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Part 1 

Additional information on existing upscaled maps 

 

 

 

 

 

 

 

 

 

 



Table S1: Full list of predictor variables used in global trait upscaling. Note that only the predictors of the final 

models are shown here and in case of VC predictors that were selected at least twice among the different PFT 

categories and N and P upscaling are shown. Abbreviations for the trait products are BG: van Bodegom, BL: 

Butler, BM: Boonman, MD: Madani, MM: Moreno, SL: Schiller, VC: Vallicrosa. 

Predictor category Variables used Trait products  

climate 

mean annual temperature BL, BG, SL, VC 

Mean temperature of warmest quarter MM, MD 

Max. temperature of warmest month MD 

Min. temperature of coldest month BM, MD, VC 

Min. temperature  

Mean temperature of the wettest quarter VC 

Mean temperature of the driest quarter VC 

Number of frost day per year BG 

Temperature seasonality SL, VC 

Temperature annual range SL 

Mean diurnal temperature range VC 

Annual temperature range VC 

Mean diurnal/ mean annual temp. range (isothermality) MM, VC 

Annual net radiation BG 

annual total solar radiation  BL 

Daily mean solar radiation VC 

Mean annual precipitation MD, BG, SL, VC 

precipitation/evapotranspiration (aridity index) BL, BM, BG, VC 

precipitation seasonality BM, MM, SL 

precipitation in the driest quarter  BM, MM, VC 

precipitation in the driest month MM, VC 

precipitation in the wettest quarter MM 

Precipitation of the driest month VC 

Precipitation of the warmest quarter VC 

Precipitation of the coldest quarter VC 

Min. June-july-august precipitation VC 

Max. June-july-august precipitation VC 

Precipitation annual range SL 

Evapotranspiration seasonality VC 

Mean annual evapotranspiration  VC 

Evaporative demand BG 

soil 

pH (H2O) BL, BM, BG, VC 

pH (CaCl2) VC 

pH (KCl) VC 

clay content BL 

CEC (soil cation exchange capacity) BM, BG, VC 

Soil texture BG 

Total N BG 

C/N BG 

Net N mineralization rate BG 

Base saturation VC 

CaCo3 VC 

Exchangeable Al, Ca, H, K VC 

Total K VC 

atmosphere 
Dry, wet, total inorganic N deposition  VC 

dry oxidate N deposition  VC 

topography Elevation MM, VC 

satellite surface 

reflectance 

EVImax, EVIstd, NDWImax, median of MODIS 

reflectance bands 2, 5, 6 
MM 

In-situ image 

observations 
RGB images (iNaturalist) SL 

 

 



Table S2: Overview of products used for predicting global trait patterns. GSDE was developed by Shangguan 

et al. (2014). The abbreviations of trait upscaling products is as in Table S1. 

Predictor category Product name Trait products using it 

Climate 

CRU BL, BG 

WorldClim MM, VC, SL, MD 

CHELSA BM 

soil 

SoilGrids BM 

IGBP-DIS BG 

ISRIC-WISE BL 

GSDE VC 

Land cover 

MODIS MM, MD 

ESA-CCI VC 

CLM (Oleson et al. 
(2013), MODIS-
based) 

BL 

 

 

 

 

Table S3: Overview of sources of global upscaled foliar trait maps. 

Lead 

author 

 

access 

Bodegom Personal communication 

Butler https://github.com/abhirupdatta/global_maps_of_plant_traits 

Madani http://files.ntsg.umt.edu/data/Global_Key_Traits/ 

Moreno https://www.try-db.org/TryWeb/Data.php#59  

https://www.try-db.org/TryWeb/Data.php#60 

Boonman http://doi.org/10.6084/m9.figshare.11559852 

Vallicrosa https://doi.org/10.5281/zenodo.7825970 

Schiller https://doi.org/10.6084/m9.figshare.13312040.v1 

 
 

 

 

Figure S1: Location of reference grid cells. The data from all upscaling approaches were combined here for the 

sake of simple illustration.  
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Text S1: Overview of upscaling methods 

 

The seven products represent a broad range of motivations, from supporting land surface 

modeling (Butler, Madani and Moreno), or predicting future changes in foliar traits under 

climate change (Madani, Boonman and Vallicrosa), to characterizing functional biodiversity 

(Boonman, Schiller). The Bodegom map was developed to test the potential of estimating 

vegetation-type distribution from foliar trait maps. The purpose of the Schiller maps was to 

demonstrate the potential of using citizen science observations for global trait mapping. All 

seven studies had in common that they were ‘data-driven’, i.e., statistically upscaled from in-

situ observations, in contrast to more process-based approaches used in some global vegetation 

models (Goll et al., 2017; Thum et al., 2019; Zaehle and Friend, 2010). 

 

From leaf to grid cell 

This step transforms the in-situ leaf-level trait values to the canopy level and then the 

grid scale, with the resulting grid-level estimate intended to be a value representative 

of the entire grid cell that can be used for training the regression model in the 

spatialization step. The approaches differ both in the selection and pre-processing of in-

situ data, and in the way values were estimated for the grid cell. 

Selection of in-situ data sources. With one exception (Bodegom), all upscaling 

methods relied on in-situ, leaf-level trait data from one or several large trait databases, 

which were partly supplemented by literature sources and forest inventory data (Fig. 

1). No two methods used exactly the same in-situ dataset due to differences in the 

versions of the same trait database. 



Pre-processing of in-situ data. All upscaling approaches applied data filtering, e.g. 

exclusion of observations lacking reliable geo-location information. However, outlier 

filtering differed significantly among approaches, and some studies used elaborate data 

selection strategies (Boonman) and others applied gap-filling techniques (Moreno).  

Estimation of grid-cell-level trait values from in-situ observations. In general, the 

motivation for each product guided the approach used to appropriately represent trait 

values for vegetation canopies at the resolution of the grid cells. Approaches motivated 

by land surface modeling accounted for within grid trait variations by using plant 

functional type (PFT) information to split data into PFTs and/or calculate cover-

weighted averages (Butler, Madani, Moreno, Vallicrosa). The term ‘PFT information’ 

is used to include both the in-situ PFT categories obtained from the trait databases and 

the remote sensing-derived, top-of-canopy PFT cover maps (Table S2). Approaches 

with a focus on characterizing biodiversity either calculated plant community averages 

of traits and then further averaged the community averages within each grid cell 

(Boonman), or combined all available in-situ trait data for the reference grid cells 

without any weighting (Bodegom). No abundance or other weighting was applied in 

the averaging operations in the upscaling approaches without PFT information.   

Grid-cell size: The spatial resolution differed considerably. Four maps were provided 

at 0.5° (~50 km at the equator), one at  0.05° (~5 km at the equator) and two maps at 

the resolution of 1 km (Table 1). 

Number of resulting reference grid cells. There is a considerable range in the number 

of reference grid cells due to differences in the in-situ data. While the earliest global 

upscaled maps (Bodegom) used about 200 reference grid cells, the more recent ones 

(Moreno, Vallicrosa) used about 800 and 1400 reference grid cells respectively. The 



geographical distribution of reference grid cells is strongly biased towards Europe and 

to a lesser degree North America and East Asia (Fig. S1). 

  

Spatialization: from spatially sparse data to the global vegetated land surface   

 

This step involves predictive mapping using a regression-based approach in which 

models are either trained on the reference grid cells or, in the case of Schiller, the leaf-

level trait data to establish relationships between the traits and predictor variables.  

Selection of predictor variables. Common predictors among all approaches are  climate 

data, with additional variables including land cover types, soil characteristics (type, 

structural and chemical properties) and remote sensing data such as multispectral 

reflectance or spectral vegetation indices (Fig. 1). The most commonly used predictors 

were related to temperature, precipitation, solar radiation, soil pH and cation exchange 

capacity (Table S1). The sources for climate, soil, and land cover differed among 

studies (Table S2). All maps used environmental predictors in the spatialization  

Statistical algorithms used in the mapping step. The algorithms used for regression-

based mapping included standard multiple regression, generalized additive and linear 

models, as well as machine learning algorithms such as random forests and neural 

networks. While most studies relied on a single algorithm for the final trait maps, one 

study used an ensemble approach that included four different algorithms (Boonman). 

Butler was the only approach that explicitly took spatial information into account (Datta 

et al., 2016), which effectively amounted to a regression-kriging approach (Hengl et al., 

2007).  



Global coverage. The degree of completeness of the spatial coverage of the maps differed. 

Four maps provided gap-free global maps (Bodegom, Butler, Madani, Boonman), while the 

two high-resolution maps excluded cropland (Moreno, Vallicrosa). Schiller had gaps in 

different regions due to the availability/selection of plant photographs from iNaturalist. All 

upscaling approaches except Madani only considered trait variation in natural vegetation and 

excluded foliar traits in croplands. While most approaches considered vegetation of different 

growth forms, Vallicrosa only mapped traits for woody vegetation (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Part 2 

Additional information on methods used in this study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure S2: Comparison of the upscaled PFT+Env Butler maps with the categorical map (´PFT´ in Fig. 7a) 

generated by Butler (´orig.´) using TRY data and the optimized (´opt.´) categorical map with values adjusted to 

better match the full upscaled PFT+Env map.  

 

 

 

 

 

 

 



Text S2: Details for methods to quantify trait variations within PFTs.  

Trait heterogeneity filtering. For this approach, we combined the PFT-mean trait 

values with global maps of land cover fractions for each grid cell, both provided by Butler and 

originally based on the TRY database (Kattge et al., 2020, 2011) and MODIS and AVHRR 

satellite products of land cover (Lawrence and Chase, 2007). For each 0.5° grid cell, we then 

estimated the trait variability by calculating the coefficient of variation (CV) of a variable in 

which each PFT mean trait value was represented proportional to its land cover fraction (Fig. 

S3). For each trait, we categorized grid cells with higher CV than the median of all grid cells 

as ‘heterogeneous’ and those with lower CV than the median as ‘homogeneous’.  

Unmixing. This approach entails essentially reverse engineering the final step of 

calculating grid-cell averages weighted by land cover in the generation of some of the 

‘PFT+Env’ trait maps (Fig. 1). While not all maps applied the LCT weighting after the 

spatialization, this approach can be applied to all maps as the only assumption is the linear 

mixing of LCTs, i.e. only the spatial distribution of land cover is used. The unmixing was done 

by using a three by three grid cell moving window within which the system of overdetermined 

linear equations for six PFTs (ENF, DNF, EBF, DBF, SHR, GRA) was solved. For each grid-

cell, there is one linear equation that equates the final grid cell trait value (known) with the sum 

over the six products of fractional land cover (known) times the corresponding local, PFT-

specific trait value (unknown). For solving the linear equation systems the function lsei of the 

R package limSolve was used in combination with the focal function of the terra package 

(Hijmans et al., 2015; Soetart et al., 2022; Van den Meersche et al., 2009). We evaluated the 

performance of the unmixing approach with the categorical (‘PFT’) maps provided by Butler 

and found that it performed robustly for ENF and DNF, and reasonably well for DBF and EBF 

but could not be used for SHR and GRA (Fig. S4a). The limitations for SHR and GRA are 

likely due to their broad trait distributions and their co-occurrence with other LCTs with similar 



trait values. To exclude grid cells where the unmixing method did not work well, we applied a 

threshold on the fractional cover of the relevant PFT of 5% and applied thresholds on the 

maximum and minimum possible trait values to exclude large outliers or ecologically 

implausible values. Even after this filtering step, considerably more data were left for analyses 

of ENF and DBF than in case of applying the trait heterogeneity filtering approach. 

Overall approach. Due to the limitations of both approaches for some LCTs, we 

combined the unmixing approach for ENF, DBF, and EBF with the trait heterogeneity filtering 

approach for SHR and GRA. For EBF, we chose unmixing as it provided better coverage. 

 

 

 

 



 

     Figure S3: Overview of estimated within grid cell trait variability and its relationship with land cover 

homogeneity. a) estimates of within grid cell coefficient of variation maps are shown for each trait. For 

reference, the maximum fractional cover over all landcover types in a given grid cell (´dominant cover´) is 

shown.  b) relationships between the within-grid-cell trait homogeneity (0.7-CV) vs. land cover homogeneity 

(cover fraction) per land cover type for SLA. Thresholds on both axes illustrate which data would remain 

(upper right hand corner with continuous red lines) after such a selection based on a minimum of 50% cover 

and a level of homogeneity exceeding the global median.  c) overview of impact on the land cover and trait 

homogeneity thresholds on remaining vegetated grid cells at the global scale together with unmixing results 

(for SLA). Note that unmixing results can be used also at lower cover thresholds. In c) the bar for the ´traits 

homogeneous´ category was slightly increased to make it visible. 



 

Figure S4: Unmixing results based on different versions of the Butler maps. The categorical case (‘PFT’) can 

serve as a reference as for each PFT one to three discrete values were assigned. a) trait distributions from 

unmixing. b) unmixed PFT maps for Butler PFT+Env for SLA.  c) comparison of combined unmixing/trait 

heterogeneity filtering to sPlotOpen TWM reference data.  



 

 

 

 

 

 

 

 

 

 

 

Table S4: Threshold criteria to assign dominant plant functional type (PFT) categories to sPlotOpen plots. The 

approach follows the definition of forests by the FAO to apply a 10% threshold on the cumulative (‘cum.’) cover 

of trees. The PFT classification of plots was only applied if growth form information was available for at least 

50% cumulative cover. PFT abbreviations are as follows: ENF: evergreen needleleaf forest; EBF: evergreen 

broadleaf forest; DBF: deciduous broadleaf forest; SHR: shrubland; GRA: grassland. 

PFT Criteria 

Forest Cum. cover of tree species > 10 % 

ENF Forest + cum. cover of needleleaf species > 70% AND cum. cover of evergreen species >70 % 

EBF Forest + cum. cover of broadleaf species > 70% AND cum. cover of evergreen species >70 % 

DBF Foret + cum. cover of broadleaf species > 70% AND cum. cover of deciduous species >70 % 

DNF Forest + cum. cover of needleleaf species > 70% AND cum. cover of deciduous species >70 % 

SHR Cum. cover of shrub species > 10 % 

GRA Other than forest, shrubland and wetland PFTs 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 3 

additional Results 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S6: Overview of all individual upscaled maps for SLA, N and P.  Units are as in Fig. 5. As the 
maps have both different mean values and levels of variability, each map is shown with a different 
scale in order to facilitate the comparison of spatial patterns. Global maps are shown on top of the 
horizontal dashed line, detail maps of Europe are shown below the line. For each trait, the top row 
for shows maps based on PFT+Env upscaling approaches, the bottom rows maps based on Env 
upscaling approaches 



 

Figure S7: Overview of principal component analyses and pairwise correlation of  upscaled maps for specific 

leaf area (SLA), leaf nitrogen (N) and phosphorus (P) concentration with different within-grid-cell 

heterogeneity cases.  The column with all vegetated grid cells (‘all’) is identical to Fig. 2 and only shown for 

reference here, the columns with only heterogenous or homogeneous grid cells are based on threshold on 

estimates of the within-grid-cell trait variability. In the principal component biplots a) and the pairwise 

correlation plots b), colors correspond to the use of predictor variables (‘Env’ stands for environmental variables, 

while ‘PFT’ stands for plant functional type and land cover type information). Pearson correlation is shown either 

for all selected grid cells (‘global’) or as median value of the local spatial correlation map in 3 x 3 pixel windows 

(‘local’). In b) the grey boxplots contain all possible pairs of PFT+Env maps and the Env maps; for the PFT+Env 

maps, the same symbols are used for the cases ‘x vs. 3’ and ‘x vs. 4’, where x is either 1 or 2, since 3 is only 

available for SLA and 4 only for N and P; note that the symbols for P and the case ‘1 vs. 2’ and ‘2 vs. 4’ are so 

close that they are hard to distinguish visually. 



 

 

 

 

 

 

 

Figure S8: Overview of latitudinal median values of global upscaled trait maps. Line colors correspond to the 

upscaling category (PFT+Env or Env).  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S9: Latitudinal trait distributions for specific leaf area (SLA, mm2/mg), leaf nitrogen (N, mg/g) and 

phosphorus (P, mg/g) of upscaled maps and sPlotOpen plot-level data. For each trait, the distributions in 

latitude intervals (units in degrees) are shown, with the upscaling approaches using plant functional type, land 

cover and environmental information (PFT+Env) in the top row in red color, and those mostly relying only on 

environmental information (Env) in the bottom row. Plot-level sPlotOpen (‘sPlot’) top-of-canopy weighted mean 

(TWM) are compared to the PFT+Env maps and community weighted mean (CWM) to the Env maps. 

 

 

 



 

 

 

 

 

Figure S10: Comparison of latitudinal mean values of upscaled maps with plot-level sPlotOpen data. Here, for 

calculating the latitudinal averages of the upscaled maps, only the grid cells in which sPlotOpen data were 

available were used. In the left column, sPlotOpen TWM was used to compare with PFT+Env upscaling 

approaches, in the right column, CWM was used to compare with Env approaches. A rolling mean was applied 

to all latitudinal mean values. Fractional land cover is shown on top for reference. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure S11: Overview of latitudinal trait pattern per upscaling approach with sPlotOpen data shown as 

reference. The latitude range is the same for all x-axes (-50 to 80 degrees North) and y-axis scales are the same 

for each trait, the focus is on the relative differences between PFTs for each trait-upscaling approach 

combination. 

 

 

 



 

Figure S12:  Comparison of latitudinal average trait patterns of upscaled maps and sPlotOpen stratified by 

plant functional type (PFT) and land cover type. a) sPlotOpen top-of-canopy weighted mean (TWM) vs. upscaled 

maps, b) sPlotOpen community weighted mean (CWM) vs. upscaled maps.  For sPlotOpen data in this analysis, 

the restriction of only using the PFT corresponding to the dominant PFT of the plot was not applied to maximize 

data coverage. The fractional land cover (fcov) is shown on top for reference with the grey dotted line indicating 

5% fractional cover. The grey shaded band indicates one standard deviation from the latitudinal mean of 

sPlotOpen. Kernel smoothing was applied to all latitudinal averages. 



 

 

 

 

 

 

 

Figure S13: Comparison of upscaled maps vs. sPlotOpen stratified by PFT but with all PFTs pooled together. 

For sPlotOpen either a) TWM or b) CWM was used. The correlation values in the upper left boxes indicate all 

PFTs pooled, the values in the lower right boxes indicates all PFTs except ENF pooled. Colors indicate the 

different PFTs. Units for SLA, N, and P are as in Fig. S12. A threshold of 0.5 on the land cover was applied here. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part 4 

Additional material for the Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S14: Overview of evaluation against sPlotOpen for different versions of Butler and Moreno using 

identical input data and only different upscaling approaches. a) Overview of impact of different upscaling 

approaches on between-PFT trait differences for SLA; the figure corresponds to the results shown in Fig. 4b. b) 

Differences between using a spatial model (sp.) that corresponds to regression-kriging versus a linear model (lin.) 

that does not explicitly use spatial location of in-situ data in the prediction; the figure complements main Fig. 8.  

c)  Impacts of different upscaling approaches on the agreement to sPlotOpen data scaled to the grid-cell level. 

The different versions of the Butler and Moreno maps correspond to those shown in Fig. S5 and the figure adds 

additional findings to main Fig. 6. The selected climate variables are identical to those in Fig. 6. 



 

 

 Fig. S15: Overview of trait-environment relationships for upscaled maps and sPlotOpen stratified by PFT. a) 

relationships to solar radiation (RAD; units as in Fig. 6c), b) relationships to number of wet days per year (WET) 

according to the definition of Butler, c) relationships to soil pH. Traits are plotted on the x-axis, environmental 

variables on the y-axis and axes have the same range for each trait and environmental variable. Note that for 

sPlotOpen, plot data separately scaled to the grid cell are shown, i.e. no PFT unmixing was involved  and that 

for the upscaled maps where the heterogeneity filtering/unmixing was applied thresholds on land cover 

heterogeneity and within grid cell trait variability had to be applied which likely tends to results in more 

separation between PFTs than is actually the case.  

  



 

Table S5: Overview of the ability of different upscaling approaches to capture between-PFT (bPFT) and 

within-PFT (wPFT) trait variations. The rows show differences between mostly homogeneous (hom.) as a 

hypothetical case or mostly heterogeneous (het.) training grid cells as a realistic case based on the actual 

upscaling approaches (Fig. 9a). The trait variations can be either captured either in a relative (r.) sense related 

to correlation or absolute (a.) sense related to RMSE. ‘Potential’ indicates whether vegetation traits are modeled 

that could occur based on environmental conditions, while ‘actual’ indicates that the realized vegetation traits 

based on the vegetation actually growing in a given location is modeled. This terminology is similar to the one 

used in Bonannella et al. (2022). 

 

 

 

 

 

 

Figure S16: Overview of map uncertainty estimates provided by the upscaling approaches for SLA. CV stands 

for coefficient of variation, SE stands for standard error. Note that the ways to calculate/estimate CV and SE 

differed considerably among maps. 

 

 



 

Fig. S17: Impacts of combined vertical and horizontal scaling in sPlotOpen data. a) impact of horizontal and 

vertical weighting on latitudinal trait distributions of SLA for 0.5° grid cells. The trait distributions shown here 

differ from those in Figs. 9b and SX as a stricter data selection criterion was applied for all cases to ensure direct 

comparability with the fractional cover (fcov) weighting.  b) PCA biplots for SLA, N, P and, for the sake of 

illustrating a case with extreme impact of vertical weighting, canopy height. For the vertical scaling (v:) there 

are two cases: CWM_all vs. CWM_toc, and for the horizontal scaling (h:) too:  fcov weighting vs. no weighting 

indicated by “-”.   



 

Figure S18: Overview of different versions of the Butler and Moreno maps for SLA. a) global maps, the 

categorical map is the one with optimized trait values. For Moreno, the top row always includes PFT in the leaf-

to-grid scaling, while PFT is not used in the second row. The symbolic notation is PFT + (X) where X represents 

the predictors in the spatialization. For Moreno, remote sensing (RS) predictors are based on satellite land 

surface reflectance observations. b) latitudinal median values, c) PCA biplots similar to Fig. 3a, other maps are 

added for reference to see in which groups the different versions of Butler and Moreno are falling; in the biplot 

for Butler,  dotted arrows are used for other maps shown for reference, in the biplot for Moreno the different 

versions Moreno maps are shown as continuous, dashed and dotted arrows, while the reference maps are shown 

as continuous arrows but with other colors. For Butler linear (lin.) and spatial (sp.) Env maps are shown. 



 

Figure S19: Dependence of latitudinal trait distributions of sPlotOpen on the grid cell size for specific leaf area 

(SLA). All trait distributions are maximum-normalized. a) global-scale sPlotOpen data, b) 30-45 degree latitude 

interval. Note that the grid cell sizes in b) differ from those of Fig. 8b and show substantial impacts on the TWM 

distributions already at 50 km grid size.  



 

 

 

 

 

Figure S20: Overview of canopy height map based on different upscaling approaches (PFT+Env or Env) and 

satellite remote sensing (Lidar). a) PCA biplot with the first two axes (explaining 72% of the variability). b) 

height mapswith units of meters. The lidar products refer to canopy top height maps from the publications of 

Wang et al. (2016), Simard et al. (2011), Potapov et al. (2021), Lang et al. (2021), and the official GEDI product 

(NASA). The middle row is based on data from the GLAS sensor on ICESat, while the bottom row is based on 

data from the GEDI instrument  onboard the ISS. 

 

 

 

 

 

 



 

 

Figure S21: Example of uncertainty estimates provided by a) the Bodegom and b) the Madani upscaling 

approaches for SLA. Standard error is shown. Note that Bodegom only used environmental predictors (Env) 

while Madani additionally used PFT information (Env+PFT). 

 

 

Figure S22: Impact of intra-specific variation on the latitudinal distribution of specific leaf area (SLA). The 

data shown is the TRY in-situ data selected by Butler et al. (2017) for the upscaling. 
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