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ABSTRACT: Oscillations in the chemical or physical properties of materials,
composed of an odd or even number of connected repeating methylene units,
are a well-known phenomenon in organic chemistry and materials science. So
far, such behavior has not been reported for the important class of materials,
perovskite semiconductors. This work reports a distinct odd−even oscillation
of the molecular structure and charge carrier transport properties of
phenylalkylammonium two-dimensional (2D) Sn-based perovskites in
which the alkyl chains in the phenylalkylammonium cations contain varying
odd and even carbon numbers. Density functional theory calculations and
grazing-incidence wide-angle X-ray scattering characterization reveal that perovskites with organic ligands containing an alkyl chain
with an odd number of carbon atoms display a disordered crystal lattice and tilted inorganic octahedra accompanied by reduced
mobilities. In contrast, perovskites with cations of an even number of carbon atoms in the alkyl chain form more ordered crystal
structures, resulting in improved charge carrier mobilities. Our findings disclose the importance of minor changes in the molecular
conformation of organic cations have an effect on morphology, photophysical properties, and charge carrier transport of 2D layered
perovskites, showcasing alkyl chain engineering of organic cations to control key properties, of layered perovskite semiconductors.

■ INTRODUCTION
Odd−even effects refer to an alternating variation of structure
and properties in biological and synthetic systems depending
on the odd or even number of structural molecular units. The
most prominent examples are alkane derivatives that pack
more efficiently when composed of an even number of carbons
than those with an odd carbon number due to stronger van der
Waals interactions.1,2 This phenomenon arises from different
orientations of the terminal methyl group, depending on the
parity of the number of carbon atoms. In alkanes, this effect
typically induces an alternating melting point with higher
temperatures observed for even-numbered molecules.3 The
odd−even effect extends beyond alkane derivatives and has
been observed for various alkyl-substituted molecules, such as
liquid crystals and recently reported organic semiconductors.
These materials exhibit oscillating thermal properties, crystal
structure, or photophysical behavior attributed to intermo-
lecular contacts at the termini of odd- or even-numbered side
chains.4−7 For example, the molecular packing, phase
transitions, and charge carrier transport of 2-monoalkylated-
benzothieno[3,2-b][1]benzothiophenes alternate with the
odd−even parity of the alkyl chain length due to variations
in the chain−chain interactions.8

While odd−even alkyl chain effects have been reported for a
wide variety of molecular systems, this phenomenon has not
yet been observed for the important class of perovskite

semiconductors. Two-dimensional (2D) layered perovskites
with self-assembled alternating organic−inorganic layered
structures are based on bulky organic spacer cations.9,10 With
the rapid progress in the field of 2D perovskite light-emitting
diodes and photovoltaics, it has been impressively demon-
strated that organic ligands with tailored chemical structures
provide an effective strategy to fine-tune their electronic
properties and thus optimize the optoelectronic devices.11,12

One important strategy in the structure modification of the 2D
layered perovskites is the incorporation of alkyl-substituted
cations. In recent years, several groups have reported the
influence of the cation alkyl chain length on device
performance. For instance, a higher external quantum
efficiency of light-emitting diodes was observed for quasi-2D
perovskites containing phenylalkylammonium-based cations
with longer alkyl chains that established strong hydrogen
bonding with the formamidinium cation.13 In another study, a
series of linear aliphatic alkylammonium cation spacers with
different chain lengths were investigated in quasi-2D perovskite
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solar cells, and the device efficiency was shown to increase with
increasing the length of cations.14

Despite this progress, it is worth noting that far fewer studies
have focused on the effect of alkyl chain length on charge
carrier transport properties of perovskite semiconductors. Li et
al. combined both sum frequency generation vibrational
spectroscopy and optical-pump terahertz-probe spectroscopy
to investigate the charge dynamics in a 2D layered Pb-based
perovskite with linear alkyl ligands. It was reported that the
charge mobility of 2D perovskites decreased with increasing
the length of spacer cations.15 While this study provided the
first qualitative report on the role of alkyl length on tuning
electrical effects, how precisely the chain length of the ligand
affects the underlying structural and electronic properties of
perovskites remains elusive. Field-effect transistors (FETs)
represent an ideal platform to investigate the long-range charge
carrier transport properties in perovskite semiconductors,
including the influence of interfaces and morphology, which
are critical for device integration.16−21 Moreover, while the
studies mentioned above have investigated the effect of chain
length on perovskite properties, none of them have system-
atically investigated odd−even effects in the alkyl chain.

In this work, we focus on the role of the alkyl chain length of
organic spacer cations in the crystal structure and charge
carrier transport of 2D layered perovskites. We introduce a
series of phenylalkylammonium-based organic spacer cations
with different alkyl side chains, namely, phenylmethylammo-
nium (PMA), phenethylammonium (PEA), phenylpropylam-
monium (PPA), and phenylbutanammonium (PBA), respec-
tively, in 2D layered Sn-based perovskite thin films.
Remarkably, the photophysical behavior, structure, and charge
transport properties of the corresponding 2D layered perov-
skites strictly depend on the odd−even parity of the alkyl-chain
length, as observed previously for various molecular systems.
The perovskites with PMA and PPA cations of odd carbon
numbers exhibit an extremely low charge mobility in FETs. On
the contrary, devices based on (PEA)2SnI4 and (PBA)2SnI4
with even carbon numbers of the ligands result in pronounced
gate modulation and field-effect mobilities of 0.33 and 0.17
cm2V−1s−1 at room temperature. This odd−even oscillation in
the conductivity is further confirmed by optical pump-terahertz
(THz) probe (OPTP) spectroscopy measurements. To
understand the origin of the effect in these layered perovskites,
the distortion of the crystal lattice is analyzed by combining
density functional theory (DFT) calculations as well as
experimental and simulated grazing-incidence wide-angle X-
ray scattering (GIWAXS) characterizations. We have found
that odd carbon numbered PMA- and PPA-based perovskites
form tilted octahedral units with larger effective mass values
and a disordered structure, resulting in inferior carrier
transport. The above results indicate that the previously
largely neglected alkyl chain length of spacer cations plays a
critical role in controlling charge carrier transport in 2D
layered perovskite FETs. Our findings provide a molecular-
level understanding of the role of organic cations in optimizing
2D perovskite FETs and, to the best of our knowledge, for the
first time, disclose the odd−even alkyl chain effect in
perovskites.

■ RESULTS AND DISCUSSION
The chemical structures of the four spacer cations, PMA, PEA,
PPA, and PBA are shown in Figure 1a. The average thickness
(n = 1) of the inorganic layers of the four investigated

perovskites was strictly controlled by the molar ratio of the
precursors, which was 2:1 between organic cation and SnI2 and
the layer number was confirmed by the below XRD results.
The optical absorption spectra of perovskite thin films
deposited from the different cations bear similar characteristics
with three main absorption peaks for a layered perovskite
structure.22 The third absorption peaks are at 593, 612, 581,
and 605 nm for PMA, PEA, PPA, and PBA incorporated
perovskites, respectively, are attributed to the intrinsic exciton
absorption of the layered perovskite lattice (Figure 1b).
Interestingly, the excitonic peaks for the perovskite films with
even carbon numbers are generally red-shifted compared to
their odd counterparts with one less carbon atom so that the
optical band gap of the 2D perovskites reveals a remarkable
odd−even oscillation depending on the ligand length. Previous
reports indicated that distorted crystal geometries increase the
band gap of perovskite semiconductors.23,24 Structural
parameters such as the octahedral tilt, Sn−I−Sn bond angles,
and penetration depth of the spacers were reported to affect
the energetic landscape. The crystal structures with the critical
structural parameters of these perovskites that widen the band
gap will be discussed later in more detail.

Photoluminescence (PL) measurements for the four Sn-
based perovskite films were also conducted, and the
corresponding spectra in Figure S1 exhibit emission peaks at
630, 638, 605, and 634 nm for PMA, PEA, PPA, and PBA,
respectively. A larger broadening of the photoluminescence
peak for the PPA-based perovskite is noticed. This could be
ascribed to the presence of defects in the distorted inorganic
sheets of face-sharing and corner-sharing SnI6-octahedra, as
also presented later.

Room-temperature X-ray diffraction (XRD) confirmed the
out-of-plane molecular organization of the four perovskites. In
Figure 1c, all the perovskite films reveal typical (00l) (l = 2, 4,
6, 8, 10, 12) diffraction peaks that are indicative of the
formation of an ideal n = 1 layered structure, in which the
organic layer and the inorganic framework alternately stack.25

The full-width at half-maximum (fwhm) values of the sharp
(002) diffraction peak are on an identical level for the
investigated perovskite films as shown in Figure S2, indicating
similar crystallinity. The (002) peak located at 6.14°, 5.42°,
5.28°, and 4.52° are related to the interlayer distances between
the inorganic layers as 14.4, 16.3, 16.7, and 19.6 Å for PMA-,
PEA-, PPA-, and PBA-based perovskite films, respectively.
Notably, the interlayer distances of the perovskites show a

Figure 1. (a) Chemical structures of the four cations PMA, PEA,
PPA, and PBA. (b) Ultraviolet−visible absorption spectra. (c) XRD
patterns and AFM height images of the corresponding: (d) PMA, (e)
PEA, (f) PPA, and (g) PBA perovskite thin films (scale bar: 10 μm).
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nonlinear increase with the incorporation of PPA and PBA
cations. This indicates that the longer alkyl chain lengths lead
to a higher molecular degree of freedom and, thus, to their
tilted orientation toward the inorganic [SnI6] fragment
compared to the shorter alkyl chains.26

The film morphology of perovskites, more specifically its
uniformity, coverage, and roughness, is another crucial
parameter that strongly influences charge transport. Atomic
force microscopy (AFM) was employed to evaluate the film
morphology, as shown in Figure 1d−g. Interestingly, both
PMA- and PPA-based films (cations with an odd number of
carbon atoms in the alkyl chain) exhibit a dense network of
nanorod-like structures with a diameter of around 1 μm,
indicating that the perovskite crystals tend to grow direction-
ally. However, at the same time, pinholes and cracks over the
entire film surface are observed. A relatively high root-mean-
square (RMS) roughness of 21.3 and 18.6 nm for the PMA-
(d) and PPA-based films (f), respectively, is determined. These
inferior morphologies of the PMA- and PPA-based films might
be detrimental to the device performance due to charge carrier
trapping at the grain boundaries. In contrast, a smooth film
morphology with full coverage of grains is obtained for the
cations with even numbers (PEA − Figure 1e and PBA −
Figure 1g), and the surface roughness is reduced to 8.9 and 6.4
nm, respectively. The line profiles derived from AFM images in
Figure S3 show the strongest variation in height for the
(PMA)2SnI4 film compared to other samples, indicative of a
large surface inhomogeneity. We hypothesize that the
morphological differences are related to variations in
crystallization behavior induced by the odd- and even-
numbered organic spacers.27

To investigate the in-plane charge carrier transport of the
four perovskites, FETs with a bottom-gate and top-contact
device configuration with channel length (L) and width (W) of
80 and 1000 μm, respectively, were fabricated (see more
details in Methods). Transfer curves were recorded at drain−
source voltages (VDS) of −60 V with gate−source voltage
(VGS) scans from +60 V to −60 V. The 2D tin halide
perovskite FET devices of the four perovskites show a p-type
performance, as is evident from the device operation in Figure
2a, with a clear odd−even effect on the electrical parameters.
At 295 K, the devices based on PMA and PPA (odd numbers
of carbon atoms in the alkyl chain) reveal poor field-effect
behavior. On the contrary, FETs based on PEA and PBA (even
carbon numbers) exhibit a pronounced performance. Specif-
ically, the (PEA)2SnI4 FET shows a threshold voltage (VTH) of
10 V, on/off current ratio (ION/OFF) ratio of ∼1 × 104, and
field-effect mobility μFET of 0.33 cm2V−1s−1, demonstrating
device parameters comparable to previously reported values
(Figure 2b).28,29 The device based on a (PPA)2SnI4 channel
layer also exhibits a notable electrical performance with a μFET
of 0.17 cm2V−1s−1, VTH of 15 V, and ION/OFF of 9 × 103.
Furthermore, the clear linearity at low VDS and current
saturation at high VDS in the output characteristics in Figure 2c
and d demonstrate a negligible charge injection barrier
between the perovskite channel and source-drain electrodes
for both devices.30,31 Additionally, the bias stress stability for
perovskite FETs based on (PEA)2SnI4 and (PBA)2SnI4 with
even-numbered organic cations was investigated. Figure S4a
shows the change in the source-drain current IDS under a
constant bias of VGS = VDS = −60 V for 500 s. A similar sharp
decline in the normalized source-drain current (IDS(t)/IDS(0))
is observed for both FETs. For example, the decay time to

reach 50% of the initial channel current is around 58 and 53 s,
for (PEA)2SnI4 and (PBA)2SnI4 FETs, respectively. The VTH
exhibits a shift around 8 V for both perovskites (Figure S4b).

The odd−even effect on the charge transport properties in
the out-of-plane direction is also evident in the current
density−voltage characteristics of the diode devices in Figure
2e. Similar to the results of FETs, for the devices based on PEA
and PBA spacer cations with even carbon numbered alkyl side
chains high current density and hysteresis-free current−voltage
curves are observed. Devices with odd-numbered PMA and
PPA lead to large dual-sweeping hysteresis and much lower
current density, indicative of reduced out-of-plane charge
transport.

To confirm that the odd−even alkyl effect on the device
performance originates from the intrinsic property of the
perovskite films, ultrafast terahertz spectroscopy with subpico-
second time resolution was performed in a contact-free fashion
to measure the microscopic photoconductivity (see Method
for more details).32,33 Different from the FET measurement,
THz pulses with ∼ps duration probe and report the charge
transport properties within domains of 10s of nm in
perovskites. Figure3a shows the photoconductivity dynamics
normalized to the absorbed photon densities, which is
proportional to the product of charge carrier generation
quantum yield ϕ and charge mobility μ, that is, an effective
charge mobility ϕμ, for all perovskite films.34,35 In spite of
similar dynamics for all four perovskites, perovskite films with
even-numbered (i.e., PEA and PBA) feature 1 order of
magnitude higher ϕμ values in comparison to the odd-
numbered samples as illustrated in Figure 3b. This confirms
the microscopic origin of the odd−even modulation of the
charge carrier transport, as observed in the FET measurements.

Figure 2. (a) Transfer curves of perovskite FETs based on the cations
PMA, PEA, PPA, and PBA at 295 K, respectively. (b) Corresponding
μFET values based on perovskite FETs fabricated from different
cations. Error bars indicate the standard deviation from eight devices.
Output curves of (c) (PEA)2SnI4 and (d) (PBA)2SnI4 FETs at 295 K.
(e) Current−voltage diode characteristics of the four perovskite films.
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To further corroborate the odd−even effect and gain more
insight into the microscopic parameters relevant for charge
transport, frequency-resolved photoconductivity spectra were
recorded at a pump−probe delay time of 4 ps and are shown in
Figure 3c for all samples. These spectra are adequately
described by combined Drude-Smith model (ΔσDS, accounting
for the free carrier response) and Lorentz model (Δσph,
accounting for the phonon mode at ∼1.6 THz clearly apparent
from the steady-state terahertz response)36:σ(ω) = ΔσDS +
Δσph (see Method). From the fitting, the scattering time τ and
parameter c are obtained as shown in Figure 3d-e. The
parameter c, ranging between 0 and −1, describes the
backscattering probability or the extent of confinement of
charge carriers due to, e.g., the presence of structural disorder
or grain boundaries. While the charge scattering time shows
little variation within experimental uncertainty (Figure 3d), the
oscillation of parameter c in Figure 3e underlines the
photoconductivity oscillation shown in Figure 3a,b. In
particular, the parameter c for cations with odd carbon
numbers is much closer to −1 indicating a stronger
confinement of charge transport in these samples. We assign
this to increased structural disorder, which will be further
corroborated in the following sections.

In exploring the structure−property relationship of these
layered 2D hybrid perovskites and elucidating the origin of the
odd−even alkyl chain effect on the charge carrier transport, a
thorough understanding of their crystal structures is crucial.
We used computational modeling to generate candidate
structures of these four perovskites. Subsequently, we
simulated GIWAXS patterns for the generated conformers
and compared them to experimentally observed GIWAXS
results to identify the most promising structures. In the main
text, we highlight the theoretical structures that exhibit the
closest resemblance to the experimental data for each system,
while a comprehensive overview of all explored structures is

available in the Supporting Information (Supplementary
Figures S5−S7).

The crystal structure of (PMA)2SnI4 has been previously
characterized by Mao et al.37 We adopted this structure as our
starting point for further optimization using DFT (Figure 4a).
The simulated GIWAXS pattern using this candidate structure
shows excellent agreement with the experimentally obtained
GIWAXS pattern, as depicted in Figures 4e and 4i,
respectively. In the case of (PEA)2SnI4, two different crystal
structures have been reported in the literature.23,38−40 We
explored both structures and simulated the corresponding
GIWAXS patterns. In our simulation, the GIWAXS pattern
obtained (Figure 4f) using the structure reported by Gao et al.
as the initial guess (Figure 4b) demonstrates better agreement
with the experimental GIWAXS result (Figure 4j).38,39

Therefore, we present this conformer in the main text, while
other structures are provided in the Supporting Information
Figures S5−S7.

For the systems involving longer organic spacers, PPA and
PBA, we drew inspiration from the study of Kamminga et al.
on Pb-based layered hybrid perovskites with analogous organic
cations.41 By substituting Pb with Sn and optimizing both
structures, we obtained the PPA structure featuring both
corner- and face-sharing [SnI6]-octahedra (Figure 4c), which
shows the best correspondence between the simulated and
experimental GIWAXS patterns (Figure 4g,k, respectively).
Consequently, we chose this structure for further electronic
structure analysis. However, a similar comparison between the
simulated and experimental GIWAXS patterns led us to discard
the analogous structure for the PBA cation. Instead, for PBA-
based perovskite, we propose a structure with regular corner-
sharing octahedra (Figure 4d), which exhibits better agreement
between the simulated and experimental GIWAXS data
(Figure 4h,l). In addition to comparing GIWAXS patterns,
we utilized the interinorganic layer distance (dint‑layer) as a
parameter for screening various DFT-computed structures.

Figure 3. (a) Photoconductivity dynamics under 3.10 eV excitations with an incident pump fluence of 56 μJ cm−2. (b) Comparison of the effective
mobility at a pump−probe delay time of 4 ps in panel (a). (c) Photoconductivity spectra recorded at a pump−probe delay time of 4 ps. (d, e)
Comparison of scattering time τ and parameter c for different cations extracted from fits in panel (c).
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The conformers presented in the main text show good
agreement between the computed (Figure 4a−d) and
experimentally measured (Figure 1c) dint‑layer values (in Å;
experimentally obtained values are in parentheses): 14.2
(14.4), 16.2 (16.3), 16.5 (16.7), and 19.5 (19.6) for PMA-,
PEA-, PPA-, and PBA-based perovskites, respectively. The
consistency of the calculated and experimental dint‑layer values
further justifies the selection of these conformers as the most
probable structures for the investigated systems.

DFT calculations were carried out to investigate the
influence of the alkyl chain length on the electronic properties
of these “well/barrier” composite 2D-perovskites. Figure 5a,b
depicts the densities of states (DOS) of the four materials
studied. The DOS contribution exclusively from the inorganic
constituents of the perovskite material, comprising Sn and I
atoms, is shown in Figure 5a. Our analysis reveals that mainly
the I 5p and Sn 5s orbitals contribute to the valence band
maximum (VBM), while the Sn 5p and I 5p orbitals make
substantial contributions to the conduction band minimum
(CBM).

To assess the contribution of the organic spacer alone, we
summed over the partial DOS contributions due to C, H, and
N atoms and plotted them in Figure 5b. Our findings show
that the organic layer does not have a “direct” impact on the

electronic properties of the materials, as its contribution is
located away from both the VBM and the CBM. Nevertheless,
it is crucial to emphasize that the organization and orientation
of the organic spacers significantly affect the structural order
within the inorganic sheets, eventually leading to the
octahedral tilting of the inorganic [SnI6] units. This, in turn,
has a direct influence on the electronic properties of the
material, which we elaborate on in subsequent sections. The
electronic band-structures of the four perovskites between high
symmetry points of the first Brillouin zone are presented in
Figure 5c-f, which reveal that the VBM and CBM occur at the
Γ-point in all cases. The calculated direct band gap values are
as follows: 1.19 eV (PMA), 1.26 eV (PEA), 1.82 eV (PPA),
and 1.15 eV (PBA). It is important to mention that these
computed band gap values are significantly underestimated
when compared to experimental measurements (1.97, 1.92,
2.04, and 1.93 eV, respectively). This is expected since the
nonempirical Perdew−Burke−Ernzerhof (PBE) generalized
gradient approximation functional was employed for the
calculations.42−44

Effective hole masses for these materials were determined by
fitting a third-order polynomial to the band edges. This
analysis revealed that perovskites featuring the even-numbered
alkyl chains placed between the phenyl and amine head groups

Figure 4. 2D perovskite structures explored in the study. (a,d) Models for the four 2D perovskites studied are presented. The chain length of the
organic spacer was varied by altering the number of aliphatic carbon atoms between the phenyl ring and the NH3

+ headgroup. The distance
between adjacent inorganic layers is also shown for each structure. (e,h) Simulation and (i,l) experimental GIWAXS patterns of the 2D perovskite
structures are presented.
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of the organic cation, such as PEA and PBA, exhibited lower
effective hole masses (mh*) compared to their odd-numbered
counterparts, PMA and PPA. The computed mh* values are as
follows: −0.176 (Γ⃗Y) for PEA, − 0.157 (Γ⃗Y) for PBA, − 0.193
(Γ⃗Y) for PMA, and −0.655 (Γ⃗X) for PPA-based perovskites (
mh* values are in the units of free electron rest mass, m0). The
larger effective hole mass of PPA indicates a lower predicted
mobility, possibly due to its structural disorder, as evidenced in
Figure 4c, showing both corner- and face-sharing octahedra in
the inorganic sheet, suggesting a 1D confinement effect. On
the other hand, 2D confinement is predicted for perovskites
with PEA and PBA spacers having even-numbered alkyl chains,
which makes them good candidates for device applications.
Besides the contribution of effective mass, the poor perform-
ance of perovskites with the odd number may be attributed to
structural disorder arising from octahedral tilting (vide infra).
It is generally believed that charge carriers in 2D layered
perovskites are confined within the octahedral inorganic layers
due to the dielectric effect.22 The presence of a tilted crystal
structure is expected to hinder charge transport, leading to
inferior performance of the electronics devices.

As noted previously, the presence of organic cations
significantly affects the structure of the inorganic layer. To
better understand the influence of organic cations on the level
of disorder within the inorganic sheets, we introduce the
parameter organic cation penetration depth (dP).

45 This
parameter measures the average distance between the plane
containing the N atoms of the organic cation and the plane
containing the axial I atoms of the inorganic sheet (Figure 6a).
A larger dP value implies a stronger steric interaction between
the organic cation and the inorganic framework, which leads to
greater distortion of the octahedral units.45,46 This distortion is
prominently reflected in the in-plane distortion of the
inorganic sheet, indicated by the distortion angle θ (Figure
6b). This angle, measured between the planes containing the
planar [SnI6] units from two neighboring octahedra, quantifies

the extent of structural distortion within each perovskite. A
larger distortion angle, θ, signifies a greater deviation of the
∠Sn−I−Sn bond angle from the ideal 180°, indicating more
pronounced distortion within the inorganic [SnI6]−octahedra
layers.45 As shown in Figure S8, we observed a slightly larger dP
value for PMA (0.77 Å) than that for PEA (0.58 Å). This
difference is expected to induce more distortion within the
inorganic sheets, as confirmed by a much larger distortion
angle in PMA (θ = 11.22°) compared to that in PEA (θ =
3.11°), as shown in Figure S9. These findings support the
notion that the inorganic sheet with the PMA cation
experiences greater distortion than its counterpart with PEA,
leading to inferior electronic properties such as reduced charge
carrier mobility. For the longer-chained cations PBA and PPA,
the electronic properties of PBA were found to be superior to
those of PPA, which can also be attributed to structural
changes induced by the organic cation. Despite the penetration
depth values being nearly identical (0.67 Å for PPA and 0.65 Å
for PBA, in Figure S8), the distortion angle θ in PPA was
considerably greater (7.92°) compared to that in PBA (2.59°).
This aligns with our earlier observations that the presence of
the PPA cation introduces more substantial distortion to the
inorganic layer and leads to the formation of both corner and
face-sharing octahedra, resulting in 1D confinement and hence
inferior electronic properties.

Figure 5. Electronic densities of states (DOS) and band-structures computed using DFT are presented. (a) DOS projected onto I(p), Sn(s), and
Sn(p) orbitals near the VBM, depicting the DOS contribution from the inorganic [SnI6] layer. (b) Net DOS contribution from the organic spacer,
combining orbital contributions from C, H, and N atoms. The corresponding electronic band-structure of (c) PMA-, (d) PEA-, (e) PPA-, and (f)
PBA-based perovskites computed using the PBE density functional. The VBM is set to zero in all panels. Effective masses of holes (mh

*) are
reported in the Γ⃗Y direction for all cases, except for PPA, where the value is reported in the Γ⃗X direction. The reported values are in the units of
free electron rest mass (m0= 9.11 × 10−31 kg).

Figure 6. Definition of (a) organic cation penetration depth (dP) and
(b) distortion angle (θ) of the adjacent octahedral units.
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Additionally, the ab-plane of the studied perovskite crystals
reveals an intriguing pattern (Figures S10−S12). The
orientation of the aryl rings in the organic spacers relative to
the inorganic layer appears to correlate with the carbon
number in the alkyl chain. In PEA and PBA, with even-
numbered alkyl chains, the aryl rings tend to align parallel to
the inorganic layer. In contrast, for PMA and PPA with odd-
numbered alkyl chains, the benzene rings consistently remain
perpendicular to the inorganic layer. While this preliminary
observation suggests a possible connection between the aryl π-
electron density and its proximity to the inorganic layer in PEA
and PBA, potentially influencing dielectric confinement, charge
delocalization, and transport, further investigation is crucial to
substantiate this hypothesis and elucidate the true nature of
this potential correlation. It should be noted that this odd−
even variation in the molecular configuration of the phenyl-
alkylammonium-based cations in the perovskite lattice has not
been observed for the linear alkyl cations. The odd−even effect
has not been experimentally and theoretically observed for the
linear alkyl cations in our previous study and by other
groups.31,47,48 Independent of the carbon number, all linear
alkyl cations adopt a linear packing configuration in the 2D
perovskite lattice in which the nitrogen atom in the anchoring
group is aligned along the same axis with the alkyl tail of the
spacer.

Combining the THz results and DFT calculation, we find
that the tilted perovskite structures with odd carbon numbers
of the phenylalkylammonium-based cations lead to large
effective hole mass values * and low local charge mobility.
Since the electrode distance in the diode devices with the Au/
perovskite/Au architecture is much smaller in comparison to
FETs and corresponds simply to the film thickness of 300 nm,
the impact of film morphology on the out-of-plane charge
transport is lower. Due to the distorted inorganic [SnI6]-
octahedra layers and the low local charge carrier mobility, the
diode performance of the odd-numbered PMA- and PPA-
based perovskites is significantly reduced in comparison to the
more ordered PEA- and PBA-based semiconductors. The
higher diode current of (PMA)2SnI4 in comparison to PPA-
based perovskite is attributed to the less tilted inorganic
[SnI6]-octahedra layers, as proven by the computational
modeling and calculated smaller * for (PMA)2SnI4. In
FETs, the distance between source and drain electrodes is
much larger, and the role of film morphology becomes more
important. Since (PMA)2SnI4 shows an inferior film
morphology with pinholes and randomly oriented grains of
small size, its FET performance and the in-plane charge carrier
transport are comparable to PPA-based perovskite. The
perovskites with even carbon numbers of the organic spacers
show a more regular planar and ordered inorganic [SnI6]-
octahedra layers and surface morphology, contributing to the
improved diode performance as well as local and field-effect
charge mobilities which are in agreement with the small *.

■ CONCLUSIONS
In summary, we have introduced a series of alkyl-substituted
phenylalkylammonium organic cations in Sn-based layered
perovskites. Through systematic variation of the alkyl side
chain, a distinct odd−even effect on the crystal structure and
charge carrier transport is observed regarding the number of
carbon atoms in the side chain. The structural characterization
and theoretical calculations reveal that the odd−even number

of carbons significantly affects the molecular packing arrange-
ments (and thus the macroscopic morphology), accompanied
by a distinct variation in effective mass values. Our findings
have disclosed the importance of minor changes in the
molecular conformation of organic cations on order, photo-
physical properties, and charge carrier transport of 2D layered
perovskites. These insights provide an understanding of the
general role of organic cations on the molecular level and
provide guidelines for optimizing the electronic properties of
perovskite semiconductors.
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