al., 2014). 

Although most of the brain regions are quite stable, several cortical brain regions did 
manifest larger fluctuations across all three T1w-derived phenotypes, such as the temporal 
pole, frontal pole, pericalcarine, and entorhinal cortex. In addition, subcortical brain region 
such as the accumbens area showed very high variations. One speculation could be that these 
brain regions do vary that much, however, the underlying biological reason for it need to be 
further investigated. Besides, only sub2 manifested a larger variation in the cingulate cortex 
especially the PCC compared to the other two participants indicating the individual 
differences.  

Cortical thickness changes together with cortical volume but not with surface area 

It is shown that the overall association within each phenotype is quite similar with an average 
strength of around 0.25. On the contrary, the relationships between each phenotype are quite 
divergent. Specifically, the percentage changes in cortical thickness and volume manifested a 
strong positive correlation while both of them illustrated a weak correlation with the 
percentage change of surface area. More importantly, the percentage changes in the cortical 
thickness showed a negative correlation with that of the surface area. These results 
manifested at the short-timescale agree well with the long-timescale normal aging study 
(Storsve et al., 2014). Collectively, these results reinforce that cortical thickness and surface 
area play distinct roles in brain anatomy and aging (Lemaitre et al., 2012; Storsve et al., 2014; 
Vijayakumar et al., 2016), which is sensible since they have distinct genetic roots (Panizzon 
et al., 2009).  

Head motion underestimates thickness and volume whereas it overestimates surface 
area  

Head motion can be indicated by the CJV and EFC values. Higher CJV and EFC values 
denote apparent head motion, which could deteriorate the SNR and CNR, and blur the image. 
After excluding the two sessions with excessive head motion in subject 3, the stability of all 
the T1w-derived phenotypes has been significantly improved evidenced by smaller CVs and 
percentage changes. However, the pattern is different. On one hand, the cortical thickness and 
cortical volume estimation were increased indicating the underestimation induced by head 
motion, which is in concordance with the previous study (Reuter et al., 2015). On the other 
hand, the surface area measurement is decreased indicating head motion overestimate the 
surface area. This result indicates that the head motion evaluation should be controlled 
especially when investigating participants who move a lot such as autistic children or 
Parkinson’s patients (Reuter et al., 2015). 

No time-of-day and daylight effects 

We found no time-of-day effect on cortical thickness, surface area, and brain volumes. 
However, previous studies reported lower cortical thickness (Trefler et al., 2016) and brain 
volume (Karch et al., 2019; Nakamura et al., 2015; Trefler et al., 2016) in the afternoon 
compared to the morning. But there are some limitations or shortcomings of the three studies 
that could have influenced their results. First, two of the studies were intersubjective design 
from which the intersubjective variation could interfere with the reported time-of-day effect 
(Nakamura et al., 2015; Trefler et al., 2016). Second, one study pooled data from other open 
datasets and separated the data according to the data collection time, in which each subject 
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generally only had one data point (Nakamura et al., 2015). Third, the other study only had 
two data points for morning and afternoon sessions for each subject in their primary and 
secondary datasets  (Trefler et al., 2016). Fourth, although one is within-subject design 
(Karch et al., 2019), they did not use the longitudinal pipeline as recommended by the 
FreeSurfer team (Reuter et al., 2012) which will provide more robust results as also 
evidenced by this study. Fifth, none of the studies showed the data distributions in the 
morning and afternoon sessions. On the contrary, our study was a within-subject design 
which contained at least 10 sessions and up to 23 sessions for each subject in the morning or 
afternoon sessions. What’s more, we used the longitudinal pipeline in our study and 
illustrated the data distributions (Figs. S1-5). Given that, we speculate that the time-of-day 
effect in the previous studies (Karch et al., 2019; Nakamura et al., 2015; Trefler et al., 2016) 
could be interfered with intersubjective variations and variations induced by the cross-
sectional pipeline.  

Regarding surface area, however, there are no studies on the time-of-day effect on the surface 
area. But, we did find that in the temporal pole, sub1 manifested a lower percentage change 
in the morning compared to the afternoon sessions, whereas sub2 showed the opposite pattern. 
The contradictory findings can be explained by one or two outlier sessions (Fig. 9) in the 
dataset highlighting the necessity of displaying the distribution instead of only reporting 
summary statistics (Allen, Erhardt, & Calhoun, 2012; Hintze & Nelson, 1998). Moreover, 
sub2 showed a higher percentage change in the posterior cingulate cortex during morning 
than afternoon sessions, which neither sub1 nor sub3 illustrated. Therefore, this result is part 
of the individual characters in sub2 instead of generalizing into the general population. In 
short, we infer that the time-of-day could not sway the results of the T1w-derived phenotypes. 

Similarly, we found no daylight effect on cortical thickness, surface area, and brain volumes. 
Previous studies have focused on the seasonal effect (Zhang et al., 2023) on functional brain 
organization and stated that daylight could reconfigure the resting state brain networks (M. Y. 
Wang et al., 2023b). However, to the best of our knowledge, this study could be the first 
study directly investigating the daylight effect on T1w-derived phenotypes. Although sub3 
manifested decreasing patterns regarding the cortical thickness and brain volume in the 
pericalcarine as the daylight length increases, this pattern did not emerge in the other two 
participants which impedes its generalization. Given the smallest data points (23 after QC) 
and head motion (largest CJV) within sub3 compared to 40 sessions within sub2 and 38 
sessions within sub1, it is suspected that the results in sub3 could rise from the large variation, 
however, further investigation should be warrant.    

Limitations 

Several limitations should be articulated. First, lacking female subjects hampers the 
generalization of our results. It is known that major events such as pregnancy (Hoekzema et 
al., 2017) and hormone levels can affect brain structure (Rizor et al., 2023). Second, although 
using the same MRI scanner and the same data processing pipeline can alleviate the 
interference from heterogeneous ones, it could impede the application to other datasets that 
are collected on other MRI scanners or data processing pipelines. Third, the timing of data 
collection was not fixed for each subject, for example, sub1 was not scanned between 10 and 
12 on Mondays, instead, each subject was scanned based on the availability of the scanning 
time and their available time.    

Conclusion 

In summary, the stability of T1w-derived phenotypes across one year during adulthood is 
fairly high with CVs within 2% while percentage changes within 5%. Moreover, quality 
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checking of the T1w images especially head motion should be reported and distinct become a 
common practice since it leads to the underestimation of the cortical thickness and volume 
while overestimation of the surface area. Lastly, data distribution reporting should also be a 
common practice since even one or two data outliers could sway the final results. 
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