New Phytologist Supporting Information

Article title: Streamlined screening platforms lead to the discovery of pachysiphine synthase from *Tabernanthe iboga*

Authors: Mohamed O. Kamileen, Yoko Nakamura, Katrin Luck, Sarah Heinicke, Benke Hong, Maite Colinas, Benjamin R. Lichman, Sarah E. O'Connor

Article acceptance date: 25 August 2024

- The following Supporting Information is available for this article:
- Fig. S1 Design of multi-transcriptional unit constructs
- Fig. S2 N. benthamiana leaf disk assay workflow
- Fig. S3 Testing multi-gene constructs in *N. benthamiana*.
- Fig. S4 Chiral LC-MS analysis of pseudo-tabersonine.
- Fig. S5 Phylogenetic tree of Tabernanthe iboga (Ti) cytochrome P450s.
- Fig. S6 Iboga CYP71s assayed with (+)-pseudo-tabersonine in *N. benthamiana*.
- Fig. S7 HPLC isolation of hydroxylated tabersonine products from yeast workup.
- Fig. S8 Structure elucidation of (–)-16-OH-tabersonine by NMR.
- Fig. S9 MS² spectral comparison of lochnericine and CL9160.contig1 product.
- Fig. S10 Structure elucidation of (-)-pachysiphine by NMR.
- Fig. S11 Electronic circular dichroism (ECD) spectra of (–)-pachysiphine.
- Fig. S12 Structure elucidation of (–)-16-OH-pachysiphine by NMR.
- Fig. S13 LC-MS metabolite profiles of *T. iboga* tissues.
- Fig. S14 MIA precursors present in *C. roseus* var. LBE flowers.
- Fig. S15 Derivatization of tabersonine by endogenous enzymes present in *C. roseus* flowers.
- **Fig. S16** Structure confirmation of (-)-[¹³C]-tabersonine.
- Fig. S17 Incubation of *C. roseus* flowers with ¹³C-labelled tabersonine.
- Fig. S18 Overexpression of TiPS and TiT16H in *C. roseus* flowers.
- Fig. S19 Overexpression of TiPS and TiT16H in *C. roseus* flowers with ¹³C-labeled tabersonine.
- Fig. S20 Percentage of identity shared by TiPS and TiT16H with C. roseus P450s.

- Fig. S21 Sequence alignment of TiPS and TiT16H.
- Fig. S22 Molecular docking of tabersonine into AlphaFold models of TiPS and TiT16H.
- Fig. S23 Transcriptomics and metabolomics related to 16-OH-pachysiphine biosynthesis in *T. iboga*.
- Table S1 Nucleotide sequences of genes described in this study.
- **Table S2** Primers used in this study.
- Methods S1 Materials and methods.

Fig. S1 Design of multi-transcriptional unit constructs. Overview of the design of Level 1 constructs, and the assembly of Level 2 and Level 3 multi-transcription unit constructs encoding for tabersonine and pseudo-tabersonine biosynthesis for transient expression in *Nicotiana benthamiana*. Transcriptional units were assembled and constructed using the GoldenBraid 2.0 kit. Biosynthetic genes and P19 suppressor are assembled into $3\alpha 1$ and $3\alpha 2$ vectors as a transcriptional unit with a Ubiquitin10 promoter (pUbq10) and Ubiquitin10 terminator (tUbq10) at Level 1. Level 1 assemblies are paired into $3\Omega 1$ and $3\Omega 2$ vectors as Level 2 multi-transcriptional unit (multigene) constructs. Level 2 constructs are combined into the $3\alpha 1$ vector to generate the final multi-gene (4 gene) pS-Tab and pS-psTab, encoding for transient gene expression of tabersonine and pseudo-tabersonine biosynthesis respectively, in *N. benthamiana*. LB and RB indicate the left and right border of the binary plasmid.

(a) Improved microplate based plant disk assays for feeding substrates

(b) Traditional substrate feeding assays in N. benthamiana

DPAI, days post *Agrobacterium* infiltration DPSI, days post substrate infiltration

Fig. S2 *N. benthamiana* leaf disk assay workflow. (a) Schematic of the plant disk-based screening system designed to test for enzyme activity of transiently expressed genes in *N. benthamiana* leaves or *Catharanthus roseus* flowers with exogenous substrate(s). Plant disks are harvested four days post *Agrobacterium* infiltration (DPAI) and incubated in a microplate containing buffer and substrate of known volume and concentration. After overnight incubation, the disks are collected, pulverized, and extracted for LC-MS analysis. (b) Workflow of conventional enzyme activity screening involving syringe-based substrate feeding in *N. benthamiana*. Drawbacks of this workflow include the requirement for larger quantities of substrate, wastage during syringe infiltration, and the lack of precise control over substrate delivery into the plant tissue.

Fig. S3 Testing multi-gene constructs in *N. benthamiana*. (a) Design of multi-gene constructs pS-Tab and pS-psTab to produce tabersonine and pseudo-tabersonine, respectively, through transient expression in *N. benthamiana* and substrate feeding with stemmadenine acetate. (b) Comparison of the qualitative biosynthetic yields of tabersonine and pseudo-tabersonine produced by the multi-gene constructs (blue bars) versus the equivalent single-gene co-infiltrated constructs (green bars). Representative LC-MS profiles (total ion chromatograms) show the production of tabersonine and pseudo-tabersonine qualitatively, with ajmaline as the internal standard (IS). The values represent mean \pm SD (n = 3), two-tailed Student's t-test.

Fig. S4 Chiral LC-MS analysis of pseudo-tabersonine. The biosynthetic product of pseudo-tabersonine generated in *N. benthamiana* is enantiomerically pure (+)-pseudo-tabersonine. LC-MS traces are presented as total ion chromatograms (solid lines).

Fig. S5 Phylogenetic tree of *Tabernanthe iboga* (Ti) cytochrome P450s. Full-length P450s were extracted from de novo assembled transcriptome. Selected *Arabidopsis thaliana* (At) CYPs were included in the analysis to define CYP clans and CYP71 based on (Hansen *et al.*, 2021). The maximum-likelihood phylogenetic tree was constructed using iQtree (Trifinopoulos *et al.*, 2016) with default parameters and 1000 bootstraps (shown out of 100). The CYP71 family and major P450 clans are highlighted and labelled. P450s functionally characterized to be involved in monoterpene indole alkaloid (MIA) biosynthesis are coloured in red. Clan 86 was used to root the tree. The phylogenetic tree was visualized and inferred using iToL (Letunic & Bork, 2024).

Fig. S6 Iboga CYP71s assayed with (+)-pseudo-tabersonine in *N. benthamiana*. (a) Assay plan for screening CYP71 gene candidate pools with the (+)-pseudo-tabersonine producing multigene construct pS-psTa. (b) Phylogenetic tree of the iboga CYP71s and the candidate pools selected for screening in *N. benthamiana*. (c) LC-MS analysis of the iboga CYP71 candidate pools tested for activity in *N. benthamiana* with the multigene construct pS-psTab. LC-MS traces are presented as total ion chromatograms (solid lines). Stemmadenine acetate is oxidized to precondylocarpine acetate by an endogenous *N. benthamiana* enzyme.

Fig. S7 HPLC isolation of hydroxylated tabersonine products from yeast workup. (a) Isolated product (–)-16-OH-tabersonine. (b) Isolated product (–)-pachysiphine. (c) Isolated product (–)-16-OH-pachysiphine. Traces indicate UV spectrum, LC-MS chromatography profile, and MS² spectrum of parent ions of the isolated compounds. LC-MS traces are presented as total ion chromatograms.

(−)-16-OH-tabersonine ¹H-NMR, MeOH-*d*₃ 700 MHz, 25 °C

pos.	δ _H	mult.	J _{HH}	δ _c
1	9.23	bs	-	-
2	-	-	-	168.1
3	-	-	-	91.5
4α	2.58	bd	15.4	29.7
4β	2.40	d	15.4	29.7
5	-	-	-	42.5
6α	5.75	bd	10.0	134.4
7α	5.82	bdd	10.0/4.5	125.4
8α	3.34	bd	16.0	51.5
8β	3.52	dd	16.0/4.5	51.5
10α	2.85	<i>m**</i>	-	51.9
10β	3.10	dd	7.5/6.4	51.9
11α	1.78	dd	11.8/4.4	45.8
11β	2.00	ddd	11.8/11.6/6.4	45.8
12	-	-	-	55.8
13	-	-	-	129.6
14	7.08	d	8.0	122.8
15	6.30	dd	8.0/1.8	108.2
16	-	-	-	159.3
17	6.45	d	1.8	99.2
18	-	-	-	146.1
19α	2.86	bs	-	71.6
20a	0.92	dq	14.5/7.4	28.0
20b	1.03	dq	14.5/7.4	28.0
21	0.65	t	7.4	7.9
22	-	-	-	170.0
OMe	3.75	5	-	51.6

** overlapped signals J unresolved

Fig. S8 Structure elucidation of (-)-16-OH-tabersonine by NMR. (Continued to next page)

¹H NMR with water suppression (zgpr) full range in MeOH-d₃

5.6-7.2 ppm in MeOH- d_3

Fig. S8 Structure elucidation of (-)-16-OH-tabersonine by NMR. (Continued to next page).

Fig. S8 Structure elucidation of (-)-16-OH-tabersonine by NMR. (Continued to next page).

Fig. S8 Structure elucidation of (–)-16-OH-tabersonine by NMR. (Continued to next page).

full range in MeOH- d_3

Fig. S8 Structure elucidation of (–)-16-OH-tabersonine by NMR. (End).

Fig. S9 MS² spectral comparison of lochnericine and CL9160.contig1 product. LC-MS profiles and MS² spectra of lochnericine standard and the hydroxylated tabersonine product of CL9160.contig1. Comparison of MS² spectra of the parent ions m/z 353.18 shows similar fragmentation patterns between the two compounds, suggesting structural similarities.

(−)-pachysiphine ¹H-NMR, CDCl₃ 700 MHz, 25 °C

pos.	δ _н	mult.	J _{HH}	δ _c
1	8.97	bs	-	-
2	-	-	-	165.5
3	-	-	-	91.4
4α	2.67	dd	15.4/1.6	23.6
4β	2.52	d	15.4	23.6
5	-	-	-	37.4
6α	3.05	d	3.9	56.6
7α	3.24	ddd	3.9/1.1/0.4	52.4
8α	2.87	bd	12.9	49.9
8β	3.56	dd	12.9/1.1	49.9
10α	2.69	ddd	11.5/8.2/4.4	51.4
10 β	3.01	dd	8.2/6.5	51.4
11α	1.68	dd	11.6/4.4	44.3
11β	2.06	ddd	11.6/11.5/6.5	44.3
12	-	-	-	54.9
13	-	-	-	137.9
14	7.15	bd	7.4	121.7
15	6.85	ddd	7.4/7.4/0.9	120.8
16	7.13	ddd	7.7/7.4/1.0	128.1
17	6.79	bd	7.7	109.6
18	-	-	-	143.3
19α	2.44	bd	1.6	71.4
20a	0.91	dq	14.7/7.4	26.7
20b	0.96	dq	14.7/7.4	26.7
21	0.71	t	7.4	7.4
22	-	-	-	169.2
OMe	3.76	5	-	51.3

Fig. S10 Structure elucidation of (–)-pachysiphine by NMR. (Continued to next page)

Fig. S10 Structure elucidation of (-)-pachysiphine by NMR. (Continued to next page).

Fig. S10 Structure elucidation of (-)-pachysiphine by NMR. (Continued to next page).

Fig. S10 Structure elucidation of (-)-pachysiphine by NMR. (Continued to next page).

Fig. S10 Structure elucidation of (-)-pachysiphine by NMR. (Continued to next page).

¹H-¹H ROESY with water suppression aliphatic range in CDCl₃. Important ROESY correlations are depicted in green

ROESY correlations of (-)-pachysiphine

Optimized using Gaussian 16W (DFT, APFD/6-311G+(2d,p), solvent MeOH). Important ROESY correlations are depicted in green.

Fig. S10 Structure elucidation of (-)-pachysiphine by NMR. (End).

Fig. S11 Electronic circular dichroism (ECD) spectra of (–)-pachysiphine. Comparison of simulated ECD spectrum (dashed green) and experimental ECD spectrum (solid black) of (–)-pachysiphine.

(–)-16-OH-pachysiphine ¹H-NMR, MeOH-*d*₃ 700 MHz, 25 °C

pos.	δ_{H}	mult. J _{HH}		δ _c
1	9.19	bs -		-
2	-	-	-	167.6
3	-	-	-	91.3
4α	2.60	dd	15.4/1.6	24.6
4β	2.46	d	15.4	24.6
5	-	-	-	38.5
6α	3.06	d	3.7	57.6
7α	3.28	bd	3.7	53.6
8α	2.88	d	12.8	50.7
8β	3.46	bd	12.8	50.7
10α	2.68	ddd	11.4/8.4/4.3	51.8
10β	2.88	dd	8.4/6.3	51.8
11α	1.60	dd	dd 11.4/4.3	
11β	1.91	ddd	11.4/11.4/6.3	45.8
12	-	-	-	55.7
13	-	-	-	130.0
14	6.99	d	8.1	122.8
15	6.28	dd	8.1/2.0	108.1
16	-	-	-	159.1
17	6.43	d	2.0	99.1
18	-	-	-	146.0
19α	2.45	bd	1.6	72.5
20a	0.96	q	7.3	27.3
20b	0.96	q	7.3	27.3
21	0.72	t	7.3	7.5
22	-	-	-	170.1
OMe	3.77	5	-	51.5

Fig. S12 Structure elucidation of (-)-16-OH-pachysiphine by NMR. (Continued to next page)

Fig. S12 Structure elucidation of (–)-16-OH-pachysiphine by NMR. (Continued to next page).

Fig. S12 Structure elucidation of (-)-16-OH-pachysiphine by NMR. (Continued to next page).

Fig. S12 Structure elucidation of (–)-16-OH-pachysiphine by NMR. (Continued to next page).

Fig. S12 Structure elucidation of (–)-16-OH-pachysiphine by NMR. (Continued to next page).

Fig. S12 Structure elucidation of (–)-16-OH-pachysiphine by NMR. (End).

Fig. S13 LC-MS metabolite profiles of *T. iboga* tissues. Untargeted LC-MS profiles of young leaves, mature leaves, stems, roots, and flowers of *T. iboga* methanolic extracts. The young leaf tissue shows an accumulation of pachysiphine, (–)-16-OH-tabersonine, and (–)-16-OH-pachysiphine as confirmed by authentic standards and MS² spectra. Total ion chromatograms are shown in solid lines, and extracted ion chromatograms are shown in dashed lines.

Fig. S14 MIA precursors present in *C. roseus* var. LBE flower petals. Metabolic changes analyzed by LC-MS when *C. roseus* var. LBE flower petals are subjected to *Agrobacterium* infiltration (GFP control). Upon agroinfiltration, the flowers accumulate MIA alkaloids stemmadenine acetate, precondylocarpine acetate, and tabersonine as confirmed by authentic standards. These alkaloids are important precursors for MIA biosynthesis. LC-MS traces are presented as total ion chromatograms (solid lines) and extracted ion chromatograms are presented as dotted lines.

Fig. S15 Derivatization of tabersonine by endogenous enzymes present in *C. roseus* flowers. LC-MS profiles of tabersonine derivatives observed when *C. roseus* flower petals are transfected with pS-Tab construct. In comparison to the GFP transfected control, the multigene construct pS-Tab substantially increases its product, tabersonine using endogenous substrate stemmadenine acetate. As confirmed by authentic standards, tabersonine is derivatized to lochnericine and 16-hydroxy-tabersonine by endogenous P450 enzymes CrTEX1/2 (Carqueijeiro *et al.*, 2018) and CrT16H1/2 (Besseau *et al.*, 2013) in the flowers. These compounds are further derivatized to 16-methoxy-tabersonine and 16-methoxy pachysiphine by CrT16OMTs in the flower (Sun *et al.*, 2018; Colinas *et al.*, 2021).

(−)-¹³C-tabersonine ¹H-NMR, MeOH-*d*₃ 500 MHz, 25 °C

pos.	δ _H	mult.	J _{HH}	δ _c
1	9.29	bs	-	-
2	-	-	-	168.0
3	-	-	-	92.6
4a	2.55	dd	15.2/1.7	29.9
4b	2.44	d	15.2	29.9
5	-	-	-	42.5
6a	5.71	ddd	10.0/1.8/1.8	134.2
7a	5.81	ddd	10.0/4.8/1.5	126.8
8a	3.22	ddd	15.9/1.8/1.5	51.6
8b	3.45	ddd	15.9/4.8/1.8	51.6
10a	2.76	ddd	11.2/8.5/4.7	51.8
10b	3.03	dd	8.5/6.4	51.8
11a	1.74	bdd	11.6/4.7	46.1
11b	2.01	ddd	11.6/11.2/6.4	46.1
12	-	-	-	56.7
13	-	-	-	139.1
14	7.26	bd	7.5	122.4
15	6.86	ddd	7.5/7.5/0.7	121.8
16	7.13	ddd	7.9/7.5/1.1	129.0
17	6.94	bd	7.9	110.8
18	-	-	-	145.0
19a	2.75	<i>m</i> **	-	71.4
20a	0.87	dq	14.3/7.5	26.7
20b	0.99	dq	14.3/7.5	26.7
21	0.63	t	7.5	7.8
22	-	-	-	170.1***
OMe	3.76	d*	146.4*	51.5

** overlapped signals J unresolved

*as¹³C-H coupling

*** with $^{\rm 13}\text{C-}^{\rm 13}\text{C}$ coupling (2.6 Hz)

Fig. S16 Structure confirmation of (–)-[¹³C]-tabersonine by NMR. (Continued to next page).

Fig. S16 Structure confirmation of (–)-[¹³C]-tabersonine. (a) NMR characterization of (–)-[¹³C]tabersonine. (b) LC-MS characterization of labeled, (–)-[13C]-tabersonine and un-labeled (–)-tabersonine. LC-MS traces are presented as total ion chromatograms.

Fig. S17 Incubation of *C. roseus* flowers with ¹³C-labelled tabersonine. LC-MS profiles of labeled tabersonine derivatives observed when *C. roseus* flowers were incubated with ¹³C-labeled tabersonine. MS² spectral comparison of standards and 13C-labeled tabersonine derivatives observed in the flowers reveals a biosynthetic network of tabersonine catalyzed by active endogenous enzymes present in the flowers. LC-MS traces with solid lines are presented as total ion chromatograms and dashed lines are extracted ion chromatograms.

Fig. S19 Overexpression of TiPS and TiT16H in *C. roseus* flowers with ¹³C-labeled tabersonine. LC-MS analysis and MS² spectral comparison confirm the formation of ¹³C-labeled pachysiphine catalyzed by TiPS and labeled pachysiphine derivative,16-metoxy-¹³C-tabersonine catalyzed by TiT16H and flower endogenous enzymes. *MS² profiles of ¹³C-incorporated compounds. LC-MS traces with solid lines are presented as total ion chromatograms and dashed lines are extracted ion chromatograms. ** Unknown compound of *m*/z 353, which shares a similar retention time to pachysiphine (see Fig. S18).

	TiPS	TiT16H	CrGO	CrT3O	CrT16H1	CrT16H2	CrT19H	CrTEX1	CrTEX2
TiPS		45.63	36.75	53.62	45.84	46.05	34.23	46.32	45.38
TiT16H	45.63		32.94	42.35	56.34	56.89	35.4	53.42	53.1
CrGO	36.75	32.94		36.4	33.53	32.5	33.33	36.72	36.03
CrT3O	53.62	42.35	36.4		45.4	45.14	38.25	46.58	46.8
CrT16H1	45.84	56.34	33.53	45.4		80.85	35.27	57.62	56.65
CrT16H2	46.05	56.89	32.5	45.14	80.85		35.07	57.95	57.53
CrT19H	34.23	35.4	33.33	38.25	35.27	35.07		36.17	36.21
CrTEX1	46.32	53.42	36.72	46.58	57.62	57.95	36.17		87.21
CrTEX2	45.38	53.1	36.03	46.8	56.65	57.53	36.21	87.21	

Fig. S20 Percentage of identity shared by TiPS and TiT16H with *C. roseus* P450s. Percentage identity of *T. iboga* pachysiphine synthase (TiPS) and tabersonine-16-hydroxylase (TiT16H) with known *C. roseus* P450s involved in aspidosperma (tabersonine) alkaloid hydroxylations.

Fig. S21 Sequence alignment of TiPS and TiT16H. Amino acid sequence alignment of *Tabernanthe iboga* pachysiphine synthase (TiPS) and tabersonine-16-hydroxylase (TiT16H) alongside known P450s from *Catharanthus roseus*. Structural features of the P450 enzyme are extracted from the crystal structure of *Salvia miltiorrhiza* Ferruginol synthase CYP76AH1 (PDB 7CB9).

Fig. S22 Molecular docking of (–)-tabersonine into AlphaFold models of TiPS and TiT16H. (a) AlphaFold model of TiPS docked with the substrate (–)-tabersonine. The predicted binding pocket (grey transparent surface) of TiPS orients (–)-tabersonine to the stereospecific beta (β) epoxide product. (b) AlphaFold model of TiT16H docked with the substrate tabersonine. The predicted binding pocket (grey transparent surface) of TiT16H orients (–)-tabersonine to the stereospecific alpha (α) epoxide product. Dashes represent the distance between the carbon and heme (orange) coordinated by the thiolate ligand (green) to the substrate (–)-tabersonine (yellow sticks) in Angstrom. TiPS and TiT16H protein models with the catalytic heme were generated using AlphaFold3 (Abramson *et al.*, 2024) and the (–)-tabersonine (PubChem CID 20485) ligand was docked into the active site using Webina (AutoDock Vina) (Kochnev *et al.*, 2020). Protein models were visualized and data interpreted using PyMol (Version 2.5.5, Schrödinger, LLC).

Fig. S23 Transcriptomics and metabolomics related to (–)-16-OH-pachysiphine biosynthesis in *T. iboga*. (a) Tissue-specific transcriptomic profile of the genes involved in 16-OH-pachysiphine biosynthesis from stemmadenine acetate in *T. iboga*. (b) Representative metabolomic profile of *T. iboga* young leaf and root with authentic standards. (c) Biosynthesis of (–)-16-OH-pachysiphine from stemmadenine acetate in *T. iboga*.

Gene Name	Nucleotide sequence
(Genbank ID)	
P19	ATGGAACGAGCTATACAAGGAAACGACGCTAGGGAACAAGCTAACAGTGAACGTTGGGA
Goldenbraid 2 0	TGGAGGATCAGGAGGTACCACTTCTCCCTTCAAACTTCCTGACGAAAGTCCGAGTTGGAC
nart ID	TGAGTGGCGGCTACATAACGATGAGACTAATTCGAATCAAGATAATCCCCTTGGTTTCAA
(GB0038)	GGAAAGCTGGGGTTTCGGGAAAGTTGTATTTAAGAGATATCTCAGATACGACAGGACGGA
(00000)	AGCTTCACTGCACAGAGTCCTTGGATCTTGGACGGGAGATTCGGTTAACTATGCAGCATC
	TCGATTTTTCGGTTTCGACCAGATCGGATGTACCTATAGTATTCGGTTTCGAGGAGTTAGT
	ATCACCGTTTCTGGAGGCTCTCGAACTCTTCAGCATCTCTGTGAGATGGCAATTCGGTCT
	AAGCAAGAACTGCTACAGCTTGCCCCAATCGAAGTGGAAAGTAATGTATCAAGAGGATGC
	CCTGAAGGTACTGAAAACCTTCGAAAAAGAAAGCGAGTGA
GFP	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGG
	ACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGACGCCAC
	CTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGC
	CCACCETEGTGACCACCTTCAGCTACGGCGTGCAGTGCTTCAGCCGCTACCECGACCAC
nl lbg10	
Solonum	
Solariuri	
	GAAAAAAGGAGGAAAATAAAATTTTCGAATTAAAATGTAAAAGGAGAAAAAGGGAGAGGGAGT
Ubiquitin 10	AATCATTGTTTAACTTTATCTAAAGTACCCCCAATTCGATTTTACATGTATATCAAATTATACA
promoter	AATATTTTATTAAAATATAGATATTGAATAATTTTATTAT
	TCTATTATTTCAATTTTTATATAAACTATTATTTGAAATCTCAATTATGATTTTTTAATATCAC
	TTTCTATCCATGATAATTTCAGCTTAAAAAGTTTTGTCAATAATTACATTAATTTTGTTGATG
	AGGATGACAAGATTTCGGTCATCAATTACATATACACAAATTGAAATAGTAAGCAACTTGA
	TTTTTTTTCTCATAATGATAATGACAAAGACACGAAAAGACAATTCAATATTCACATTGATTT
	ATTTTTATATGATAATAATTACAATAATAATATTCTTATAAAGAAAG
	ATCCAAAAATTTATTTATTTTACTATACCAACGTCACTAATTATATCTAATAATGTAAAACA
	ΑΤΤCΑΑΤCTTACTTAAATATTAATTTGAAATAAACTATTTTTATAACGAAATTACTAAATTTAT
	CCAATAACAAAAAGGTCTTAAGAAGACATAAATTCTTTTTTGTAATGCTCAAATAAAT
	AGTAAAAAAGAATGAAATTGAGTGATTTTTTTTAATCATAAGAAAATAAAT
	AATAAA TATAAAAA TAAAGIGIIICIAA TAAACCCGCAATITAAA TAAAAAIAIIITAA
	ATGATTGGTTAATCCATGAGGCGGTTTCCTCTAGAGTCGGCCATACCATCTATAAAATAAA
	GCTTICIGCAGCTCATTTICATCICATCIGATTICIATATAATTICICIGAATIGCCT
	TCAAATTTCTCTTTCCAAGGTTAGAATTTTCTCTATTTTTGGTTTTGTTTG
	GAGTTTAGTTAATCAGGTGCTGTTAAAGCCCTAAATTTTGAGTTTTTTCGGTTGTTTTGAT
	GGAAAATACCTAACAATTGAGTTTTTTCATGTTGTTTGTCGGAGAATGCCTACAATTGGA
	GTTCCTTTCGTTGTTTTGATGAGAAAGCCCCTAATTTGAGTGTTTTTCCGTCGATTTGATTT
	TAAAGGTTTATATTCGAGTTTTTTCGTCGGTTTAATGAGAAGGCCTAAAATAGGAGTTTTT
	CTGGTTGATTTGACTAAAAAAGCCATGGAATTTTGTGTTTTTGATGTCGCTTTGGTTCTCAA
	GGCCTAAGATCTGAGTTTCTCCGGTTGTTTTGATGAAAAAGCCCTAAAATTGGAGTTTTTA
	TCTTGTGTTTTAGGTTGTTTTAATCCTTATAATTTGAGTTTTTCGTTGTTCTGATTGTTGTT
	TTTATGAATTTTGCAG
tUbq10	GCTTGTTGTGGTTGTCTGGTTGCGTCTGTTGCCCGTTGTCTGTTGCCCATTGTGGTGGTT
Solanum	GTGTTTGTATGATGGTCGTTAAGGATCATCAATGTGTTTTCGCTTTTTGTTCCATTCTGTTT

 Table S1 Nucleotide sequences of genes transcriptional elements described in this study.

<i>lycopersicum</i> Ubiquitin 10 terminator	CTCATTIGTGAATAATAATGGTATCTTTATGAATATGCAGTTTGTGGTTTCTTTTCTGATTG CAGTTCTGAGCATTTIGTTTTGCTTCCGTTTACTATACCACTTACAGTTTGCACTAATTTA GTTGATATGCGAGCCATCTGATGTTTGATGATTCAAATGGCGTTTATGTAACTCGTACCCG AGTGGATGGAGAAGAGGCTCCATTGCCGGTTTGTTTCATGGGTGGCGGAGGGCAACTCCT GGGAAGGAACAAAGAAAACCGTGATACGAGTTCATGGGTGGCGGAGGCCACGCTTGATC CCTTCTCTGTCGATCAAATTTGAATTTTGGATCACGGCAGGCTCACAAGATAATCCAAAG TAAAACATAATGAATAGTACTTCTCAATGATCACTTATTTTTAGCAAATCAGCAATTGTGCA TGTCAAATGATTTCGGTGTAAGAGAAAGAGTTGATGAATCAAAATATCTGTAGCTGGATCA AGAATCTGAGGCAGTTGTATGTATCAATGATCTTCCGCTACAATGATGTAGCTATCCGA GTCAAATGTTGTGTAGAATTGCATACTTCGGCATCACATTCTGGATGAATCAGAATAATAAATA
	TCAGATGATGGTTCATTGTATGTCTTTTCCTTCAATCAGTGTGTGGAAGTGCATCGTGTAGCTT GTTTCATCTGCATGTTTGAATGTCTTTTCCTTCAATCAGTTTTCTCAGTCTGACTTAGCTT GTTTCATCTGCATGGTTTGAATGTTCGTTTACTCATAGTAATTGCATTTTGTAGCAGAACAT ATCATTGGTCATGGTTTCAACTGTGCGCCGAGTCTTATGCTTATTCAAACTAGGAAAGCCTC CGTCTAGAGGGTACACGAGTTGTTGCTCTGTGTGCGTCAGTCCATAGTATTAATCTTGCTA GTTGTAGTATATTGTTTATGTGGACTCCGGAATTCATCATATGCTCCTTCTTTGCATCAAGTA AGGCAAGGTAATGTATAGAAGCTTTTTAACTCTTTCATGGAAGCTGGCCTTTGCCAGCATA CCATCCAGAAGATATCAACCCTCCCCCCCC
TiPAS3	ATGATAAAAAAAGTCCCAATAGTTCTTTCAATTTTCTGCTTTCTTCTTCTACTCTCATCATCA
(<i>Tabernanthe</i> <i>iboga</i> BBL-like) (MK840852.1)	CATGGCTCAATTCCTGAAGCTTTTCTCAATTGTATTTCCGAATAAATTTTCATTAGATGTATC CATGGCTCAATTCCTGAAGCTTTTCTCAATTGTATTTCCAATAAATTTTCATTAGATGTATC CATAAATCCAAGATTCCTCAAATCACCCAAGCCCTTAGCTATAATCACCCCAGGACTACACAC TCCCATGTCCAATCTGCTGTTATCTGTACCAAACAAGCCGGTTTACAAATTAGAATCCGAA GCGGAGGAGCTGATTACGAGGGCTTATCCTATCGTTCTGAGGTTCCCTTTATTCTGCTAG ATCTCCAGAATCTTCGATCAATTTCCGTGACATCGGAGCAACAGCGCCTGGGTCGAATC AGGAGCAACAATTGGTGAATTCTATCATGAGATAGCTCAGAACAGCGCCTGTTCATGCGTTT CCAGCTGGGGTCTCTTCCTCTGTTGGAATTGGCGGCCATTTGAGTAGCGGCGGTTTTGGT ACATTGCTTCGGAAATATGGATTAGCAGCCGATAATAATCGAGAGCAACAGCGCCGGTTTTGGT ACATTGCTTCGGAAATATGGATTAGCAGCCGATAATAATCGAGGCAAAAATTGTTGATG CCAGAGGCAGGAGCTAGTTTTGGTGTTATAGCTAGCGGAGAAGATCTATTTTGGGCAAAAATTGTTGATG GAGGAGGAGGAGCTAGTTTTCGTGTGCAAGACGCCAATATAATCGATGCAAAAATTGTGATG CCAGAGGCAGAATTCTGATAGGGAATCAATGGGAGAGAACTTATTGGGCAAAAATTGTGAAG GAGGAGGAGGAGCTAGTTTTGGTGTTATAGCTTCTGGAAGAGGAGGATCTATTTGGGCTATTAGAG GAGGAGGAGGAGCAATTTTCATCTTGTCCAAGACCTTATGAAGAGGAGGGTTAAACTTGTAAAAGCC CTCCGATGGTAACTGTTTTCATCTTGTCCAAGACTTATGAAGAGGAGGGTTTAGATCTTCT ACACAAATGGCAATATATAGAACACAAACTCCCTGAAGATTTATTCCTTGCTGTAAGCATC ATGGATGATTCATCTAGTGGAAAATAAAACACTTATGGCAGGTTTTATGTCTCTGTTTCTG GAAAAACAGAGAGGACCTTCTGAAAGTAATGGCGGGAAAATTATCCAACACACCAAT GGAGAATTGCTTAGAAATGAATTGGATTGATGCAGCAATGATTTTTCCAGGACACCCAAT TGGAGAATGCCGATCTTGTGCCAAAACTCCATGGATGCATCTACCAACAGCGTTTGGAAAA AGGAAGATTGCTTAAGAAATGAATTGGATGATGCAGCAATGATTGGAAAAGTATGGAAGATTATGGAAGATGA TTTGTAGGGAAGAAAAATAGTCCCATTATCCTACCAGGAAGATTATGGAAAGGTATGGAAAG GTAAAATATCAGAATCAGAAATCCCATTTCCTTACAGAAAAGATGTGGTTTACAGTAGTAGA TACGAAATAGCTTTAATGAACCCCATAATACTGGAAAAGATGTGATTTACCAGGAAAGATTGG GAAGGCTTGAGGAATTAATGGACTCCATATGTGAAAACAACCAAGAGATGATGATTTCCAAAGGATTGGAATTACGAATGACTCCATATGTGAAAACAACCAAC
TIDDAQ4	TTTAA
TiDPAS1 (<i>Tabernanthe iboga</i> ADH) (MK840855.1)	ATGGCTGTAAAATCACCTGAAGCAGAGCACCCAGTGAAGGCTGTAAAATCACCTGAAGAA GAGCACCCAGTGAAGGCATACGGATGGGCTATCAAAGACAGAACATCTGGCATTCTTTCC CCCTTCAAGTTTTCCAGAAGGGCAACAGGAGATGAAGACGTTCGAATAAAGATCCTCTGT TGCGGAGTTTGTCACACGGATCTCACGTCTACCAAGAATGAAT
	TTGGTGCCGATGCGTTCTTGTTCAGTCGTGATGATGAACAAATGAAGGCCGCTATTGGAA

	CTTTCGATGCAATCATAGATACTATTGCAGTCGCTCATCCTCTTGCGCCATTACTTGATCT
	AGTTATTCCTTTAGTAGCAGGAGGGAAATCAATTACTGGATGCGTAGTTGGAAATTTGAAG
	CAAACTCAAGAAATGCTTGAATTTGCTGCAGAACACAACATCACTGCAAACGTTGAGGTTA
	TTTCAATGGATTACATAAACACTGCAATGGAACGTTTAGAAAAAGGTGATGTTAGATATAG
	ATTTGTAATTGATATTGGAAACACACTAACTCCACCGGAATAG
TiTabS	ATGGCTTCTTCAACTGAAAGCTCTGATGAGATTATTTTTGATCTTCCTCCATACATTAGAGT
(Tabornantho	CTTTAAGGATGGAAGAGTAGAGAGACTCCACTCCTCACCATATGTTCCACCATCACTAGAT
(Tabernanine	GATCCCGCAACCGGCGTATCCTGGAAAGACGTCCCAATTTCATCAGAGGTTTCGGCTAGA
	ATCTACCTCCCAAAGATAAGCCAAAAGGAAAAGGAAAAGCTTCCCATTGTGGTCTATTTCC
(1111.040853.1)	ATGGTGCAGGCTTCTGTCTGGAATCCGCCTACAAGTCATTTTTCCACACTTATGTCAAGCA
	CTTTGCAGCCGAGGCCAAAGCAATTGCAGTTTCGGTTGAGTTCAGGCTCTCCCCAGAGCA
	CCACCTGCCTGCAGCTTATGAAGATTGCTGGACTGCCCTTCAGTGGGTGG
	AGATGTTGACAACTCCAGCCTCAAGAATGCTATAGATAAAGAGCCTTGGATAATCAACCAT
	GGAGACTTTGACAAGGTCTACTTGTGGGGGTGATAGTACGGGTGCCAATATTGTGCACAAC
	GTACTCATCAGAGCTGGTAATGAGAGCTTGCATGGCGGAGTGAAAATCGTGGGTGCAATT
	CTTTATTACCCATATTTCTTGATCAGGACAAGCTCCAGACAGA
	AGTACAGAGCATACTGGAAGCTGGCTTATCCATCTGCTCCAGGTGGGAACGACAACCCG
	ATGATAAACCCCGTGGCTGAGAACGCTCCTGATTTGGCCGGATATGGATGTTCGAGGCT
	GCTGGTATCCATGGTGGCAGACGAGGCCAGAGACATAACCCTTCTCTACATCGAGGCGG
	TGAAGAAGAGTGGGTGGAAAGGTGAATTGGAGGTGGCTGATTTCGAAGGAGATTACTTTG
	AAATATTCAGCCCAGAAACTGAGACAGGCAAGAACAAGGTCAAACGTTTAACGTCTTCAT
	CAACAAGGACTAA
TiCorS	ATGGCTAATTCAACTGCGAACTCTGATGAGATTGTTTTCGATCTTCATCCATACATCAGAG
(Tabernanthe	TCTTTAAAAACGGCAAGGTAGAAAGACTTCACGACACCCCATATGTTCCGCCATCACTTGA
(had Hydrolase)	AGATCCAGCTACCGGTGTATCCTGGAAAGACGTCCCAATTTCATCCGACGTTTCAGCTAG
	AGTCTACCTCCCGAAGATCAGCGAAGCGGAAAAGAAAAG
(1017.040034.1)	CCATGGTGCAGGCTTCTGTCTGGAATCAGCCTTCAAATCATTTTTCCATACTTATGTTAAG
	CACGTTGTTGCCGAAACCAAAGCTGTCGGAGTTTCGGTTGAGTACAGACTCGCCCCCGA
	GCACCCTTTACCTGCGGCTTATGAAGATTGCTGGACTGCCCTTCAGTGGGTGG
	TGTTGGTCTTGACAACTCCAGCCTCAAGAATGCTATTGATAAAGAGCCTTGGATAATCAAC
	CATGGCGACCTCAATAAGCTTTACTTGGGGGGGTGATAGTCCTGGTGGAAATATTGTGCAC
	AACGTACTCATTAGGGCTGGTAAGGAGAGCTTGCATAACGGAGTGAAAATCCGGGGTGC
	AATTCTTTATTACCCATATTTCTTGATCAGGACAAGCAACAGACAG
	ATTGACTATAGAGGCTACTGGAAGTTGGCTTATCCATCTGCTCCTGGCGGCACTGACAAC
	CCAATGATAAACCCTGTAGCTAAGAATGCTCCTGATTTGGCCGGATATGGATGTTCGAGG
	CTGCTTGTTTCCATGGTTTCGGACGAGACCAGAGATATAACCCTTCTCTACCTTGAGGCAT
	TGAAGAAGAGTGGGTGGAAAGGTGAATTGGAAGTGGGTGACTACGAAGCACATTTCTTTG
	ACTTGTTCAGCCCTGAAAATGAAGTTGGCAAGACTTGGATCAAACGTTCAAGCGATTTCAT
	CAACAAGGAGTAA
TiPS (P450)	ATGGAGCTTCAGAACTTACCCTTTAACTTCTTAGCTTTCATCGTCTTCGTATTCGTTTTCCT
(Tabernanthe	AACTCTTAAAGTCTGGAAAAAGTCCAGCCAGGGAAAGCAAAAGCTCCCACCAGGGCCAT
<i>iboga</i> This study.	GGAAGCTACCTTTGTTAGGAAACCTTCATAATTTGCTGATGGGTTCTCTTCCACATCATAC
PQ178877)	ACTCAGGGATCTAGCTCGAAAACATGGACCTCTGATGCACCTAAAGCTCGGAGAAGTTAA
	CGCTCTCATCGTATCATCACCTCGTATGGCTAGGGAGGTGATGAAAACCCATGATCTTGC
	ATTTGCAAACAGGCCTGTTACTCTGGTTGGGAAGATAGTATGTTATGACTATTCCGATATT
	GCTTTTAGTCCTTACGGTGATTACTGGCGACAAATGCGCAAAATATGTGTATTGGAGCTTT
	TTAGCTCCAAGTGTGTTCGATCGTTTGAGCCTATCAGGAAGGA
	TTGCCACTCTTCAAGCGTCAGCTGGGAAACCGATAAATCTGACGGAGAAAATCAGCTTGT
	ATACAACTTCCATGGTCTGCAGAGCAGCATTTGGTAAGGTAAACAACGGGGCAAAACAAAT
	ICICCCAGIIAGIGAAGGAIGCAICAGAGGIAGCAGGAGGCIIIGACCCIACIGAICIAI
	TTCCATCCTACAAATTTCTTCACGTTCTTGGCAGTACGATGTCTAAATTGCTGAAGATTCAT
	GGCCAAATAGACGCCATTTTGGAGGAAATGGTTAGTGAGCACAAAAAGAATCATGCCATG
	AAGAAGGIGGIGACIIGCAAIICCAIICACGGACAAGAAIGICAAAGGCAICGIAIIIG
	ATATITIIGGIGCIGGAACCGAAACTICATCCTCAGTIGTIGACTGGGCTATGGCAGAATT
1	GACAGUTUUGTIGATITTACAGGAAUTAAUTATGAGTITGTACUUTTIGGTGCUGGAAGG

	AGGATATGCCCAGGAATGAATTTTGGTCTGGCAAATGTTGATCTTCTTCTAGCTCTGCTAC
	ATCTCTTGATAAATCATGCTGA
TiT16H (P450)	ATGGAGTCCATTCTTTTCCTTTGCATCATCCTCCTCCTTTTCTCTATGTTAATGAAAATTAT
(Tabernanthe	GAAGAAATCAAAGATCGAGATGGTCTCAAGAAACAAATTGCCCCCAGGGCCGAAACCATT
iboga This study,	TCCAGTTATAGGAAACATGCATCAGCTCTATGGAGCTCCAATCCACCATGTCCTCAGAGA
PQ178876)	TTTAGCCAAGAAATATGGTCCTCTTATGCACATCAAGATTGGTGAAATTTCTAGCATTGTT
,	GICICCICGCCAGAAGIIGCCAAAGIGGIIIICAAGACACAIGAICICCACIICACICAAA
	ATTTCGTTGCATGAGGGATCACCGATCAATCTCAGCCAAAAAATTTTTTCATTGACTTATG
	GAGTCACTACTCGTGCTGCCTTTGGTAGAAGAAACAAATATCAAGAACAATTCCGGGAAC
	TTTTGGAAAAATTCAATGTGCTAGCAACAGGATTTAACATAGGAGACATCTTCCCTTCAAA
	GGAATTCTTTCAAGTGATCAGTGGATTTCGTCCAAAGATGGAAACCCTACACAAGCAGGT
	TGATGAAATAATTGAAAAAATCCTGATTGAGCACAGGGAGAAACGCAGACAAGACTCCAA
	ATCCAGGTATGATGAAAAGGGCACAAAACGAAGTTAGAAGTTCTTCCATGAAAGTGGAA
	ATGTTAATGAATCGAGCCTTGGACAACTTAAATACTTGCAAGCAA
	GAGATTACACCCTAGTGTTCCATTGCTACTCCCCAGGGAATGCAGGGAAGAATGTGAAAT
	CCAAGGATTTCGGATACCTTCCGGGACCAGAGTCATGGTAAATGCATATGCAATTGGCAG
	AGATCCTGAATACTGGACTGATGCTGAGAAATTCAGCCCCGACAGATTTCTTGATTCTGAA
	GTTGATTATAAGGGAAATCATTTCCAGTTTGTACCATTTGGTGCTGGAAGAAGGATGTGTC
	GGTGACCATTAGAAGGAAAAGTGACTTGTGCCTTATTCCAGTTGTCTATTCAGGTTCTTTT
	CTTAAATGGAATTCCTAG
CrT16H1	ATGGAATTCTATTATTTTCTCTACTTGGCCTTCCTTCTTTTCTGCTTCATTTTATCAAAAACC
(Catharanthus	ACAAAGAAATTTGGCCAAAACAGCCAATATTCAAACCATGATGAGCTACCTCCGGGGCCT
roseus P450)	CCCCAAATTCCTATATTAGGAAATGCCCATCAACTTAGCGGTGGCCATACTCATCACATTC
(FJ647194.1)	
	GTTAGTCCATATGGTAATTATTGGAGACAACTTCGTAAAATTAGCATGATGGAACTTCTAA
	GCCAAAAGAGTGTCCAATCTTTTAGATCAATTAGAGAAGAGGAAGTATTAAATTTTATTAAA
	TCAATTGGTTCCAAAGAGGGTACAAGAATTAATCTCAGCAAAGAGATATCGTTACTTATTT
	ATGGAATTACTACGCGTGCTGCTTTTGGAGAGAAAAATAAGAATACAGAAGAATTATTCG
	TCTACTTGATCAACTTACAAAGGCAGTAGCGGAACCTAACATTGCAGATATGTTCCCTTCT
	TGCCGGCACTGAGACATCGTCAACAACAGTCGATTGGGCAATGTGCGAAATGATAAAAAA
	TCCAACGGTAATGAAAAAGGCACAAGAAGAGGGTAAGAAAGGTATTTAATGAAGAAGGAAA
	TGTTGATGAAACAAAACTTCATCAACTAAAATATTTACAAGCAGTGATTAAAGAAACATTAA
	GGCTTCATCCACCAGTTCCATTACTACTTCCAAGAGAATGTCGAGAACAATGTAAGATTAA
	GCATAACGAAATTCATTCGACTAATAGAATTGCCATTAGCACAACGAAGGAATATGTCCGG
	TGGCAATCAAATACTGAGAAATTAAATATGAAAGAGAGAG
	GAAGATGATTTGTATTTGACTCCAGTTAATTTTTCTTCCTCTTCTCCTGCTTGA
CrT16H2	ATGGAGTTGTATTATTTTCCACCTTTGCCTTCCTTGTTTTCTGCTTCATTTTAGCCAAAAC
(Catharanthus	TCTAAAGAAATCTGGCCAATCAAATCATAAGCTGCCTCCGGGGCCTCCCCCAATTCCTAT
roseus P450)	
(JF742645.1)	
	GCAATTATTGGAGACAACTTCGTAAAATTAGCATGATGGAGCTTTTTAGCCAAAGGAGTGT

	CCAATCTTTCAGATCACTTAGAGAAGAGGAAGTCTTGAATTTTATTAAATCAATTGGTTCGA AAGAGGGTACAAAAATTAATCTTAGCAAGGAAATATCGTTACTTATTTAT
CrTEX1 (<i>Catharanthus</i> <i>roseus</i> P450) (A0A343URW6.1)	ATGGAGTTTGTGGTTTCCCTCTTTGCCTTCGTCGTTTCCTGCTTCATTTTACTTAAAGTAGC AAAGAATTCCAAGAACCCAAAGAGAAACACAAATCTTGAGCTTCCCCCGGGGCCAAAACA ACTTCCTATAATTGGAAACCTTCATCAGCTTGGCGCGGCGCTTAGCTCATCATGTACTTAGA ACTTCCTATAATTGGAAACCTTCATCAGCTTGGCGCGCGC
CrTEX2 (<i>Catharanthus</i> <i>roseus</i> P450) (A0A343URW7.1)	AGAAAATTIGGTTCIGATACCAAATTCGCATTCIGTCTTCTTCTTCTTCTTCATTTACTCAAAATGAT AGCAAAGAATTTCAAGAACCCCCAAGAAAAACACAAAGCCTCTTCCTCCAGGGCCCAAAAA GCTTCCTATAATAGGAAACCTTCATCAGCTAGGTGGTGGTGGTTTAGCTCACCATATCCTTAGA GATTTATCCCAAAACTATGGACCTTTGATGCATTTGAAAATCGGTGAACTTTCAACAATAGT CATTTCCTCAACAGAAATGGCTAAACAAGTTTTCAAGGTTCATGATATCCATTTCTCAACAA GACCTTCTCATATTCTTGTTTTTAAAATCGTTAGCTATGATTATAAAGACATCGTACTTTCC CAATATGGAAACTACTGGCGAGAGCTTCGTAAAGTCTGTAATCTCCATCTTTTAAGTCCAA ATCGTGTCCAATCCTTTAGATTCATAAGGGAAGATTCTGTTCTTAATATGATGAAATCAATT TCTTCCAACGAGGGTAAAGTTGTCAATTAAGGGAAGAATGATTTTATCTCTTTATTATGGAAT TACTGCTCGTGCTGCATTTGGTGTTTGGAGTAAAAGACATGAAGAATTCATAAGACTTGAG AGTGAAATTCAAAGGTTGGCAACAACGTTTGTTTTAGCAGATATGTTTCCTTCGATTAAAAT TCTTGGAGCTTTAAGTGGCAACAACGTTTGTTTTAGCAGATATGTTTCCTTCGATTAAAAT TCTTGGAGCTTTAAGTGGAATGAAAAAAGGATCTTGTTGTTGTTGAGAAAGAA

	GATTAATGGGTATAGGATACCTGCAAAAGCTAGAGTTATGGTTAATGCATGGGCAATCAGT
	AGAGATCCAAATTACTGGCCAGATCCGGATAGCTTTAAACCTGAGAGATTTTTGGGATCA
	GAAGTCGATTTTAAAGGTACCCATTTTGAATATACTCCATTTGGAGCAGGTAGGCGTATTT
	GTCCGGGGATATCATATGCCATTGCCAATATTCAGCTGCCGTTGGCGCAACTTTTGTACC
	ATTTTGATTGGAAACTTGCCGGTGGAATGAAGCCTGAAGAATTGGACATGGCGGAGATTT
	TGGGTACTGCTGCCCAACGCAAAGAAGATTTGCTTCTCATACCAAATTCCCATTCTTGTTC
	TTCTTTGAAACAACAAGTGTGA
(Catharanthus	
roseus P450)	CCGATTATCGGAAACCTTCATCAGCTCAGTAAATTTCCTCAACGTTCACTGAGAACATTAT
(HQ901597 1)	CAGAAAAATATGGGCCTGTCATGTTACTTCATTTTGGTAGCAAGCCAGTTTTGGTTATATC
(11000100111)	CTCAGCAGAAGCAGCTAAAGAAGTAATGAAAATCAATGATGTTTCTTTC
	AAATGGTATGCTGCTGGTAGGGTTCTTTATGAATTTAAGGATATGACATTTTCACCCTATG
	GTGAGTATTGGAGACAAGCTAGAAGTATATGTGTTCTTCAGCTTCTAAGTAACAAAAGGGT
	TCAATCTTTTAAAGGTATTAGAGAAGAAGAAGAGAGAGAG
	GCTAGTAATAATTCAAGTATCATTAATGGTGATGAGATTTTCTCGACACTTACAAATGACAT
	AAAGIICIICAAGAIIIGCCACCIIIGIIAGGIICIIICAAIGIIGGIGAIIIIAIICCAIG
	GCTTTCTTGGGTTAATTATTTAAATGGTTTTGAAAAAAATTGAACCAAGTTTCAAAAGATT
	GTGATCAATATCTTGAGCAAGTTATTGATGATACGAGGAAGAGAGAG
	CTAATAACAATGGCGGAAATCATGGAAATTTTGTTAGTGTTCTACTTCATCTCCAGAAAGA
	AGATGTCAAGGGTTTTCCTTCAGAAAAAGATTTTCTTAAAGCTATCATTTTGGACATGATTG
	TTGGGGGAACAGACACACATTTGCTTTTGCATTGGGTAATCACAGAGCTTCTCAAAAA
	IGGGITATCGCGTAGCGAAAGGCACAGAAGTGATTATTAATGCTTGGGCAATAGCGAGAG
	ATCCATCGTACTGGGATGAAGCCGAGGAGTTTAAGCCGGAGAGATTCTTGAGTAATAATT
	TTGATTTTAAAGGACTTAATTTTGAGTATATTCCATTTGGTTCTGGAAGAAGAAGATTGCCCT
	GGATCTTCATTTGCAATCCCCATTGTAGAACACACAGTGGCACATTTGATGCATAAATTCA
	ATATTGAGTTGCCAAATGGAGTCAGTGCTGAAGATTTTGATCCCACAGATGCCGTTGGAC
	TCGTATCTCATGACCAAAACCCTCTCTCGTTTGTGGCAACTCCGGTTACCATTTTTGA
CrT3O	ATGGAGTTTCATGAATCTTCTCCCTTCGTGTTCATCACTCGTGGCTTTATATTCATAGCAAT
Cothoronthuo	TICAATAGCCGTACTGAGAAGAATAATATCAAAGAAAACTAAAACATTGCCTCCAGGACCA
(Callaraninus	
roseus P450)	
(JN613015.1)	CAGAGATTTAGCTCAAAAAAAATGGGCCTTTGATGCACCTTCAATTAGGTGAAGTTTCTGCC
· · · · ·	AICGIGGCAGCAICICCICAAAIGGCIAAGGAGAIIACAAAAACIIIGGAICIICAAIIIG
	CAGACAGGCCAGTTATTCAAGCATTAAGGATTGTGACCTATGATTATTTAGATATATCCTTT
	AATGCATACGGAAAATATTGGAGACAATTGCGTAAAATTTTTGTCCAAGAACTATTAACTTC
	AAAGAGAGTTCGATCATTTTGCTCTATAAGAGAAGATGAATTTTCCAATCTGGTAAAAACA
	ATCAATTCTGCGAATGGAAAATCAATCAATTTGAGCAAATTGATGACGTCATGCACAAATT
	CAATTATTAATAAAGTAGCTTTTGGTAAAGTACGTTATGAACGGGAGGTGTTTATTGATCTA
	ATTAATCAAATATTAGCATTAGCAGGCGGGTTTAAGCTGGTTGATCTGTTTCCGTCCTACA
	GCAACGGTIGTAATGGCCAGGAAGATATAGTIGATATTTACTTAGGATTGAAGAGGGGTG
	GIGATCTIGACCTIGATATICCCTITGGCAACAACAATATCAAAGCTCTITTATICGATATA
	ATTGCAGGCGGAACTGAAACCTCATCAACAGCAGTTGACTGGGCAATGTCAGAGATGATG
	AGAAATCCCCATGTGATGAGCAAAAGCGCAAAAGGAAATTAGGGAAGCGTTCAATGGAAAG
	GAGAAGATTGAGGAGAATGATATTCAAAATTTGAAGTACCTAAAGTTAGTGATCCAAGAAA
	CCTTAAGGTTACACCCTCCTGCTCCATTGTTGATGAGACAATGCCGAGAGAAATGTGAAA
	TTGGCGGATATCATATACCTGTTGGAACAAAAGCGTTCATCAATGTCTGGGCAATCGGAA
	GGGATCCIGCGTATTGGCCTAATCCAGAGAGTTTTATTCCGGAAAGATTTGACGATAATAC
	TTATGAATTTACAAAATCTGAACATCATGCGTTTGAATATTTGCCATTTGCCCCAACA
	CTTTACCATTICAACTGGCAACTCCCAGATGGTTCTACTACTCTGGATATGACAGAGGCTA
	CTGGATTAGCAGCAAGAAGAAAATATGATCTTCAATTAATCGCTACGTCCTATGCATGA

Gene	Plasmid	Primer direction	Sequence (5'-3')		
Yeast expression constructs (In-Fusion cloning)					
TiPS	pESC-	Forward	GAGAAAAAACCCCGGATCCATGGAGCTTCAGAACTTACC		
	HIS	Reverse	ACTTCTGTTCCATGTCGACGCATGATTTATCAAGAGATGGAA		
TiT16H	pESC-	Forward	GAGAAAAAACCCCGGATCCATGGAGTCCATTCTTTTCCTTT		
	HIS	Reverse	ACTTCTGTTCCATGTCGACCTAGGAATTCCATTTAAGAAAAGAA		
CrT16H1	pESC-	Forward	GAGAAAAAACCCCGGATCC ATGGAATTCTATTATTTCTCTACTTG		
	HIS	Reverse	ACTTCTGTTCCATGTCGACAGCAGGAGAAGAAGAAGAAA		
CrT16H2	pESC-	Forward	GAGAAAAAACCCCGGATCCATGGAGTTGTATTATTTTTCCAC		
	HIS	Reverse	ACTTCTGTTCCATGTCGACATATTTACCTTTGAGAGAAGAAG		
CrTEX1	pESC-	Forward	GAGAAAAAACCCCGGATCCATGGAGTTTGTGGTTTCCCT		
	HIS	Reverse	ACTTCTGTTCCATGTCGACCACTTGTTTCAAAGAAGAACAAGAA		
CrTEX2	pESC-	Forward	GAGAAAAAACCCCGGATCCATGGAGTTTGTGGTTTCCC		
	HIS	Reverse	ACTTCTGTTCCATGTCGACCACTTGTTGTTTCAAAGAAGAAC		
CrT19H	pESC-	Forward	GAGAAAAAACCCCGGATCCATGTTGTCTTCATTGAAAGATTTCTT		
	HIS	Reverse	ACTTCTGTTCCATGTCGACAAAAATGGTAACCGGAGTTGC		
CrT3O	pESC-	Forward	GAGAAAAAACCCCGGATCCATGGAGTTTCATGAATCTTC		
	HIS	Reverse	ACTTCTGTTCCATGTCGACTGCATAGGACGTAGCGATTA		
Sequence	verification	Forward	ATGATTTTTGATCTATTAACAGATA		
primers pE	SC-HIS	Reverse	GTATAATGTTACATGCGTACAC		
	_	Primer			
Gene	Plasmid	direction	Sequence (5'-3')		
Nicotiana b	enthamiana	single trans	criptional unit constructs (In-Fusion cloning)		
P19	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGGAACGAGCTATACAAGGAAA		
(TBSV)		Reverse	GACAACCACAACAAGCACCGTCACTCGCTTTCTTTTCGAAGG		
GFP	3Ω1	Forward	TTTATGAATTTTGCAGCTCG ATGGTGAGCAAGGGCGAG		
		Reverse	GACAACCACAACAAGCACCGTCACTTGTACAGCTCGTCCATGC		
TiPAS3	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGTTAGCAGAAGTCTCCAAAGTTC		
		Reverse	GACAACCACAACAAGCACCGTTACAATTCATCATGTAAAGTTAGAG		
TiDPAS1	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGGCTGTAAAATCACCTGAAGC		
		Reverse	GACAACCACAACAAGCACCGCTATTCCGGTGGAGTTAGTGTG		
TiCorS	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGGCTAATTCAACTGCGAACTCT		
		Reverse	GACAACCACAACAAGCACCGTTACTCCTTGTTGATGAAATCGCTTG		
TiTabS	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGGCTTCTTCAACTGAAAGCTCTG		
	-	Reverse	GACAACCACAACAAGCACCGTTAGTCCTTGTTGATGAAAGACGTTAG		
TiPS	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGGAGCTTCAGAACTTACC		
		Reverse	GACAACCACAACAAGCACCGTCAGCATGATTTATCAAGAGATGGAA		
TiT16H	3Ω1	Forward	TTTATGAATTTTGCAGCTCGATGGAGTCCATTCTTTTCCTTT		
-	-	Reverse	GACAACCACAACAAGCACCGCTAGGAATTCCATTTAAGAAAAGAA		
CrT16H1	301	Forward	TTTATGAATTTTGCAGCTCGATGGAATTCTATTATTTTCTCTACTTG		
		Reverse	GACAACCACAAGCACCGTCAAGCAGGAGAAGAGGAAGAAA		
CrT16H2	301	Forward	TTTATGAATTTTGCAGCTCGATGGAGTTGTATTATTTTTCCAC		
		Reverse	GACAACCACAAGCACCGTCAATATTTACCTTTGAGAGAAGAAG		
CrTFX1	301	Forward	TTTATGAATTTTGCAGCTCGATGGAGTTTGTGGTTTCCCT		
0112/11	0111	Reverse	GACAACCACAAGCAGCACCGTCACACTTGTTTCAAAGAAGAACAAGAA		
CrTEX2	301	Forward	TTTATGAATTTTGCAGCTCGATGGAGTTTGTGGTTTCCC		
		Reverse			
CrT19H	301	Forward	TTTATGAATTTTGCAGCTCGATGTGTGTGTGTGTGTGAAAGATTTCTT		
	0321	Reverse			
CrT3O	301	Forward	TTTATGAATTTTGCAGCTCGATGGAGTTTCATGAATCTTC		
		Reverse	GACAACCACAACAAGCACCGTCATGCATAGGACGTAGCGATTA		
1	1	1.000000			

 Table S2 Primers used in this study.

Sequence verification		Forward	GATGAAAAAGCCCTAAAATTGGAG
primers 3Ω1 InFusion		Reverse	ATTATTCACAAATGAGAAACAGAATGG
Gene	Level 1 CDS	Primer direction	Sequence (5'-3')
Nicotiana benthamiana multi-transcriptional unit constructs			
Level 1 CDS fragment for 3α1 or 3α2 golden-braid assembly			
Domestic ation of TiDPAS1	Frag. A	Forward	GCGCCGTCTCGCTCGAATGGCTGTAAAATCACCTGAAG
		Reverse	GCGCCGTCTCGCAGTCTCATTCGAGAAGCCT
	Frag. B	Forward	GCGCCGTCTCGACTGTCGTAAATGAGCGCTTC
		Reverse	GCGCCGTCTCGCTCGAAGCCTATTCCGGTGGAGTTAGTG
	Full	Forward	GCGCCGTCTCGCTCGAATGGCTGTAAAATCACCTGAAG
	length	Reverse	GCGCCGTCTCGCTCGAAGCCTATTCCGGTGGAGTTAGTG
Domestic ation of TiCorS	Frag. A	Forward	GCGCCGTCTCGCTCGAATGGCTAATTCAACTGCGAAC
	_	Reverse	GCGCCGTCTCGTAGTCTCGTCCGAAACCATG
	Frag. B	Forward	GCGCCGTCTCGACTAGAGATATAACCCTTCTCTAC
	_	Reverse	GCGCCGTCTCGCTCGAAGCTTACTCCTTGTTGATGAAATCGC
	Full	Forward	GCGCCGTCTCGCTCGAATGGCTAATTCAACTGCGAAC
	length	Reverse	GCGCCGTCTCGCTCGAAGCTTACTCCTTGTTGATGAAATCGC
TiPAS3	Full	Forward	TTCAGAGGTCTCTAATGTTAGCAGAAGTCTCCAAAG
	length	Reverse	AGCGTGGGTCTCGAAGCTTACAATTCATCATGTAAAGTTAGAG
TiTabS	Full	Forward	TTCAGAGGTCTCTA ATGGCTTCTTCAACTGAAAGCT
	length	Reverse	AGCGTGGGTCTCGAAGCTTAGTCCTTGTTGATGAAAGACG
P19	Full	Forward	TTCAGAGGTCTCTAATGGAACGAGCTATACAAGGAAA
	length	Reverse	AGCGTGGGTCTCGAAGCTCACTCGCTTTCTTTTCGAAGG
Plasmid validation	P19	Forward	TATTTAAGAGATATCTCAGATACG
		Reverse	CTGGTCGAAAACCGAAAAATC
	TiPAS3	Forward	GCACTTCAGTTGTGGTGG
		Reverse	TCTTCGTCCGATGAGAACT
	TiDPAS1	Forward	CGTAAATGAGCGCTTCGTT
		Reverse	TGGGAGTGGAACTAATCACT
	TiTabS	Forward	CCACCTGCCTGCAGCTTAT
		Reverse	GGGTAATAAAGAATTGCACCC
	TiCorS	Forward	CCTTCAGTGGGTGGCT
		Reverse	CAATCTCCATATAATCACTCTGT
Overhangs designed for non-domesticated sequences 3α1 or 3α2 golden-braid assembly			

Methods S1 Detailed Materials and Methods

Candidate selection and phylogenetic analysis

The candidate genes were selected from a previously generated *T. iboga* transcriptome (Farrow *et al.*, 2019). Full-length cytochromes P450 gene sequences were extracted from the transcriptome using annotations corresponding to cytochrome P450, CYP, and EC:1.14. Transcripts were filtered to remove duplicates and include CDS (coding sequence) between 400 and 550 amino acids. Multiple sequence alignment (amino acid) was constructed using MUSCLE (Edgar, 2004) using default parameters, including 245 *Arabidopsis thaliana* cytochromes P450s (Schuler *et al.*, 2006) and functionally characterized cytochromes P450 involved in monoterpene indole alkaloid biosynthesis (Nguyen & Dang, 2021; Williams & Luca, 2023). The alignment was used to construct a maximum-likelihood phylogenetic tree using the iQtree web server (Trifinopoulos *et al.*, 2016) under default parameters. Phylogenetic trees were visualized using iToL (Letunic & Bork, 2024) and Geneious Prime ver. 2023.1.2. Major clades in the tree were identified and annotated based on *Arabidopsis thaliana* sequences, including the CYP71 family and Clan 86, the former used to identify candidates and the latter used to root the tree (Hansen *et al.*, 2021).

Cloning methods

Cytochrome P450 enzymes characterized in this study were amplified by PCR from a cDNA library generated from *T. iboga* as previously described (Farrow *et al.*, 2019). Known *C. roseus* cytochromes P450 genes (Table S1) were amplified from a cDNA library generated from *C. roseus* var. LBE. RNA was isolated from *C. roseus* var. LBE using the RNeasy Plant Mini Kit (Qiagen) and gDNA digestion and cDNA synthesis were performed using SuperScript IV-VILO Master-Mix (ThermoFisher). Overhangs compatible with the appropriate vector for yeast expression or plant transient expression (*N. benthamiana* or *C. roseus*) were included on the 5' and 3' end of the primers used for PCR amplification (Table S2). HiFi Q5 Hot-Start 2X Master Mix (New England Biolabs) was used for gene amplification. PCR products were analyzed on 1% agarose gel and purified using the Zymoclean Gel DNA Recovery Kit (Zymo Research). In-Fusion HD cloning kit (Takara Bioscience) was used to assemble the amplified genes into target vectors.

For yeast expression, amplicons were cloned into the MCS2 of pESC-HIS (Kan^R) plasmid (GenBank: AF063850.1, Agilent). The plasmid was linearized using Sall and BamHI restriction enzymes (New England Biolabs). The In-Fusion assembly products were transformed into E. coli TOP10 cells (ThermoFisher) by heat-shock. Positive transformants were selected on LB agar (50 µg ml⁻¹ kanamycin), and colonies were screened by colony PCR using Phire Hot Start II 2X Master Mix (ThermoFisher). Plasmid DNA was isolated from positive colonies using Wizard Plus SV Minipreps DNA Purification Kit (Promega) and verified by Sanger sequencing (pESC-HIS sequencing primers, Table S2). Sequence-verified constructs were then transformed into yeast strain Saccharomyces cerevisiae WAT11 (ade2: contains the Arabidopsis thaliana cytochrome P450 reductase I gene, ATR1) (Urban et al., 1997) using the Frozen-EZ Yeast Transformation II Kit (Zymo Research). Transformed yeast cells were plated on SD-His medium (6.7 g l⁻¹ yeast nitrogen base without amino acids, 2 g l⁻¹ drop-out mix without histidine, 74 mg ¹ adenine hemisulfate) containing 2% glucose (w/v) and grown at 30 °C for 48 hours. Positive transformants were confirmed by colony PCR as described above and used to inoculate 10 ml of SD-His medium + 2% glucose (w/v), which were grown at 30 °C, 220 rpm for 48 hours. These cultures were then used to store 25% glycerol stocks at -80 °C for further use.

For transient expression in N. benthamiana or C. roseus, all single transcriptional unit plasmids were generated by cloning the amplicons (Table S2) directly into a modified 3Ω1 (Sarrion-Perdigones et al., 2013) vector. The 3Ω1 binary vector modification includes a CCDB gene cassette between ubiguitin-10 promoter (pUbg10) and ubiguitin-10 terminator (tUbg10) instead of LacZ (present in classical $3\Omega1$ plasmid). The vector was linearized using Bsal restriction enzyme (New England Biolabs), and the amplicon assembly was carried out using an In-Fusion HD cloning kit (Takara Bioscience). The assembled product of In-Fusion was transformed into E. coli TOP10 (ThermoFisher) cells. Positive transformants were identified by colony PCR as described above (301 sequencing primers, Table S2) and then grown overnight in liquid LB medium (200 µg ml⁻¹ spectinomycin) at 37 °C, 200 rpm. Plasmid DNA was isolated, and the sequence was verified as described above. Sequence-verified constructs were used to transform electrocompetent Agrobacterium tumefaciens GV3101 cells (Goldbio) by electroporation. Cells were plated on LB medium (20 µg ml⁻¹ rifampicin, 30 µg ml⁻¹ gentamicin, 200 µg ml⁻¹ spectinomycin) containing agar (20 g l⁻¹) and grown at 28 °C for 48 hours. Positive colonies were identified by colony PCR, and a single transformant was grown in 10 ml LB medium (20 µg ml⁻¹ rifampicin, 30 µg ml⁻¹ gentamicin, 200 µg ml⁻¹ spectinomycin) at 28 °C, 250 pm overnight, after which 25% glycerol stocks were prepared and stored at -80 °C for further use.

Multi-transcriptional unit constructs for plant transient expression in N. benthamiana or C. roseus were assembled using the Goldenbraid 2.0 toolkit (Sarrion-Perdigones et al., 2013). Geneious Prime ver. 2023.1.2 was used to construct in-silico assemblies before cloning. Domestication (removal of Bsal and Bsmbl cut-sites) of TiDPAS1 and TiCorS was performed by PCR according to primers generated by the Goldenbraid domesticator web tool (Sarrion-Perdigones et al., 2013) (Table S2). All CDS elements used for multi-transcriptional unit assemblies were cloned into a Level 1 transcriptional unit in $3\alpha 1$ or $3\alpha 2$ plasmid (kanamycin) using Bsal (New England Bioscience). Level 2 multi-gene constructs were assembled into $3\Omega 1$ or 3 $\Omega 2$ (spectinomycin) plasmid with *Esp31* (New England Bioscience) using Level 1 plasmids. Level 3 multi-gene constructs were assembled into 3g1 plasmid with Bsal (New England Bioscience) using Level 2 plasmids (Fig. S1). All transcriptional units consisted of a Solanum lycopersicum Ubiguitin10 promoter (pUbg10) and Ubiguitin 10 terminator (tUbg10, Table S1). The assembly was carried out by incubating the reaction mix at 37 °C for 5 min, followed by 5 min at 16 °C for 50 cycles, and terminated at 65 °C for 10 min. Plasmids were transformed into E. coli TOP10 (ThermoFisher) cells by heat shock. Blue-white screening was used to identify positive transformants. Sequence verification was performed at each stage of the assembly by Sanger sequencing using gene-specific primers (Table S2), and the final multi-transcriptional unit (Level 3) construct was verified using whole plasmid sequencing (Plasmidsaurus). Sequence-verified constructs were transformed into A. tumefaciens GV3101 cells (Goldbio) by electroporation. Transformed cells were grown, verified, and maintained in glycerol stocks described above in LB medium (20 µg ml⁻¹ rifampicin, 30 µg ml⁻¹ gentamicin, 100 µg ml⁻¹ kanamycin).

Heterologous expression in yeast and microsome preparation

Yeast cells (WAT11) transformed with expression constructs including empty vector control were streaked on bacteriological agar (20 g l⁻¹) plates of SD-His medium (6.7 g l⁻¹ yeast nitrogen base without amino acids, 2 g l⁻¹ drop-out mix without histidine, 74 mg l⁻¹ adenine hemisulfate) containing 2% glucose (w/v) from glycerol stocks and incubated at 30 °C for 48 hours for colonies to appear. Colonies were inoculated in 10 ml SD-His + 2% glucose medium and grown overnight at 30 °C, 200 rpm. A cell density (OD₆₀₀) corresponding to 1.0 was sub-cultured into 100 ml of SD-His medium + 2% glucose and incubated for 28-34 hours at 30 °C, 200 rpm. Cells were harvested at 4000 × g, room temperature for 5 min. Harvested cells were resuspended in

100 ml of SD-His medium + 1.8% galactose (w/v) + 0.2 % glucose (w/v) and incubated for 18-24 hours at 30 °C, 200 rpm for protein induction. Yeast culturing and handling were performed while maintaining aseptic conditions to avoid contaminations.

After protein expression, cells were harvested by centrifugation (4000 \times g, 4 °C, 10 min) for yeast microsome preparation (Pompon et al., 1996). The cell pellet was resuspended in 10 ml (2 ml g⁻¹) of TEK buffer (50 mM Tris-HCl, 1 mM EDTA, 100 mM potassium chloride, pH 7.4) and incubated at room temperature for 5 min. Cells were then harvested by centrifugation as above, and the supernatant was discarded; the pellet was resuspended in 2 ml of ice-cold TES buffer (50 mM Tris-HCl, 1 mM EDTA, 600 mM sorbitol, 10 g l⁻¹ bovine serum albumin, pH 7.4). Cells were disrupted by glass beads (0.5 mm diameter, equal volume 2 ml) in a cold room (4 °C) using a Bead Genie (Scientific Industries) by pulsation at six rounds of 5000 rpm for 1 min on, 1 min off intervals. Following cell lysis, 5 ml of ice-cold TES buffer was added to the lysate/glass bead suspension, mixed well, and the supernatant was collected into a pre-chilled tube. The alass beads were washed three times and pooled for centrifugation at 8000 × g. 4 °C. 10 min. The supernatant was collected and ultra-centrifuged at 100,000 × g, 4 °C, 90 min. The supernatant was discarded, and the translucent pellet was washed first with 1 ml ice-cold TES buffer, then with 1 ml of TEG buffer (50 mM Tris-HCl, 1 mM EDTA, 20% glycerol, pH 7.4), and resuspended in 1 ml TEG buffer using a Dounce homogeniser. Microsomal protein preparations were stored at -80 °C for in vitro assays.

SPE purification of products of enzymatic reactions

Solid-phase extraction (SPE) was performed to remove impurities and concentrate the sample before HPLC isolation. For yeast and *N. benthamiana* sample clean-up, a 3 ml Chromabond-HLB (60 µm, 3 ml, 60 mg Macherey-Nagel) and a 6 ml Chromabond-HLB (60 µm, 6 mL, 200 mg, Macherey-Nagel) SPE cartridge was used, respectively. The sample, reconstituted in 10% methanol (aqueous), was applied to a conditioned SPE cartridge for processing. The SPE cartridge was first conditioned with three-column volumes of methanol and three-column volumes of 10% methanol (aqueous). The sample was then applied to the SPE cartridge, washed with three-column volumes of 20% methanol (aqueous), and dried under vacuum. Finally, the reaction product was eluted with one column volume of methanol, and the flow-through was evaporated to dryness for semi-preparative HPLC isolation.

Semi-preparative HPLC isolation of enzymatic products

Semi-preparative-scale reaction workups of (-)-pachysiphine, (-)-16-OH-tabersonine, and (-)-16-OH-pachysiphine were subjected to high-performance liquid chromatography (HPLC) for compound isolation. The *N. benthamiana* extract containing pseudotabersonine was also subjected to HPLC isolation. An Agilent 1260 Infinity II HPLC instrument connected to an autosampler, diode array detector (DAD), and fraction collector for compound detection and isolation. Chromatographic separation was performed using a Phenomenex Kinetex XB-C18 (5.0 µm, 100 Å, 100 × 2.1 mm) column maintained at 40 °C under gradient elution using reversed phase conditions. The mobile phases used for separation were water with 0.1% formic acid (A) and acetonitrile (B). The flow rate was set at 1.2 ml min⁻¹, and chromatographic separation was performed at 10% B for 2 min, followed by a linear gradient from 10% to 30% B in 12 min, 90% B for 3 min, 10% B for 3 min (t_{total} 20 min). Prior to injection, the samples were diluted to 1 mg ml⁻¹ with methanol and filtered using a 0.22 µm PTFE syringe filter. The diluted samples were placed in the autosampler, 50 ul injections were performed, and fractions were collected by monitoring the UV 254 nm and 328 nm corresponding to aspidosperma alkaloid absorbance (Hisiger & Jolicoeur, 2007). Fractions were analyzed by LC-MS to confirm identity and verified fractions were pooled and evaporated to dryness. The isolated compounds were

then submitted for NMR analysis. In the case of pseudotabersonine, the isolated compound was analyzed further by chiral LC-MS.

LC-MS analysis.

All samples were analyzed using an UltiMate 3000 (Thermo Scientific) ultra-high performance liquid chromatography (UHPLC) system coupled to an Impact II UHR-Q-ToF (Ultra-High-Resolution Quadrupole-Time-of-Flight) mass spectrometer (Bruker Daltonics). Metabolites were separated by reversed-phase liquid chromatography using a Phenomenex Kinetex XB-C18 (100 x 2.1mm, 2.6 µm, 100 Å) column at 40 °C. The mobile phases for metabolite separation were water with 0.1% formic acid (A) and acetonitrile (B). A flow rate of 0.6 ml min⁻¹ was used for the chromatography. The sample injection volume was 2 µl. The chromatographic separation started at 10% B for 1 min, and the linear gradient was from 10% to 30% B in 5 min, 90% B for 1.5 min, and 10% B for 2.5 min (t_{total} 10 min). Authentic standards were prepared as 20 μ M solutions in methanol, and 2 µl were injected under the chromatographic conditions described above. Mass spectrometry acquisition was performed in positive electrospray ionization (+ ESI) mode with a capillary voltage of 3500 V and an end plate offset of 500 V; a nebulizer pressure of 2.5 bar was used, with nitrogen at 250 °C and a flow of 11 I min⁻¹ as the drying gas. Acquisition was set at 12 Hz in the mass range from m/z 80 to 1000, with data-dependent MS² and an active exclusion after three spectra, released after 0.2 min. Fragmentation was triggered on an absolute threshold of 400 counts and limited to a total cycle time range of 0.5 seconds. The collision energies were applied dynamically and stepped from 20 to 50 eV. At the beginning of each sample run, a sodium formate-isopropanol calibration solution was directly infused into the source at 0.18 ml h⁻¹ using an external syringe pump to calibrate the MS spectra recorded. To avoid injection peak and salt contamination of the MS, the initial 1 min of the active chromatographic gradient of each run was discarded to waste, and the calibration solution was directed to the MS during this time. At the end of the active LC gradient (6 min), the MS valve was switched to waste, and during re-equilibration time (2.5 min), the calibration solution was directed to the MS. Authentic standards (Methods S1 Fig. 1) were prepared at 25 µM concentration for confirmation of analytes by chromatographic retention time, high resolution mass spectrum, and MS² fragmentation spectrum. Data analysis was performed using Bruker Compass Data Analysis (Version 5.3) software.

Structure optimization and ECD spectral calculation for (–)-pachysiphine.

Electronic circular dichroism (ECD) spectra calculation was performed for (–)-pachysiphine. Based on the structure determined from NMR analysis, a molecular model was created in GaussView ver.6 (Semichem Inc., Shawnee, Kansas, USA) and optimized using the semiempirical method PM6 in Gaussian (Gaussian Inc., Wallingford, Connecticut, USA). The resulting structure was used for conformer variation with the GMMX processor of the Gaussian program package. The resulting structures were DFT-optimized with Gaussian ver.16 (APFD/6-31G(d) level). A 4 kcal/mol cut-off level was used to select conformers subjected to another DFT optimization on a higher level (APFD/6-311G+(2d,p)). The lowest energy conformer from the high-level DFT calculation was used for the ROESY analysis. All structures up to a deviation of 2.5 kcal/mol from the lowest energy conformer were used to determine the ECD frequencies in a TD-SCF calculation on the same level as the former DFT optimization. The ECD curve was calculated from the Boltzmann-weighed contributions of all conformers with a cut-off level of two percent.

Methods S1 Fig. 1 LC-MS profiles and MS² spectra of authentic standards based on [M+H]⁺ parent ion.

References

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, *et al.* 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. *Nature* 630: 493–500.

Besseau S, Kellner F, Lanoue A, Thamm AMK, Salim V, Schneider B, Geu-Flores F, Höfer R, Guirimand G, Guihur A, *et al.* **2013**. A Pair of Tabersonine 16-Hydroxylases Initiates the Synthesis of Vindoline in an Organ-Dependent Manner in Catharanthus roseus. *Plant Physiology* **163**: 1792–1803.

Carqueijeiro I, Brown S, Chung K, Dang T-T, Walia M, Besseau S, Bernonville TD de, Oudin A, Lanoue A, Billet K, *et al.* 2018. Two Tabersonine 6,7-Epoxidases Initiate Lochnericine-Derived Alkaloid Biosynthesis in Catharanthus roseus. *Plant Physiology* 177: 1473–1486.

Colinas M, Pollier J, Vaneechoutte D, Malat DG, Schweizer F, Milde LD, Clercq RD, Guedes JG, Martínez-Cortés T, Molina-Hidalgo FJ, et al. 2021. Subfunctionalization of Paralog Transcription Factors Contributes to Regulation of Alkaloid Pathway Branch Choice in Catharanthus roseus. *Frontiers in Plant Science* **12**: 687406.

Edgar RC. **2004**. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* **32**: 1792–1797.

Farrow SC, Kamileen MO, Caputi L, Bussey K, Mundy JEA, McAtee RC, Stephenson CRJ, O'Connor SE. 2019. Biosynthesis of an Anti-Addiction Agent from the Iboga Plant. *Journal of the American Chemical Society* 141: 12979–12983.

Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. 2021. Plant cytochrome P450 plasticity and evolution. *Molecular Plant* 14: 1244–1265.

Hisiger S, Jolicoeur M. **2007**. Analysis of Catharanthus roseus alkaloids by HPLC. *Phytochemistry Reviews* **6**: 207–234.

Kochnev Y, Hellemann E, Cassidy KC, Durrant JD. 2020. Webina: an open-source library and web app that runs AutoDock Vina entirely in the web browser. *Bioinformatics* 36: 4513–4515.

Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. *Nucleic Acids Research*: gkae268.

Nguyen T-D, Dang T-TT. 2021. Cytochrome P450 Enzymes as Key Drivers of Alkaloid Chemical Diversification in Plants. *Frontiers in Plant Science* 12: 682181.

Pompon D, Louerat B, Bronine A, Urban P. 1996. [6] Yeast expression of animal and plant P450s in optimized redox environments. *Methods in Enzymology* **272**: 51–64.

Sarrion-Perdigones A, Vazquez-Vilar M, Palací J, Castelijns B, Forment J, Ziarsolo P, Blanca J, Granell A, Orzaez D. 2013. GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology *Plant Physiology* 162: 1618–1631.

Schuler MA, Duan H, Bilgin M, Ali S. 2006. Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. *Phytochemistry Reviews* 5: 205–237.

Sun J, Zhao L, Shao Z, Shanks J, Peebles CAM. 2018. Expression of tabersonine 16-hydroxylase and 16-hydroxytabersonine-O-methyltransferase in Catharanthus roseus hairy roots. *Biotechnology and Bioengineering* 115: 673–683.

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Research* 44: W232–W235.

Urban P, Mignotte C, Kazmaier M, Delorme F, Pompon D. **1997**. Cloning, Yeast Expression, and Characterization of the Coupling of Two Distantly Related Arabidopsis thalianaNADPH-Cytochrome P450 Reductases with P450 CYP73A5*. *Journal of Biological Chemistry* **272**: 19176–19186.

Williams D, Luca VD. 2023. Plant cytochrome P450s directing monoterpene indole alkaloid (MIA) and benzylisoquinoline alkaloid (BIA) biosynthesis. *Phytochemistry Reviews* 22: 309–338.