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Abstract:

With the feature of noninvasively monitoring the human brain, magnetic resonance imaging
(MRI) has become a ubiquitous means to understand how the brain works. Specificaly, T1-
weighted (T1w) imaging is widely used to examine the brain structure where the cortical
thickness, surface area, and brain volumes have been investigated. These T1w-derived
phenotypes undergo radical changes during childhood and adolescence, while remaining
relatively stable during adulthood. However, stability over a short time (e.g. one year) during
adulthood is still unknown. Additionaly, how environmental factors such as time-of-day and
different daylight lengths could impact the structural brain is also elusive. The main purpose
of this study, therefore, was to assess the stability of T1w-derived phenotypes, i.e., cortical
thickness, surface area, and brain volumes including subcortical volumes, and to explore the
time-of-day and daylight length effects. Accordingly, three subjects in their late 20s, and
early 30s and 40s were scanned repeatedly on the same scanner over one year from which a
deep brain imaging dataset was constructed with 38, 40, and 25 sessions for subjects 1, 2, and
3, respectively. The T1w-derived phenotypes demonstrated percentage changes within 5%
and CVs (coefficients of variance) within 2% for the majority of brain regions. However,
severa brain regions did show larger variations with percentage changes around 10% and
CVs around 5%, such as the temporal pole, the frontal pole, and the entorhinal cortex. More
importantly, there were no significant effects of time-of-day and daylight length. Moreover,
cortical thickness change was strongly and positively correlated with that of volume while
being negatively correlated with that of surface area, illustrating their distinct roles in brain
anatomy. Additionally, it was found that apparent head motion causes cortical thickness and
volume to be underestimated and surface area to be overestimated. These resultsindicate that
T1w-derived phenotypes are reasonably stable regardless of time-of-day or daylight length,
but that head motion should be taken into consideration.

Significance:
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Assessing the measurement precision and within-subject stability of T1w-derived phenotypes
is crucial for accurately estimating brain changes induced by treatments or interventions.
Furthermore, understanding within-subject variation enhances our ability to predict behavior
and associations with brain phenotypes, which rely heavily on between-subject variation.

Keywor ds: dense sampling; cortical thickness; surface area; volume; T1w; time-of-day;
daylight length
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Our understanding of how the human brain works has been substantially deepened over the
last few decades (Finn, Poldrack, & Shine, 2023; Lerch et al., 2017; Poldrack & Farah, 2015).
Specifically, magnetic resonance imaging (MRI), with the capability of obtaining in vivo
brain images, has revolutionized our understanding of the brain structure (Lerch et al., 2017),
function (Finn et al., 2023), and their associations with behavior (Genon, Eickhoff, &
Kharabian, 2022; Wu, Li, Eickhoff, Scheinost, & Genon, 2023), genetics (Chen et al., 2012;
Elliott et al., 2018; Grasby et al., 2020), and environment (Holz et al., 2023; Thompson et al.,
2020). Without any doubt, MRI has become a ubiquitous means of investigating the human
brain both in basic brain research and clinical settings.

MRI can provide various brain imaging modalities by exploiting different MRI sequences
(Lerch et al., 2017), among which T1-weighted (T1w) brain imaging has been widely used to
explore cortical and subcortical brain characteristics. For example, the phenotypes derived
from the T1w images have been utilized to establish normal brain development trajectories
(Bethlehem et al., 2022; Lemaitre et a., 2012; Sowell et al., 2003; Sowell et a., 2004;
Vijayakumar et al., 2016) and uncover brain abnormalities (Frisoni, Fox, Jack, Scheltens, &
Thompson, 2010). The T1w-derived phenotypes can be constructed with the surface-based
algorithm, which has been predominantly used in structural brain research including several
big datainitiatives, such as the UK Biobank (Alfaro-Almagro et al., 2018), the Human
Connectome Project (Glasser et a., 2013), and the Adolescent Brain Cognitive Development
Study (Hagler et a., 2019). Therefore, the surface-based analysis will also be utilized in this
study. Simply put, the surface-based algorithm will construct the pial and white matter
surfaces in the subject’ s native space, with which the phenotypes including the cortical
thickness, area, and volumes can be calculated (Dale, Fischl, & Sereno, 1999; Fischl & Dale,
2000; Fischl, Sereno, & Dale, 1999).

These three abovementioned T1w-derived phenotypes have been ubiquitously used to
investigate longitudinal brain development (Bethlehem et a., 2022), especially in childhood
(Gilmore, Knickmeyer, & Gao, 2018; Sowell et a., 2004), adolescence (Sowell et a., 2004;
Vijayakumar et al., 2016), and the elderly (Lemaitre et al., 2012; Sele, Liem, Merillat, &
Jancke, 2021; Storsve et a., 2014) where the brain changes rapidly. Almost no studies,
however, have focused on brain change during adulthood, which is reasonable since almost
all the brain features will reach the plateau at this time and not change dramatically
(Bethlehem et al., 2022). For example, the human cortical thickness peaks at 1.7 years
(Bethlehem et al., 2022) which varies between 1 and 4.5 mm with an overall average of
approximately 2.5 mm (Fischl & Dale, 2000). Furthermore, the total surface area peaks at
10.97 years while cortical and subcortical gray matter volume peaks at 5.9 years and 14.4
years, respectively (Bethlehem et al., 2022). After the peaks, the three T1-derived phenotypes
remain relatively stable during adulthood and gradually decline in late life. Althoughiitis
considerably stable, the degree of stability across a short time (e.g. across one year) at
adulthood is still largely unknown. Additionally, the influence of external environmental
factors on the structural brainis still elusive.

Although time-of-day effects have been documented in functional brain organization studies
(Orban, Kong, Li, Chee, & Yeo, 2020), the impact on brain structure is still unclear. Some
studies have reported associ ations between time-of-day and cortical measures (Karch et al.,
2019; Nakamuraet al., 2015; Trefler et al., 2016). Specifically, the cortical thickness
decreased from morning to afternoon (Trefler et al., 2016). In the same vein, the brain
volume s larger during the morning than during the afternoon (Karch et al., 2019; Nakamura
et a., 2015; Trefler et al., 2016). However, two of the studies employed a cross-sectional
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design where between-subject variation could interfere with the reported time-of-day effect
(Nakamuraet al., 2015; Trefler et al., 2016). For example, in one study, each subject only had
two data points for morning and afternoon sessions (Trefler et a., 2016), and the other just
pooled the data from other datasets and separated them based on the collection time
(Nakamuraet al., 2015). Although one is within-subject design (Karch et a., 2019), they did
not use the longitudinal pipeline as recommended (Reuter, Schmansky, Rosas, & Fischl,
2012), which could hinder the robustness and reliability of the results. More critically, none
of the studies showed the data distribution of the morning and afternoon sessions. Therefore,
in this study, within-subject design together with the longitudinal processing pipeline will be
adopted meanwhile the data distribution will be provided.

Besides the time-of-day effect, the seasonal effect on functional brain organization has
recently attracted some attention (M. Y. Wang, Korbmacher, Eikeland, & Specht, 2023b;
Zhang, Shokri-Kojori, & Volkow, 2023). Specifically, daylight length comes out as a
potential contributor (Di, Woelfer, Kiihn, Zhang, & Biswal, 2022) to the functional brain
organization (M. Y. Wang et a., 2023b). For example, the salience network, one of the
resting-state brain networks, is larger when daylight length is short compared to when it is
long (M. Y. Wang et a., 2023b). To the best of our knowledge, thereis still no study
investigating the daylight length effect on brain structure. Located in the Arctic Circle, the
daylight length in Norway varies substantially throughout the year. Specificaly, the daylight
length of the place in Bergen can be as short as around 2 hours daylight and as long as around
16 hours daylight, which makes it suitable for exploring the daylight length effect.

The main aim of this study was to quantify the stability of cortical thickness, surface area,
and brain volumes across one year, and to investigate the effects of time-of-day and daylight
length. For this purpose, and to mitigate the influence of different scanners, field strengths
(Han et al., 2006; Iscan et al., 2015), different processing platforms, software versions
(Gronenschild et a., 2012), and inter-subject interference, three subjects were repeatedly
scanned in this study across one year in the same scanner at the same location (M. Y. Wang,
Korbmacher, Eikeland, & Specht, 2022, 2023a) where the data were processed with the latest
released version of the software (FreeSurfer 7.2) on the same computer (M. Y. Wang et al.,
20234). In addition, the image quality metrics were included as covariates since it is shown
that image quality can affect measurements (Ducharme et a., 2016; Reuter et al., 2015).

Methods
Participants

Three participants (Table 1) were scanned as part of a precision brain mapping project named
the Bergen Breakfast Scanning Club (BBSC) project (Korbmacher et al., 2023; M. Y. Wang,
Korbmacher, Eikeland, Craven, & Specht, 2024; M. Y. Wang et al., 2022, 20234). The BBSC
project aimsto illustrate the individual precision brain networks and to examine the stability
of MRI measurements over one year. For this purpose, the participants were scanned twice a
week between February 2021 and February 2022 with two breaks (Jun. to Oct. 2021, and Jan.
2022) where functional and structural MRI data (M. Y. Wang et al., 2022, 2023a) were
collected. In total, there are 38, 40, and 25 T1w MRI sessions for subjects 1, 2, and 3,
respectively. The exact dates of these sessions can be found in Table S1.

All three participants speak at |east two languages (their native languages, and English).
Notably, the first participant has also been acquiring an additional language since January
2021 and remained COVID-19 free during the period of data collection. The second
participant contracted COVID-19 around December 2021, while the third participant had
COVID-19 in approximately August 2021.
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Tablel. Basic demographic information of subjects

Subl Sub2 Sub3
Gender Male Male Male
Onset Age 31 27 40
Laterality Right Right Right
Regular caffeine No Yes Yes
consumption?
Regular nicotine No No No

consumption?

Data collection

Data collection was embedded in the functional protocol of the BBSC project (M. Y. Wang et
a., 2022, 2023a), which lasted around 25 minutes in total. The procedure of the data
collection in the functional protocol is seven mins Tlw MRI, 5 mins MR spectroscopy (MRS)
data, and 12 mins rs-fMRI, where the data were collected with a3T MR scanner (GE
Discovery MR750) with a 32-channel head coil at the Haukeland University Hospital in
Bergen, Norway. The other modalities in the BBSC project have been described previously
(M.Y.Wang et a., 2023a).

Seven-minute structural T1w images were acquired using a 3D Fast Spoiled Gradient-
Recalled Echo (FSPGR) sequence with the following parameters: 188 contiguous slices
acquired, with repetition time (TR) = 6.88 ms, echo time (TE) = 2.95 ms, FA (flip angle)
= 12°, slicethickness = 1 mm, in-plane resolution = 1 mm x 1 mm, and field of view
(FOV) = 256 mm, with an isotropic voxel size of 1 mm?®.

Data processing

Cortical thickness, area, and volume were computed with FreeSurfer 7.2 (freesurfer-darwin-
mMac0S-7.2.0-20210713-aa8f76b) (Dae et al., 1999; Fischl et al., 1999). First, each session
was processed with the cross-sectiona recon-all pipeline. Then, the results went through the
longitudinal pipeline (Reuter et al., 2012), where an unbiased within-subject template space
and image are created by using a robust, inverse consistent registration (Reuter, Rosas, &
Fischl, 2010). For more details, please refer to the data processing part in the Supplementary
Material.

It has become common practice to report brain imaging results in acommon brain atlas
(Desikan et al., 2006; Yeo et a., 2011) to aggregate or contrast findings across different
studies, among which the Desikan- Killiany (DK) atlas (Desikan et a., 2006) has become the
common atlas used in the T1w brain imaging studies (Alfaro-Almagro et al., 2018;
Bethlehem et al., 2022; Ducharme et al., 2016; Grasby et al., 2020; Hagler et al., 2019; Iscan
et a., 2015; Lemaitre et al., 2012; Sele et al., 2021; Storsve et al., 2014; Vijayakumar et al.,
2016). The DK atlas was developed based on curvature-based information such as the
sulcal/gyral representations and contains 34 cortical brain regionsin each hemisphere
(Desikan et al., 2006). In this study, therefore, cortical thickness, surface area, and volume
were extracted from 68 brain regions. Additionally, 8 subcortical regions (thalamus, pallidum,
amygdala, hippocampus, putamen, accumbens area, caudate nucleus, and lateral ventricles)
were used for the subcortical brain volume analysis.

Moreover, the T1w images were quality assessed with MRIQC 23.1.0 (Esteban et a., 2017),
where the following image quality metrics (IQMs) were used (Fig. 1AB): contrast-to-noise
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ratio (CNR); signal-to-noiseratio (SNR); white-matter to maximum intensity ratio
(WM2MAX); coefficient of joint variation (CJV); entropy focus criterion (EFC); intensity
non-uniformity (INU); foreground-to-background energy ratio (FBER); full-width half
maximum (FWHM); residual partial volume effect feature (rPVE).

CNR measures the difference in mean intensities between gray and white matter, normalized
by the standard deviation of non-brain areas, with higher valuesindicating better contrast
between gray and white matter (Magnotta, Friedman, & First, 2006). SNR quantifies the
mean intensity within gray matter relative to the standard deviation outside the brain, where
higher values denote higher quality (Magnotta et al., 2006). WM2MAX estimates the median
white matter intensity against the 95th percentile of the entire image intensity, pinpointing
hyperintensities such as those in carotid vessels and fat with ideal values falling between 0.6
and 0.8 (Esteban et al., 2017).

CJV was proposed as a measure for INU correction agorithms, higher CJV indicates head
motion or INU artifacts, whereas lower values imply better quality (Ganzetti, Wenderoth, &
Mantini, 2016). EFC uses Shannon entropy to measure image blurring due to head motion
with lower values reflecting a superior image clarity (Atkinson, Hill, Stoyle, Summers, &
Keevil, 1997). INU summary statistics (max, min and median) of the INU field (bias field) as
estimated with the N4ITK algorithm (Tustison et a., 2010). Values closer to 1.0 are better,
values further from zero indicate greater field inhomogeneity.

FBER is defined as the mean energy of image values within the head relative to that outside
the head with higher values indicating better images. The FWHM of the spatial distribution
represents the image intensity values in voxel units where lower values are better with higher
values indicating a blurrier image (Forman et al., 1995). The rPVE is atissue-wise sum of
partial volumesthat fall in the range [5-95%] of the total volume of a pixel, computed on the
partial volume maps, in which alower rPVE is better (Esteban et al., 2017).
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Fig. 1. Distributions and correlations of | QMsand per centage changes of different
brain tissues from different pipelines. (A) Violin plots of the IQM distributions for each subject.
(B) Correlation matrix between the IQMs, where the cnr, snr_total, and wm2max form one cluster
representing the image intensity, the cjv, efc, and inu_med constructs another cluster representing
head motion or related artifacts, and the fber, fwhm_avg, and rpve_gm form the last cluster
representing the technique qualities. (C) Percentage changes along the data collections generated from
the longitudinal and cross-sectional pipelines. The x-axis represents the time sequence of data
collection while the y-axis depicts the percentage change. The gray dashed lines denote 2%
percentage change. For subplots (A) and (C), the red color represents subject 1, the blue depicts
subject 2, and the green represents subject 3. Contrast-to-noise ratio (CNR); signal-to-noise ratio
(SNR); white-matter to maximum intensity ratio (wm2max); coefficient of joint variation (CJV);
entropy-focus criterion (EFC); intensity non-uniformity (INU); foreground-to-background energy
ratio (FBER); full-width half-maximum (FWHM); residual partial volume effect (rPVE).

Data Analysis
Coefficient of variance;

The coefficient of variation (CV) is utilized to assess the consistency of T1w-derived brain
phenotypes across different testing sessions:
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std
Cve) = (=)« 100
mean
where std denotes the standard deviation of the measurements taken during different sessions
for the same subject, while mean refers to their average.

CVsfacilitate comparison of variability across varying units or scales. It has also been
instrumental in assessing the stability of measurements over sometime (Borgaet al., 2020;
Carbonell et al., 2022; M. Y. Wang et al., 2024; Y. Wang et a., 2021), whereit is especially
suitable for the within-subject design (M. Y. Wang et a., 2024). Lower CVs indicate less
variability relative to the mean, signifying higher precision or consistency. Conversely,
higher CVs indicate more variability relative to the mean, suggesting lower precision or
consistency (M. Y. Wang et al., 2024).

Linear mixed-effects models

To evaluate the impact of time-of-day and daylight length on various brain metrics such as
cortical thickness, surface area, and brain volumes, linear mixed-effects models were
employed. These models designated cortical measurements as dependent variables,
influenced by the independent variables of time-of-day and daylight length. To account for
discrepancies among different brain regions, we used percentage changes of each T1-
weighted (T1w) derived phenotype, calculated as the deviation from the mean divided by the
mean itself.

Time-of-day was classified based on the data collection time, labeling sessions before noon

as 'morning' and those after as 'afternoon.’ The distribution of sessions was as follows: in subl,
there were 22 morning and 16 afternoon sessions; in sub2, 23 morning and 16 afternoon
sessions; and in sub3, 15 morning and 10 afternoon sessions. Daylight length data, ranging
from 120 to 948 minutes, was obtained from the weather station at Florida maintained by the
University of Bergen (https.//veret.gfi.uib.no/). The time-of-day indices and daylight length
have been described in Table S1.

To control the influence of the IQMs on the stability of T1w-derived phenotypes, the IQMs
were used as covariates in the linear mixed-effects models. In addition, to alleviate the
different scales of IQMss, the IQMs were normalized by subtracting the mean and being
divided by the standard deviation.

Then, the following model was used for the cortical thickness, surface area, and brain
volumes within each subject:

percentagechange
= Bo + Bi(timeerrece) + Ba(region) + Bs(time, rece X region)
+ Ba-12(UQMs) + u(hemi) + €

Where, S is the intercept; ; to f1, are the fixed effect coefficients for each predictor;
time_effect and region are fixed effects, with an interaction term included to examine the
combined influence of day length and regional differences on cortical thickness; time_effect
istime-of-day or daylight length; IQMs are included as covariates to control for various
imaging and physiological parameters; u (hemi) representing the random intercepts for each
level of the hemisphere, and 71 isthe residual error.

To control for multiple comparisons, the modified Bonferroni correction method (Holm,
1979) was applied. Statistical analyses and visualizations were done with R 4.3.2 (R Core
Team, 2022), where the regression was modeled with Ime4 (v1.1-35.1) (Bates, Mé&chler,
Bolker, & Walker, 2015) and ImerTest (v3.1-3) (Kuznetsova, Brockhoff, & Christensen,
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2017), and visualization was performed with ggplot2 (v3.5.0) (Wickham, 2016), ggseg
(v1.6.6) (Mowinckel & Vidal-Pifieiro, 2020), and patchwork (v1.2.0).

Results
Longitudinal vs cross-sectional pipelines

The CVs of longitudinal and cross-sectional processing pipelines from FreeSurfer are
described in Table 2. Meanwhile, the percentage changes against the average of different
brain tissues for each subject areillustrated in Fig. 1C.

Asshown in Table 2 and Fig. 1C, the CV's and percentage changes generated by the
longitudinal processing pipeline are smaller than those of the cross-sectional pipeline, which
indicates the longitudinal pipeline generates more reliable results. Therefore, the following
results are derived from the longitudinal pipeline.

Table 2. Thelongitudinal pipdine generates smaller CVs

Sub1 Sub2 Sub3
Longitu Cross Longitudi Cross- Longitudi Cross-
dinal sectional nal sectional nal sectional

Total Brain 057 113 0.50 1.47 0.58 0.85
Gray Matter 0.81 1.06 0.71 1.86 131 1.60
Left - GM 0.89 117 0.80 197 140 161
Right - GM 091 113 0.74 184 135 1.69
White Matter 0.66 1.79 065 174 090 170
Left - WM 0.69 1.86 0.63 176 120 1.72
Right - WM 0.76 1.77 0.74 176 087 181

All CVsare reported as percentages, where smaller is better.
Total Brain: ‘BrainSegVolNotVent' generated from FreeSurfer.

Cortical Thickness
Mean thickness for each brain region across sessions

The mean cortical thicknesses of the three subjects were 2.59 mm, 2.70 mm, and 2.58 mm,
respectively with a shared standard deviation of 0.02 mm (Table S2). In addition, subject 1
showed arange of 1.59 to 4.04 mm, subject 2 with arange of 1.83 to 3.75 mm, and subject 3
with arange of 1.50 to 4.03 mm (T able S2). Moreover, analysis of the cortical thickness
distribution across various brain regions revealed a consistent ranking of regions within
subjects, identifying the insula, entorhinal cortex, and temporal pole as the thickest regions
for all subjects (Fig. 2AB and Table S2). Conversely, regions such asthe lingual gyrus,
cuneus, and pericalcarine cortex were consistently ranked as the thinnest across the subjects,
as aso shown in Fig. 2AB and Table S2. Furthermore, standard deviations ranged from 0.02
to 0.15 mm, where the thickest brain regions had the largest standard deviations (Table S2).
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Fig. 2. Mean cortical thickness, percentage change distributions along with IQM s, and
per centage changes along the daylight length. (A) Average cortical thickness across all
sessions of different brain regions for each subject where the unit isa millimeter. (B) Ranked brain
regions are illustrated from the thinnest to the thickest (example data from subl). All three subjects
have the same the most three thinnest and thickest brain regions although the brain regions ranking in
the middlevary. (C) The distribution of the percentage changes along with different IQMs, where the
red, blue, and green dots represent subjects 1, 2, and 3, respectively. (D) Percentage change of
thickness along different daylight lengths in the pericalcarine region for subl, sub2, and sub3,
respectively. No significant results for subl and sub2 whereas sub3 showed significant results.

The stability and percentage changes for each brain region

The distribution of percentage changes along the IQM s and percentage change isillustrated

in Fig. 2C, which indicated that sub3 had two sessions with considerable apparent head
motion evidenced by the larger CJV, EFC, INU, and smaller CNR values. These two sessions
could lead to the larger percentage changes and CVsin sub3 asillustrated in Fig. 3. To
confirm the assumption, the two sessions with excessive head motion indicated by the CJV
(sessions 1 and 7) were excluded, after which the CV's (T able 3) and percentage changes
(Sub3_qc in Fig. 3) significantly improved (left hemi: ts3 = -7.6, p = 4.8 x 10°, Cohen'sd =
1.3; right hemi: tss = -7.13, p = 1.8 x 10°®, Cohen'sd = 1.22).

After quality control, the CVs of within-subject thickness ranged from 0.67 to 4.40, from
0.74 10 2.64 for subl, 0.67 to 3.24 for sub2, and 0.84 to 4.40 for sub3 (Table 3). Furthermore,
the percentage changes in almost all brain regions across the three subjects were well-
constrained within the 5% asillustrated in Fig. 3. Several brain regions, however, showed
larger CVs and percentage changes across all three subjects (Fig. 3 and Table 3), such as the
temporal pole, frontal pole, pericalcarine, and entorhinal cortex.
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Fig. 3. The CVsand percentage changesin the cortical thickness. The upper panel depicts
the coefficient of the variant (CV) for each subject. The lower boxplots show percentage change
againg the average for each brain region and each subject. Sub3 represents the results from the
original data while sub3_gc shows the results from the data after excluding two sessions with
excessive head motion. The green lines are in the range of £5 % while the red lines depict the range of
+15%. All valuesin the boxplot are given as percentages.

Table3. The CVsof the cortical thickness based on the DK atlas

Subl Sub2 Sub3
Left Right Left Right Left Left. Righ Right_gc

qc t
transver setemporal 159 145 190 140 461 394 343 205
temporalpole 185 225 272 324 471 440 326 3.28
supramarginal 1.00 1.20 107 0.92 245 181 191 132
superiortemporal 0.76 0.74 098 0.85 177 092 231 130
superiorparietal 121 133 111 1.18 264 172 297 104
superiorfrontal 0.98 0.92 111 114 178 142 219 143
rostralmiddlefrontal 1.38 0.98 146 174 235 158 174 146
rostralanteriorcingulate 136 1.38 121 151 135 122 147 123
precuneus 133 1.09 112 1.00 190 128 266 1.15
precentral 092 1.06 111 1.05 320 222 161 1.16
posteriorcingulate 116 1.13 267 1.88 162 127 178 133
postcentral 0.91 0.97 120 1.13 252 226 190 1.25
pericalcarine 176 2.64 1.86 3.16 343 341 316 325

parstriangularis 107 1.18 166 141 280 222 202 191
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parsorbitalis 124 135 207 197 262 260 174 181
par sopercularis 098 1.20 132 116 264 226 218 181
parahippocampal 095 0.99 118 1.76 263 158 255 177
par acentral 167 185 189 171 343 170 297 154
middletemporal 0.83 0.86 097 091 265 117 267 129
medialorbitofrontal 239 1.77 170 131 151 148 163 144
lingual 116 114 112 162 139 106 209 214

later alorbitofrontal 123 1.36 167 1.33 224 214 263 191
lateraloccipital 125 1.05 136 104 198 128 206 134
ishmuscingulate 148 1.75 1.04 116 165 125 130 124
insula 116 1.15 1.09 120 204 164 173 138
inferiortemporal 1.10 0.88 1.09 0.72 232 122 249 110
inferiorparietal 156 1.95 105 1.16 317 171 217 123
fusiform 1.08 0.80 0.85 0.67 153 112 159 084
frontalpole 228 211 294 214 183 130 401 287
entorhinal 203 155 219 243 359 316 249 1.60
cuneus 151 2.02 162 147 191 188 227 227
caudalmiddlefrontal 169 1.23 136 1.45 204 188 192 141
caudalanteriorcingulate 162 1.44 186 1.34 177 144 206 1.76
bankssts 093 1.88 117 117 314 207 212 1.23
average 0.72 0.66 0.68 0.68 167 09 145 083

Percentage CV s after excluding the two sessions with excessive head motion.

Time-of-Day

The linear mixed-effects model did not generate any statistically significant results regarding
the time-of-day effect within each subject in our dataset. The percentage changes for each
brain region stratified by morning and afternoon sessions were illustrated in Fig. S1.

Daylight length

The linear mixed-effects model did not generate any statistically significant results regarding
the daylight length effect within subl and sub2, but sub3 showed brain thickness decline (Fig.
2D) in the pericalcarine (Rf = 0.15, § =-1.46, t = -4.09, p = 3.55 x 10°%) along with the
increase of daylight length.

Surface Area
Mean brain area across sessions for each brain region

The total surface areas of one brain hemisphere are around 850, 912, and 908 cm? for sub1,
sub2, and sub3, respectively. Additionally, the range of the surface area of one brain regionin
each brain hemisphere is from 219.82 to 6815.53 mm? for sub1, 298.30 to 8046.82 mm® for
sub2, and 248.83 to 8594.52 mm? for sub3 (Table S3). The superior parietal, rostral middle
frontal, and superior frontal cortices emerged as the consistently largest surface areasin all
subjects (Fig. 4AB). In contrast, the entorhinal, transverse temporal, and frontal pole regions
were invariably the smallest (Fig. 4AB and Table S3).
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Fig. 4. Mean surface area, per centage change distribution along with IQMs, and
longitudinal and time-of-day change. (A) Average surface area of different brain regions for
each subject and the unit is millimeters per square. (B) Surface areas from the smallest to the largest
(datafrom subl). The three smallest and largest surface areas were the same in al three subjects, but
the surface areas ranking in the middle varied. (C) The distributions of surface area percentage
changes along with the IQMs, where the red, blue, and green dots represent subjects 1, 2, and 3,
respectively. (D) The digtribution of morning and afternoon sessions of the posterior cingulate cortex
for each subject.

The stability and percentage change for each brain region

The distributions of percentage changes along with the IQMs are shown in Fig. 4C, where
the distributions illustrated more skewed positive changes along with larger CJV and smaller
CNR valuesin sub3. This could contribute to the large percentage change in surface area
measurement in sub3 asillustrated in Fig. 5. Accordingly, if the outliers (sessions 1 and 7)
are excluded, the CV (Table 4) and percentage changes (sub3_gc in Fig. 5) have been
improved (left: ts3 = -6.03, p= 4.4 x 10, Cohen's d = 1.03; right: ts3 = -2.27, p= 7.9 x 10,
Cohen'sd = 0.73).

The CVs of the within-subject area range from 0.41 to 7.25, where 0.41 to 4.52 for Subl,
0.49to0 7.25 for Sub2, and 0.53 to 5.34 for Sub3 (Table 4). Specifically, sub2 manifested a
generally larger percentage change in the cingulate cortex (Fig. 5) and greater CVs (T able 4)
than other brain regions along the data collections. Aside from the cingulate cortex in sub2
and those abovementioned three cortices with greater percentage changes, amost all brain
regions showed percentage changes within 5% across all three subjects (Fig. 5). Notably,
several surface areas showed larger CV's and percentage changes across all three subjects,
including the temporal pole, frontal pole, and entorhinal cortex (Fig. 5 and Table 4).
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Fig. 5 CVsand percentage changesin surface area. The upper panel depicts the coefficient of
the variant (CV) for each subject. The lower boxplot shows percentage changes for each brain region
and each subject. Sub3 depicts the results generated from the original data while Sub_gc shows the
results generated from the data after excluding sessions 1 and 7. The green lines are in the range of
+5 % while the red lines depict the range of £15%. The unit of all values in the boxplot is percentage.

Table4. The CVsof the surface area based on the DK atlas

Subl Sub2 Sub3
Left Right Left Right Left Left. Righ Right_gc

gc t
transver setemporal 156 1.77 199 2.26 404 342 404 191
temporalpole 350 483 458 401 472 481 504 513
supramarginal 0.61 0.65 0.63 0.82 140 053 116 0.74
superiortemporal 0.59 0.40 0.73 064 138 090 099 0.73
superiorparietal 0.72 0.59 0.82 0.92 279 091 276 091
superiorfrontal 0.56 0.55 0.76 0.76 154 088 159 0.91
rostralmiddlefrontal 110 124 101 121 136 105 1.03 0.92
rogra'a”tegorcmgu'at 146 224 215 227 238 183 206 1.80
precuneus 046 0.52 0.68 0.67 158 083 182 0.77
precentral 0.81 0.76 1.06 0.80 260 124 175 0.89
posteriorcingulate 118 124 725 6.94 142 129 178 154
postcentral 0.97 0.77 111 1.04 293 19 137 101
pericalcarine 138 094 170 111 231 113 139 143

pargtriangularis 157 0.79 139 115 237 115 110 086
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par sor bitalis 204 151 186 1.43 224 205 253 149
par sopercularis 091 0.39 0.77 0.98 133 124 125 105
par ahippocampal 125 147 114 1.29 170 117 161 103
paracentral 0.78 1.03 152 131 298 156 265 1.23
middletemporal 122 166 0.86 0.78 130 095 097 0.80
medialorbitofrontal 452 0.99 209 161 144 144 123 127
lingual 139 130 150 1.65 153 133 199 201

lateralor bitofrontal 097 113 157 1.76 238 19 226 227
|ateraloccipital 0.86 0.80 1.06 0.86 126 092 189 123
isthmuscingulate 160 2.46 123 153 156 105 141 141
insula 076 114 156 284 146 144 114 116
inferiortemporal 053 0.85 111 0.77 123 125 113 104
inferiorparietal 0.79 0.90 091 0.82 220 074 121 0.66
fusform 0.95 0.89 1.08 1.34 137 123 091 087
frontalpole 320 3.80 198 1.95 299 215 577 380
entorhinal 2.84 259 433 284 526 534 329 326
cuneus 164 192 140 194 230 199 231 237
caudalmiddlefrontal 0.58 0.55 0.77 1.29 112 111 129 1.08
caudalanteriorcingulate 0.64 193 438 2.28 154 118 210 217
bankssts 041 0.88 049 0.77 065 065 095 0.85
Total 052 0.55 0.67 0.74 122 067 086 0.58

Unit: percentage; 7h_gc: CVs after excluding the two sessions with excessive head motion

Time-of-Day

The linear mixed-effects model did not generate any statistically significant results regarding
the time-of-day effect within sub3. However, in sub2, the posterior cingulate cortex (Fig. 4D)
showed a higher percentage change during morning than afternoon sessions (RZ = 0.14, t =
4.72,p=1.91x 10™). Moreover, the percentage change in morning sessionsis lower than

that of the afternoon in the temporal pole region in subl (RZ = 0.09, t = - 4.18, p = 2.27 x 10°?)
whereas the reversed pattern isin sub2 (RZ = 0.14, t = 4.02, p = 4.55 x 10°%). However, see the
influence of outliers for further analysis (Fig. 9). The percentage changes for each brain

region of morning and afternoon sessions wereillustrated in Fig. S2.

Daylight length

The linear mixed-effects model did not generate any statistically significant results regarding
the daylight length effect for any of the participants.

Cortical Brain Volume
Total volumes of different brain apartments

The average and standard deviation of the total gray matter volumes, total white matter
volumes, and the CSF volumes including the left and right hemispheres are described in
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Tableb.
Table5. The values (Mean + SD) of volumes of the different brain apartments

Subl Sub?2 Sub3

Gray Matter 477.87 + 388 548.77 + 3.89 507.50 + 6.67
Left - GM 236.60 + 2.10 27581+ 221 254.96 + 3.57
Right - GM 241.27 + 2.20 272.96 + 2.03 252.54 + 3.40
White Matter 453.74 + 2.99 515.36 + 3.32 445.01 + 401
Left - WM 22454 + 1,55 258.50 + 1.62 22328+ 2.68
Right - WM 229.20 + 1.75 256.86 + 1.90 22173+ 192

CSF 0.81 + 0.04 1.22 +0.04 1.05 + 0.04

'(I”g\f‘)c ranialVol 1525.148 1658.298 1555.418

The unit of all valuesis cubic centimeters.
Time change of the total volumes of different brain apartments

There are no significant results regarding the time-of-day or daylight length change in the
total volumes of different brain apartments. The distributions of the morning and afternoon
sessions are shown in Fig. S3.

Mean cortical brain volume across sessions

For three subjects, brain volume of different regions varied from 731.53 to 21682.50 mm: for
subl, 981.82 to 26338.03 mm3 for sub2, and 903.65 to 26170.17 mm? for sub3 (Table $4).
Theintracranial volume (ICV) remained consistent for each subject in all sessions (subl:
1,525,148 mm3; sub2: 1,658,298 mm3; sub3: 1,555,418 mmg3) after running the longitudinal
pipeline. Ranking the volumes reveal ed that the superior frontal and rostral middle frontal
cortices were the largest in all subjects (Fig. 6B). Conversely, the frontal pole and transverse
temporal regions were consistently the smallest across all subjects (Fig. 6B and Table S6).
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Fig. 6. Mean cortical brain volume, and per centage change distributions along with
IQMs, and the data collections. (A) Average brain volume size of different brain regionsfor each
subject where the unit is cubic millimeters. (B) Brain regions from the smallest to the largest (data
from subl). All three subjects have the same the most two smallest and largest brain volumes
although the brain regions ranking in the middle vary. (C) The distribution of the percentage changes
along the IQM s, where the red, blue, and green dots represent subjects 1, 2, and 3, respectively. (D)
Percentage changes of pericalcarine brain volumes plotted against daylight lengths for each subject.

The stability and percentage changes for each brain region

The distribution of the percentage changes against the IQMsiisillustrated in Fig. 6C, where it
manifested skewed negative changes with larger CJV and smaller CNR induced by the head
motion in sub3. These two sessions could contribute to the large percentage change in the
cortical brain volume measurement. Accordingly, if we exclude the outliers (sessions 1 and
7), the CV (Table 6) and percentage change (sub3_qcin Fig. 7) have been significantly
improved (left: ts3 = -5.06, p = 7.6 x 10°°, Cohen's d = 0.87; right: tz3 = -6.21, p= 2.6 x 10°/,
Cohen'sd = 1.06).

The CVs of the within-subject brain volume range from 0.64 to 4.73 for subl, 0.72 to 4.87 for
sub2, and 0.86 to 4.99 for sub3 (Table 6). Furthermore, several brain regions showed larger
CVs (Table 6) and percentage changes (Fig. 7), such as the temporal pole, pericalcarine, and
entorhinal cortex. Moreover, aside from the abovementioned regions, the percentage changes
are well confined within 5% in all subjects (Fig. 7).
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Fig. 7. CVsand percentage changesin cortical brain volume. The upper panel depicts the
coefficient of the variant (CV) for each subject. The lower boxplot shows the percentage change for
each brain region and subject. Sub3 depicts the results generated from the original data while sub3 qc
shows results after quality control. The green lines are in the range of +5 % while the red lines depict
the range of £15%. All values in the boxplot are reported as percentages.

Table6. The CVsof thecortical brain volume based on the DK atlas

Sub1 Sub2 Sub3
Left Right Left Right Left Left g Right Right_
c qc
transver setemporal 151 1.63 143 1.29 357 298 226 185
temporalpole 196 1.99 263 296 496 499 331 296
supramarginal 1.04 1.30 0.98 0.96 186 1.67 142 1.06
superiortemporal 095 101 1.15 0.83 116 098 165 1.06
superiorparietal 1.36 149 155 164 189 162 177 0.86
superiorfrontal 105 1.10 120 1.08 156 1.59 148 131
rostralmiddlefrontal 127 131 134 146 167 158 171 170
rogra'a”te;ior cngulat 156 131 175 1.07 134 139 103 103
precuneus 134 114 1.28 1.07 166 134 199 1.09
precentral 145 1.32 166 1.37 227 209 1.02 1.00
posteriorcingulate 105 120 4.83 4.87 197 192 135 1.00
postcentral 158 1.45 144 1.98 187 1.87 141 1.08
pericalcarine 183 354 220 394 399 4.05 395 412

pargtriangularis 1.03 143 1.29 1.09 197 191 187 187
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parsor bitalis 147 0.98 213 181 187 1.9 208 1.78

par sopercularis 121 128 130 111 232 194 231 182
parahippocampal 138 151 169 153 223 181 263 192
paracentral 1.77 170 200 214 255 1.70 203 1.39
middletemporal 101 1.90 1.03 0.78 190 117 230 144
medialorbitofrontal 473 263 271 162 190 1.85 157 147
lingual 1.08 1.19 127 154 122 1.02 161 1.63

later alorbitofrontal 105 124 131 1.07 173 163 3.04 174
lateraloccipital 138 0.93 118 1.23 202 144 206 153
ishmuscingulate 112 140 113 162 144 112 139 145
insula 119 133 117 164 234 2.00 151 123
inferiortemporal 142 113 1.09 0.89 233 137 277 119
inferiorparietal 115 151 111 113 220 150 162 107
fusiform 131 0.64 0.89 0.72 141 0.9 157 0.90
frontalpole 187 1.73 167 132 156 144 245 220
entorhinal 288 222 242 374 335 3.36 379 3.09
cuneus 125 1.90 155 3.26 145 147 171 155
caudalmiddlefrontal 195 1.66 198 216 200 2.02 154 137
caudalanterior cingulate 149 123 376 185 180 1.69 154 140
bankssts 0.77 184 1.03 0.98 240 155 226 128

CVsin percentages after excluding the two sessions with excessive head motion

Time-of-Day

The linear mixed-effects model did not generate any statistically significant results regarding
the time-of-day effect within each subject in our dataset. The distributions of the morning and
afternoon sessions are shown in Fig. $4.

Daylight length

The linear mixed-effects model did not generate any statistically significant results regarding
the time effect within sub1 and sub2, but sub3 showed brain thickness decline (Fig. 2D) in
the pericalcarine (R* = 0.20, #=-1.96, t = -5.70, p = 1.12 x 10°°).

Subcortical volumes
Mean subcortical volumes across sessions

Subcortical structures encompassed the thalamus, caudate nucleus, putamen, pallidum,
hippocampus, amygdala, and accumbens area. Subcortical brain volumes ranged from 721.54
to 9063.16 mm®for subl, 607.53 to 10865.75 mm® for sub2, and 497.60 to 7692.36 mm®for
sub3 (Table 7). The putamen and and thalamus consistently ranked as the largest subcortical
structures, see Fig. S5 and Table 7. Additionally, the pallidum, amygdala, and accumbens
area constantly ranked as the smallest subcortical structures across all three subjects (Fig. S5
and Table 7). Table S5 depicts the average value and standard deviation of the subcortical
structures along with the cerebellum, ventricles, brain stem, corpus callosum (CC), and CSF.

Table 7. Mean and standard deviations of subcortical brain volumes
Subl Sub?2 Sub3

Thalamus L 9063.16:94.43 10865.75+76.00 7692.36+101.40
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R 8628.22+120.11 10467.27+129.49 7426.36+99.28
butamen L 6174.55+43.24 5999.58+72.23 5111.26+66.52

R 6458 49+75.02 6127.76+74.73 5247.80+80.06

Hiooocamous - 4296.58+39.89 4758.70+45.44 3679.56456.31
ppocamp R 4398.27+31.41 4701.36+54.06 4006.50+73.39
Caudate L 3789.69+42.54 4526.46+62.57 3750.78+37.03

R 4227 56+48.17 4568.34+40.35 3773.77+33.81

pallidum L 2162.79424.57 2129.04428.34 1811.80424.17

R 2463.63+31.62 2106.66+27.91 1887.07+33.07

Amvadala L 1618.33+26.01 1639.32+39.76 1554 44+27.71
vg R 1883.15+27.96 1946.16+27.77 1834.68436.75
Accumbensarea - 721.54+44.54 607.53+37.92 497.60+37.60
R 872.33+20.61 884.08+23.81 725.29+24.23
| L 27826.64+126.86 30526.37+154.48  24097.79+155.04

Total

R 28931.65+208.29 30801.63+196.29  24901.48+177.96

The unit of all valuesisthe cubic millimeters.
The stability and percentage changes for each subcortical brain region

The CVs of the within-subject subcortex ranged from 0.64 to 6.17 for Subl, 0.54 to 6.24 for
Sub2, and 0.62 to 7.56 for Sub3 (T able 8). As depicted in the upper panel of Fig. 8, the
subcortex including the thalamus, caudate, putamen, pallidum, hippocampus, amygdala,
showed very small CVs (< 2.5%) except the accumbens area (T able 8), especialy the | eft
side. In addition, Table S5 depicts the CVs of the subcortices along with the cerebellum,
ventricles, brain stem, corpus callosum (CC), and CSF, whereit is shown that the corpus
callosum showed much higher stability as awhole than its parts such as the anterior, middle,
and posterior (Fig. S6).
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Fig. 8. CVsand percentage changein brain volume. The upper panel depicts the coefficient of
the variant (CV) for each subject. The lower boxplots shows the percentage change for each brain
region and each subject. The green lines are in the range of £5 % while the red lines depict the range
of £15%. All valuesin the boxplots are reported as percentages.

Table 8. The CVsof the non-cortical brain volume based on the DK atlas

Subl Sub2 Sub3

L R L R L R
Thalamus 1.04 139 0.70 124 132 1.34
Caudate 112 114 138 088 0.99 0.90
Putamen 0.70 116 120 122 130 153
Pallidum 1.14 128 133 132 133 1.75
Hippocampus 0.93 071 095 115 1583 1.83
Amygdala 161 148 243 143 178 2.00
Accumbens-area 6.17 2.36 6.24 269 756 3.34
Total 0.46 072 051 064 064 0.71

Time-of-day / Length-of-day

There were no significant effects of time-of-day or daylight length in the percentage change
of subcortex volumes. Additionally, the percentage changes were not correlated with any
IQMs. The percentage changes for each brain region along the data collection were illustrated
in Fig. S5.

Theinfluence of the outliers

Asdepicted in Fig. 1A, sub3 manifested excessive head motion in two sessions (sessions 1
and 7) indicated by the CJV values. Accordingly, after excluding these two sessions, the CVs
(Tables 3, 4, 6) and the percentage changes (Sub3_qc in Figs. 3, 5, 7) have been substantially
improved for all the T1w-derived phenotypes, which have been covered by the preceding
results.

Moreover, it is shown that subl and sub2 manifested larger and smaller percentage changes
in the afternoon sessions compared to the morning ones, respectively. If the time-of-day
effect exert its power, it should show the similar effect showing the similar pattern not the
reversed pattern across most of subjects. Furthermore, the significant results were heavily
driven by the last one or two data points, and after excluding these one or two data points, the
significant results vanished (Fig. 9 BD).
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Fig. 9. Theinfluence of outliers on final results. (A) Percentage changes of surface areasin the
temporal pole in subl where percentage changes are larger in the afternoon than in the morning. (B)
Percentage changes showed no significant differences in subl after excluding just one afternoon
session. (C) Percentage changes of the surface areas in the temporal pole in sub2 where the
percentage changes are smaller in the afternoon than the morning. (D) Percentage changes showed no
significant differences in sub2 after excluding just two afternoon sessions.

Correlation within and between different phenotypes

In order to explore which brain regions covaried, correlation matrices were computed within
and between each phenotype.

Within phenotypes, the average correlation coefficients of thickness (Fig. 10A), area (Fig.
10B), and volume (Fig. 10C) were 0.25, 0.23, and 0.27, respectively. Moreover, between
phenotypes, the average correlation coefficients (without the diagonal lines) of thickness-
volume (Fig. 10D), thickness-area (Fig. 10E), and area-volume (Fig. 10F) were 0.26, -0.09,
and -3.4 x 10™, respectively. More importantly, the correlation coefficients between brain
regions (the diagonal linesin Fig. 10DEF) are positive for thickness-volume, negative for
thickness-area, and almost none for area-volume (Table 9). The distribution of correlation
coefficients of each phenotype association is depicted in Fig. S6.
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Fig. 10. Correlation matriceswithin and between different phenotypes. Correlation
matricesfor (A) Thickness, (B) Surface area, (C) Brain volume, (D) Thickness and volume, (E)
Thickness and area, and (F) Area and volume.

Table 9. The correlation coefficients acr oss different phenotypes

Thickness-Volume Thickness-Area Area-Volume
pericalcarine 0.96 -0.22 -0.02
precuneus 0.91 -0.48 -0.18
parsopercularis 0.90 -0.20 0.11
paracentral 0.89 -0.62 -0.27
inferiortemporal 0.87 -0.02 0.14
inferior parietal 0.87 -0.57 -0.28
bankssts 0.87 -0.10 0.20
transver setemporal 0.84 -0.77 -0.38
superiorparietal 0.83 -0.66 -0.23
later aloccipital 0.82 -0.49 -0.06
superiorfrontal 0.82 -041 0.11
superiortemporal 0.80 -0.51 -0.04
supramarginal 0.80 -0.43 0.04
caudalmiddlefrontal 0.79 -0.24 0.18
lingual 0.78 -0.65 -0.13
fusiform 0.78 -0.23 0.26

parstriangularis 0.77 -0.37 0.09
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precentral 0.77 -0.59 -0.01
middletemporal 0.76 -0.22 0.35
later alor bitofrontal 0.76 -0.36 0.01
rostralmiddlefrontal 0.76 -0.07 0.45
temporalpole 0.74 -0.45 -0.06
frontalpole 0.73 -050 -0.13
postcentral 0.72 -0.55 0.11
parsorbitalis 0.69 -0.31 0.32
parahippocampal 0.67 -0.22 0.28
cuneus 0.65 -0.70 -0.04
rostr alantegior cingulat 0.62 -0.59 0.07
insula 0.60 -0.35 0.44
medialorbitofrontal 0.50 -0.31 0.59
ishmuscingulate 0.46 -0.63 0.18
entorhinal 0.43 -0.561 0.22
caudalanterior cingulate 0.33 -0.36 0.65
posteriorcingulate -0.35 -0.70 0.88
Discussion

In this study, the within-subject stability of T1w-derived phenotypes encompassing cortical
thickness, surface area, and brain volume were examined. We showed that the longitudinal
pipeline of FreeSurfer generated more stable results compared to the cross-sectiona pipeline.
Furthermore, the stability of T1w-derived phenotypes was quite high with CVs and
percentage change within 5%. Moreover, apparent head motion lead to underestimation of
cortical thickness and volume and an overestimation of surface area. Furthermore, percentage
changes in the cortical thickness strongly correlated with cortical volume while they
correlated negatively with surface area. In addition, outliers in data distribution even with one
or two data points could sway the fina results, highlighting the importance of reporting the
distributions of measurements.

The longitudinal pipeline generates more reliable within-subject results, where it showed
much smaller CVs (Table 1) and smaller percentage changes (Fig. 1C) compared with the
cross-sectional pipeline. The longitudinal pipeline was proposed in 2012 by the FreeSurfer
team, and since then it has been recommended to analyze longitudinal datasets (Reuter et al.,
2012). Specifically, the longitudinal pipeline creates and utilizes an unbiased within-subject
template space and images to generate a robust, inverse consistent registration, which will
significantly boost the stability and statistical power (Reuter et al., 2012). Indeed, our results
arewell in line with this argument. Accordingly, we also advocate the longitudinal pipeline
should be used when analyzing longitudinal datasets.

The char acteristics of the T1w-derived phenotypes

Cortical thicknessis one of the phenotypes that is of great interest in human brain research
regarding its role in defining normal cortical maturation (Bethlehem et al., 2022) and its
abnormality of various neurological and mental disorders (Bethlehem et al., 2022; Frisoni et
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a., 2010; Lemaitre et al., 2012; Thompson et al., 2020). In our dataset, cortical thickness
ranged from 1.50 to 4.03 mm which falls well within the known bounds of 1 and 4.5 mm
(Fischl & Dale, 2000) indicating the validity of our dataset. Furthermore, it is shown that the
cortical thickness increases along the posterior-anterior axis (Fig. 2A), whichisin
concordance with the pattern documented in previous studies (Fischl & Dale, 2000; Hutton,
De Vita, Ashburner, Deichmann, & Turner, 2008). Specifically, more detailed information
has emerged based on the DK atlas, where we found that the insula, entorhinal cortex, and
temporal pole are the thickest while the lingual gyrus, cuneus, and pericalcarine cortex are the
thinnest (Fig. 2B). What's more, it is shown that the thickest brain regions possess the largest
standard deviations which agrees well with previous studies (Fischl & Dale, 2000; Hutton et
al., 2008). Previous studies have aso shown that the intersubjective standard deviations can
be around 0.5mm (Fischl & Dale, 2000; Hutton et al., 2008). Complement that, we found the
within-subject standard deviations are much smaller, where most of them lie well below 0.05
mm with the thickest brain regions possessing the largest standard deviation of around 0.10
mm. These results indicate that the cortical thickness measurement is very stable across a
short time (about ayear) in adults.

The surface area and brain volume are the other two phenotypes that can be constructed from
the T1w images which can be used as a proxy index of the brain size (Genon et a., 2022). It
is shown that there are big variations between subjects regarding brain sizes where sub2 has
the largest brain size followed by sub3 and subl. This result highlights the importance of
counterbalancing the brain size when comparing volume or surface areain aregion between
subjects. For example, it is common practice that ICV should be divided when comparing
brain volumes between subjects instead of using absolute values (Bethlehem et a., 2022;
Malone et a., 2015). Even though the brain size varies, based on the DK atlas, the biggest
and smallest surface areas and brain volumes are the same within the three subjects. For
example, regarding surface area, the superior parietal, rostral middle frontal, and superior
frontal cortices are the largest while the entorhinal, transverse temporal, and frontal pole
regions are the smallest. Moreover, the superior frontal and rostral middle frontal cortices are
the largest for the cortical brain volume whereas the frontal pole and transverse temporal
regions are the smallest. Additionally, for subcortical brain volume, it is shown that the
thalamus and putamen are the largest and the pallidum, amygdala, and accumbens area are
the smallest. The DK atlas was developed based on curvature-based information such as the
sulcal representations and the anatomic curvature (Desikan et al., 2006), therefore, the
different size of the surface area and brain volume in different brain regions represent their
own territories constrained by the curvature boundaries.

T1w-derived phenotypes ar e stable acr oss one year

It is found that the T1w-derived phenotypes including the cortical thickness, surface area, and
brain volume in the vast majority of the brain regions are stable, where CVs are well
constrained at 2% and the percentage change values are well within 5% over one year. CV
and percentage change values have been used to evaluate the stability given that they are
unitless and suitable for comparing variables with different sizes (Borgaet a., 2020;
Carbonell et al., 2022; M. Y. Wang et al., 2024; Y. Wang et al., 2021). CV isthedivision
between standard deviation and average, where the smaller va. In the same vein, percentage
change is the division between discrepancy from the average and the average, where smaller
values denote high stability and less variation. Generally, a measurement is considered
reliable or stable when CVs are within 5 % or percentage changes are within 10% (Borga et
a., 2020; Carbonell et al., 2022; M. Y. Wang et al., 2024; Y. Wang et a., 2021). For example,
using CVs, it is found that the stability of brain metabolites such as N-acetyl-aspartate was
reasonably high with CVsaround 4% (M. Y. Wang et a., 2024). Therefore, the 2% of CVsin
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this study indicate that the T1w-derived phenotypes encompassing cortical thickness, surface
area, and brain volume are fairly stable. In addition, the percentage change of 5% is sensible
sinceit is estimated that during normal aging the phenotypes such as the cortical brain
volume decreases at a rate of approximately between 0.5 to 1 % annually in adulthood
(Lemaitreet al., 2012; Sele et al., 2021; Storsve et al., 2014).

Although most of the brain regions are quite stable, several cortical brain regions did
manifest larger fluctuations across all three T1w-derived phenotypes, such as the temporal
pole, frontal pole, pericalcarine, and entorhinal cortex. In addition, subcortical brain region
such as the accumbens area showed very high variations. One speculation could be that these
brain regions do vary that much, however, the underlying biological reason for it need to be
further investigated. Besides, only sub2 manifested alarger variation in the cingulate cortex
especialy the PCC compared to the other two participants indicating the individual
differences.

Cortical thickness changes together with cortical volume but not with surface area

It is shown that the overall association within each phenotype is quite similar with an average
strength of around 0.25. On the contrary, the relationships between each phenotype are quite
divergent. Specifically, the percentage changes in cortical thickness and volume manifested a
strong positive correlation while both of them illustrated a weak correlation with the
percentage change of surface area. More importantly, the percentage changes in the cortical
thickness showed a negative correlation with that of the surface area. These results
manifested at the short-timescale agree well with the long-timescale normal aging study
(Storsve et al., 2014). Collectively, these results reinforce that cortical thickness and surface
areaplay distinct roles in brain anatomy and aging (Lemaitre et al., 2012; Storsve et al., 2014;
Vijayakumar et al., 2016), which is sensible since they have distinct genetic roots (Panizzon
et a., 2009).

Head motion under estimates thickness and volumewher easit over estimates surface
area

Head motion can be indicated by the CJV and EFC vaues. Higher CJV and EFC values
denote apparent head motion, which could deteriorate the SNR and CNR, and blur the image.
After excluding the two sessions with excessive head motion in subject 3, the stability of all
the T1w-derived phenotypes has been significantly improved evidenced by smaller CV's and
percentage changes. However, the pattern is different. On one hand, the cortical thickness and
cortical volume estimation were increased indicating the underestimation induced by head
motion, which isin concordance with the previous study (Reuter et al., 2015). On the other
hand, the surface area measurement is decreased indicating head motion overestimate the
surface area. This result indicates that the head motion evaluation should be controlled
especialy when investigating participants who move alot such as autistic children or
Parkinson’s patients (Reuter et al., 2015).

No time-of-day and daylight effects

We found no time-of-day effect on cortical thickness, surface area, and brain volumes.
However, previous studies reported lower cortical thickness (Trefler et a., 2016) and brain
volume (Karch et al., 2019; Nakamura et al., 2015; Trefler et al., 2016) in the afternoon
compared to the morning. But there are some limitations or shortcomings of the three studies
that could have influenced their results. First, two of the studies were intersubjective design
from which the intersubjective variation could interfere with the reported time-of-day effect
(Nakamuraet al., 2015; Trefler et a., 2016). Second, one study pooled datafrom other open
datasets and separated the data according to the data collection time, in which each subject
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generally only had one data point (Nakamuraet al., 2015). Third, the other study only had
two data points for morning and afternoon sessions for each subject in their primary and
secondary datasets (Trefler et al., 2016). Fourth, although oneis within-subject design
(Karch et al., 2019), they did not use the longitudinal pipeline as recommended by the
FreeSurfer team (Reuter et al., 2012) which will provide more robust results as also
evidenced by this study. Fifth, none of the studies showed the data distributions in the
morning and afternoon sessions. On the contrary, our study was a within-subject design
which contained at least 10 sessions and up to 23 sessions for each subject in the morning or
afternoon sessions. What' s more, we used the longitudinal pipeline in our study and
illustrated the data distributions (Figs. S1-5). Given that, we speculate that the time-of-day
effect in the previous studies (Karch et al., 2019; Nakamura et a., 2015; Trefler et al., 2016)
could be interfered with intersubjective variations and variations induced by the cross-
sectional pipeline.

Regarding surface area, however, there are no studies on the time-of-day effect on the surface
area. But, we did find that in the temporal pole, subl manifested alower percentage change

in the morning compared to the afternoon sessions, whereas sub2 showed the opposite pattern.
The contradictory findings can be explained by one or two outlier sessions (Fig. 9) in the
dataset highlighting the necessity of displaying the distribution instead of only reporting
summary statistics (Allen, Erhardt, & Calhoun, 2012; Hintze & Nelson, 1998). Moreover,
sub2 showed a higher percentage change in the posterior cingulate cortex during morning
than afternoon sessions, which neither subl nor sub3 illustrated. Therefore, thisresult is part
of theindividual charactersin sub2 instead of generalizing into the general population. In
short, we infer that the time-of-day could not sway the results of the T1w-derived phenotypes.

Similarly, we found no daylight effect on cortical thickness, surface area, and brain volumes.
Previous studies have focused on the seasonal effect (Zhang et al., 2023) on functional brain
organization and stated that daylight could reconfigure the resting state brain networks (M. Y.
Wang et al., 2023b). However, to the best of our knowledge, this study could be the first
study directly investigating the daylight effect on T1w-derived phenotypes. Although sub3
manifested decreasing patterns regarding the cortical thickness and brain volume in the
pericalcarine as the daylight length increases, this pattern did not emerge in the other two
participants which impedes its generalization. Given the smallest data points (23 after QC)
and head motion (largest CJV) within sub3 compared to 40 sessions within sub2 and 38
sessions within subl, it is suspected that the results in sub3 could rise from the large variation,
however, further investigation should be warrant.

Limitations

Severa limitations should be articulated. First, lacking female subjects hampers the
generalization of our results. It is known that major events such as pregnancy (Hoekzema et
a., 2017) and hormone levels can affect brain structure (Rizor et al., 2023). Second, although
using the same MRI scanner and the same data processing pipeline can aleviate the
interference from heterogeneous ones, it could impede the application to other datasets that
are collected on other MRI scanners or data processing pipelines. Third, the timing of data
collection was not fixed for each subject, for example, subl was not scanned between 10 and
12 on Mondays, instead, each subject was scanned based on the availability of the scanning
time and their available time.

Conclusion

In summary, the stability of T1w-derived phenotypes across one year during adulthood is
fairly high with CVswithin 2% while percentage changes within 5%. Moreover, quality
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checking of the T1w images especially head motion should be reported and distinct become a
common practice since it leads to the underestimation of the cortical thickness and volume
while overestimation of the surface area. Lastly, data distribution reporting should also be a
common practice since even one or two data outliers could sway the final results.
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