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A B S T R A C T   

Sun-Induced chlorophyll Fluorescence (SIF) is the most promising remote sensing signal to monitor photosyn
thesis in space and time. However, under stress conditions its interpretation is often complicated by factors such 
as light absorption and plant morphological and physiological adaptations. To ultimately derive the quantum 
yield of fluorescence (ΦF) at the photosystem from canopy measurements, the so-called escape probability (fesc) 
needs to be accounted for. 

In this study, we aim to compare ΦF measured at leaf- and canopy-scale to evaluate the influence of stress 
responses on the two signals based on a potato mesocosm heat-drought experiment. First, we compared the 
performance of recently proposed reflectance-based approaches to estimate leaf and canopy red fesc using data- 
supported simulations of the radiative transfer model SCOPE. While the leaf red fesc showed a strong correlation 
(r2 

≥ 0.76), the canopy red fesc exhibited no relationship with the SCOPE retrieved red fesc in our experiment. We 
therefore propose modifications to the canopy model to address this limitation. 

We then used the modified models of red fesc, along with an existing model for far-red fesc to analyse the 
dynamics of leaf and canopy red and far-red fluorescence under increasing drought and heat stress conditions. By 
incorporating fesc, we obtained a closer agreement between leaf and canopy measurements. Specifically, for red 
fesc, the r2 of the two variables increased from 0.3 to 0.50, and for far-red fesc, from 0.36 to 0.48. 

When comparing the dynamics of the quantum yield of red and far-red fluorescence (ΦF,687 and ΦF,760) under 
increasing stress, we observed a statistically significant decrease of both leaf and canopy ΦF,687 as well as leaf 
ΦF,760, as drought and heat conditions intensified. Canopy ΦF,760, on the contrary, did not exhibit the same trend, 
since measurements under low stress conditions showed a wider spread and lower median than under high stress 
conditions. Finally, we analysed the sensitivity of ΦF,687 and ΦF,760 to changing solar incidence angle, by 
comparing the variability of the measurements without and with mesocosm rotation. Our results suggest that the 
variation in ΦF,760 strongly increased with changing solar incidence angle. These findings highlight the need for 
further research to understand the causes of discrepancies between leaf and canopy scale ΦF,760. On the contrary, 
the underutilised and understudied ΦF,687 showed great potential in assessing plant responses to drought and 
heat stress.   
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1. Introduction 

Vegetation indices (VIs) derived from various remote sensing plat
forms (Montero et al., 2023) are widely used to predict photosynthesis in 
space and time. However, except for the photochemical reflectance 
index (PRI; Gamon et al., 1997), classical greenness-based VIs do not 
capture physiological modulation of photosynthesis. Sun-Induced 
Fluorescence (SIF) on the other hand, is directly linked to the photo
synthetic light reactions and is therefore often referenced as the most 
promising estimator of photosynthesis (Mohammed et al., 2019; Porcar- 
Castell et al., 2021). 

After being absorbed by chlorophyll, light energy can mainly follow 
four pathways: i) drive the photochemical reactions (photochemical 
quenching; PQ), ii) the release as heat (non-photochemical quenching; 
NPQ), iii) reemission as chlorophyll a fluorescence (ChlaF) and iv) the 
nonradiative transfer of excitation energy (Lichtenthaler and Rinderle, 
1988; Porcar-Castell et al., 2021; Porcar-Castell et al., 2014; Van Wit
tenberghe et al., 2021). Non-photochemical quenching (NPQ) is a pro
tective mechanism used by plants to dissipate excess absorbed light 
energy as heat, thereby preventing the formation of harmful reactive 
oxygen species and protecting the photosynthetic machinery from 
damage. An increase in the quantum efficiency of NPQ (ΦNPQ) leads to a 
reduction in PQ and, consequently, in the quantum efficiency of 
photochemistry (ΦP) (Butler, 1978; Müller et al., 2001). ChlaF (mW 
m− 2sr− 1nm− 1) is the light that is emitted within photosystem II and I 
(PSII & PSI) when chlorophyll excited electrons return to their ground 
state. ChlaF is emitted between 650 and 800 nm and shows two distinct 
peaks at 680 (Fred) and 740 nm (Ffar-red), with Fred being mainly related 
to fluorescence emission of Photosystem II (PSII), and Ffar-red comprising 
fluorescence emission from both PSII and PSI (Buschmann, 2007). Given 
the unique contributions of each photosystem to the fluorescence 
spectrum, the relationship between Fred and Ffar-red is expected to vary 
under different stress conditions (Ač et al., 2015; Mohammed et al., 
2019). In their meta-analysis, Ač et al. (2015) demonstrated, for 
instance, that canopy Fred and Ffar-red decrease under water stress, while 
their ratio increase in response to nitrogen deficit. As the down
regulation of photosynthesis by NPQ is primarily associated with PSII 
(Müller et al., 2001), Fred is expected to have a stronger association with 
NPQ and PQ than Ffar-red. Despite the closer association between Fred and 
NPQ/PQ, most publications related to SIF focus on the far-red peak for 
three reasons. Firstly, retrievals from satellite platforms typically focus 
on far-red SIF, with only limited retrievals available for red SIF (Joiner 
et al., 2016; Köhler et al., 2020; Zhao et al., 2022). Secondly, due to the 
deeper oxygen absorption bands, the retrieval of far-red SIF is associated 
with a higher signal-to-noise ratio (SNR) and shows thus lower uncer
tainty compared to red SIF (Cendrero-Mateo et al., 2019; Cogliati et al., 
2015; Damm et al., 2011). Lastly, red SIF is reabsorbed by chlorophyll 
within the leaf and through the canopy, (Rossini et al., 2015; Van Wit
tenberghe et al., 2013), which complicates the interpretation in partic
ular under drought stress conditions (Magney et al., 2019). 

SIF can be expressed as the product of the absorbed photosyntheti
cally active radiation (APAR), the quantum yield of fluorescence (ΦF) 
and the escape probability (fesc). Where fesc refers to the probability that 
the photons emitted by chlorophyll fluorescence will escape the canopy, 
in the direction of the sensor, without being absorbed or scattered by 
other plant materials (Guanter et al., 2014). 

SIF = APAR • ΦF • fesc (1) 

Even though early satellite-based studies demonstrated a strong 
correlation between SIF and gross primary productivity (GPP; e.g., 
Guanter et al., 2014; Sun et al., 2018; Zhang et al., 2016), it has been 
shown that under certain conditions, SIF does not exhibit a linear rela
tionship with GPP. For example, SIF inadequately represents the satu
ration in GPP under high light conditions (Kim et al., 2021; Liu et al., 
2022; Zhang et al., 2016), and under severe environmental stress the 
relationship can completely break down (Martini et al., 2022; Wieneke 

et al., 2022; Wieneke et al., 2018; Wohlfahrt et al., 2018; Xu et al., 
2021). The non-linear SIF-GPP relationship can be explained by three 
main factors: 

i) the decoupling of APAR with SIF and GPP when light is not the 
limiting factor for PQ. It is well known that APAR is the main driver of 
the GPP-SIF relationship (Dechant et al., 2020; Miao et al., 2018; Wie
neke et al., 2018; Yang et al., 2018). Under increased stress conditions, 
such as drought or nutrient limitation, the relationship between APAR 
and both SIF and GPP may be decoupled because the availability of light 
ceases to be the limiting factor for photosynthesis. Under those condi
tions, other factors such as water or nutrient availability and morpho
logical changes become more important (Wang et al., 2023b; Wieneke 
et al., 2022; Wohlfahrt et al., 2018; Xu et al., 2021). 

ii) the confounding effect of canopy structure (e.g., leaf angle) and 
leaf biochemical properties (e.g., chlorophyll a&b, carotenoids). 
Drought and heat stress can cause changes in the physiology and 
morphology of plants, which can affect the orientation of leaves. Under 
conditions of drought and heat stress, leaf angle may become closer to 
the vertical, which can help to reduce water loss by limiting the amount 
of direct sunlight that reaches the surface of the leaves (Barrs and 
Weatherley, 1962). In addition, nutrient limitation can also affect the 
concentration of chlorophyll (Cab) in the leaves. Changes in Cab con
centration can alter the scattering and reabsorption properties of the 
canopy and, consequently, the amount of fluorescence photons detected 
by a sensor is affected by changing scattering and reabsorption prop
erties and thereby altering fesc (Dechant et al., 2020; Hwang et al., 2023; 
Wang et al., 2023b; Xu et al., 2021). 

iii) the non-monotonic relationship ΦF and ΦPQ with increasing 
ΦNPQ. While there is a clear negative linear relationship between ΦNPQ 
and ΦPQ, the relationship between ΦF and ΦP is more complex and 
mainly depends on ΦNPQ (Porcar-Castell et al., 2021; Porcar-Castell 
et al., 2014). When ΦNPQ is low (e.g., under low stress and low light 
conditions) ΦF and ΦP show a negative linear relationship. With 
increasing ΦNPQ the relationship between ΦF and ΦP becomes positive 
since most energy is dissipated as heat. Under severe stress (photo
inhibition), with highest values of ΦNPQ, the relationship between ΦF 
and ΦP becomes negative again since only a limited amount of energy is 
used for PQ (Magney et al., 2019; van der Tol et al., 2014; Wieneke et al., 
2022). 

To interpret the physiologically-driven changes in SIF and to accu
rately understanding the relationship between Fred and Ffar-red under 
different stressors (Jonard et al., 2020), especially when measured at the 
canopy level and above, it is crucial to downscale SIF to photosystem 
level (i.e., estimating ΦF) by removing the biochemical and structural 
confounding factors. The coarse spatial and temporal resolution of 
satellite-based SIF products, however, can make it difficult or impossible 
to measure these factors and cope with the non-linear response curves. 
In-situ observations are thus essential to develop new methods that 
allow for downscaling and signal interpretation. For each wavelength (λ) 
ΦF(λ) can be calculated as: 

ΦF(λ) =
SIF(λ)

APAR • fesc(λ)
(2) 

Where fesc is dependent on wavelength-specific effects, such as 
reabsorption effects which dominate in the red spectral region and 
scattering effects prevailing in the far-red region. Radiative transfer 
models like SCOPE (Soil Canopy Observation, Photochemistry and En
ergy; van der Tol et al. (2009) and Yang et al. (2021) can be used to 
estimate fesc for both individual leaves and the overall canopy. This is 
done by simulating the emission of SIF, as well as the absorption and 
scattering of radiation at these levels. In SCOPE, fesc depends on the 
biophysical properties of the leaf (common to all leaves) and the spectral 
nature of the absorbed light, which varies with each canopy layer and 
discrete leaf angle. The applicability of these models is therefore often 
limited by the requirement of extensive sets of input variables that 
cannot always be measured during experiments. 
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Hence, reflectance based correction approaches are desirable. Zeng 
et al. (2021, 2019) and Yang et al. (2020) have previously demonstrated 
that fesc of Ffar-red can be estimated by using a combination of visible 
(VIS) and near-infrared (NIR) reflectance factors to minimise scattering 
effects. Since these correction methods are based on the common VIS 
and NIR bands, they can be easily applied at different scales. However, 
estimating fesc of Fred using the reflectance remains a challenge. While 
Romero et al. (2018, 2020) introduced a scaling factor to calculate the 
likelihood of Fred escaping from the leaf to the canopy, they acknowl
edge that their method is restricted to fluorescence generated by light- 
emitting diode (LED) or Light Amplification by Stimulated Emission of 
Radiation (LASER). Consequently, their correction is limited to active 
fluorescence measurements only. Liu et al., 2019b proposed a method 
based on a random forest algorithm trained on simulated data to scale 
red fluorescence from the canopy to the photosystem. Liu et al. (2020) 
later suggested a simpler alternative that uses red reflectance, the 
normalized difference vegetation index (NDVI) and the fraction of 
absorbed PAR by green leaves (fAPARgreen) to estimate fesc,687 at the 
canopy level. For the correction of fesc,687 at leaf level, Gitelson et al. 
(1998) and Van Wittenberghe et al. (2021) suggested two simple 
correction method based on the reflectance and transmittance in the red 
spectrum. 

The overall aim of the study was to determine whether fluorescence 
signals and derived parameters can be used as reliable indicators of plant 
stress, particularly under heat and drought conditions. To investigate 
the effects of drought and heat stress on SIF, we conducted a mesocosm 
manipulation experiment with Solanum tuberosum ‘Nicola’ (potatoes). 
Because of their shallow root system, potatoes are known to be partic
ularly vulnerable to heat and drought stress (Monneveux et al., 2013), 
which makes them a suitable subject for this study. For this, we set the 
following objectives: i) to compare the fesc,687 models proposed by 
Gitelson et al. (1998), Van Wittenberghe et al. (2021) and Liu et al. 
(2020) with SCOPE simulations; ii) to adjust the existing leaf and canopy 
models if they are unable to effectively account for reabsorption effects; 
iii) to test the comparability of leaf and canopy measurements of F687, 
F760, F687,PS and F760,PS based on the best performing leaf and canopy 
models of fesc,687; iv) to analyse the responses of leaf and canopy ΦF,687 
and ΦF,760 to increasing heat and drought stress, v) to assess the vari
ability of canopy ΦF,687 and ΦF,760 due to changes in the solar incidence 
angle. 

2. Methods 

2.1. Experimental setup 

The study site was located at the Experimental site on the Drie Eiken 
Campus of the University of Antwerp in Belgium, situated at 51◦09′ N, 
04◦24′ E. The experiment consists of ten mesocosms with five control 
and five drought treatments. Each mesocosm was 100 cm high, has a 
diameter of 50 cm and was placed under a transparent shelter to exclude 
natural wetting (Fig. A.1). The control mesocosms were regularly 
watered with tap water. The soil used in the experiment was a mixture of 
loamy soil and river sand, with an average texture of 80.8% sand, 0.8% 
clay, and 18.4% silt. The volumetric water content at 30 cm depth was 
continuously measured using the reflectometer CS616 (Campbell Sci
entific, Inc., Logan, USA). On May 21st, 2019, three Solanum tuberosum 
‘Nicola’ potatoes were planted per mesocosm, and they were harvested 
on August 27th, 2019. Each mesocosm received 60 g of NPK fertilisers 
(5–4–15 + Bacillus). The mesocosms were placed on movable plates to 
allow for unobstructed clear sky measurements outside of the shelter. 
For more detailed information on the soil conditions, we refer to Vienne 
et al. (2022). 

Leaf and canopy hyperspectral measurements were conducted with 
the hyperspectral Fluorescence Box (FloX, JB Hyperspectral Devices, 
Düsseldorf, Germany). The FloX comprises two spectrometers, FLAME 
and QEPro (both Ocean Optics, USA). FLAME has a spectral range of 400 

to 950 nm with a spectral resolution of 1.5 nm full width at half 
maximum (FWHM) and a SNR of 250. QEPro is optimized for deriving 
SIF, with a spectral range of 650–800 nm, a FWHM of 0.3 nm, and an 
SNR of around 1000. Radiometric calibration was performed with the 
ISS-17-VA-V01 Integrating Sphere (GigaHertz Optic, Germany) at the JB 
Hyperspectral optical facility. A single measurement cycle lasts between 
20 and 40 s and includes the following sequence: signal optimization for 
both channels (aiming at 80% coverage of the dynamic range), upward 
measurement, downward measurement, upward measurement, dark 
current measurements for both the upward and downward channels. 
The dark current correction is implemented in the FloX processing tool 
(Julitta, 2017; Julitta et al., 2017). Canopy SIF retrievals were per
formed using the QEPro spectrometer mounted on a 2-m-high tower and 
positioned in NADIR over the corresponding mesocosm. The field of 
view (FOV) of the downward looking optic is 23◦, while the upward 
looking optic uses a cosine corrector (CC-3, Ocean Optics, USA) with a 
hemispherical view (180◦). To minimise stray light effects on the canopy 
measurements, a 2 × 2 m black surface was placed under the canopy 
spectrometer. 

Leaf measurements of SIF were conducted using the FLAME spec
trometer with the FluoWat leaf clip (for a detailed description c.f. Van 
Wittenberghe et al., 2019). This allowed a near simultaneous measure
ment of the leaf and canopy signal within 10 to 30 s. The FluoWat has 
been designed to enable the observation of leaves from both upward and 
downward positions, with the light source falling on the leaf at a 45-de
gree angle. Reflectance (R) and transmittance (T) factors were measured 
using upward and downward fibre-optic insertions of the FLAME. Two 
short-pass filters that block light at wavelengths >650 nm and > 675 nm 
can be moved in front of the incident light to block incoming and 
consequently reflected light at the respective wavelengths. This provides 
upward and downward emitted SIF between 650 (675) to 800 nm (Van 
Wittenberghe et al., 2019; Van Wittenberghe et al., 2015; Van Witten
berghe et al., 2013). Due to the fact that FluoWat measurements require 
direct sunlight, the measurements were carried out exclusively during 
clear sky conditions and two to three hours around solar noon. Between 
June 28 and July 24, 2019 (Fig. 1), the ten mesocosms were measured 
around three times resulting in 32 measurements, with four leaf and 16 
canopy measurements conducted for each mesocosm. The measurement 
cycle for a single mesocosm was carried out as follows:  

I. The mesocosm was moved from its sheltered location to a 2 × 2 m 
black surface positioned beneath the spectrometer (c.f. Fig. A.1).  

II. A white reference measurement was taken for the FluoWat and 
the FLAME spectrometer. 

III. The FluoWat was then placed on a leaf and a FLAME measure
ment was taken without the low pass filter while the QEPro 
measured the potato canopy simultaneously.  

IV. Measurements were then taken sequentially with the 650 nm 
filter and the 675 nm filter while the QEPro measured the potato 
canopy.  

V. The mesocosm was then rotated by 90◦ and steps 2 to 5 were 
repeated three times until the mesocosm returned to its original 
position. 

As a result of this measurement cycle, approximately 130 leaf-level 
and 520 canopy-level measurements were obtained for the entire 
campaign. 

2.2. Separation into stress groups 

We categorised the irrigated and control treatments into three stress 
groups (G1, G2, G3) based on the relative extractable water (REW) and 
vapour pressure (VPD; kPa), recognizing that plant drought stress is not 
solely determined by soil water availability (Bartlett et al., 2012). Fig. 1b 
shows the amount of measured mesocosm per stress group and 
campaign day. VPD was calculated as: 
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VPD = es •

(
100 − rh

100

)

(3) 

Where rh is the measured relative humidity (%) and es the saturation 
vapour pressure (hPa) and calculated by the Clausius-Clapeyron 
relation: 

es = es(T0) • exp
(

L
Rv

(
1
T0

−
1
T

))

(4) 

Where es(T0) (6.11 hPa) is the saturation vapour pressure at the 
reference Temperature T0 (273.15 K), L is the latent heat of evaporation 
for water (2.5 × 106 J kg− 1), Rv is the gas constant for water vapour 
(461 J K− 1 kg− 1) and T the measured air temperature (K). López et al. 
(2021) conducted a meta-analysis involving 112 plant species to 
investigate the impact of increased VPD on plant physiology. The study 
revealed that when VPD values exceed 1.4 to 1.6 kPa, there was a decline 
in photosynthetic rates due to stomatal closure. 

The relative extractable water (REW) represents the amount of water 
available for the plant and is calculated as: 

REW =
(vwc − wp)
(fc − wp)

(5) 

Where vwc is the measured volumetric water content at a depth of 30 
cm (%), wp is the wilting point and fc the field capacity. The wilting 
point is the volumetric water content at which plants cannot extract 
water from the soil, and as a result, they start to wilt and eventually die. 
The field capacity describes the maximum amount of water that the soil 
can hold against the force of gravity. We obtained both wp and fc from 
soil water retention curves, which were constructed based on pF values 
derived from laboratory analysis of soil samples. Many studies suggest 
that if the REW falls below 0.4, it indicates the occurrence of water 
supply stress (Sadras and Milroy, 1996; Vilhar, 2016). 

To account for possible mixed environmental effects (e.g., low VPD 
and low REW or high VPD and high REW) we ordered the treatments into 
stress groups. Group one (G1) comprises measurements influenced by 
concurrent moderate REW (≥0.4) and low VPD (≤1.4 hPa), as well as 
concurrent high REW (≥0.6) and high VPD (≤2.5 hPa). Group three (G3) 
includes measurements affected by simultaneous high VPD (≥1.4 hPa) 

and low REW (≤0.15), as well as very high VPD (≤3.0 hPa) and high 
REW (≥0.75). Group two (G2) encompasses measurements not cat
egorised in G1 and G3, characterised by low REW and low to medium 
VPD (Fig. 2). 

2.3. Sun-induced fluorescence and reflectance indices 

As described in chapter 2.1 leaf and canopy radiances were measured 
with the FloX system. Adaxial and abaxial leaf SIF were derived from a 
combination of the FLAME spectrometer and the FluoWat low pass fil
ters. To obtain the full spectra of SIF, two low pass filters were used to 
cut the incoming light at 650 nm and 675 nm, respectively. It is 
important to note that the FluoWat filter cuts a portion of the photo
synthetic active radiation (PAR; 400–700 nm), which is used by plants 
for photosynthesis. Therefore, the derived SIF values may be lower than 
SIF under natural light conditions. The measurements were taken under 
clear sky conditions, two to three hours around solar noon, to ensure a 
relatively consistent light regime. Canopy SIF was retrieved from the 
O2–B and O2-A absorption bands at 687 and 760 nm, respectively, using 
the spectral fitting method (SFM) developed by Meroni et al. (2010) and 
the singular vector decomposition (SVD) developed by Guanter et al. 
(2013), which are both implemented in the FloX data processing GUI 
v30.3 (Julitta, 2017; Julitta et al., 2017). Here, we used the standard 
settings of the processing GUI. It was shown that SFM retrievals can be 
influenced by atmospheric distortion while Fraunhofer-based retrievals 
(like SVD) resist atmospheric impacts but are noisier (Chang et al., 
2020). Even though we only conducted measurements under clear sky 
conditions and at a close distance from the canopy, we compared the 
SFM with the SVD method to test for possible atmospheric influences. 
We found a strong agreement between these two retrieval methods for 
the red fluorescence (Fig. A.2), albeit with a less robust agreement in the 
far-red region. Given the higher uncertainty associated with the SVD 
retrieval (c.f. horizontal error bars in Fig. A.2), we decided to proceed 
with the SFM-retrieved fluorescence values. Finally, we converted the 
fluorescence radiance values (mW m− 2sr− 1nm− 1) to irradiance (mW 
m− 2 nm− 1) by multiplying by π. 

To account for variations in light conditions and interpret changes in 
the SIF signal caused by heat or drought, SIF has to be normalized by 

Fig. 1. Time series of environmental conditions over the seven campaign days indicated by the black vertical lines. The volumetric water content (vwc) and relative 
extractable water (REW) for the control and drought treatments are depicted by blue and red lines, respectively. The dashed line represents the vapour pressure 
deficit (VPD) at the study site. The amount of measured mesocosm at each campaign day are given by the coloured numbers (blue: stress group 1, yellow: stress group 
2, red: stress group 3). Numbers close to the blue line indicate the stress group for control group, numbers close to the red line indicate the stress group for drought 
group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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APAR (Dechant et al., 2020; Miao et al., 2018; Wieneke et al., 2018; 
Yang et al., 2018). APAR normalized SIF at a specific wavelength (λ) is 
often referred to as fluorescence yield or apparent fluorescence yield 
(FYλ) and is calculated as: 

FYλ =
SIF(λ)

APARchl
(6) 

Furthermore, it is necessary to account for the fraction of APAR 
absorbed by chlorophyll and therefore, related to SIF. Hence, we 
calculated APARchl as: 

APARchl = PAR • fAPARgreen (7) 

Where PAR was measured by the BF5 pyranometer (Delta-T Devices, 
Cambridge, UK), the fraction of PAR absorbed by green leaves 
(fAPARgreen) was derived from the red edge NDVI (NDVIRE) (Miao et al., 
2018; Xu et al., 2021) as: 

fAPARgreen = 1.37 • NDVIRE − 0.17 (8) 

The NDVIRE (Viña and Gitelson, 2005) was calculated as: 

NDVIRE =
R750 − R705

R750 + R705
(9) 

Where R750 and R705 are the canopy reflectance at 750 and 705 nm 
respectively. As SIF is strongly impacted by variations in the 
morphology of leaves and canopies, as well as changes in chlorophyll 
concentration. The normalisation by APARchl (c.f. Eq. (6)) does not 
entirely account for these effects (Porcar-Castell et al., 2021; Wang et al., 
2023b; Xu et al., 2021), so that the so called escape probability (fesc,λ) 
needs to be accounted for to derive fluorescence emission at the 
photosystem level (Fλ,PS). The escape probability describes how struc
tural and pigment effects influence the amount of photons which are 
actually detected by the sensor (Guanter et al., 2014). Fλ,PS is therefore 
calculated as: 

Fλ,PS =
Fλ

fesc,λ
(10) 

And consequently, the quantum use efficiency of fluorescence at the 
photosystem can be calculated as: 

ΦF,λ =
Fλ

PAR • fAPARgreen • fesc,λ
(11) 

Changes in the chlorophyll concentration were approximated by the 
MERIS Terrestrial chlorophyll index (MTCI; Dash and Curran (2004)): 

MTCI =
(

R753.75 − R708.75

R708.75 − R681.25

)

(12) 

Where R753.75, R708.75 and R681.25 correspond to the reflectance at 
753.75, 708.75 and 681.25 nm respectively. 

2.4. Estimation of fesc,760 from reflectance data 

Previous studies showed that the Fluorescence Correction Vegetation 
Index (FCVI) by Yang et al. (2020) and the Near-Infrared Reflectance of 
vegetation (NIRv) (Zeng et al., 2019) can be used to estimate fesc of F760. 
As our measurement setup did not provide the full visible irradiance 
spectra required by the FCVI, we applied only the correction method 
proposed by Zeng et al. (2019). The NIRv was calculated as: 

NIRv =
RNIR − Rred

RNIR + Rred
• RNIR (13) 

Where RNIR and Rred is the reflectance in the NIR and red bands 
respectively. The escape probability of far-red fluorescence can then be 
approximated as: 

fesc,760 ≈
NIRv

fAPARgreen
(14) 

Analog to Eq.(10) F760,PS was calculated as: 

F760,PS =
F760

fesc,760
(15) 

By rearranging Eq. (11) and (14) ΦF,760 can be calculated as: 

ΦF,760 =
F760

PAR • NIRv
(16) 

It is important to note that NIRv-based fesc,760 can only be used to 
minimise scattering effects on far-red fluorescence since it assumes leaf 
albedo approximates to 1 (Zeng et al., 2019) and is therefore not suitable 
to estimate the escape probability of red fluorescence. 

2.5. Estimation of fesc,687 by SCOPE 

The SCOPE model simulates radiative transfer processes and is 

Fig. 2. Box plot distribution of vapour pressure deficit (a) and relative extractable water (b) after grouping. Group one (G1, blue boxes) comprises measurements 
affected by high REW values (≥0.4) and low VPD values (≤1.4 hPa). Group three (G3, red boxes) includes measurements influenced by high VPD values (≥1.6 hPa) 
and low REW values (≤0.2). Group two (G2, yellow boxes) encompasses all measurements not classified in G1 or G3 and is characterised by low REW and low to 
medium VPD values. The significant difference between each group are shown by the asterisk (ns = P > 0.05, *** = P ≤ 0.001) above the box plots and were 
calculated by applying the Kruskal-Wallis significance test. The vertical line within the box plots represents the medians, the lower whiskers represent the first 
quartile, the upper whisker the third quartile, the black dots represent the outliers. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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therefore commonly used to aid in the development of a reflectance- 
based empirical model to correct for fluorescence reabsorption. Our 
objective was to use SCOPE to estimate plausible foliar and structural 
parameters (c.f. Table 1) and reproduce fluorescence emission at both 
leaf and canopy scales by adjusting the quantum efficiency of each 
photosystem (fqe,PSI and fqe,PSII) (Fig. 3). First, we employed the leaf RTM 
(Vilfan et al., 2018) and Bidirectional Reflectance Distribution Function 
(Bousquet et al., 2005) models to restrict the foliar radiative transfer 
parameters (such as N, Cab, Cca, Cant, Cs, Cw, Cdm) using leaf trans
mittance and reflectance factors measured with the FluoWat. Subse
quently, we inverted Fluspect, the leaf radiative transfer model in 
SCOPE, against abaxial and adaxial fluorescence radiances to get a first 
estimate of fqe,PSI and fqe,PSII. Note that we consider the optimized fqe as 
“effective” terms since they account for the physiological scaling of 
fluorescence. This is a common practice when incomplete information 
prevents the simulation of energy balance and photosynthesis processes 
with SCOPE (e.g., Celesti et al., 2018). 

Afterwards, we computed the average foliar parameters for each pot, 
using four leaves per mesocosm. The reflectance factors obtained from 
FloX were then used to constrain Leaf Area Index (LAI) and Leaf Incli
nation Distribution Function (LIDFa) using the coupled Fluspect-RTMo 
models of SCOPE (LIDFb was set to 0). Subsequently, we constrained 
fqe assuming that only the rate of PSII would vary across the canopy, 
while a single effective fqe,PSI would suffice to represent both leaf and 
canopy fluorescence emission, as suggested by Porcar-Castell et al. 
(2021). To develop an empirical re-absorption approach, we created 
look-up tables comprising leaf-level simulations (FluoWat) and canopy- 
level simulations (FloX). These tables were generated by replicating the 
meteorological and observational conditions specific to each observa
tion day. We used the vegetation parameters obtained through the 
inversion of SCOPE, while systematically varying Cab values from 1 to 
100 in increments of 2.5 μg cm− 2. This approach allowed to generate 
spectral indices, optical properties (such as transmittances), and fluo
rescence emissions at various spatial scales (including photosystem, leaf 
surface, and top of the canopy) along a Cab gradient. These simulations 
were crucial for the development and testing of our approach. It is worth 
noting that due to limited information available on meteorological 
conditions, soil properties, and vegetation parameters, we relied solely 

on radiative transfer models for this purpose. 
Fig. 3 summarizes the SCOPE model inversion. FluoWat and FloX 

spectral measurements were aggregated for each sample. We used the 
leaf bidirectional reflectance distribution function model developed by 
Bousquet et al. (2005) and corrected by Stuckens et al. (2009) to sub
tract the specular reflected component from the directional-conical 
reflectance factors (DCRF). We assumed that the specular component 
did not interact with the leaf and considered the transmittance factor as 
directional-hemispherical (DHTF). Subsequently, we used the Fluspect 
model (Vilfan et al., 2016, 2018) to invert the model against directional- 
hemispherical reflectance factors (DHRF) and DHTF in order to constrain 
the foliar radiative transfer parameters (N, Cab, Cca, Cant, Cs, Cw, Cdm) for 
each sample. In the next step, we constrained a first guess of leaf fqe,PSI 
and fqe,PSII by inverting the model against abaxial and adaxial fluores
cence radiances. Throughout these steps, we eliminated the incoming 
irradiance absorbed by the low pass filter of FluoWat from the mea
surements when applicable. 

Before transitioning to the canopy level, it was necessary to enhance 
the representation of illumination. While SCOPE calculates default 
down-welling direct and diffuse irradiances using integrated short and 
longwave radiation, we lacked those measurements. However, we had 
access to the incoming irradiance data obtained from FloX, solar zenith 
angle, and direct irradiance at 45◦ measured with FluoWat. To estimate 
the direct and diffuse components of incoming irradiance, we assumed 
that atmospheric conditions remained relatively constant between leaf 
and canopy measurements. Additionally, we presumed that the FluoWat 
measured only direct irradiance. Based on this assumption, we estimated 
the direct irradiance by correcting the FluoWat irradiance (measured at 
45◦ relative to the white reference) using the ratio of illumination angle 
cosines: Ecanopy,θsun = EFluoWat,45 • cos(θsun)/cos(45). We then subtracted 

Table 1 
Estimated leaf and canopy parameters by SCOPE. fqe,PSI and fqe,PSII,leaf and 
fqe,PSII,canopy were estimated as “effective” model parameters.  

Parameter Retrieved mean 
and range 

Symbol Units 

Leaf chlorophyll content 23.57 ∈ [16.61, 
28.44] 

Cab μg 
cm− 2 

Leaf carotenoids content 4.56 ∈ [3.8611, 
5.1623] 

Cca μg 
cm− 2 

Leaf anthocyanins content 1.6981 ∈ [0.794, 
2.694] 

Cant μg 
cm− 2 

Leaf senescent pigments content 0.0174 ∈
[0.0000, 0.1887] 

Cs a.u. 

Leaf water content 0.0120 ∈
[0.0040, 0.0760] 

Cw g cm− 2 

Leaf dry matter content 0.0019 ∈
[0.0019, 0.0019] 

Cdm g cm− 2 

Leaf structural parameter 1.567 ∈ [1.459, 
1.68] 

N layers 

Leaf area index 2.334 ∈ [1.809, 
3.179] 

LAI m2 

m− 2 

Leaf inclination distribution function − 0.042 ∈
[− 0.637, 1.000] 

LIDFa – 

Photosynthetic quantum efficiency of 
photosystem I 

0.0137 ∈
[0.0078, 0.0183] 

fqe,PSI – 

Photosynthetic quantum efficiency of 
photosystem II at leaf level 

0.0067 ∈
[0.0058, 0.0099] 

fqe,PSII,leaf – 

Photosynthetic quantum efficiency of 
photosystem II at canopy level 

0.0137 ∈
[0.0078, 0.0183] 

fqe,PSII, 

canopy 

– 

Solar zenith angle  θsun Deg  

Fig. 3. Flowchart of the SCOPE data assimilation scheme. The Fluspect model 
and the FluoWat measurements were used to constrain foliar biophysical pa
rameters accounting for leaf bi-directional reflectance function and the instru
ment illumination conditions. Then leaf fluorescence quantum efficiency was 
constrained for each photosystem against fluorescence radiances. Similarly, 
SCOPE model was used to constrain structural parameters and then fluores
cence quantum efficiency of photosystem I and a canopy and leaf level quantum 
efficiencies of photosystem II were constrained against FloX and FluoWat 
fluorescence radiances, simultaneously. These parameters and the measure
ment conditions were used to simulate spectral variables at leaf and canopy 
level. Large solid-line boxes represent observed or simulated datasets. Small 
solid-line boxes and arrows represent observed variables that are passed along 
the processing. Dashed-line grey boxes represent the retrieval of leaf and can
opy variables via SCOPE model inversion, and the dashed arrows represent 
these variables being passed to further steps of the process. 
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the estimated direct irradiance from the total spectral irradiance to 
calculate the diffuse irradiance. The estimated foliar parameters were 
averaged per pot, considering four leaves per plant. We estimated the 
LAI and LIDFa by inverting the coupled Fluxpect-RTMo models of 
SCOPE against the FloX reflectance factors. However, due to variations 
in photosynthetic rates, particularly in terms of illumination, the fluo
rescence measured by FluoWat was not representative of the entire 
canopy or the signal observed at the top of the canopy. As a result, it was 
not possible to directly match the fluorescence radiances at the top of the 
canopy using the previously estimated fqe values. 

Based on the understanding that Photosystem I (PSI) is less suscep
tible to down-regulation, we assumed that a single effective fqe,PSI value 
could adequately represent both leaf-level and canopy-level fluores
cence emissions (Porcar-Castell et al., 2021). However, for Photosystem 
II (PSII), we distinguished between the estimates at the leaf level (fqe,PSII, 

leaf) and at the canopy level (fqe,PSII, canopy). This differentiation ac
knowledges the potential differences in PSII behaviour and response 
between individual leaves and the entire canopy. We employed the top 
of the canopy fluorescence radiance estimates in the O2-A and O2–B 
bands, as well as the abaxial and adaxial fluorescence radiances from 
FluoWat, to constrain fqe,PSI, fqe,PSII,leaf, and fqe,PSII,canopy. The leaf-level 
estimates of fqe,PSI and fqe,PSII served as the initial values for the model 
inversion. Using these fluorescence measurements allowed to refine the 
estimation of fqe,PSI, fqe,PSII,leaf, and fqe,PSII,canopy parameters. 

To develop an empirical re-absorption approach, we generated look- 
up tables consisting of leaf-level simulations using FluoWat and canopy- 
level simulations using FloX. We ensured that the meteorological and 
observational conditions for each pot were accurately replicated in these 
simulations. We used the vegetation parameters obtained through the 
inversion of SCOPE, with varying Cab values ranging from 1 to 100 with 
increments of 2.5 μg cm− 2. 

The FluoWat simulations provided fluorescence emission irradiances 
at the photosystem level, excluding internal re-absorption and scat
tering, as well as the averaged leaf forward and backward surface 
fluorescence irradiances, accounting for internal re-absorption and 
scattering. Based on these simulations, we calculated APARchl to deter
mine the corresponding fluorescence yields for the different fluores
cence radiances. Additionally, we computed spectral indices (e.g., MTCI, 
NIRv, or NDVI) and obtained leaf transmittance (T) and reflectance (R) 
factors. 

To explore the effects of different Cab values at canopy level, we 
followed a similar scheme for the FloX simulations. SCOPE provided 
fluorescence emission irradiances at the photosystem and leaf surface 
levels, both without and with internal re-absorption and scattering, as 
well as the top of the canopy fluorescence radiance in the observation 
direction. We calculated the total APARchl irradiances to determine the 
respective yields, along with MTCI, NIRv and NDVI. The canopy trans
mittance was computed as the ratio of the top of the canopy irradiance 
and the down-welling irradiance below the bottom layer of the canopy. 

2.6. Estimation of fesc,687 from reflectance data 

As red SIF is partly reabsorbed within the leaf and through the 
canopy, F687 emitted at the chloroplast is higher than F687 detected 
above the canopy (Lichtenthaler and Rinderle, 1988; Romero et al., 
2020; Van Wittenberghe et al., 2021). If chlorophyll concentration (Cab) 
decreases, fewer red photons are absorbed and reabsorbed by the leaf 
and canopy (Fig. A.3a). As a result, under lower Cab, the sensor is able to 
detect more photons, leading to an increase in fesc,687 (Fig. A.3b) and 
consequently F687 at leaf and canopy (Rossini et al., 2015; Van Witten
berghe et al., 2013). In this study, we evaluate reflectance-based models 
of fesc,687 (fesc,687,RS) in comparison to SCOPE-derived fesc,687 (fesc,687, 

SCOPE) at both leaf and canopy levels. We applied the models proposed by 
Gitelson et al. (1998) and Van Wittenberghe et al. (2021) at leaf level, 
including a modification of the latter described below. For canopy 
fesc,687,RS, we tested the model proposed by Liu et al. (2020) and two 

modified versions of it. To enable a comparison of these models across 
broader Cab values, we linearly adjusted the value range of the fesc,687,RS 
models based on the Cab gradient simulated by SCOPE (c.f. section 2.5). 
Thus, fesc,687,RS,adj was calculated as: 

fesc,687,RS,adj = fesc,687,RS • a+ b (17) 

Where the regression coefficients a and b were derived from the 
relationship of fesc,687,SCOPE and the respective model for fesc,687,RS along 
the simulated Cab gradient (c.f. Table A.1). The predictive power of the 
proposed models was assessed by the coefficient of determination (R2) 
between fesc,687,SCOPE and fesc,687,RS for the modelled Cab gradient and 
measured values. 

2.6.1. Leaf level 
At the leaf level, Gitelson et al. (1998) suggested a simple 

wavelength-dependent correction function to estimate fesc,687 at 687 nm 
as: 

fesc,687,git ≈ R687 +T687 (18) 

With the general assumption that the non-absorbed radiation at a 
given wavelength linearly correlates with the escape probability of 
fluorescence at the given wavelength (here 687 nm) (Fig. A.3a&b). While 
we find a strong to moderate squared Pearson correlation coefficient (r2) 
between the sum of R687 and T687 and the fesc,687 derived from SCOPE 
(fesc,687,SCOPE) at leaf and canopy level (r2 = 0.82 and 0.67, respectively), 
a non-linear relationship persists as shown in Fig. A.3c. We adjusted for 
this non-linearity by taking the square root of fesc,687,git, as: 

fesc,687,git,mod =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fesc,687,git

√

(19) 

Which resulted in an improved r2 value of 0.94 for leaf and 0.83 for 
canopy (Fig. A.3d). Van Wittenberghe et al. (2021) proposed an 
improved approach of Gitelson et al. (1998), by normalising leaf 
measured F687 by adaxial and abaxial leaf reflectance and transmission 
respectively: 

F687,PS ≈
Fup,687

R687
+

Fdw,687

T687
(20) 

Where F687,PS is the F687 emission at the photosystem, Fup,687 and 
Fdw,687 represent the F687 emission in the adaxial and abaxial directions, 
respectively. The corresponding escape probability can be approximated 
by reformulating Eq. (10) to: 

fesc,687,wit ≈
Fup687 + Fdw,687

F687,PS
(21) 

Given the improvement observed with fesc,687,wit over fesc,687,git (R2 

= 0.84 and R2 = 0.76, respectively; Fig. 7a), we proceed with the model 
proposed by Van Wittenberghe et al. (2021). The correlation between 
fesc,687,wit and fesc,687,SCOPE was further improved (Fig. 7a, black cross, 
R2 = 0.96) by calculating the square root as done for the Gitelson et al. 
model: 

fesc,687,wit,mod =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fesc,687,wit

√

(22) 

Building upon the adjustments of fesc,687,wit,mod we calculated leaf 
F687,PS analogue to Eq. (12) as: 

F687,PS =
F687

fesc,687,wit,mod
(23) 

Following Eq. (11), leaf ΦF,687 was calculated as: 

ΦF,687 =
F687

PAR • fAPARgreen • fesc,687,wit,mod
(24)  

2.6.2. Canopy level 
Even though results showed that fesc,687,git,mod strongly correlates 
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with fesc,687,SCOPE (Fig. A.3d) it should be noted that Tred cannot be easily 
measured at canopy level and is therefore rarely available. Furthermore, 
the measured bidirectional Rred is influenced by both leaf and soil 
reflectance. Consequently, the soil background contribution, in partic
ular under changing leaf inclination angles (LIA), needs to be taken into 
consideration. Fig. 4a demonstrates that the reflectance of the vegeta
tion (Rveg) generally decreases as LIA increases. The contribution of the 
soil reflectance (Rsoil) on the other hand, increases (Fig. 4b), leading to 
higher total reflectance (Rtotal), especially in the red wavelength region 
(620 to 700 nm; Fig. 4c). Liu et al. (2020) proposed an approximation of 
fesc,687 at canopy based on the ratio of the reflected red light by the 
vegetation (Rred,veg) and fAPARgreen: 

fesc,687,liu ∼
Rred,veg,NDVI

fAPARgreen
(25) 

Based on PROSAIL model simulations, they determined that the 
contribution from the soil can be effectively compensated for by 
considering the square of the NDVI: 

Rred,veg,NDVI ≈ Rred,total • NDVI2 (26) 

Subsequently, F687,PS,liu was calculated analogously to Eq. (23). After 
comparing leaf and canopy F687 and F687,PS,liu however, we found a 
worsening of the relationship (r2: 0.3 to 0.2) after applying the correc
tion method (c.f. Fig. A.4). We therefore tested how the relationship 
between Rred,veg and Rred,tot changes with increasing LIA and how well 
NDVI, the 2-band enhanced vegetation index (EVI2), NIRv and the kernel 
NDVI (kNDVI) perform in estimating Rred,veg (Fig. 5). We calculated the 
EVI2 based on Jiang et al. (2008) as: 

EVI2 = 2.4
RNIR − Rred

RNIR + Rred + 1
(27) 

The kNDVI (Camps-Valls et al., 2021), which is a nonlinear gener
alization of the NDVI that is shown to propagates lower uncertainty and 
addresses saturation issues (Wang et al., 2023a), was calculated as: 

kNDVI =
1 − k(RNIR,Rred)

1 + k(RNIR,Rred)
(28) 

The kernel function k(RNIR,Rred) measures the similarity between 
RNIR and Rred and was calculated as: 

k(RNIR,Rred) = exp

(

−
(RNIR − Rred)

2

(2σ2)

)

(29) 

We fixed the length scale parameter σ, as described by Pabon-Mor
eno et al. (2022), to the median of the average value between RNIR and 
Rred: 

σ = median(0.5(RNIR +Rred) ) (30) 

Fig. 5b&e show a non-linear relationship between NDVI2 and the 
ratio of Rred,veg to Rred,tot resulting in a non-monotonic relationship of 
Rred,veg,NDVI with SCOPE-derived Rred,veg. This relationship is only positive 
at low (<35◦) and very high (>80◦) LIA. While EVI22 improves upon 

NDVI2, it still exhibits a non-linear relationship with the ratio of Rred,veg 
to Rred,tot. Conversely, kNDVI2 and NIRv

2 demonstrate a stronger linear 
relationship with the ratio of Rred,veg to Rred,tot, than EVI22 and NDVI2, 
especially when LIA exceeds 45◦. The highest r2 values between Rred,veg,VI 
and Rred,veg,simulated as well as Rred,veg,retrieved were found for kNDVI (r2 =

0.99 and 0.80 respectively), closely followed by NIRv (r2 = 0.97 and 0.78 
respectively). After testing the influence of changing LIA we analysed 
the robustness of NDVI, EVI2, kNDVI and NIRv to a gradient in Cab 
(Fig. A.5). While NDVI, EVI2 and NIRv showed very high r2 values (0.94, 
0.99, 0.94 respectively), kNDVI exhibited an oversensitivity in the low 
and high value ranges of the Cab gradient, resulting in an r2 of 0.81. 
Given the weak performance of NDVI and EVI in estimating Rred,veg under 
changing LIA and the lower r2 in estimating Rred,veg with changing Cab we 
replacing NDVI in Eq. (26) with NIRv: 

Rred,veg,NIRv ≈ Rred,total • NIRv
2 (31) 

Analog to Eq. (25), NIRv based fesc,687 was estimated as: 

fesc,687,NIRv ∼ Rred,veg,NIRvfAPARgreen (32) 

To account for the abrupt decrease in fesc,687 observed under low Cab 
concentration (c.f. Fig. A.3b and Fig. A.5), we normalized by the square 
root of MTCI Dash and Curran (2004, 2007): 

Rred,veg,NIRv,MTCI ≈
Rred,total • NIRv

2
̅̅̅̅̅̅̅̅̅̅̅̅
MTCI

√ (33) 

Analog to Eq. (25), NIRv and MTCI based fesc,687 was estimated as: 

fesc,687,NIRv,MTCI ∼
Rred,veg,NIRv,MTCI

fAPARgreen
(34) 

Building upon the improvement of fesc,687,NIRv,MTCI shown in 
(Fig. 7b&c) we calculated canopy F687,PS analogue to Eq. (10) as: 

F687,PS =
F687

fesc,687,NIRv,MTCI
(35) 

Following Eq. (11), canopy ΦF,687 was calculated as: 

ΦF,687 =
F687

PAR • fAPARgreen • fesc,687,NIRv,MTCI
(36)  

2.7. Analysing the impact of mesocosm rotation on red and far-red FY 
and ΦF 

As described in section 2.1 we rotated the mesocosms by 90◦ after 
four canopy measurements in one position were completed. To analyse 
the sensitivity of FY687, F760, ΦF,687 and ΦF,760 to changing solar inci
dence angle (Kreith and Kreider, 1978; Yang et al., 2023), we compared 
the variability of the measurements within a rotation state and between 
rotation states. Given that the measurements were taken under stable 
clear sky conditions, and each mesocosm was sampled within approxi
mately 45 min, it is reasonable to assume that there were no substantial 
changes in the normalized responses (i.e., ΦF) to environmental condi
tions. To quantify the variability of FY687, F760, ΦF,687 and ΦF,760 we 

Fig. 4. SCOPE simulated canopy spectra under different leaf inclination angles.  
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calculated the coefficient of variation (CV) as the ratio of their standard 
deviation and their mean within a rotation state and between rotation 
states (from here on referred to as CVno-rotation and CVrotation). We 
calculated CVno-rotation from the four consecutive spectrometer mea
surements taken at a specific rotation angle and CVrotation from the 
averaged measurements obtained at each rotation angle. To quantify the 
impact of fesc on the CV, we calculated the difference between the CV in 
ΦF (11) and FY (6) for the respective wavelength at 687 and 760 nm. 

2.8. Statistics 

Data normality and homoscedasticity was tested by using Shapiro- 
Wilk and Levene tests, respectively. The best-fit parameters for the 
regression models were obtained using the technique of ordinary least- 
squares minimization. To compare the strength of the linear relationship 
between different variables we calculated the squared Pearson correla
tion coefficient (r2). The coefficient of determination (R2) was used to 
evaluate the predictive power of the empirical fesc models with the 
process-based estimates by SCOPE. The Kruskal-Wallis significance test 
was applied for pairwise comparison to determine if there is a significant 
difference between our stress groups. 

3. Results 

3.1. Environmental conditions and phenological development 

During the measurement campaign, which included seven days be
tween June 27 and July 24, temperatures initially fluctuated between 20 
and 25 ◦C. Notably, from July 21 to 25, there was a sharp temperature 
rise of over 40 ◦C (Fig. 1a), during which the highest VPD was also 
recorded (Fig. 1b). The relative extractable water (REW), derived at a 
depth of 30 cm, was maintained above 0.4 in the control group, while it 
remained most days below 0.4 in the drought treatments (Fig. 1b). It is 
worth noting that values above 0.4 in the drought treatments were only 
attained after watering (Fig. 1b red line). Both MTCI and fAPARgreen 
decreased during the measurement period, with the greatest decline 

observed at the canopy level (Fig. 6a&b). Consequently, there was a 
corresponding decrease in APARchl, which persisted until the final days 
of the measurement campaign, at which point APARchl slightly increased 
at the leaf level (Fig. 6c). It is worth noting that the canopy MTCI was 
higher for the drought treatments compared to the control group. It only 
dropped below the control group values during the severe drought to
wards the end of the campaign (Fig. 6a; 23–24 July). A similar trend was 
observed for fAPARgreen and APARchl (Fig. 6b&c). 

3.2. Comparison of the reabsorption correction models 

The leaf fesc models proposed by Gitelson et al. (1998) (fesc,687,git) and 
Van Wittenberghe et al. (2021) (fesc,687,wit) showed R2 of 0.76 and 0.84, 
respectively, across the modelled Cab gradient (c.f. Fig. 7a&c). The 
fesc,687,wit,mod is very closely aligned with the 1:1 line, with a R2 of 0.95 
and the lowest relative root mean square error (rRMSE) of 6.2% 
(Fig. 7a). Within the measured value range of fesc,687, both fesc,687,git and 
fesc,687,wit tend to be underestimated, leading to a negative R2 and a high 
rRMSE exceeding 45%. In contrast, the fesc,687,wit,mod exhibited robust 
performance with R2 of 0.94 and a low rRMSE of 5.1%. It is noteworthy 
that the squared Pearson coefficient (r2) was very high (0.97) for all 
models (Fig. 7c). 

Along the modelled Cab gradient, fesc,687,liu, fesc,687,NIRv and fesc,687, 

NIRv,MTCI have R2 values of 0.92, 0.90 and 0.99 and rRMSE of 7.1%, 7.4% 
and 1.7%, respectively (Fig. 7b & d). Within the measured value range, 
we observed a negative, non-significant R2 of − 1.24 between fesc,687,liu 
and fesc,687,SCOPE (Fig. 7d). In contrast, fesc,687,NIRv and fesc,687,NIRv,MTCI 
exhibited robust performance with R2 values of 0.67 and 0.70 and 
rRMSE of 16.3% and 15.7%, respectively. 

3.3. Comparison of leaf and canopy fluorescence 

In order to improve our understanding of leaf to canopy scaling and 
to test the efficiency of scattering and reabsorption correction, we 
compared uncorrected leaf and canopy F687 and F760 and with corrected 
F687,PS and F760,PS. For the correction of leaf F687, we used fesc,687,wit,mod, 

Fig. 5. Plot a,b,c show SCOPE simulated gradient in leaf inclination angle (LIA) and its impact on the red reflectance (Rred) and vegetation indices (VIs). Plot d, e, f 
show SCOPE retrieved Rred and VIs based on canopy measurements. a&d) Relationship between Rred from vegetation (Rred,veg; red dots) and Rred from vegetation and 
soil (Rred,tot; blue dots) with increasing LIA. b&e) Relationship between NDVI (normalized difference vegetation index, green inverted pyramid symbol), EVI2 
(enhanced vegetation index 2, red pyramid symbol), kNDVI (kernel NDVI, black dots), NIRv (near infrared of vegetation, blue squares) and the ratio of Rred,veg and 
Rred,tot. c&f) Relationship between Rred,veg derived from VIs (Rred,veg,VI) and Rred,veg derived from SCOPE (Rred,veg,simulated & Rred,veg,retrieved). The squared Pearson 
correlation coefficient (r2) is given with the significance level indicated by the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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while for correcting canopy F687, we used fesc,687,NIRv. It is important to 
note that the leaf and canopy values of fluorescence were retrieved using 
different methods and sensors, and thus are expected to be independent 
observations. The outlier, depicted by the red dot in Fig. 8a & c, exerted 
a strong influence on the overall r2. This outlier comprises four leaf and 
16 canopy measurements taken on July 24, a day characterised by 
exceptionally high VPD (>3.3 kPa). Although other mesocosm experi
enced similar high VPD levels, this particular mesocosm was impacted 
by low REW (<35%). It is worth noting that the outlier exhibited the 
highest values of leaf-level F687 and F687,PS, while canopy F687 and F687,PS 
were at their lowest. Importantly, this effect was not observed for F760 
and F760,PS. When the outlier is excluded from the analysis of red fluo
rescence, we observed that canopy and leaf F687 and F760 showed a 
moderate relationship, with an r2 value of 0.30 and 0.34, respectively 
(Fig. 8a&b). Upon correcting for reabsorption and scattering effects, we 
observed a strong improvement in the relationship between leaf and 
canopy F687,PS as well as between leaf and canopy F760,PS, with r2 of 0.50 
and 0.48, respectively (Fig. 8c&d). 

After demonstrating that the correction methods improved the 
relationship between canopy and leaf measurements, we evaluated the 
seasonal behaviour of ΦF,687 and ΦF,760. Fig. A.6 illustrates that both leaf 
ΦF,687 and ΦF,760 exhibit similar trends, displaying an increase until July 
23rd and 24th, coinciding with temperatures exceeding 32 ◦C (c.f. 
Fig. 1), after which values decline. However, an exception is observed in 
leaf ΦF,687 of the drought treatments, where a substantial increase 
occurred on 23rd and 24th July. Canopy ΦF,687 and ΦF,760 on the other 
hand, exhibit markedly different patterns. While ΦF,687 remained rela
tively stable for both drought and control treatments, ΦF,760 showed a 
consistent decrease until July 23rd and 24th after which values began to 
increase. 

Given that both the control and drought treatments are subject to 
rising temperatures, we assessed the behaviour of ΦF,687 and ΦF,760 
under increasing soil and atmospheric drought conditions (c.f. Fig. 2). 
Fig. 9a illustrates that leaf and canopy ΦF687 significantly decreases with 
increasing stress. Although the significant level is lower, we observed 
the same pattern of decrease in leaf ΦF,760 with increasing stress 
(Fig. 9b). Canopy ΦF,760 values, on the other hand, show the lowest 
values and highest variance within the low stress group (G1), while a 
non-significant decrease in ΦF,760 values was observed from G2 to G3. 
This observation contrasts with all other measurements, indicating a 
unique response in canopy ΦF,760 under low stress conditions. To assess 
the influence of the retrieval method on our findings, we reproduced 
Fig. 9 but using the SVD retrieval method (c.f. Fig. A.7). Our results 
indicate that the SVD method yielded a similar pattern as observed with 

the SFM retrieval method, albeit with a greater spread (c.f. Fig. A.2), 
resulting in less pronounced and statistically significant differences. 

3.4. Impact of the mesocosm rotation on FY687, FY760, ΦF,687 and ΦF,760 

As described in section 2.7, we rotated the mesocosm four times by 
90◦ to analyse the sensitivity of FY687, FY760, ΦF,687 and ΦF,760 to 
changes in solar incidence angle. We calculated the CV of the mea
surements within a rotation state and between rotation states (CVno- 

rotation and CVrotation, respectively). We observed that the CVno-rotation and 
CVrotation were lower for FY687 compared to FY760 especially for G1. 
While CVrotation increased in FY687 with stress level, CVno-rotation and 
CVrotation of FY760 were high for G1 and G3 (Fig. 10a&b). CVno-rotation and 
CVrotation for ΦF,687 and ΦF,760 showed very similar patterns to those 
observed in FY687 and FY760. However, CVrotation decreased for both 
ΦF,687 and ΦF,760 indicating a more consistent response across the 
mesocosms (Fig. 10c&d). Fig. 10e&f shows the change in CV resulting 
from the implementation of the respective correction methods. Negative 
values indicate an improvement, while positive values suggest a wors
ening. The correction methods had minimal impact on CVno-rotation but 
showed a reduction in CVrotation for both ΦF,687 and ΦF,760, with the most 
substantial improvement seen for G3. 

4. Discussion 

4.1. Correction of reabsorption and scattering effects at the leaf and 
canopy 

The reabsorption correction method proposed by Gitelson et al. 
(1998), Van Wittenberghe et al. (2021) and Liu et al. (2020) all utilise 
the proportional relationship of Rred and Tred with fesc,687,RS at leaf and 
canopy level. We compared these methods, and their modifications, 
with SCOPE simulations of fesc,687. Our findings indicate that all pro
posed models exhibited strong performance in estimating fesc,687,SCOPE 
for the simulated Cab gradient. However, when applied to measured 
values, our modifications to the Van Wittenberghe et al. (2021) and Liu 
et al. (2020) models substantially enhanced the prediction accuracy of 
fesc,687,SCOPE. At leaf level we show that the square root of fesc,687,wit can 
be used to adjust for the non-linear relationship between Rred and Tred 
with fesc,687,SCOPE. At canopy level, SCOPE simulations along a LIA 
gradient demonstrated that the estimation of Rred,veg is strongly influ
enced by the LIA leading to an increased contribution of Rred,soil at high 
leaf angles. Our results show that for the simulated LIA gradient, the 
approach proposed by Liu et al. (2020) to estimate Rred,veg based on 

Fig. 6. The box plots illustrate the distribution of the MERIS terrestrial chlorophyll index (MTCI) (a), the fraction of absorbed photosynthetic active radiation by the 
leaves (fAPARgreen) (b), and the absorbed photosynthetic active radiation by chlorophyll (APARchl) (c) throughout the measurement campaign. The blue boxes 
represent the spread within the five control mesocosms, the red boxes represent the spread within the five drought mesocosms. All mesocosms were placed under a 
transparent shelter to exclude natural wetting. The control mesocosm were regularly watered with tap water. Non-hatched boxes indicate leaf-level measurements, 
while hatched boxes indicate canopy-level measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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NDVI results in an overall negative relationship between Rred,veg,simulated 
and Rred,veg,VI. Given that the potato plants of our experiment exhibited a 
wide range in LIA, were grown in mesocosm filled with bright sandy soil, 
and lacked understory, it can be explained why the NDVI based 
approach showed low performance when compared to fesc,687,SCOPE (c.f. 
Fig. 7) and leaf F687,PS (c.f. Fig. 8). It should be noted that the NDVI- 
based estimation of Rred,veg showed robust results for the simulated Cab 
gradient with fixed LIA, indicating that NDVI may only be a suitable 
proxy for Rred,veg when LIA is low and stable. Based on the performance 
of simulated and retrieved LIA (c.f. Fig. 5) and Cab gradient (c.f. Fig. 7 & 
Fig. A.5), we therefore replaced the NDVI with NIRv. Results showed that 
this modification allowed for an improved prediction of Rred,veg. SCOPE 
simulations furthermore showed that under extremely low Cab values 
(<3.5 μg cm-2), fesc,687 decreases, as fluorescence emissions are severely 
limited by the low amount of chlorophyll. To address this effect, we 

further introduced MTCI which improves the prediction accuracy. We 
note, however, that our approach needs to be tested for other case- 
studies, specifically whether the linear scaling of fesc,687 changes dras
tically over different plant individuals, species or functional types. 

4.2. Comparability of leaf and canopy fluorescence 

When excluding the observed outlier, we found a moderate rela
tionship between leaf and canopy F687 and F760 (r2 of 0.3 and 0.34, 
respectively). After applying the models for fesc,687,wit,mod and fesc,687, 

NIRv,MTCI the correlation between leaf and canopy F687,PS and F760,PS 
improved considerably (r2 of 0.5 and 0.48, respectively). This demon
strates the effectiveness of the two modified correction methods in 
establishing a more robust association between leaf and canopy fluo
rescence estimates. The persistent deviation from the 1:1 line in the 

Fig. 7. Comparison between SCOPE-derived and reflectance-based estimates of the leaf (a & c) and canopy (b & d) escape probability of fluorescence at 687 nm 
(fesc,687) using both modelled and observed data. The grey lines represent the 1-to-1 relationship between the SCOPE-derived (fesc,687,SCOPE) and reflectance-based 
(fesc,687,RS) estimates of fesc,687. Lines represent best fitting linear models. Blue triangles represent estimates of the model proposed by Gitelson et al. (1998), red 
squares represent estimates of the model proposed by Van Wittenberghe et al. (2021) and black crosses represent the modified Van Wittenberghe et al. (2021) model 
(a & c). The green triangles in panel b & d represent estimates by the model proposed by Liu et al. (2020), the grey crosses represent estimates by the kNDVI adjusted 
model of Liu et al. (2020) and the black dots represent estimates by the kNDVI and MTCI adjusted model of Liu et al. (2020). The coefficient of variation (R2) and the 
squared Pearson correlation coefficient (r2) are given with the significance level indicated by the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤
0.001). The relative root mean square error (rRMSE) is given in percent. The outliers in panel a and b represent values affected by low Cab concentration (<3.5 μg cm- 
2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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corrected values of leaf and canopy F687,PS and F760,PS, could be attrib
uted to several factors. First, the leaf and canopy measurements are 
obtained using different sensors and measurement techniques, which 
can introduce variations in the data. The FluoWat low pass filter, for 
instance, cuts the light at 650 nm, resulting in APAR values that are up to 
20% lower (Van Wittenberghe et al., 2015). Furthermore, we cannot 
exclude potential artefacts by the approximation of APARchl by NDVIred. 
Additionally, the physiological and structural differences between in
dividual leaves and the canopy as a whole might also contribute to the 
differences in fluorescence measurements. Due to the non-linearity of 
the relationship between ΦF with ΦPQ and ΦNPQ (Magney et al., 2019; 
Martini et al., 2022; Wieneke et al., 2022), measurements conducted 
under low light conditions (<400 mmol m-2 s-1) or when the plant is 
affected by severe stress (photoinhibition), can be mis CVrotation preted. 
In this study, measurements were conducted between 800 and 1200 
mmol m− 2 s− 1 PAR and therefore no measurement under low sunlight 
conditions could have occurred at the leaf level. However, leaves within 
the canopy were partially shaded, which was not the case for measured 
leaves. As shaded leaves contributed to the overall canopy signal, the 
responses of F687 and F760 to stress may have been attenuated at the 

canopy level (Liu et al., 2019a). This suggests that some of the individual 
leaves might have been more affected by heat and drought stress than 
the simultaneously measured canopy. This could also explain the 
observed outlier in Fig. 8, where the lowest values of F687 and F687,PS 
were measured for the canopy and highest values at the leaf. The com
bination of high light intensity, low soil water availability, and high 
vapour pressure deficit conditions could have potentially induced an 
upregulation in ΦF for these leaf measurements under severe drought 
stress. In general, we did not observe any increase in canopy-level ΦF, 
suggesting that the canopy signal was not as strongly affected by heat 
and drought stress as the individual leaves might have been. Despite the 
application of correction methods, these inherent differences and sour
ces of variability can therefore limit the strength of the relationship 
between leaf and canopy fluorescence measurements. These results 
stress the complexity of obtaining foliar samples that are representative 
of the plant physiological status. 

Fig. 8. Relationship between leaf and canopy measured fluorescence at 687 nm (F687) and at 760 nm (F760), as well as fluorescence emitted at the photosystem at 
687 nm (F687,PS) and at 760 nm (F760,PS). Each point represents one mesocosm where 4 leaves and 16 canopy measurements were averaged. The horizontal and 
vertical lines for each point represent the standard error of the mean. The squared Pearson correlation coefficient (r2) is given with the significance level indicated by 
the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001). The r2 is given for the best fitting correlation with and without the outlier (red point). The 
outlier comprises measurements taken on July 24, a day characterised by exceptionally high vapour pressure deficit (>3.3 kPa) and low relative extractable water 
(<35%). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.3. Leaf and canopy ΦF,687 and ΦF,760 under increasing drought and 
heat stress 

As previously discussed, ΦF, ΦPQ, and ΦNPQ exhibit a nonlinear 
relationship that is primarily influenced by environmental stress (Mag
ney et al., 2019; Martini et al., 2022; Mohammed et al., 2019; van der 
Tol et al., 2014; Wieneke et al., 2022). When light availability is limited 
and becomes a constraint for photosynthesis, ΦF and ΦNPQ values tend to 
be relatively low, while ΦPQ is high (e.g., during the early morning 
hours). As light intensity increases, and moderate stress emerges (e.g., 
over the morning hours), ΦPQ decrease while ΦNPQ and ΦF increase. 
With increasing air temperature, decreasing water availability, or 
nutrient limitations, excessive light energy is dissipated primarily 
through non-photochemical quenching. As a result, ΦNPQ increases 
while both ΦF and ΦPQ decrease. In such situations, ΦF and ΦPQ exhibit a 
positive linear relationship, indicating that the reduction in ΦF is 
accompanied by a corresponding decrease in ΦPQ. Under intense light 
and severe environmental stress (photoinhibition) ΦF might increase 
while ΦPQ further decreases (Magney et al., 2019; Martini et al., 2022; 
Wieneke et al., 2022). This complex relationship reflects the dynamic 
balance between energy dissipation and utilisation in response to 
stressors. In our study, we found a consistent decrease in leaf and canopy 
ΦF,687, as well as leaf ΦF,760, with increasing drought and heat stress, as 
shown in Fig. 9. We assume that photoinhibition, a process associated 
with the impairment of photosynthetic efficiency under high light and 
stress conditions, might have been only observed in one specific meso
cosm measurement at the end of the campaign. This particular meso
cosm exhibited high temperatures of 38 ◦C and a low volumetric soil 
water content of under 5% (REW < 35%), leading to an increase of leaf 
ΦF,687 and ΦF,760, as indicated by the high-value outliers in Fig. 9. 

Interestingly, we observed a deviating pattern in canopy ΦF,760 
compared to leaf and canopy ΦF,687 and leaf ΦF,760 (leaf and canopy 
ΦF,687, as well as leaf ΦF,760). The canopy ΦF,760 values G1 showed a 
strong variance and appeared to be consistently lower than that of G2 
and G3. This discrepancy suggests that there might be additional factors 
at play, specifically affecting the interpretation of fluorescence effi
ciency in the far-red region at canopy level. In section 3.3, we examined 
whether the SVD retrieval method yields distinct patterns in leaf and 
canopy ΦF,687 and ΦF,760. However, we found that a very similar pattern 
persisted compared to the SFM retrieval method. We therefore exclude 
that the distinct pattern in canopy ΦF,760 is caused by a retrieval artefact 
in the SFM method. 

Other relevant factors might include variations in light penetration 
or solar incident angle which could result in a higher variability in 
canopy ΦF,760. Our mesocosm rotation experiment showed that the CV 
was more pronounced for the far-red efficiency values than for the red, 
particularly evident in G1 and G2. Even though the correction methods 
reduced CVrotation for red and far-red ΦF, the CV remained high for ΦF,760. 
The hypothesis of a generally higher variation in ΦF,760 as an explana
tion for the higher CV in ΦF,760 compared to ΦF,687 can be dismissed, 
since Fig. 9 illustrates that canopy values of ΦF,687 and ΦF,760 exhibit a 
very similar spread. Since CVrotation of ΦF,687 was less affected by 
changing solar incidence angle compared to that of ΦF,760, it suggests 
that canopy scattering effects and soil reflectance might not fully cor
rected by fesc, on which the estimation of ΦF,760 relies on. This finding is 
highly relevant, as ΦF,760 is commonly regarded as a more reliable 
fluorescence signal due to its lower retrieval uncertainty (e.g., Cendrero- 
Mateo et al. (2019). 

4.4. Implications of our findings for satellite-derived sun-induced 
fluorescence 

Our findings emphasise the importance of exercising caution when 
using ΦF,760 as the sole indicator of photosynthetic efficiency. Further 
investigation on whether the limitations discussed here are specific to 
certain measurement configurations or reflect broader insufficiencies in 
the current correction methods is needed. It is worth noting that 
satellite-derived SIF integrates signals over larger spatial scales, which 
may mitigate some of the issues observed at the leaf and canopy levels. 
Nevertheless, we recommend conducting careful testing to assess the 
validity and robustness of current correction methods, considering the 
potential implications for accurate estimation of photosynthetic effi
ciency using ΦF,760. Our study also revealed that reabsorption-corrected 
F687,PS holds great potential for tracking drought and heat stress, as it 
exhibits a stronger relationship with PSII and the downregulation of 
photosynthesis under stress compared to F760,PS (Xu et al., 2021). 
Additionally, F687,PS was found to be less influenced by changes in the 
solar incidence angle, further supporting its robustness as an indicator of 
plant stress. 

These findings highlight the advantages of F687,PS in monitoring and 
assessing plant responses to environmental stressors, particularly in the 
context of drought and heat stress. To validate and generalise the 
effectiveness of the here proposed correction method for red fluores
cence, it is important to test it across a wider range of plant species. 

Fig. 9. Box plots showing the distribution of the quantum yield of fluorescence at 687 nm (ΦF,687) and at 760 nm (ΦF,760) within each stress group. Group one (G1) 
comprises measurements influenced by concurrent moderate REW (≥0.4) and low VPD (≤1.4 hPa), as well as concurrent high REW (≥0.6) and high VPD (≤2.5 hPa). 
Group three (G3) includes measurements affected by simultaneous high VPD (≥1.4 hPa) and low REW (≤0.15), as well as very high VPD (≤3.0 hPa) and high REW 
(≥0.75). Group two (G2) encompasses measurements not categorised in G1 and G3. The significant difference between each group are shown by the asterisk (ns = P 
> 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001) above the box plots and were calculated by applying the Kruskal-Wallis significance test. The vertical line 
within the box plots represents the medians, the lower whiskers represent the first quartile, the upper whisker the third quartile, the black dots represent the outliers. 
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Different plant species and soil backgrounds may exhibit variations in 
their spectral properties, physiological responses, and structural char
acteristics, which can impact the accuracy and generality of reabsorp
tion and scattering correction methods. 

5. Conclusion 

This study aimed to explore the relationship between leaf and 
canopy-level fluorescence measurements under increasing heat and 
drought stress conditions and to determine their potential as reliable 
indicators of plant stress. To accomplish this goal, we evaluated existing 

correction methods for red and far-red fluorescence and proposed 
modifications to the red fluorescence methods to enhance the prediction 
of fesc,687 at both leaf and canopy levels. Our proposed model adjust
ments, along with the correction method for far-red fluorescence by 
Zeng et al. (2019), proved effective in enhancing the consistency be
tween leaf and canopy-level measurements. This finding highlights the 
importance of appropriate correction methods in establishing accurate 
relationships between leaf and canopy measurements. However, the 
interpretation of ΦF,760, despite the improvement provided by the 
correction, proved to be challenging probably due to structural effects 
that were not fully accounted for by the existing correction methods. 

Fig. 10. Box plots in panel a and b showing the distribution of the coefficient of variation for canopy derived fluorescence yield at 687 nm (CV FY687) and at 760 nm 
(CV FY760) within each stress group, respectively. Panel c and d showing the distribution of the coefficient of variation for canopy derived quantum yield of 
fluorescence at 687 nm (CV ΦF,687) and at 760 nm (CV ΦF,760) within each stress group, respectively. Panel e and f show the difference between CV ΦF,687 and CV 
FY687 as well as the difference between CV ΦF,760 and CV FY760, respectively. Negative values indicate a reduction and positive values an increase in the CV after 
applying the corresponding fesc factor Group one (G1) comprises measurements influenced by concurrent moderate REW (≥0.4) and low VPD (≤1.4 hPa), as well as 
concurrent high REW (≥0.6) and high VPD (≤2.5 hPa). Group three (G3) includes measurements affected by simultaneous high VPD (≥1.4 hPa) and low REW 
(≤0.15), as well as very high VPD (≤3.0 hPa) and high REW (≥0.75). Group two (G2) encompasses measurements not categorised in G1 and G3. The significant 
difference between each group are shown by the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01) above the box plots and were calculated by applying the 
Kruskal-Wallis significance test. The vertical line within the box plots represents the medians, the lower whiskers represent the first quartile, the upper whisker the 
third quartile, the black dots represent the outliers. 
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This discrepancy warrants further investigation to better understand and 
address the limitations in correcting ΦF,760 caused by structural effects. 
On the other hand, ΦF,687 demonstrated its potential as an indicator for 
assessing plant responses to drought and heat stress. 

In light of these findings, we recommend conducting further research 
to investigate the specific causes of possible discrepancies between leaf 
and canopy measurements of ΦF,760. Additionally, exploring the ability 
of ΦF,687 to detect plant stress and monitor photosynthetic down
regulation in a broader range of plant species and stress conditions 
would provide valuable insights for practical applications and enhance 
our understanding of plant responses to environmental stressors. 
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Appendix A

Fig. A.1. Pictures of the experimental setup. The study site was located at the Experimental site on the Drie Eiken Campus of the University of Antwerp in Belgium, 
situated at 51◦09′ N, 04◦24′ E. The experiment consists of ten mesocosms with five control and five drought treatments. The mesocosms were placed on movable 
plates to allow for unobstructed clear sky measurements outside of the shelter.  
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Fig. A.2. Correlation between SFM and SVD retrieved red and far-red fluorescence. Each point represents the mean of 4 canopy measurements. The horizontal and 
vertical lines for each point represent the standard error of the mean. The squared Pearson correlation coefficient (r2) is given with the significance level indicated by 
the asterisk (*** = P ≤ 0.001). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. A.3. a) relationship of leaf (green circles) and canopy (blue squares) reflectance at 687 nm (R687) and the chlorophyll a&b (Cab) concentration. b) relationship 
of leaf and canopy escape probability of sun-induced fluorescence at 687 nm estimated from the radiative transfer model SCOPE (fesc,687,SCOPE) and Cab concen
tration. c) relationship of estimated fesc,687 derived from Gitelson et al. (1998) (fesc,687,git) and fesc,687,SCOPE. d) relationship of estimated fesc,687 derived from modified 
version of Gitelson et al. (1998) (fesc,687,git,mod) and fesc,687,SCOPE. The squared Pearson correlation coefficient (r2) is given with the significance level indicated by the 
asterisk (*** = P ≤ 0.001).  

Table A.1 
Equations and model fitting parameters for the used fesc,687 models.  

Leaf models: a b 

fesc,687,git ≈ (R687 + T687) • a+ b 0.40 0.106 

fesc,687,wit ≈

⎛

⎜
⎜
⎝

Fup687 + Fdw,687
Fup,687

R687
+

Fdw,687

T687

⎞

⎟
⎟
⎠ • a+ b 

0.74 0.106 

(continued on next page) 

S. Wieneke et al.                                                                                                                                                                                                                                



Remote Sensing of Environment 311 (2024) 114294

17

Table A.1 (continued ) 

Leaf models: a b 

fesc,687,wit,mod ≈

⎛

⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Fup687 + Fdw,687
Fup,687

R687
+

Fdw,687

T687

√
√
√
√

⎞

⎟
⎟
⎠ • a+ b 

0.51 0.05 

Canopy models: a b 

fesc,687,Liu ∼

(
Rred,total • NDVI2

fAPARgreen

)

• a+ b 
0.778 0.0084 

fesc,687,NIRv ∼

(
Rred,total • NIRv

2

fAPARgreen

)

• a+ b 
2.565 0.0095 

fesc,687,kNDVI,NIRv ∼

(
Rred,total • NIRv

2

fAPARgreen •
̅̅̅̅̅̅̅̅̅̅̅̅
MTCI

√

)

• a+ b  
2.480 0.0173  

Fig. A.4. Relationship between leaf and canopy measured fluorescence at 687 nm (a; F687) and fluorescence emitted at the photosystem at 687 nm (b; F687,PS). F687,PS 
was calculated based on Liu et al. (2020). Each point represents one mesocosm where 4 leaves and 16 canopy measurements were averaged. The horizontal and 
vertical lines for each point represent the standard error of the mean. The squared Pearson correlation coefficient (r2) is given with the significance level indicated by 
the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001). The r2 is given for the best fitting correlation with and without the outlier (red point). The 
outlier comprises measurements taken on July 24, a day characterised by exceptionally high vapour pressure deficit (>3.3 kPa) and low relative extractable water 
(<35%). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. A.5. Relationship between Rred,veg derived from vegetation indices (Rred,veg,VI) and Rred,veg derived from SCOPE (Rred,veg,simulated) under a chlorophyll gradient. 
Inverted Pyramid symbols represent the NDVI (normalized difference vegetation index), pyramid symbols represent the EVI2 (enhanced vegetation index 2), circle 
symbols represent the kNDVI (kernel NDVI) and square symbols represent the NIRv (near infrared of vegetation) The squared Pearson correlation coefficient (r2) is 
given with the significance level indicated by the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001).  
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Fig. A.6. Box plots showing the distribution of red (a) and far-red (b) sun induced fluorescence emitted at the PS (F687,PS & F760,PS) and the quantum yield of 
fluorescence at 687 nm (c; ΦF,687) and at 760 nm (d; ΦF,760) throughout the measurement campaign. The blue boxes represent the spread within the five control 
mesocosms, the red boxes represent the spread within the five drought mesocosms. All mesocosm where placed under a transparent shelter to exclude natural 
wetting. The control mesocosm were regularly watered with tap water. Non-hatched boxes indicate leaf-level measurements, while hatched boxes indicate canopy- 
level measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)  
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Fig. A.7. Box plots showing the distribution of the quantum yield of fluorescence at 687 nm (ΦF,687) and at 760 nm (ΦF,760) within each stress group and derived 
from the singular value decomposition (SVD) retrieval method. Group one (G1) comprises measurements influenced by concurrent moderate REW (≥0.4) and low 
VPD (≤1.4 hPa), as well as concurrent high REW (≥0.6) and high VPD (≤2.5 hPa). Group three (G3) includes measurements affected by simultaneous high VPD 
(≥1.4 hPa) and low REW (≤0.15), as well as very high VPD (≤3.0 hPa) and high REW (≥0.75). Group two (G2) encompasses measurements not categorised in G1 and 
G3. The significant difference between each group are shown by the asterisk (ns = P > 0.05, * = P ≤ 0.05, ** = P ≤ 0.01, *** = P ≤ 0.001) above the box plots and 
were calculated by applying the Kruskal-Wallis significance test. The vertical line within the box plots represents the medians, the lower whiskers represent the first 
quartile, the upper whisker the third quartile, the black dots represent the outliers. 
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Rossini, M., Nedbal, L., Guanter, L., Ač, A., Alonso, L., Burkart, A., Cogliati, S., 
Colombo, R., Damm, A., Drusch, M., Hanus, J., Janoutova, R., Julitta, T., 
Kokkalis, P., Moreno, J., Novotny, J., Panigada, C., Pinto, F., Schickling, A., 
Schüttemeyer, D., Zemek, F., Rascher, U., 2015. Red and far red Sun-induced 

chlorophyll fluorescence as a measure of plant photosynthesis. Geophys. Res. Lett. 
42 https://doi.org/10.1002/2014GL062943, 2014GL062943.  

Sadras, V.O., Milroy, S.P., 1996. Soil-water thresholds for the responses of leaf expansion 
and gas exchange: a review. Field Crop Res. 47, 253–266. https://doi.org/10.1016/ 
0378-4290(96)00014-7. 

Stuckens, J., Verstraeten, W.W., Delalieux, S., Swennen, R., Coppin, P., 2009. 
A dorsiventral leaf radiative transfer model: development, validation and improved 
model inversion techniques. Remote Sens. Environ. 113, 2560–2573. https://doi. 
org/10.1016/j.rse.2009.07.014. 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T., 2018. 
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