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THREE APPROACHES TO A CATEGORICAL TORELLI THEOREM FOR

CUBIC THREEFOLDS OF NON-ECKARDT TYPE VIA THE

EQUIVARIANT KUZNETSOV COMPONENTS

SEBASTIAN CASALAINA-MARTIN, XIANYU HU, XUN LIN, SHIZHUO ZHANG AND ZHENG ZHANG

Abstract. Let Y be a cubic threefold with a non-Eckardt type involution τ . Our first main
result is that the τ -equivariant category of the Kuznetsov component KuZ2

(Y ) determines
the isomorphism class of Y for general (Y, τ ). We shall prove this categorical Torelli theo-
rem via three approaches: a noncommutative Hodge theoretical one (using a generalization
of the intermediate Jacobian construction in [Per22]), a Bridgeland moduli theoretical one
(using equivariant stability conditions), and a Chow theoretical one (using some techniques
in [KP23]).The remaining part of the paper is devoted to proving an equivariant infinitesimal
categorical Torelli for non-Eckardt cubic threefolds (Y, τ ). To accomplish it, we prove a com-
patibility theorem on the algebra structures of the Hochschild cohomology of the bounded
derived category Db(X) of a smooth projective variety X and on the Hochschild cohomology
of a semi-orthogonal component of Db(X). Another key ingredient is a generalization of a
result in [MS09] which shows that the twisted Hochschild-Kostant-Rosenberg isomorphism is
compatible with the actions on the Hochschild cohomology and on the singular cohomology
induced by an automorphism of X.
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Introduction

Torelli problems are some of the oldest and the most classical problems in algebraic ge-
ometry. The classical Torelli problem asks whether an algebraic variety X is uniquely de-
termined by the Hodge structure on its cohomology. Specifically, denote by P a period map
P : M → D/Γ, where M is a moduli space parameterizing isomorphism classes of certain
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algebraic varieties X, and D/Γ is a period domain (that is, a classifying space of some polar-
ized Hodge structures). One says that a global Torelli theorem holds if P is injective, and that
an infinitesimal Torelli theorem holds if the differential dP of P is injective. Torelli theorems
hold for wide class of varieties, see [Cat84]. For example, the period map for smooth cubic
threefolds Y ⊂ P4 is defined by sending Y to its intermediate Jacobian J(Y ) (or equivalently,
the weight 1 polarized Hodge structure on H3(Y,Z)(1)); both global and infinitesimal Torelli
theorems hold for smooth cubic threefolds.

A categorical variant of the classical Torelli problem, also referred to as a categorical
Torelli problem, asks whether the non-trivial semi-orthogonal component Ku(X) (called the
Kuznetsov component) of the bounded derived category Db(X) of an algebraic variety X
determines the isomorphism class of X. Similar to classical Torelli theorems, it has been
shown that categorical Torelli theorems hold for many interesting varieties including Enrqi-
ues surfaces ([LNSZ21], [LSZ22]), cubic threefolds and cubic fourfolds ([BMMS12], [HR19a],
[FLZ23]), (weighted) Fano hypersurfaces ([LPS23], [Ren23], [LZ23]) and several prime Fano
threefolds ([JLLZ24], [DJR23]). We refer the reader to [PS23] for more details.

In the present article, we consider categorical Torelli problems for algebraic varieties with
additional automorphisms. More specifically, we focus on cubic threefolds Y admitting a non-
Eckardt type involution τ which is a biregular involution with fixed locus the disjoint union of
a cubic curve C and a line L. Cubic threefolds (Y, τ) with a non-Eckardt type involution have
been studied in [CMMZ23]; among their results, the authors show that (Y, τ) is determined up
to isomorphism by the invariant part J(Y )τ of the intermediate Jacobian. From the categorical
perspective, we consider the semi-orthogonal decomposition of the bounded derived category
Db(Y )

Db(Y ) = 〈Ku(Y ),OY ,OY (1)〉

where Ku(Y ) denotes the Kuznetsov component, the orthogonal complement of the line bun-
dles OY and OY (1). The geometric involution τ induces an action of the group Z2 = 〈1, τ〉
on Db(Y ) preserving Ku(Y ), and we denote the corresponding equivariant Kuznestov cate-
gory by KuZ2(Y ). As Ku(Y ) determines the isomorphism class of Y , it is a natural question
whether the equivariant Kuznetsov component KuZ2(Y ) determines the isomorphism class of
the non-Eckardt type cubic threefold (Y, τ). The main result of our paper in this direction is
to give an affirmative answer to this question for general cubic threefolds with a non-Eckardt
type involution.

Theorem 0.1 (=Theorems 4.7, 5.8). Let (Y, τ) and (Y ′, τ ′) be general cubic threefolds with
a non-Eckardt type involution. Assume that there is a Fourier-Mukai type equivalence Φ :
KuZ2(Y ) ≃ KuZ2(Y

′) between the equivariant Kuznetsov components. Then (Y, τ) ∼= (Y ′, τ ′).

We shall study the equivariant Kuznetsov components for non-Eckardt cubic threefolds, and
consequently prove Theorem 0.1, from three different perspectives: a noncommutative Hodge
theoretical one (using an equivariant version of the intermediate Jacobian construction in
[Per22]), a moduli space theoretical one (via Bridgeland moduli spaces of stable objects in the
equivariant Kuznetsov components), and a Chow theoretical one (using Abel–Jacobi maps
and some techniques in [KP23]; however, we are only able to prove a slightly weaker version
of Theorem 0.1 in this approach, see Theorem 6.9). More details are given in Subsections 0.1,
0.2 and 0.3.
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The upshot is that it looks to us that using the equivariant Kuznetsov component KuZ2(Y ),
from the first two perspectives one can only determine the invariant part J(Y )τ of the inter-
mediate Jacobian for a general Y , while from the third perspective, one can only determine
J(Y )τ up to isogeny (which necessitates the assumption, in that approach, that (Y, τ) be very
general). In a little more detail, which we expand on in the subsections below, the situation
is as follows. As mentioned above, from the results of [CMMZ23], one wants to show that
the equivariant Kuznetsov component KuZ2(Y ) naturally determines the invariant part of
the intermediate Jacobian, J(Y )τ . From the noncommutative Hodge theoretic perspective,
and the moduli space theoretic perspective, one finds that while the Kuznetsov component
Ku(Y ) naturally determines the Fano variety of lines on Y , and consequently the intermedi-
ate Jacobian J(Y ), the equivariant Kuznetsov component KuZ2(Y ) naturally determines the

invariant lines on Y , which are parameterized by a genus 4 bielliptic curve C̃, together with

an isolated point. There is a surjection J(C̃) ։ J(Y )τ , with kernel an elliptic curve (this
can be seen from the Prym construction for the cubic threefold), but unfortunately, we were
not able to recover this surjection given only the data of KuZ2(Y ). For Y general, we can

recover J(Y )τ up to isomorphism, however, from J(C̃). In a different direction, since a genus
4 bielliptic curve could carry more than one bielliptic structure (cf. [CDC05]), we feel that
Theorem 0.1 is optimal in some sense. From the Chow theoretical perspective, while Ku(Y )
naturally determines the integral Hodge structure J(Y ), we are only able to show that the
equivariant Kuznetsov component KuZ2(Y ) naturally determines the Z[1/2]-Hodge structure
J(Y )τ

Z[1/2]; this allows us to prove Theorem 0.1 for very general cubic threefolds carrying a

non-Ekcardt type involution.

0.1. Topological K-theory and Hodge theory for the equivariant Kuznetsov com-
ponents. Let (Y, τ) be a cubic threefold with a non-Eckardt type involution and let G :=
Z2 = 〈1, τ〉. The fixed locus of τ consists of a pointwise fixed line L and a plane cubic curve
C: Y τ = C

∐
L. According to the seminal work [BKR01], there is an equivalence between

the equivariant derived category Db
Z2
(Y ) and the derived category Db(Z), where Z is an irre-

ducible component of the G-Hilbert scheme G-HilbC(Y ), and is birational to Y/τ . Following
the strategy in [Hu23], we give an explicit description of the irreducible component Z. To be
precise, we show that the irreducible component Z ∼= BlC̃(P

2×P1) (cf. Proposition 3.6) where

C̃ coincides with the double cover of the cubic component C ⊂ Y τ in [CMMZ23] (recall that

C̃ also parametrizes τ -invariant lines in Y which are not pointwise fixed). From this, we derive
a semi-orthogonal decomposition of the equivariant category Db

Z2
(Y ) (cf. Theorem 3.1)

Db
Z2
(Y ) ≃ Db(Z) = 〈Db(C̃), Eij〉

where C̃ is described above and {Eij} with 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 is an exceptional collection
of line bundles on P2×P1. Based on this semi-orthogonal decomposition, we then explore the
Hodge theory of the equivariant Kuznetsov component KuZ2(Y ). Specifically, we generalize
the intermediate Jacobian construction in [Per22] to a smooth and proper dg category (see
Definition 4.3) and then adapt it to KuZ2(Y ). This, together with the observation that the

topological K-group Ktop
1 (KuZ2(Y )) inherits a polarized Hodge structure of weight 1 from

H1(C̃,Z), allows us to obtain an isomorphism J(KuZ2(Y )) ∼= J(C̃) of principally polarized
abelian varieties (see Proposition 4.6). By [CDC05], a general bielliptic curve of genus 4 admits
a unique bielliptic structure; note also that the invariant part J(Y ) is isomorphic to the dual
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abelian variety of P (C̃, C). A first proof of Theorem 0.1 can then be completed (for general
cubic threefolds (Y, τ) with a non-Eckardt type involution) using the results in [CMMZ23].

0.2. Bridgeland moduli spaces on the equivariant Kuznetsov components. Notation
as in the previous subsection. Our second approach to proving Theorem 0.1 is to use stability
conditions on the equivariant Kuznetsov components. Specifically, a Serre-invariant stability
condition on Ku(Y ) induces a (unique) stability condition σZ2 on KuZ2(Y ). By studying the
moduli space of σZ2 -stable objects, we reconstruct in Proposition 5.4 the fixed locus F (Y )τ

of the Fano surface of lines in the non-Eckardt type cubic threefold (Y, τ). By a result in
[CMMZ23], F (Y )τ consists of two components: a point corresponding to the pointwise fixed
line L and a curve parametrizing other τ -invariant lines; note that the curve is isomorphic to

the double cover C̃ of the cubic curve C ⊂ Y τ . An argument similar to the one described in
the previous subsection then allows us to complete the proof.

0.3. Chow theory of the equivariant Kuznetsov components. The third proof of a
slightly weaker version of Theorem 0.1 we complete is via the Chow theory of the equivariant
Kuznetsov components. More precisely, we show that the Fourier–Mukai type equivalence Φ :
KuZ2(Y ) ≃ KuZ2(Y

′) in Theorem 0.1 induces an isomorphism between the groups A2
Z2,Q

(Y )

and A2
Z2,Q

(Y ′) of Z2-invariant algebraically trivial cycles with rational coefficients. Composing

with the Abel–Jacobi map, one obtains an isogeny between the invariant parts J(Y )τ and

J(Y ′)τ
′

of the intermediate Jacobians. It then follows from [CMMZ23] that (Y, τ) ∼= (Y ′, τ ′)
when both of them are very general.

To obtain the above results, we invoke the techniques developed in [KP23]. While we
are only able to prove the equivariant categorical Torelli for very general non-Eckardt cubic
threefolds via this approach, similar arguments allow us to prove the following theorem in a
more general setting.

Theorem 0.2 (=Theorem 6.4). Let X and Y denote smooth projective rationally connected
threefolds, each admitting an action of a finite group G. Assume that both Db(X) and Db(Y )
admit semi-orthogonal decompositions

Db(X) = 〈A,⊥A〉, Db(Y ) = 〈B,⊥B〉

such that ⊥A and ⊥B are generated by exceptional collections. If there exists a Fourier–Mukai
type equivalence Φ with kernel P between the equivariant components

Φ : AG
≃
→ BG,

then we have an isomorphism between the groups of G-invariant algebraically trivial cycles
with coefficients in Z[1/2] (where P ′ denotes the kernel of inverse Fourier-Mukai functor of
Φ)

A2
G,Z[1/2](X)

c3(P )
2 ..

A2
G,Z[1/2](Y )

c3(P
′)

2

nn .

Consequently, there is an isogeny JG(X) → JG(Y ) between the G-invariant part of in-
termediate Jacobians; moreover, the order of the kernel is divisible at most by a power of
2.
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0.4. Infinitesimal categorical Torelli theorem for equivariant Kuznetsov compo-
nents. In the remaining part of the paper, we focus on the infinitesimal categorical Torelli
problem. Let us discuss some of the key ingredients in the proof, which we hope will be of
independent interest. Let X be a smooth projective variety. By comparing the algebra struc-
tures on the Hochschild cohomology (respectively, the module structures of the Hochschild
homology over the Hochschild cohomology) for Db(X) and for a semi-orthogonal component
A1 of Db(X), we establish the following compatibility theorem.

Theorem 0.3 (=Theorem 7.14). Let ΦH (respectively, Φ1H) be an auto-equivalence of Db(X)
(respectively, of a semi-orthogonal component A1), and let ΦH∗ and Φ1H∗ be the induced
automorphism on Hochschild cohomology HH∗(X) and HH∗(A1) respectively. Denote by j∗1
the projection functor from Db(X×X) to its semi-orthogonal component A1⊠B∨

1 . Then ΦH∗

and Φ1H∗ are compatible with both the algebra structures of the Hochschild cohomology and
the module structures of the Hochschild homology over the Hochschild cohomology. In other
words, the following diagrams are commutative.

HH∗(A1)×HH∗(A1) HH∗(A1)×HH∗(A1)

HH∗(X) ×HH∗(X) HH∗(X)×HH∗(X) HH∗(A1) HH∗(A1)

HH∗(X) HH∗(X)

j∗1 j∗1

j∗1 j∗1
∪ ∪

ΦH∗

ΦH∗

Φ1H∗

Φ1H∗

∪∪

HH∗(A1)×HH∗(A1) HH∗(A1)×HH∗(A1)

HH∗(X) ×HH∗(X) HH∗(X)×HH∗(X) HH∗(A1) HH∗(A1)

HH∗(X) HH∗(X)

j∗1 j∗1

j∗1 j∗1
∩ ∩

ΦH∗

ΦH∗

Φ1H∗

Φ1H∗

∩∩

We also investigate the compatibility problem between the twisted Hochschild-Kostant-
Rosenberg (HKR) isomorphism (cf. [Căl05] and [CRVdB12]) and the actions on Hochschild
cohomology and on singular cohomology. Namely, a result in [MS09] implies that the HKR iso-
morphism is compatible with the actions induced by a Fourier-Mukai transform for Hochschild
homology and singular cohomology. We extend this result to Hochschild cohomology under
the assumption that the action is induced by a geometric automorphism (cf. Theorem 7.18).

The above results allow us to prove the following theorem which is an equivariant ver-
sion of the results (especially Theorems 1.1 and 1.4) in [JLLZ23]. Noting that the injec-
tivity of dp implies the injectivity of η, we regard Theorem 0.4 as (an equivariant version
of) the infinitesimal categorical Torelli theorem. Indeed, let X be a smooth projective va-
riety. Although it is difficult to make sense of “categorical period maps”, one could still
define a map H1(X,TX) → HH2(Ku(X)) as in [JLLZ23]. Since first order deformations of
Ku(X) ⊂ Db(X) are parametrized by the second Hochschild cohomology HH2(Ku(X)), the
map H1(X,TX) → HH2(Ku(X)) can be interpreted as the infinitesimal categorical period
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map. Taking the invariant parts, we think of the injectivity of the map η in Theorem 0.4 as
an equivariant infinitesimal categorical Torelli theorem.

Theorem 0.4 (=Theorem 7.21, Corollary 7.22). Let X be a smooth projective variety with a
biregular involution τ . Suppose that Db(X) admits a semi-orthogonal decomposition

Db(X) = 〈Ku(X), E1, . . . , En〉.

Also assume that the involution τ induces a Z2-action τ∗ on Ku(X) which preserves each
semi-orthogonal component. Then we have a commutative diagram as follows.

HH2(Ku(X))τ
γ // Hom(HΩ−1(X)τ ,HΩ1(X)τ )

H1(X,TX )τ

η

OO
dp

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

Moreover, if (Y, τ) is a general non-Eckardt cubic threefold, then the map H1(Y, TY )
τ η
→

HH2(Ku(Y ))τ ⊂ HH2(KuZ2(Y )) is injective.

0.5. Organization of the article. In Section 1, we recall some background material on semi-
orthogonal decompositions and equivariant categories. In Section 2, we review results on cubic
threefolds with a non-Eckartd type involution. In Section 3, we give an explicit description of
the equivariant derived categories for non-Eckardt cubic threefolds. In Section 4, we explore
the noncommutative Hodge theory of the equivariant Kuznetsov components and give the
first proof of Theorem 0.1. In Section 5, we investigate the equivariant Kuzentsov components
via Bridgeland moduli which allows us to give a second proof of Theorem 0.1. In Section 6,
we consider the Chow theoretic perspective, and show that the Fourier–Mukai equivalence
in Theorem 0.1 induces an isomorphism between the groups of invariant algebraically trivial
cycles. As a result, we provide the third proof (but only for very general non-Eckardt cubic
threefolds). In Section 7, we discuss the proofs of Theorem 0.3 and Theorem 0.4 regarding
infinitesimal categorical Torelli theorems for the equivariant Kuznetsov components.

Throughout the article, we work over the field of complex numbers C. The main reason is
that we need to use the results in [CMMZ23] which are only stated over C; note however that
most results in Sections 1, 4, 5, 6, and 7 hold for any algebraically closed field of characteristic
0. Furthermore, the results in §6, with the exception of those relying on [CMMZ23], can
be formulated over any field, after replacing the intermediate Jacobian with the algebraic
representative, but we do not pursue this here.
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1. Semi-orthogonal decompositions and equivariant derived categories

In this section, let us briefly review some background material on semi-orthogonal de-
compositions and equivariant derived categories. We refer the reader to [BK89], [Bon89] and
[BO23] for more details. We also specify the geometric situation when there is a smooth cubic
threefold Y admitting an involution τ and show that its equivariant derived category Db

Z2
(Y )

admits a semi-orthogonal decomposition with one triangulated subcategory being the equi-
variant Kuznetsov component KuZ2(Y ). A more concrete description of the semi-orthogonal
decomposition of Db

Z2
(Y ) and of the equivariant Kuznetsov component KuZ2(Y ) will be given

in the later sections.

1.1. Semi-orthogonal decompositions. Let D be a C-linear triangulated category. A semi-
orthogonal decomposition of D consists of a collection C1, . . . , Cm of full triangulated subcate-
gories satisfying that

(1) Hom(F,G) = 0 for every F ∈ Ci, G ∈ Cj and i > j;
(2) for every F ∈ D, there is a sequence of morphisms

0 = Fm → Fm−1 → . . . → F1 → F0 = F

such that the cone of Fi → Fi−1 is in Ci for 1 ≤ i ≤ m.

As usual, we use D = 〈C1, . . . , Cm〉 to denote a semi-orthogonal decomposition. Recall that
an object E ∈ D is called exceptional if RHom(E,E) = C[0]. Given an exceptional collec-
tion E1, . . . , Em of D (that is, a sequence of exceptional objects E1, . . . , Em ⊂ D satisfying
RHom(Ei, Ej) = 0 for i > j), we get the following semi-orthogonal decomposition

D = 〈C, E1, . . . , Em〉

where C := 〈E1, . . . , Em〉⊥ = {F ∈ D | RHom(Ei, F ) = 0 for all 1 ≤ i ≤ m} denotes the right
orthogonal subcategory of the exceptional collection.

1.2. Categorical actions and equivariant categories. Let us now recall some basic def-
initions of categorical actions and equivariant categories following [BO23].

Definition 1.1. ([BO23, Definition 2.1]) Let G be a finite group and let D be a category. An
action (ρ, θ) of G on D consists of

• for every g ∈ G an auto-equivalence ρg : D → D (we will sometimes write g for ρg),
• for every pair g, h ∈ G an isomorphism of functors θg,h : ρg ◦ ρh → ρgh

such that for all triples g, h, k ∈ G we have the commutative diagram.

(1)

ρgρhρk ρgρhk

ρghρk ρghk

ρgθh,k

θg,hρk θg,hk

θgh,k
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Definition 1.2. ([BO23, Definition 3.1]) Let (ρ, θ) be an action of a finite group G on a
C-linear category D. The equivariant category DG is defined as follows:

• Objects of DG are pairs (E,φ) where E is an object in D and φ = (φg : E → ρgE)g∈G
is a family of isomorphisms such that

(2) E ρgE ρgρhE ρghE

φgh

φg ρgφh
θE
g,h

commutes for all g, h ∈ G.
• A morphism from (E,φ) to (E′, φ′) is a morphism f : E → E′ in D which commutes
with linearizations, i.e. such that

E E′

gE gE′

f

φg φ′

g

ρgf

commutes for every g ∈ G.

Remark 1.3. As mentioned in [BO23, p.36], for any objects (E,φ) and (E′, φ′) in DG there
exists an action of G on HomD(E,E′) via

f 7→ (φ′
g)

−1 ◦ ρg(f) ◦ φg.

Then it holds that

HomDG
((E,φ), (E′, φ′)) = HomD(E,E′)G.

Now we focus on the following geometric situation. Let X be a smooth projective variety
and let G be a finite group acting on X. Suppose that Db(X) admits a semi-orthogonal
decomposition

Db(X) = 〈A1,A2, . . . ,Am〉.

Also assume that Db(X) and each Ai admits an action of G (in the sense of Definition 1.1).
Then by [Ela11, Theorem 6.3], we get a semi-orthogonal decomposition

Db
G(X) = 〈A1G,A2G, . . . ,AmG〉

of the equivariant derived category Db
G(X).

More specifically, let Y be a smooth cubic threefold with an involution τ . Recall that the
derived category Db(Y ) admits a semi-orthogonal decomposition

Db(Y ) = 〈Ku(Y ),OY ,OY (1)〉

where Ku(Y ) denotes the right orthogonal subcategory of the exceptional collection OY and
OY (1), and is called the Kuznetsov component of Y . Now let us introduce the equivariant
derived category Db

Z2
(Y ) and the equivariant Kuznetsov component KuZ2(Y ) for the action

by the group Z2 = 〈1, τ〉.

Lemma 1.4. Let (Y, τ) be as above. There exists a semi-orthogonal decomposition

Db
Z2
(Y ) = 〈KuZ2(Y ),OY ,OY ⊗χ1,OY (1),OY (1)⊗ χ1〉

where χ1 denotes the sign character of the group Z2 = 〈1, τ〉.
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Proof. Consider the semi-orthogonal decomposition of Y : Db(Y ) = 〈Ku(Y ),OY ,OY (1)〉.
Since τ is a geometric involution of Y , it clearly preserves Ku(Y ), OY and OY (1). It is
straightforward to verify that both Db(Y ) and Ku(Y ) admit an action by Z2 = 〈1, τ〉 as in
Definition 1.1 (see also Remark 5.2). By [Ela11, Theorem 1.6], we get the following semi-
orthogonal decomposition of the equivariant derived category Db

Z2
(Y ):

Db
Z2
(Y ) = 〈KuZ2(Y ), 〈OY 〉

τ , 〈OY (1)〉
τ 〉.

The result then follows from [KP17, Proposition 3.3]. �

2. Cubic threefolds with an involution of non-Eckardt type

In this section, we recall some related results on cubic threefolds with a non-Eckardt type
involution following [CMMZ23].

Let Y be a smooth cubic threefold with an involution τ . Then the fixed locus of τ is either
a point and a cubic surface (in which case we say τ is of Eckardt type) or a line disjoint
union with a plane cubic curve (in which case we say τ is of non-Eckardt type). These cubic
threefolds have been studied in detail in [CMZ21] and [CMMZ23] respectively.

In this paper, we will focus on cubic threefolds Y with a non-Eckardt type involution τ .
After a linear change of coordinates, the equation of Y is given by

(3) x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4) + g(x0, x1, x2) = 0

where each polynomial qi(x3, x4) is homogeneous of degree 2 and g(x0, x1, x2) is a homogeneous
cubic polynomial. The non-Eckardt type involution

(4) τ : [x0, x1, x2, x3, x4] 7→ [x0, x1, x2,−x3,−x4]

fixes pointwise the line

L := V (x0, x1, x2) ⊂ Y

and the plane cubic curve (which is smooth)

C := V (g(x0, x1, x2), x3, x4) ⊂ Y.

Let J(Y ) be the intermediate Jacobian of Y . By abuse of notation, we also use τ to denote
the involution on J(Y ) induced by the non-Eckardt involution on Y . Define the invariant part
J(Y )τ by

J(Y )τ := im(1 + τ)

which admits a polarization of type (1, 2, 2) from the principal polarization on J(Y ). By
[CMMZ23, Theorem 3.1], we have the following global Torelli theorem.

Theorem 2.1. ([CMMZ23, Theorem 3.1]) Let (Y, τ) and (Y ′, τ ′) be cubic threefolds with an

involution of non-Eckardt type. Suppose that J(Y )τ ∼= J(Y ′)τ
′

as polarized abelian varieties,
then (Y, τ) ∼= (Y ′, τ ′).

The above global Torelli theorem can also be rephrased as follows. Let M be the moduli
space of cubic threefolds with an involution of non-Eckardt type. Denote the moduli space of

abelian threefolds with a polarization of type (1, 2, 2) by A
(1,1,2)
3 . Define the period map as

follows:

P : M → A
(1,2,2)
3 , Y → J(Y )τ .

Then the above period map P is injective.
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To prove the above the theorem, we project Y from the τ -fixed line L ⊂ Y to the com-
plementary plane P2

[x0:x1:x2]
. The discriminant curve consists of two irreducible components

meeting transversely: the cubic curve C and a conic curve Q. The discriminant double cover
is given by

C̃
∐

Q̃ → C
∐

Q

where C̃ (respectively, Q̃) is a double cover of the cubic C (respectively, the conic Q) branched
at the six intersection points C∩Q (cf. [CMMZ23, Lemma 2.1, Proposition 2.2]). As discussed

in [CMMZ23, §1.3], the bielliptic curve C̃ is smooth of genus 4 and parameterizes τ -invariant
lines in Y which are not pointwise fixed. By [CMMZ23, Theorem 2.5], the invariant part

J(Y )τ is isomorphic to the dual abelian variety of the Prym variety P (C̃, C) associated with

the discriminant double restricted to the cubic component C̃ → C:

J(Y )τ ∼= (P (C̃, C))∨.

Another important ingredient for the proof is the global Torelli theorem for the Prym map

P1,6 : R1,6 → A
(1,1,2)
3 proved by Ikeda [Ike20, Theorem 1.2] and by Naranjo and Ortega [NO22,

Theorem 1.1].

The infinitesimal Torelli theorem also holds for the period map P : M → A
(1,2,2)
3 over

an open subset M0 ⊂ M (cf. [CMMZ23, Proposition 3.4]). Specifically, let M0 denote the
complement of the locus parameterizing cubic threefolds with a non-Eckardt involution whose
equation can be written in the following form

ℓ1(x0, x1, x2)x
2
3 + ℓ2(x0, x1, x2)x

2
4 + g(x0, x1, x2) = 0.

Then we have the following result.

Proposition 2.2. ([CMMZ23, Proposition 3.4]) The differential dP is an isomorphism at

every point of M0 ⊂ M. In particular, P|M0 : M0 → A
(1,2,2)
3 is an embedding.

3. Semi-orthogonal decompositions of the equivariant derived categories

Let Y be a cubic threefold with a non-Eckardt type involution τ as in Section 2. We have
defined the equivariant derived category Db

Z2
(Y ) for the action of G := Z2 = 〈1, τ〉 in Section

1. In this section, we give an explicit description of Db
Z2
(Y ) via G-Hilbert schemes. More

precisely, we will prove the following theorem.

Theorem 3.1. The equivariant derived category Db
Z2
(Y ) admits a semi-orthogonal decompo-

sition
Db

Z2
(Y ) = 〈Db(C̃), Eij〉,

where Eij = OP2×P1(i, j) with 1 ≤ i ≤ 3 and 1 ≤ j ≤ 2 forms an exceptional collection of line

bundles originating from P2 ×P1, and C̃ is the double cover of the plane cubic curve C in the
fixed locus Y τ .

In this section, we always let G = Z2 = 〈1, τ〉. To prove Theorem 3.1, we shall employ the
same strategy as in [Hu23]. The idea is described as follows. Recall that a G-Hilbert scheme
G-HilbC(Y ) is a Hilbert scheme ofG-clusters (see for instance [Huy06, §13.1] and the references
therein). Let Z be the irreducible component of G-HilbC(Y ) containing the open subset of all
reduced G-clusters; note that Z admits a crepant resolution to Y/G. According to [BKR01,
Theorem 1.1], there is an equivalence between the equivariant derived category Db

G(Y ) and
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the derived category Db(Z). By computing Z explicitly, we derive a semi-orthogonal decom-
position of the derived category Db(Z) with one component equivalent to the derived category
of a certain curve. Upon further identification, we show that this curve is isomorphic to the

double cover C̃ of the plane cubic curve C ⊂ Y τ described in Section 2.
In order to describe the irreducible component Z ⊂ G-HilbC(Y ), let us study the G−Hilbert

schemesG-HilbC(P
4) andG-HilbC(Y ) explicitly. Consider the following involution on P4 whose

restriction to Y corresponds to the involution τ of non-Eckardt type

[x0 : x1 : x2 : x3 : x4] −→ [x0 : x1 : x2 : −x3 : −x4].

The fix locus of this involution in P4 is P2
∐

P1 where the coordinates of the fixed components
are [x0 : x1 : x2 : 0 : 0] for P2 = P2

[x0:x1:x2]
(which intersects Y along the cubic curve C ⊂ Y τ )

and [0 : 0 : 0 : x3 : x4] for P1 = P1
[x3:x4]

(which is also the pointwise fixed line L ⊂ Y τ )

respectively. Let A4 denote the open affine subset (x0 6= 0) of P4; correspondingly, one gets
an open subset G-HilbC(A

4) of G-HilbC(P
4).

Lemma 3.2. It holds that G-HilbC(A
4) ∼= A2 ×G-HilbC(A

2) where for the first factor A2 =
V (x3, x4) and for the second factor A2 = V (x1, x2) which is endowed with an induced involu-
tion given by (x3, x4) −→ (−x3,−x4).

Proof. It follows directly from [Tér04, Proposition 1.4.4] or [Blu07, Corrollary 4.24]. �

We will also need the following result due to Blume.

Proposition 3.3. ([Blu07, Proposition 2.40]) Let G = Spec C[x]/(xr−1) be the group scheme
of the r-th roots of unity, and let V be an n-dimensional representation of G over C. Define
π : AC(V ) −→ X := AC(V )/G where AC(V ) denotes the affine space An

C. Also denote the
origin of AC(V ) by 0. Then there exists an isomorphism (over C)

G-HilbC(AC(V )) ∼= Bl0X/G.

Combining Lemma 3.2 and Proposition 3.3, we obtain the following description ofG-HilbC(P
4).

Lemma 3.4. The G-Hilbert scheme G-HilbC(P
4) is isomorphic to BlP2

∐
P1(P4)/G.

Proof. According to [Blu07, Remark 4.19], if X ′ is a scheme endowed with a G-action over S
and S′ is an S-scheme, then there is an isomorphism of S′-functors

(G-HilbS(X
′))S′

∼= G-HilbS′(X ′
S′).

In addition, from [Blu07, Remark 4.22 (2)] we deduce that

G-HilbC(P
4) ∼= G-HilbP4/G(P

4) and G-HilbC(A
4) ∼= G-HilbA4/G(A

4).

Thus, we have the following Cartesian diagram:

G-HilbC(A
4) ∼= G-HilbA4/G(A

4) G-HilbC(P
4) ∼= G-HilbP4/G(P

4)

A4/G P4/G

g′

g

where g and g′ are open immersions. By Lemma 3.2 and Proposition 3.3, we have

G-HilbC(A
4) ∼= A2 × (Bl0(A

2)/G) ∼= BlA2×0(A
4)/G.
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Taking xi = 1 for i = 0, 1, 2, 3, 4 respectively, we get a Zariski cover of G-HilbC(P
4). Since the

gluing of this cover is completely determined by the open embeddings A4 →֒ P4, one verifies
readily that G-HilbC(P

4) ∼= (BlP2
∐

P1(P4))/G. �

Let us give the following description of theG−Hilbert scheme G-HilbC(Y ) for a non-Eckardt
cubic threefold (Y, τ).

Proposition 3.5. The G-Hilbert scheme G-HilbC(Y ) ∼= BlP2
∐

P1(P4)/G ×P4/G Y/G

Proof. Proceeding as in Lemma 3.4, we obtain the following Cartesian diagram:

G-HilbC(Y ) ∼= G-HilbY/G(Y ) G-HilbC(P
4) ∼= G-HilbP4/G(P

4)

Y/G P4/G

f ′

f

where f and f ′ are closed immersions. By Lemma 3.4, one has G-HilbC(P
4) ∼= BlP2

∐
P1(P4).

Hence, we obtain the isomorphism as desired

G-HilbC(Y ) ∼= BlP2
∐

P1(P4)/G ×P4/G Y/G.

�

By [BKR01, Theorem 1.1], the equivariant derived category Db
G(Y ) is equivalent to the

derived category Db(Z), where Z is the irreducible component of G-HilbC(Y ) containing the
open subset of all reduced G-clusters. Note also that Z is birational to Y/G. Under the
isomorphism G-HilbC(Y ) ∼= BlP2

∐
P1(P4)/G×P4/G Y/G, the irreducible component Z can be

described as follows.

Proposition 3.6. Suppose that the equation of (Y, τ) are given by Equations (3) and (4).
Then the irreducible component Z is isomorphic to BlC

∐
L(Y )/G which is further isomorphic

to BlC1(P
2 × P1) with C1 being the curve in P2 × P1 cut out by

V (g(x0, x1, x2), x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4)) ⊂ P2
[x0:x1:x2]

× P1
[x3:x4]

.

Proof. The proof is quite similar with that of [Hu23, Proposition 4.1, Theorem 4.2]. By Propo-
sition 3.5, the G-Hilbert scheme G-HilbC(Y ) is isomorphic to BlP2

∐
P1(P4)/G×P4/GY/G. Since

the only irreducible component of BlP2
∐

P1(P4)/G ×P4/G Y/G which is isomorphic to Y/G is
BlC

∐
L(Y )/G, we have Z = BlC

∐
L(Y )/G. It then suffices to show that BlC

∐
L(Y )/G ∼=

BlC1(P
2 × P1). We shall verify this on an open affine cover. On one hand, the blowup

BlP2
∐

P1(P4) is a subvariety of P4 × P2 × P1 with following equations:

x′0y
′
1 − x′1y

′
0 = 0; x′1y

′
2 − x′2y

′
1 = 0; x′0y

′
2 − x′2y

′
0 = 0; x′3y

′
4 − x′4y

′
3 = 0

where [x′0 : x
′
1 : x

′
2 : x

′
3 : x

′
4]× [y′0 : y

′
1 : y

′
2]× [y′3 : y

′
4] are the coordinates of P

4×P2×P1. Taking
the strict transform of Y and then taking the quotient by G, we obtain a local description
of the variety BlC

∐
L(Y )/G. On the other hand, the blowup BlC1(P

2 × P1) is cut out by the
equation

y0(x0q0(x3, x4) + x1q1(x3, x4) + x2q2(x3, x4)) + y1g(x0, x1, x2) = 0

in P2×P1×P1 with coordinates [x0 : x1 : x2]×[x3 : x4]×[y0 : y1]. Now letting x′0 = y′0 = y′3 = 1,
we obtain the following local equation of BlC

∐
L(Y )/G in A4

(y′1,y
′

2,y
′

4,x
′′

3 )
with x′′3 := x′23

x′′3(q0(1, y
′
4) + x′1q1(1, y

′
4) + x′2q2(1, y

′
4)) + g(1, x′1, x

′
2) = 0.



CATEGORICAL TORELLI THEOREM VIA EQUIVARIANT KUZNETSOV COMPONENT 13

Taking x0 = x3 = y1 = 1, the affine variety BlC1(P
2 × P1)|x0=x3=y1=1 is given by

V (y0(q0(1, x4) + x1q1(1, x4) + x2q2(1, x4)) + g(1, x1, x2)) ⊂ A4
(x1,x2,x4,y0)

.

By mapping

x′′3 −→ y0; y′1 −→ x1;

y′2 −→ x2; y′4 −→ x4,

we get an isomorphism between the corresponding affine subvarieties. In a similar manner,
we construct isomorphisms between other pairs of open affine varieties and verify that these
local isomorphisms can be glued together. The proposition then follows. �

Observe that the curve C1 ⊂ P2 × P1 admits a double covering map p1 : C1 → C to the
smooth cubic curve C in the fixed locus Y τ = C

∐
L (project P2 × P1 to P2 and compare the

equations of C1 in Proposition 3.6 and the equation of C in Section 2 or [CMMZ23, §2.2]).

The following proposition shows that C1 is isomorphic to C̃ which is also a double cover of
the cubic curve C ⊂ Y τ .

Proposition 3.7. The double cover p1 : C1 → C and the restriction of the discriminant double

cover π : C̃ → C obtained by projecting Y from the pointwise fixed line L are isomorphic.

Proof. Using the equations of C1 in Proposition 3.6, it is not hard to show that the double
covering map p1 : C1 → C is branched at the six intersection points C ∩ Q of the cubic
component C and the quadratic component Q of the discriminant curve for the projection of
Y from the pointwise fixed line L. As a result, the curve C1 is of (arithmetic) genus 4. From
singular Riemann-Hurwitz [GL96, Equation 1.2], we deduce that the curve C1 is smooth. As

discussed in Section 2 (see also [CMMZ23, §2.2]), the double cover C̃ → C to the cubic curve
C is also branched at the six intersection points C ∩ Q. Moreover, again by Proposition 3.6
the fibers of p1 : C1 → C correspond to the τ -invariant lines of Y which are not pointwise
fixed (more precisely, let x ∈ C then the plane 〈L, x〉 ∩Y = L∪ l∪ l′, and p−1

1 (x) corresponds
to the τ -invariant lines l and l′). By the construction of the restricted discriminant double

cover π : C̃ → C, we obtain a bijective morphism from C̃ to C1 which is an isomorphism. �

We conclude this section by completing the proof of Theorem 3.1.

Proof of Theorem 3.1. By Proposition 3.6, Proposition 3.7 and [BKR01, Theorem 1.1], we
have Db

Z2
(Y ) ∼= Db(Z) where Z ∼= BlC̃(P

2×P1). The result then follows from Orlov’s blow-up
formula [BHKV16, Theorem 3.4]. �

4. Intermediate Jacobians of the equivariant Kuznetsov components

In this section, we generalize the construction of the abstract intermediate Jacobian in
[Per22] for a smooth proper dg category. We then adapt this generalized construction to the
equivariant Kuznetsov component KuZ2(Y ) of a non-Eckardt cubic threefold (Y, τ), and give
the first proof of Theorem 0.1.
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4.1. Intermediate Jacobians of admissible subcategories. Let X be a smooth projec-
tive variety. In this subsection, we very briefly review Perry’s construction of the intermediate
Jacobian of an admissible subcategory A of Db(X). Let HH•(A) denote the Hochschild homol-

ogy of A, and let HP•(A) denote its periodic cyclic homology. Also denoted by Ktop
• (A) the

topological K-group of A defined by Blanc in [Bla16, §4.1]. Note that periodic cyclic homology
and topological K-theory are both 2-periodic.

Definition 4.1 ([Per22, Definition 5.24]). Let A be an admissible subcategory of Db(X).
Consider the commutative diagram

Ktop
1 (A) HP1(A)

⊕
nHH2n−1(A)

HH1(A)⊕HH3(A)⊕ · · ·

chtop
1

π′

∼=

π

with π the natural projection and π′ the composition. The intermediate Jacobian of A is the
complex torus defined as follows

J(A) = (HH1(A)⊕HH3(A)⊕ · · · )/Γ

where Γ denotes the image of π′ and is a lattice.

Lemma 4.2. ([JLLZ23, Lemma 3.9]) Let X be a Fano threefold. Assume that the derived
category Db(X) admits a semi-orthogonal decomposition Db(X) = 〈Ku(X), E1, E2, · · · , En〉
where E1, E2, . . . , En is an exceptional collection. Then we have J(Ku(X)) ∼= J(X).

4.2. Intermediate Jacobians of smooth proper dg categories. Let A be a smooth
proper dg category. Since the non-commutative Hodge to de Rham spectral sequence of A
degenerates (see for instance [Kal08, Theorem 5.5] and [Kal17, Theorem 5.4]), we have the
following Hodge filtration (where HN•(A) and HP•(A) denote the negative cyclic homology
and the periodic cyclic homology of A respectively)

· · · ⊂ HN−3(A) ⊂ HN−1(A) ⊂ HN1(A) ⊂ · · · ⊂ HP1(A).

In particular, there exists a short exact sequence

0 → HN2i−1(A) → HN2i+1(A) → HH2i+1(A) → 0

for each i ∈ Z.

Definition 4.3. Let A be a smooth proper dg category. We define the intermediate Jacobian
J(A) of A to be the following group

J(A) =
HP1(A)

HN−1(A) + im(Ktop
1 (A))

.

Remark 4.4. If A is an admissible subcategory, then the group J(A) is a complex torus
which is isomorphic to the intermediate Jacobian of A introduced in Definition 4.1.

We also have the following lemma whose proof is straightforward.

Lemma 4.5. Let A = 〈A1,A2〉 be a semi-orthogonal decomposition of a pre-triangulated dg
category A. Then it holds that

J(A) ∼= J(A1)⊕ J(A2).
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Furthermore, if A, A1 and A2 are all admissible subcategories, then the above isomorphism
is an isomorphism of complex tori.

4.3. Intermediate Jacobians of the equivariant Kuznetsov components. Let (Y, τ)
be a cubic threefold with a non-Eckardt type involution. Applying the intermediate Jacobian
construction introduced in Definition 4.3 to the equivariant Kuznetsov component KuZ2(Y )
(see Lemma 1.4) which is a smooth dg category, we obtain the following proposition.

Proposition 4.6. Let C̃ be the double cover of the cubic curve C ⊂ Y τ as described in
Section 2 (see also [CMMZ23, Proposition 2.5]). Then we have an isomorphism of principally
polarized abelian varieties

J(KuZ2(Y )) ∼= J(C̃).

Proof. By Lemma 1.4, the invariant derived category Db
Z2
(Y ) admits the following semi-

orthogonal decomposition

Db
Z2
(Y ) = 〈KuZ2(Y ),OY ,OY ⊗χ1,OY (1),OY (1)⊗ χ1〉.

By Theorem 3.1, there exists another semi-orthogonal decomposition

Db
Z2
(Y ) = Db(Z) = 〈Db(C̃), Eij〉1≤i≤3,1≤j≤2

where Eij with 1 ≤ i ≤ 3, 1 ≤ j ≤ 2 is an exceptional collection of line bundles on P2 × P1.
We thus get

Ktop
1 (KuZ2(Y )) ∼= Ktop

1 (Db
Z2
(Y )) ∼= Ktop

1 (Db(C̃) ∼= H1(C̃,Z)

which is compatible with the Euler parings (cf. [Per22, Lemma 5.2]). Note that since the Euler

paring on Ktop
1 (Db(C̃)) ∼= H1(C) coincides with the cohomology paring, the Euler paring on

Ktop
1 (KuZ2(Y )) is anti-symmetric. Now consider the following isomorphisms of the Hodge

filtration on the dg categories.

HN−1(KuZ2(Y ))
→֒ //

∼=
��

HP1(KuZ2(Y )

∼=
��

HN−1(D
b(C̃))

→֒ //

∼=
��

HP1(D
b(C̃))

∼=
��

H0,1(C̃)
→֒ // H1(C̃)

The weight 1 Hodge structure on H1(C̃,Z) induces a Hodge structure on Ktop
1 (KuZ2(Y )) of

weight 1. Namely,

Ktop
1 (KuZ2(Y ))⊗ C ∼= HP1(KuZ2(Y )) ∼= HN−1(KuZ2(Y ))⊕HN−1(KuZ2(Y )).

This shows that J(KuZ2(Y )) constructed in Definition 4.3 is a complex torus. Furthermore, the

alternating Euler paring on Ktop
1 (KuZ2(Y )) induces a principal polarization on J(KuZ2(Y ))

making it a principally polarized abelian variety. Thus, we obtain the following isomorphism
of principally polarized abelian varieties

J(KuZ2(Y )) ∼= J(Db
Z2
(Y )) ∼= J(Db(C̃)) ∼= J(C̃).

�

We are now ready to give the first proof or Theorem 0.1.



16 SEBASTIAN CASALAINA-MARTIN, XIANYU HU, XUN LIN, SHIZHUO ZHANG AND ZHENG ZHANG

Theorem 4.7 (=Theorem 0.1). Let (Y, τ) and (Y ′, τ ′) be general cubic threefolds with a non-
Eckardt type involution. Assume that there is a Fourier-Mukai type equivalence Φ : KuZ2(Y ) ≃
KuZ2(Y

′) between the equivariant Kuznetsov components. Then (Y, τ) ∼= (Y ′, τ ′).

Proof. By the assumption, there is an Fourier-Mukai equivalence Φ : KuZ2(Y ) ≃ KuZ2(Y
′).

Applying the construction in Definition 4.3, we obtain an isomorphism of principally polarized
abelian varieties

J(KuZ2(Y )) ∼= J(KuZ2(Y
′)).

Let C̃ (respectively, C̃ ′) be the double cover of the cubic component C ⊂ Y τ (respectively

C ′ ⊂ (Y ′)τ
′

) of the fixed locus Y τ (respectively, (Y ′)τ
′

). By Proposition 4.6, we get the
following isomorphism of principally polarized abelian varieties

J(C̃) ∼= J(C̃ ′)

which further implies that C̃ ∼= C̃ ′. Since (Y, τ) and (Y ′, τ ′) are general non-Eckardt cubic

threefolds, the restricted discriminant double covers C̃ → C and C̃ ′ → C ′, as well as the genus

4 bielliptic curves C̃ and C̃ ′, are also general (cf. [CMMZ23, Theorem 3.2]). By the results
in [CDC05], a general genus 4 bielliptic curve admits a unique bielliptic structure (which can
also be proved using a degeneration argument; for instance one considers an admissible double
covering map from the union of three transverse elliptic curves E0 ∪ E1 ∪ E2 with different,
general j-invariants to the union of three transverse lines L0 ∪ L1 ∪ L2 in P2). As a result,

one deduces that C̃ → C is isomorphic to C̃ ′ → C ′; this, together with [CMMZ23, Theorem

2.5], implies that the invariant parts of the intermediate Jacobians J(Y )τ and J(Y ′)τ
′

are
isomorphic. Using [CMMZ23, Theorem 3.1] we conclude that (Y, τ) ∼= (Y ′, τ ′).

�

5. Bridgeland moduli spaces on the equivariant Kuznetsov components

Let (Y, τ) be a cubic threefold with a non-Eckardt type involution. In this section, we
reconstruct the fixed locus F (Y )τ of the Fano surface of lines as a Bridgeland moduli space
of stable objects in KuZ2(Y ). As a consequence, we give the second proof of Theorem 0.1.

We refer the reader to [PPZ23, Section 4.3] for a review of the general theory of stability
conditions on equivariant categories. In our situation, let σ be a Serre-invariant stability
condition on the Kuznetsov component Ku(Y ). Since σ is fixed by the non-Eckardt type
involution τ , it induces a stability condition σZ2 on the equivariant Kuznetsov component
KuZ2(Y ). Indeed, by [PY22, Corollary 5.5] and [JLLZ24, Theorem 4.20] there exists an element

g̃ ∈ G̃L
+
(2,R) such that σ = σ0 · g̃ where σ0 is a tilted stability condition which is clearly

fixed by τ . It then follows that τ(σ) = τ(σ0 · g̃) = σ0 · g̃ = σ, and hence σ is a Z2-fixed
stability condition in the sense of [PPZ23, Section 4.3] and induces a stability condition σZ2

on KuZ2(Y ). In other words, we have proved the following lemma.

Lemma 5.1. Let KuZ2(Y ) be the equivariant category of the Kuznetsov component Ku(Y ) for
a non-Eckardt cubic threefold (Y, τ) where Z2 = 〈1, τ〉. Then there exists a stability condition
σZ2 on KuZ2(Y ).

Remark 5.2. Besides Lemma 1.4, one could also apply [BO23, Corollary 4.10] to show
that there exists a Z2-action on Ku(Y ). Specifically, on one side, the Serre-invariant stability



CATEGORICAL TORELLI THEOREM VIA EQUIVARIANT KUZNETSOV COMPONENT 17

condition σ is fixed by τ , and by [LPZ23, Theorem 1.1]1 one gets Ku(Y ) ≃ Db(A) where A is
the heart of σ. On the other side, there exists a τ -invariant simple object Il (where l ∈ F (Y )τ

is a τ -invariant line and Il denotes the ideal sheaf).

Let us recall the following theorem which will be useful.

Theorem 5.3. ([Pol07, Proposition 2.23], [MMS09, Theorem 1.1], [PPZ23, Theorem 4.8])
In the above setup, let σ := (A, Z) be a Z2-fixed stability condition with respect to v. Define

• vZ2 = v ◦ Forg∗ : K0(KuZ2(Y )) → N (Ku(Y ));
• AZ2 = {E ∈ KuZ2(Y ) | Forg(E) ∈ A};
• ZZ2 = Z ◦ vZ2

where Forg∗ is the map on the Grothendieck groups induced by the forgetful functor. Then the
pair σZ2 = (AZ2 , ZZ2) is a stability condition on KuZ2(Y ) with respect to vZ2 . Moreover, for
an object E ∈ KuZ2(Y ) the following statements hold.

(1) The object E is σZ2-semistable if and only if Forg(E) is σ-semistable.
(2) If E is σZ2-stable, then Forg(E) is σ-polystable.
(3) If Forg(E) is σ-stable, then E is σZ2-stable.

Let σ be a Serre-invariant stability condition on Ku(Y ). We now study the Bridgeland mod-
uli space MσZ2 (KuZ2(Y ),v) of σZ2-stable objects in the equivariant Kuznetsov component
KuZ2(Y ).

Proposition 5.4. Let σZ2 be the stability condition on KuZ2(Y ) induced by a Serre-invariant
stability condition σ on Ku(Y ). Then there is an isomorphism MσZ2 (KuZ2(Y ),v) ∼= F (Y )τ ,
where v = [Il] denotes the class of the ideal sheaf of a (τ -invariant) line l ⊂ Y .

Proof. First we show that the ideal sheaf Il ∈ KuZ2(Y ) where l is a τ -invariant line in Y (as
discussed in Section 2, either l is the pointwise fixed line L or it is parametrized by the double

cover C̃ of the cubic curve C ⊂ Y τ ). Because τ∗(Il) ∼= Il, we have Il ∈ Db
Z2
(Y ). By Lemma

1.4, there exists a semi-orthogonal decomposition for Db
Z2
(Y ):

Db
Z2
(Y ) = 〈KuZ2(Y ),OY ,OY ⊗χ1,OY (1),OY (1)⊗ χ1〉.

Since Il ∈ Ku(Y ), it holds that Il ∈ KuZ2(Y ). From [PY22, Lemma 5.13] we deduce that
Forg(Il) = Il is σ-stable in Ku(Y ). By Theorem 5.3, Il is σZ2-stable. Now let us show that
any σZ2-stable object E in KuZ2(Y ) of class v is isomorphic to Il where l is a τ -invariant
line. It follows from Theorem 5.3 that Forg(E) is σ-semistable in Ku(Y ) of class v. Since v is
primitive, it is automatically σ-stable. By [PY22, Lemma 5.13], we have Forg(E) ∼= Il. Noting
τ∗(E) ∼= E, we then conclude that E ∼= Il with l ∈ F (Y )τ . �

In the remaining part of the section, we give the second proof of the main result Theorem
0.1 using Proposition 5.4. We will also need the following results.

Lemma 5.5. Let (Y, τ) and (Y ′, τ ′) be cubic threefolds with a non-Eckardt type involution.
Suppose that Φ : KuZ2(Y ) ≃ KuZ2(Y

′) is an equivalence. Denote by AZ2 (respectively, A′Z2)
the heart of the stability condition σZ2 (respectively, (σ′)Z2). Let E ∈ AZ2 be a σZ2-stable
object of class v = vZ2(E). Then Φ(E) ∈ A′Z2 and it is (σ′)Z2-stable.

1[LPZ23, Theorem 1.1] was not stated for cubic threefolds; however, it holds for cubic threefolds. Indeed,
the main ingredient for the proof is the non-emptiness of the moduli space of stable objects in the Kuznetsov
component which has been verified in [LLPZ24].



18 SEBASTIAN CASALAINA-MARTIN, XIANYU HU, XUN LIN, SHIZHUO ZHANG AND ZHENG ZHANG

Proof. WLOG, we may assume that vZ2(Φ(E)) = v. Indeed, let E be a σZ2-stable object of
class v = vZ2(E) = 1 − l. This implies that v(Forg(E)) = v, and hence by Proposition 5.4
we get Forg(E) ∼= E ∼= Il with l ∈ F (Y )τ . Now suppose that vZ2(Φ(E)) = vZ2(Φ(Il)) 6= v.
This means that v(Forg(Φ(Il))) 6= v but v(Sm

Ku(Y )(Forg(Φ(Il)))) = v for some m ∈ Z. Then it

holds that vZ2(Sm
KuZ2

(Y ) ◦Φ(Il)) = v where SKuZ2
(Y ) is the induced Serre functor on KuZ2(Y )

(this functor exists since τ∗ : Ku(Y ) → Ku(Y ) is compatible with SKu(Y )). Next let us verify

that Φ(E) ∈ A′Z2 . By the definition of the heart A′Z2 (see Theorem 5.3), it suffices to show
that Φ(E) ∈ KuZ2(Y

′) and Forg(Φ(E)) ∈ A′. Note that Forg(Φ(E)) ∈ Ku(Y ′). Since Forg is
a fully faithful functor and Φ is an equivalence, we have

Ext1(Forg(Φ(E)),Forg(Φ(E))) ∼= Ext1(Φ(E),Φ(E)) ∼= Ext1(E,E) ∼= Ext1(Il, Il) = C2.

As the homological dimension of the heart A′ is 2, the same argument as that of [APR22,
Lemma 6.6] allows us to show that Forg(Φ(E)) ∈ A′. Finally we show that Φ(E) is σ′Z2-
stable. By Theorem 5.3 we only need to verify that Forg(Φ(E)) ∈ A′ is σ′-stable. Again we
have Ext1(Forg(Φ(E)),Forg(Φ(E))) = C2; Arguing as in the proof of [APR22, Lemma 6.6],
we get that Forg(Φ(E)) is σ′-stable which completes the proof. �

Applying Lemma 5.5 to the equivalence Φ and its inverse, we obtain the following propo-
sition.

Proposition 5.6. Notation as in Lemma 5.5. The equivalence Φ : KuZ2(Y ) ≃ KuZ2(Y
′)

induces a bijection map between the closed points of the moduli spaces MσZ2 (KuZ2(Y ),v) and
Mσ′Z2 (KuZ2(Y

′),v).

If we further assume that Φ : KuZ2(Y ) ≃ KuZ2(Y
′) is a Fourier-Mukai type equivalence,

then Φ induces an isomorphism between the Bridgeland moduli spaces.

Proposition 5.7. Notation as in Lemma 5.5. Assume in addition that Φ : KuZ2(Y ) ≃
KuZ2(Y

′) is a Fourier-Mukai type equivalence. Then Φ induces an isomorphism

φ : MσZ2 (KuZ2(Y ),v) ∼= Mσ′Z2 (KuZ2(Y
′),v).

Proof. As argued in the proof of Lemma 5.5, we assume that vZ2(Φ(E)) = v. Since Φ is a
Fourier-Mukai type equivalence and Φ induces the bijection of closed points between above
two moduli spaces, the same argument as that of [GLZ22, Theorem 8.3] allows us to obtain
the required isomorphism. �

Now we are ready to give the second proof of Theorem 0.1.

Theorem 5.8 (=Theorem 0.1). Let (Y, τ) and (Y ′, τ ′) be general cubic threefolds with a non-
Eckardt type involution. Assume that there is a Fourier-Mukai type equivalence Φ : KuZ2(Y ) ≃
KuZ2(Y

′) between the equivariant Kuznetsov components. Then (Y, τ) ∼= (Y ′, τ ′).

Proof. By Proposition 5.7, we have the isomorphism

φ : MσZ2 (KuZ2(Y ),v) ∼= Mσ′Z2 (KuZ2(Y
′),v).

Using Theorem 5.4, we get the isomorphism

φ : F (Y )τ → F (Y ′)τ
′

.

As recalled in Section 2 (see also [CMMZ23, §1.3]), the fixed locus F (Y )τ of Fano surface
of lines in Y consists of two connected components: a point corresponding to the pointwise
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fixed line L ⊂ Y and a smooth curve C̃ of genus 4 which is the double cover of the cubic
curve C ⊂ Y τ and parameterizes other τ -invariant lines l ⊂ Y . Similar statements hold for
F (Y ′)τ

′

. It can then be readily shown that the isomorphism φ : F (Y )τ → F (Y ′)τ
′

gives rise

to an isomorphism between C̃ and C̃ ′. Arguing as in the proof of Theorem 4.7, we conclude
that (Y, τ) ∼= (Y ′, τ ′). �

6. Chow theory of the equivariant Kuznetsov components

In this section let us discuss the third proof of Theorem 0.1 for very general cubic threefolds
admitting a non-Eckardt type involution. Specifically, with notation remaining the same as in
Theorem 0.1, we will show that the Fourier-Mukai equivalence Φ of the equivariant Kuznetsov
components induces an isomorphism between the invariant parts A2

Z2,Q
(Y ) and A2

Z2,Q
(Y ′) of

the groups of algebraically trivial cycles. The proof can then be completed using this result
and the Abel–Jacobi maps.

We begin by giving the general setup of Fourier-Mukai functors in the equivariant setting
(which will be used in the remaining part of this section). Let G and H be finite groups.
Suppose that X is a smooth variety with a G-action and let Y be a smooth variety with an
action by H. Let us also equip Y with the trivial G-action so that Y admits an action by
G×H.

Definition 6.1. (Fourier-Mukai functors) Let P ∈ Db
G×H(X×Y ). Denote the projections by

p1 and p2.

X × Y
p1

{{✇✇
✇✇
✇✇
✇✇
✇

p2

##●
●●

●●
●●

●●

X Y

The Fourier-Mukai functor associated with P is defined as

ΦP : Db
G(X) −→ Db

H(Y ), E 7→ (Rp2(Lp
∗
1(E)⊗L P ))RG

where RG denotes the derived functor of taking invariant sections (·)G.

Definition 6.2. Let A (respectively, B) be an admissible subcategory of Db
G(X) (respectively,

Db
H(Y )). A functor Φ : A −→ B is of Fourier-Mukai type if there exists P ∈ Db

G×H(X × Y )
such that the following diagram is commutative.

Db
G(X)

pr

��

ΦP // Db
H(Y )

A
Φ // B

OO

For the definitions of the derived functors IndG×G
G and ResG×G

G used below, we refer the
reader to [BFK14, Section 2].

Lemma 6.3. The Fourier-Mukai functor with kernel IndG×G
G ∆∗OX ∈ Db

G×G(X ×X) is the

identity functor on Db
G(X).
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Proof. Let E ∈ Db
G(X), then it holds that

(Rp∗,2(p
∗
1E ⊗ IndG×G

G ∆∗OX))RG ∼=(p2,∗Ind
G×G
G (ResG⊗G

G p∗1E ⊗∆∗OX))RG

∼=(p∗,2Ind
G×G
G ∆∗(∆

∗ResG×G
G p∗1E ⊗OX))RG

∼=(p∗,2Ind
G×G
G ∆∗E)RG

∼=E.

Specifically, the first isomorphism follows from the projection formula for IndG×G
G and ResG×G

G
(e.g., [BFK14, Lem. 2.16 (c)]). The second isomorphism follows from the projection formula

for ∆∗ and ∆∗. Since (p∗,2Ind
G×G
G ∆∗)

RG is the right adjoint to ∆∗ResG×G
G p∗2

∼= Id, we get

(p∗,2Ind
G×G
G ∆∗)

RG ∼= Id.

The last isomorphism then follows. �

Suppose that there is a Fourier–Mukai functor Φ : A → B between the admissible sub-
categories of Db

G(X) and Db
H(Y ). Then Φ induces maps between the invariant Grothendieck

groups, the invariant Chow groups and the invariant parts of the groups of algebraically trivial
cycles (with coefficients in Q). In other words, we have the following commutative diagram.
(Note that besides taking Mukai vectors ν(−) one could also Chern classes and Chern charac-
ters (as in [KP23, §8]) which also give maps KG(X) → CH•

G,Q(X) and KG(Y ) → CH•
G,Q(Y ).)

A //

Φ

((
Db

G(X)

[−]

��

ΦP // Db
H(Y ) //

[−]

��

B

KG(X)
Φ[P ] //

ν(−)

��

KH(Y )

ν(−)

��
CH•

G,Q(X)
Φν(P ) // CH•

H,Q(Y )

A•
G,Q(X)

Φν(P ) //
?�

OO

A•
H,Q(Y )

?�

OO

In the case when X and Y are rationally connected threefolds, and A and B are compo-
nents of semi-orthogonal decompositions, the techniques in [KP23, §8] allows us to prove the
theorem.

Theorem 6.4. Let X and Y be smooth projective rationally connected threefolds, both with
the action of a finite group G. Suppose that there are semi-orthogonal decompositions

Db(X) = 〈A,⊥A〉

Db(Y ) = 〈B,⊥B〉

such that ⊥A and ⊥B are generated by exceptional collections. If there exists a Fourier-Mukai
type equivalence

Φ : AG
∼=

−→ BG
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between the equivariant components, then we have an isomorphism between the invariant parts
of the groups of algebraically trivial cycles with rational coefficients

A2
G,Q(X)

c3(P )
2

11 A
2
G,Q(Y )

c3(P
′)

2qq
.

Consequently, there is an isogeny

JG(X) → JG(Y )

between the G-invariant parts of the intermediate Jacobians.

Proof. Let P be the kernel of the Fourier-Mukai type equivalence Φ. We first show that ΦP de-
fines an isomorphism of the groups of algebraically trivial cycles Φv(P ) : A

∗
G,Q(X) → A∗

G,Q(Y )

where v(P ) := ch(P )
√

td(X × Y ). Since X and Y are rationally connected threefolds, we

have Pic0 = 0 and hence the only non-trivial part of A∗
Q is A2

Q. Write j : AG →֒ Db
G(X) as the

embedding functor whose left adjoint pr is the projection functor. Let Φ−1 denote the inverse
of Φ. Then ΦP

′ = j ◦Φ−1 ◦pr is the left adjoint of ΦP where P ′ = (P T )∨⊗p∗2ωY [3]. Similar to

[Căl03, Proposition 5.1] and [CW10, §3], we have a natural morphism P ′◦P → IndG×G
G ∆∗OX

corresponding to the natural transformation ΦP ′ ◦ΦP =⇒ IdDb
G
(X). There then exists a tri-

angle

P ′ ◦ P → IndG×G
G ∆∗OX → Q

where Q is generated by Ei ⊠Ej with Ei and Ej exceptional objects (see also Section 7.1.1).
It follows that

Φv(P ′) ◦ Φv(P ) = Φv(P ′◦P ) = ΦIndG×G
G

∆∗OX
− Φv(Q).

According to [KP23, Lemma 8.2(iii), Lemma 8.3(iii)], we have Φv(•) = Φch3(•) = Φ c3(•)
2

. From

[KP23, Lemma 8.2(iii)] we deduce that Φv(Q) = 0. As a result, c3(P ′)
2 ◦ c3(P )

2 is an isomorphism

between A2
G,Q(X) and A2

G,Q(Y ). A similar argument for the natural transformation ΦP ◦

ΦP ′ =⇒ IdDb
G
(Y ) shows that c3(P )

2 ◦ c3(P ′)
2 is an isomorphism from A2

G,Q(Y ) to A2
G,Q(X).

Thus, we obtain the following isomorphisms

A2
G,Q(X)

c3(P )
2

11 A
2
G,Q(Y )

c3(P
′)

2qq
.

In fact, one can see in the argument above that we only needed to invert 2, and so the entire
discussion above holds with Z[1/2] coefficients, not just with Q coefficients.

Next, let us show that there is an isogeny JG(X) → JG(Y ). Note that we have the following
commutative diagram.

(5) A2
G(X) //

����✤
✤

✤
A2(X)

����
JG(X) // J(X)
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where the horizontal morphisms are injective. The composition A2
G(X) →֒ A2(X) ։ J(X)

of the inclusion map and the Abel–Jacobi map lands inside the invariant part JG(X) of
intermediate Jacobian, as the Abel–Jacobi map is equivariant with respect to the G-action.
Note that the horizontal inclusions in (5) split up to inverting |G|, and this therefore gives
the vertical surjection on the left, as both the source and target are divisible groups.

Any G-invariant correspondence induces a morphism A2(X) → A2(Y ) that preserves the
invariant parts. We get the diagram below by the universal property of the algebraic rep-
resentative (recall that the intermediate Jacobian for codimension-2 cycles is the algebraic
representative).

A2(X) //

����

A2(Y )

����
J(X) // J(Y )

Now we can use (5) and any equivariant correspondence to obtain the following commutative
diagram.

A2
G(X) � u

((PP
PP

PP

����

// A2
G(Y )

����

I i

ww♥♥♥
♥♥
♥

A2(X)

����

// A2(Y )

����
J(X) // J(Y )

JG(X)
) 	

66♠♠♠♠♠♠♠
//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ JG(Y )
5 U

hhPPPPPPP

This is all functorial, and takes the invariant parts to the invariant parts, giving rise to the
dashed arrow in the diagram above.

Tensoring the above diagram by Z[1/2], and then applying this to the correspondences c3(P )
2

and c3(P )′

2 inducing the isomorphism of the groups A2
G,Z[1/2](X)

∼=
→ A2

G,Z[1/2](Y ), together with

a diagram chase using the surjectivity of the vertical arrows on the outside of the diagram
above, gives the isomorphism of the G-invariant parts of the intermediate Jacobians, in the
category of Z[1/2]-Hodge structures (i.e., up to isogenies of orders a power of 2). �

Remark 6.5. The proof of the theorem actually shows that the kernel of the isogeny of
JG(X) and JG(Y ) can have the order of divisible at most by a power of 2.

Remark 6.6. In Theorem 6.4, if G is the trivial group, then the theorem only implies that
J(X) is isogenous to J(Y ). However, in this case, one can show that J(X) is isomorphic to

J(Y ) using topological K-groups Ktop
1 .

We have the following result to the case when (Y, τ) and (Y ′, τ ′) are cubic threefolds with
a non-Eckardt type involution.

Corollary 6.7. Let (Y, τ) and (Y ′, τ ′) be cubic threefolds with non-Eckardt type involutions.
If there exists a Fourier-Mukai type equivalence

Φ : KuZ2(Y )
∼=
→ KuZ2(Y

′)
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between the equivariant Kuznetsov components, then we have an isomorphism

A2
Z2,Q

(Y )
c3(P )

2

11 A
2
Z2,Q

(Y ′)

c3(P
′)

2qq
.

Furthermore, the invariant parts J(Y )τ and J(Y ′)τ of the intermediate Jacobians of cubic
threefolds Y and Y ′ are isogenous.

Remark 6.8. Note that up to this point in this section, all the results stated so far hold over
any field, after one replaces intermediate Jacobians with algebraic representatives. Over non-
closed fields, one only needs to require that X and Y be geometrically rationally connected.
See [ACMV19] for similar arguments over perfect fields, and [ACMV23], which explains how
to remove the hypothesis that the field is perfect.

Let us conclude this section by giving the third proof of a slightly weaker version of Theorem
0.1 using Theorem 6.4 and Corollary 6.7.

Theorem 6.9 (Theorem 0.1 for very general non-Eckardt cubic threefolds). Let (Y, τ) and
(Y ′, τ ′) be very general cubic threefolds with a non-Eckardt type involution. Assume that
there is a Fourier-Mukai type equivalence Φ : KuZ2(Y ) ≃ KuZ2(Y

′) between the equivari-
ant Kuznetsov components. Then (Y, τ) ∼= (Y ′, τ ′).

Proof. By Corollary 6.7, we have A2
Z2,Q

(Y ) ∼= A2
Z2,Q

(Y ′). Composing with the Abel–Jacobi

maps, we get J(Y )τ ∼= J(Y ′)τ up to isogeny. By [CMMZ23, Theorem 3.1, Theorem 3.4],

J(Y )τ and J(Y ′)τ
′

are very general members in the moduli space A
(1,2,2)
3 . It then follows

that J(Y )τ ∼= J(Y ′)τ
′

(taking abelian varieties up to isogeny of a given degree corresponds to
taking the quotient of the Siegel upper half space by a larger arithmetic group of finite index;
taking a limit over all such quotients, one gets the assertion). By [CMMZ23, Theorem 3.1] we
obtain that (Y, τ) ∼= (Y ′, τ ′). �

7. An equivariant infinitesimal categorical Torelli theorem

In this section, we first prove Theorem 0.3 on the compatibility of the algebra structures of
the Hochschild cohomology and of the module structures of the Hochschild homology over the
Hochschild cohomology (see Section 7.1). We then show that the action of an automorphism
of a smooth projective variety on Hochschild cohomology is compatible with the twisted HKR
isomorphism (see Section 7.2) which generalizes a result in [MS09]. Putting these together, we
give a proof of Theorem 0.4 (which can be viewed as an equivariant version of the infinitesimal
categorical Torelli theorem) in Section 7.3. Most results in this section hold in a more general
setting (not just for cubic threefolds with a non-Eckardt type involution); we hope they are
of independent interest.

7.1. Compatibility of algebra and module structures on Hochschild (co)homology.

7.1.1. Functors of Fourier-Mukai type. In this subsection, we define Fourier-Mukai type func-
tors between semi-orthogonal components and discuss some of the basic properties from the
kernel perspective; these partially generalize some of the results in [HR19b]. Specifically, let
X be a smooth projective variety. Suppose that there is a semi-orthogonal decomposition

Db(X) =
〈
A1,A2, · · · ,Am

〉
.
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Then Db(X ×X) admits a semi-orthogonal decomposition

Db(X ×X) =
〈
A1X , · · · ,AmX

〉

with AiX = Ai ⊠Db(X). Let us write j′i as the embedding AiX →֒ Db(X ×X) and write j′∗i
as the associated projection functor. Note that j′∗1 is the left adjoint of j′1. Let

Bi =
⊥
〈
A1, · · · ,Ai−1,Ai+1, · · · ,Am

〉
.

It holds that B∨
i = RHom(Bi,OX). There is also a semi-orthogonal decomposition

Db(X) =
〈
B∨
1 ,B

∨
2 , · · · ,B

∨
m

〉
.

Thus we obtain the following semi-orthogonal decomposition of Db(X ×X)

Db(X ×X) =
〈
A1 ⊠ B∨

1 , · · · ,A1 ⊠B∨
m,A2 ⊠ B∨

1 , · · · ,A2 ⊠B∨
m, · · · ,Am ⊠ B∨

1 , · · · ,Am ⊠ B∨
m

〉

where Ai⊠B∨
j denotes the minimal sub-triangulated category containing objects Ei⊠Fj with

Ei ∈ Ai and Fj ∈ B∨
j . Write ji : Ai⊠B∨

i →֒ Db(X×X) and let j∗i be the projection functor to

Ai⊠B∨
i ; note that j

∗
1 is the left adjoint of j1. For the later use, we also define Pi := j′∗i ∆∗OX .

According to [Kuz09, Proposition 3.8], one has Pi
∼= j∗∆∗OX .

Lemma 7.1. Notation as above. It holds that Ai ⊠ B∨
j = AiX ∩X B∨

j for 1 ≤ i, j ≤ m.

Proof. On one hand, it is clear that Ai⊠B∨
j ⊂ AiX ∩X B∨

j . On the other hand, for any object

E ∈ As ⊠ B∨
t and F ∈ AiX ∩X B∨

j , we have Hom(F,E) = 0 whenever t < j or s < i:

Hom(AiX ∩X B∨
j ,As ⊠ B∨

t ) = 0, t < j or s < i.

Similarly, we also have

Hom(As ⊠ B∨
t ,AiX ∩X B∨

j ) = 0, t > j or s > i.

Since there exists a semi-orthogonal decomposition

Db(X ×X) =
〈
A1 ⊠B∨

1 , · · · ,A1 ⊠B∨
m,A2 ⊠B∨

1 , · · · ,A2 ⊠B∨
m, · · · ,Am ⊠B∨

1 , · · · ,Am⊠B∨
m

〉
,

it holds that

AiX ∩X B∨
j ⊂ Ai ⊠ B∨

j .

Thus Ai ⊠ B∨
j = AiX ∩X B∨

j . �

Now consider the following diagram.

X ×X
p2

##●
●●

●●
●●

●●
p1

{{✇✇
✇✇
✇✇
✇✇
✇

X X

For any object E ∈ Db(X × X), the Fourier-Mukai transform with kernel E is given by
ΦE(•) = p1∗(E ⊗ p∗2(•)). Let us denote by Ii : Ai →֒ Db(X) the embedding functor from the
semi-orthogonal component Ai to Db(X) and use I∗i : Db(X) → Ai to denote the projection
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functor. A functor Φ : Ai → Ai is said to be of Fourier-Mukai type if there exists E ∈
Db(X ×X) such that the following diagram is commutative.

Db(X)

I∗i
��

ΦE // Db(X)

Ai
Φ // Ai

Ii

OO

Proposition 7.2. The following statements are equivalent.

• The Fourier-Mukai functor ΦE factors through a semi-orthogonal component Ai.

Db(X)

I∗i
��

ΦE // Db(X)

Ai

Φ′

E // Ai

Ii

OO

• The kernel E ∈ Ai ⊠ B∨
i .

Proof. Firstly, the condition that the functor ΦE maps Db(X) to Ai is equivalent to the
following:

Hom(p∗1Aj ⊠Db(X), E) ∼= Hom(Aj, p1∗(E ⊗ p∗2D
b(X))) = 0, j > i

Hom(E, p!1As ⊠Db(X)) ∼= Hom(p1∗(E ⊗ p∗2D
b(X)),As) = 0, s < i.

Since p!1(•)
∼= p∗1(•)⊗ωX×X ⊗p∗1ω

−1
X [dimX], we have p!1As⊠Db(X) = As⊠Db(X). Therefore

ΦE mapping Db(X) to Ai is equivalent to E ∈ Ai ⊠Db(X). Secondly, the statement that ΦE

maps At to 0 for t 6= i is equivalent to the following:

Hom(E∨,Db(X) ⊠At) ∼= Hom(Db(X), p1∗(E ⊗ p∗2At)) = 0, t 6= i

which is further equivalent to E ∈ Db(X)⊠ B∨
i . �

Remark 7.3. Let dg-cat denote the category of dg categories. Write Hqe(dg-cat) as the
localized dg-cat with respect to quasi-equivalences of dg categories. Let Lparf (X) be a dg

enhancement of Db(X) whose objects are injective complexes, and let Aidg ⊂ Lparf (X) be a

sub-dg category whose objects are in Ai ⊂ Db(X). According to [Toë07, Theorem 8.15], it
holds in Hqe(dg-cat) that

RHom(Lparf (X),Lparf (X)) ∼= Lparf (X ×X)

where RHom(−,−) is the internal. In particular, the projection j∗i E with E ∈ Db(X × X)
can be regarded as a quasi-functor from Aidg to Aidg.

Proposition 7.4. Let Φ1 and Φ2 be Fourier-Mukai functors of Ai with kernels E1 and E2

respectively. Write D = [RHom(Ai,Ai)]. Then

HomD(Φ1,Φ2) ∼= HomDb(X×X)(E1, E2).

Proof. It holds that

Hom[RHom(Lparf (X),Lparf (X))](ΦE1 ,ΦE2)
∼= HomD(Φ1,Φ2).

By [Toë07, Theorem 8.15], we also have

Hom[RHom(Lparf (X),Lparf(X))](ΦE1 ,ΦE2)
∼= HomDb(X×X)(E1, E2).
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The proof is then completed. �

7.1.2. Hochschild (co)homology as Fourier-Mukai kernels. Notation as in Subsection 7.1.1. In
particular, let Pi = j′∗i ∆∗OX

∼= j∗∆∗OX . In this subsection, we prove the following proposition
which allows us to compute Hochschild homology using Fourier-Mukai kernels. (The result
holds for any semi-orthogonal component Ai; we state the proposition only for A1 because
later in Section 7.3 all the other semi-orthogonal components are exceptional and A1 denotes
the only geometrically meaningful residual subcategory.)

Proposition 7.5. Let F ∈ Db(X ×X). Then the following holds.

Hom(j∗1F, j
∗
1∆∗OX) ∼= Hom(j′∗1 F, j

′∗
1 ∆∗OX).

In particular,

HH•(A1) ∼= Hom(P1 ◦ S
−1
X , P1[•]) ∼= Hom(j∗1S

−1
X , j∗1∆∗OX [•]).

We divide the proof of Proposition 7.5 into the following several lemmas.

Lemma 7.6. Let E ∈ As1 ⊠ B∨
t1 and let F ∈ As2 ⊠ B∨

t2 . Then E ◦ F ∈ As1 ⊠ B∨
t2 . Moreover,

E ◦ F = 0 whenever t1 6= s2.

Proof. WLOG, We assume that E = Es1 ⊠ Et1 and that F = Fs2 ⊠ Ft2 where Es1 ∈ As1 ,
Et1 ∈ B∨

t1 , Fs2 ∈ As2 and Ft2 ∈ B∨
t2 . Denote by p′i the i-th projection from X ×X ×X to X

with i = 1, 2, 3.

X ×X ×X
p12

ww♣♣♣
♣♣
♣♣
♣♣
♣♣ p23

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

X ×X X ×X

Then

E ◦ F = p13∗(p
∗
12(p

∗
1Es1 ⊗ p∗2Et1)⊗ p∗23(p

∗
1Fs2 ⊗ p∗2Ft2))

∼= p13∗(p
′∗
1 Es1 ⊗ p′∗2 Et1 ⊗ p′2Fs2 ⊗ p′∗3 Ft2)

∼= p13∗(p
∗
13(p

∗
1Es1 ⊗ p∗2Ft2)⊗ p′∗2 (Et1 ⊗ Fs2))

∼= p∗1Es1 ⊗ p∗2Ft2 ⊗ p13∗p
′∗
2 (Et1 ⊗ Fs2)

∼= p∗1Es1 ⊗ p∗2Ft2 ⊗RΓ(Et1 ⊗ Fs2).

(For the last isomorphism, consider the following cartesian diagram.

X ×X ×X

p13
��

p′2 // X

��
X ×X // k

Hence p13∗p
′
2(Et1⊗Fs2

) ∼= RΓ(Et1 ⊗Fs2)⊗OX×X .) Since RΓ(Et1 ⊗Fs2)
∼= RHom(E∨

t1 , Fs2) = 0
for any t1 6= s2, one gets E ◦ F = 0 whenever t1 6= s2. �

Lemma 7.7. Let F ∈ Db(X ×X). Recall that Pi = j′∗i ∆∗OX
∼= j∗∆∗OX . Then the following

hold.

(1) j′∗i F
∼= Pi ◦ F .
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(2) j∗i F
∼= Pi ◦ F ◦ Pi.

Proof. For the first isomorphism, we have j′∗i F
∼= ∆∗OX ◦ j′∗i F

∼= Pi ◦ j′∗i F
∼= Pi ◦ F . For

the second one, by Lemma 7.6 one has j∗i F
∼= j∗i F ◦∆∗OX

∼= j∗i F ◦ Pi. It then follows that
j∗i F

∼= ∆∗OX ◦ j∗i F ◦ Pi
∼= Pi ◦ j∗i F ◦ Pi

∼= Pi ◦ F ◦ Pi (the last equality holds because
Pi ◦ Fs,t ◦ Pi = 0 for the semi-orthogonal factor Fs,t of F in As ⊠ B∨

t with s 6= i or t 6= i. �

Lemma 7.8. For any E ∈ Db(X ×X), Φj∗1E
|A1 = Φj′∗1 E|A1 . Moreover, j∗1S

−1
X is the inverse

of Serre functor of A1.

Proof. For any object E ∈ Db(X ×X) and A1 ∈ A1, there exists a triangle

B → j′∗1 E → j∗1E

whereB is generated by {A1⊠B∨
t }t≥2. Since ΦB(A1) ∼= p1∗(B⊗p∗2(A1)) ∼= A1⊗RHom(Bt, A1) =

0, we have
Φj∗1 (E)(A1) ∼= Φj′∗1 E(A1).

In other words, Φj∗1E
|A1 = Φj′∗1 E |A1 . By adjunction, Φj′∗1 S−1

X
(E) co-represents the functor

F 7→ Hom(E,F )∨. Since the Serre functor also represents the functor F 7→ Hom(E,F )∨, we
conclude that Φj∗1S

−1
X

is the inverse of Serre functor of A1. �

Proof of Proposition 7.5. Let us first prove Hom(j∗1F, j
∗
1∆∗OX) ∼= Hom(j′∗1 F, j

′∗
1 ∆∗OX). Ac-

cording to Lemma 7.7, it suffices to show that Hom(P1 ◦F ◦Pj , P1) = 0 for j 6= 1. Let Fs,t be
the semi-orthogonal factor of F in As⊠B∨

t . By Lemma 7.6, P1 ◦Fs,t ◦Pj ∈ A1⊠B∨
j . By semi-

orthogonality, we get Hom(P1 ◦Fs,t ◦Pj , P1) = 0 which implies that Hom(P1 ◦F ◦Pj , P1) = 0.

Next, according to Lemma 7.8, j∗1S
−1
X is the inverse Serre functor of A1. We then have

HH•(A1) = Hom(S−1
A1

, IdA1 [•])
∼= Hom(j∗1S

−1
X , j∗1∆∗OX [•])

∼= Hom(P1 ◦ S
−1
X ◦ P1, P1[•])

∼= Hom(P1 ◦ S
−1
X , P1[•]).

�

7.1.3. Compatibility of Hochschild (co)homology. Notation as in Subsection 7.1.1. In this sub-
section, we aim at comparing the algebra structures of the Hochschild cohomology HH∗(X)
and HH∗(A1), and comparing the module structures on the Hochschild homology HH∗(X)
and HH∗(A1), using Fourier-Mukai transforms. From now on, we always assume that ΦH :
Db(X) → Db(X) is a Fourier-Mukai transform which preserves each semi-orthogonal compo-
nent Ai, and we write ΦiH to denote the induced functor on Ai. We refer the reader to [CW10,
§4.3] and [Per21, §4.1]2 for the definitions of the morphisms ΦH∗ : HH∗(X) → HH∗(X) and
ΦiH∗ : HH∗(Ai) → HH∗(Ai) via Fourier-Mukai kernels.

Lemma 7.9. Notation as above. Suppose that the Fourier-Mukai transform ΦH : Db(X) →
Db(X) preserves each semi-orthogonal component Ai. Then for any i the kernel H satisfies
the following properties:

(1) j′∗i H = j∗i H;
(2) E ◦H ∼= E ◦ j′∗i H

∼= E ◦ j∗i H where E ∈ Ai ⊠ B∨
i ;

2Although the author only wrote down the definition for pushforward for Hochschild cohomology, it is easy
to see pushforward of Hochschild homology can be defined similarly.
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(3) H ◦ Pi
∼= Pi ◦H.

Moreover, suppose that both of the Fourier-Mukai transforms ΦH1 and ΦH2 preserve all the
semi-orthogonal components Ai. Also let F ∈ Db(X ×X). Then it holds that

j∗i (H1 ◦ F ◦H2) ∼= j∗i H1 ◦ j
∗
i F ◦ j∗i H2

which is functorial with respect to the factor F .

Proof. For (1), according to Lemma 7.1 and Lemma 7.7, it suffices to prove that Pi◦H ∈X B∨
i .

Since the composition of Fourier-Mukai functors ΦPi
◦ΦH maps Ai to Ai, and maps Aj to zero

for j 6= i, the same argument as that in the proof of Proposition 7.2 shows that Pi ◦H ∈X B∨
i .

Part (2) follows from Lemma 7.6. For (3), by (1), (2) and Lemma 7.6,

Pi ◦H ∼= Pi ◦ j
∗
i H

∼= ∆∗OX ◦ j∗i H
∼= j∗i H ◦∆∗OX

∼= j∗i H ◦ Pi
∼= H ◦ Pi.

For the last statement, by (3) and Lemma 7.7,

j∗i (H1 ◦ F ◦H2) ∼= Pi ◦H1 ◦ F ◦H2 ◦ Pi
∼= Pi ◦H1 ◦ Pi ◦ F ◦ Pi ◦H2 ◦ Pi

= j∗i H1 ◦ j
∗
i F ◦ j∗i H2

which is functorial with respect to the factor F . �

Remark 7.10. Notation as in Remark 7.3. There exists an isomorphism between the invari-
ants of hochschild homology

HH∗(X)ΦH∗ ∼=
⊕

i

HH∗(Ai)
ΦiH∗ .

Indeed, the embedding Aidg ⊂ Lparf (X) induces the following isomorphism of Hochschild
homology

HH∗(Lparf (X)) ∼=
⊕

HH∗(Aidg)

which is compatible with the quasi-functors ΦH∗ : Lparf (X) → Lparf (X) and ΦiH∗ : Aidg →
Aidg. Namely we have the following commutative diagram

HH∗(Lparf (X))
≃ //

Φ′

H∗

��

⊕
HH∗(Aidg)

(Φ′

1H∗
,Φ′

2H∗
,··· ,Φ′

mH∗
)

��
HH∗(Lparf (X))

≃ //
⊕

HH∗(Aidg)

where Φ′
H∗ and Φ′

iH∗ are morphisms of Hochschild homology as defined in [Pol14, Definition
2.1]. According to [Pol14, Corollary 2.11], we have Φ′

H∗ = ΦH∗ and Φ′
iH∗ = ΦiH∗ as morphisms

of Hochschild homology. The above result then follows.

In what follows, we assume in addition that the Fourier-Mukai transform ΦH : Db(X) →
Db(X) is an auto-equivalence preserving all the semi-orthogonal components. Denote the
inverse auto-equivalence by ΦH−1 . Now let us make the following observations.

• The auto-equivalence Φ induces an automorphism of Hochschild homology ΦH∗ :
HH∗(X) → HH∗(X). More precisely, for any a ∈ HHm(X), ΦH∗(a) is given by the
following composition.

(6) S−1
X [−m] // H ◦ S−1

X [−m] ◦H−1 Id◦a◦Id // H ◦∆∗OX ◦H−1 // ∆∗OX
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• The projection j∗1 : Db(X ×X) → A1 ⊠ B∨
1 gives rise to a morphism j∗1 : HH∗(X) →

HH∗(A1) (as a consequence of Corollary 7.5).
• Let Φ1H : A1 → A1 be the auto-equivalence of A1 induced by ΦH . Then there is
an automorphism Φ1H∗ : HH∗(A1) → HH∗(A1) defined as the action on natural
transformations of functors (see [CW10, §4.3] and [Pol14, §2.1]).

Proposition 7.11. There exists a commutative diagram as follows.

HH∗(X)
ΦH∗ //

j∗1
��

HH∗(X)

j∗1
��

HH∗(A1)
Φ1H∗ // HH∗(A1)

Proof. Applying the functor j∗1 : Db(X ×X) → A1 ⊠ B∨
1 to the sequence (6), we obtain

j∗1S
−1
X [−m] // j∗1(H ◦ S−1

X [−m] ◦H−1)
Id◦a◦Id //// j∗1(H ◦∆∗OX ◦H−1) //// j∗1(∆∗OX) .

According to Lemma 7.9 (4), we have natural isomorphisms j∗1 (H ◦ ∆∗OX ◦H−1) ∼= j∗1H ◦
P1 ◦ j

∗
1H

−1 and j∗1(H ◦S−1
X [−m] ◦H−1) ∼= j∗1H ◦ j∗1S

−1
X [−m] ◦ j∗1H

−1. By Proposition 7.4 and

Lemma 7.8, j∗1S
−1
X is the inverse Serre functor of A1, P1 is the identity functor, and j∗1H is

the functor corresponding to Φ1H . The proposition then follows. �

Remark 7.12. Note that P1 ◦ H ∼= H ◦ P1. By [Kuz09, Lemma 6.7], we have a morphism
φH : HH∗(A1) → HH∗(A1). Moreover, the morphism φH constructed by Kuznetsov coincides
with the above Φ1H∗.

Similarly for Hochschild cohomology, one also has the induced morphisms ΦH∗ and j∗1 .

Proposition 7.13. We have the following commutative diagram.

HH∗(X)
ΦH∗ //

j∗1
��

HH∗(X)

j∗1
��

HH∗(A1)
Φ1H∗ // HH∗(A1)

Putting the above results together, we obtain the following compactibility theoerm.

Theorem 7.14. The morphisms ΦH∗, Φ1H∗ and j∗1 in Propositions 7.11 and 7.13 are compat-
ible with respect to the algebra structure of Hochschild cohomology and the module structure of
Hochschild homology over Hochschild cohomology respectively. Namely, the following diagrams
are commutative.

HH∗(A1)×HH∗(A1) HH∗(A1)×HH∗(A1)

HH∗(X) ×HH∗(X) HH∗(X)×HH∗(X) HH∗(A1) HH∗(A1)

HH∗(X) HH∗(X)

j∗1 j∗1

j∗1 j∗1
∪ ∪

ΦH∗

ΦH∗

Φ1H∗

Φ1H∗

∪∪
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HH∗(A1)×HH∗(A1) HH∗(A1)×HH∗(A1)

HH∗(X) ×HH∗(X) HH∗(X)×HH∗(X) HH∗(A1) HH∗(A1)

HH∗(X) HH∗(X)

j∗1 j∗1

j∗1 j∗1
∩ ∩

ΦH∗

ΦH∗

Φ1H∗

Φ1H∗

∩∩

Proof. We will only check the commutativity of the first diagram. The second one follows
in a similar manner. After applying Proposition 7.13, it remains to verify the following: let
a ∈ HHt(X) and b ∈ HHs(X), then the product ab ∈ HHs+t(X) is given by the composition

∆∗OX
b // ∆∗OX [s]

a // ∆∗OX [s+ t] .

Since j∗1 ◦ ∪(a, b) is the composition

j∗1∆∗OX

j∗1 b // j∗1∆∗OX [s]
j∗1a // j∗1∆∗OX [s+ t] ,

one gets j∗1 ◦ ∪(a, b) = ∪(j∗1a, j
∗
1b) which completes the proof. �

Corollary 7.15. The following diagram is commutative.

HHm(X)ΦH∗ ×HHn(X)ΦH∗
∩ //

j∗1
��

HHn+m(X)ΦH∗

j∗1
��

HHm(A1)
Φ1H∗ ×HHn(A1)

Φ1H∗
∩ // HHn+m(A1)

Φ1H∗

7.2. Equivariant HKR. Let X be a smooth projective variety which admits a biregular
automorphism τ . The pullback functor induces an action τ∗ on Hochschild (co)homology.
There is also a natural action τ∗ on the harmonic structure of the singular cohomology

(HT•(X) =
⊕

p+q=•

Hp(X,∧qTX), HΩ•(X) =
⊕

p−q=•

Hp(X,Ωq
X)).

By [MS09, Theorem 1.2], the HKR isomorphism for Hochschild homology is compatible
with the actions τ∗; more generally, similar compatibility result holds for actions induced
by Fourier-Mukai functors. In this subsection, we show that the twisted HKR isomorphism
for Hochschild cohomology is also compatible with the actions induced by τ .

We start by recalling the definitions of Hochschild homology and cohomology. The Hochschild
cohomology and homology of X are defined respectively as

HH∗(X) = Ext∗(∆∗OX ,∆∗OX); HH∗(X) = Ext∗(OX×X ,∆∗OX ⊗L ∆∗OX).

Note that HH∗(X) is a graded module over the graded algebra HH∗(X).

Proposition 7.16. ([CRVdB12, Theorem 1.4]) We have the following twisted HKR isomor-
phisms

IK : HH∗(X) ∼=
⊕

p+q=∗

Hp(X,∧qTX)
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and
IK : HH∗(X) ∼=

⊕

p−q=∗

Hp(X,Ωq
X ).

The isomorphism IK for Hochschild cohomology is an isomorphism of algebras, where the right
hand side is an algebra of poly-vector fields. The isomorphism IK for Hochschild homology is
an isomorphism of graded modules, where the differential forms naturally form a module over
the algebra of poly-vector fields.

Define τ ′ : X → X ×X as τ ′(x) = (x, τx) and let (τ, Id) : X ×X → X ×X be given by
τ(x, y) = (τx, y)

Lemma 7.17. The pullback functor τ∗ : Db(X) → Db(X) is isomorphic to the Fourier-Mukai
functors Φτ ′

∗
OX

∼= Φ(τ,Id)∗(∆∗OX).

Proof. On one hand, we have the following isomorphisms:

Φτ ′
∗
OX

(•) ∼= p1∗(τ
′
∗(OX)⊗ p∗2(•))

∼= p1∗τ
′
∗(OX ⊗ τ ′∗p∗2(•))

∼= τ∗(•).

On the other hand, consider the Cartesian diagram below.

X
τ //

τ ′

��

X

∆
��

X ×X
(τ,Id) // X ×X

Thus we get τ ′∗OX
∼= τ ′∗τ

∗OX
∼= (τ, Id)∗∆∗OX . The lemma then follows. �

Theorem 7.18. Let X be a smooth projective variety with an automorphism τ . Then the
twisted HKR isomorphism for Hochschild cohomology is compatible with the actions induced
by τ . In other words, the following diagram is commutative.

HH∗(X)
τ∗ //

IK
��

HH∗(X)

IK
��⊕

p+q=∗H
p(X,∧qTX)

τ∗ //
⊕

p+q=∗H
p(X,∧qTX)

Proof. Let a ∈ HHm(X) = Hom(∆∗OX ,∆∗OX [m]). Write a′ = IK(a), we need to verify that
τ∗(a)′ = τ∗(a′). By definition, the following diagram is commutative.

(τ, Id)∗(τ−1, Id)∗∆∗OX
(τ,Id)∗(τ−1,Id)∗a

// (τ, Id)∗(τ−1, Id)∗∆∗OX [m]

∼=
��

∆∗OX
τ∗(a)

//

∼=

OO

∆∗OX [m]

.

Using adjunction, we also get a commutative diagram as follows. Note that ∆!(•) ∼= ∆∗(•) ⊗
ω−1
X [−n] where n is the dimension of X.

∆!(τ, Id)∗(τ−1, Id)∗∆∗OX
(τ,Id)∗(τ−1,Id)∗a

// ∆!(τ, Id)∗(τ−1, Id)∗∆∗OX [m]

��
OX

τ∗(a) //

OO

∆!∆∗OX [m]

.
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Define τ ′′ : X → X×X as τ ′′x = (τx, x). From the following we deduce that ∆∗(τ, Id)∗ = τ ′′∗.

X

∆
��

τ ′′

yyrrr
rr
rr
rr
r

X ×X X ×X
(τ,Id)
oo

Since (τ−1, Id)∗∆∗OX
∼= OΓ where Γ is the subvariety (x, τ−1x)|x∈X = (τx, x)|x∈X , we get

(τ−1, Id)∗∆∗OX
∼= (Id, τ)∗∆∗OX . Also consider the following diagram.

X
τ //

τ ′′

��

X

∆
��

X ×X
(Id,τ) // X ×X

Hence, τ ′′(Id, τ)∗ = τ∗∆∗. Therefore, we obtain the following commutative diagram.

τ∗∆∗∆∗OX ⊗ ω−1
X [−n]

τ∗∆∗◦a◦id // τ∗∆∗∆∗OX [m]⊗ ω−1
X [−n]

��

OX
τ∗a //

OO

∆∗∆∗OX [m]⊗ ω−1
X [−n]

.

According to Proposition 7.16, τ∗(a)′ = τ∗1τ∗(a′)τ∗1 = τ∗a′ which completes the proof. �

Remark 7.19. Together with the results in [MS09], a similar argument shows that IK is
equivariant with respect to the algebra and module structures.

7.3. Infinitesimal categorical Torelli theorem: An equivariant version. In this sec-
tion, we combine the results in the previous subsections to prove an equivariant version of
the infinitesimal categorical Torelli theorem. Let X be a smooth projective variety with an
automorphism τ . Assume we have a semi-orthogonal decomposition

Db(X) =
〈
A1, E1, E2, · · · , Em

〉

which is preserved by τ . Here {Ei} is a exceptional collection. According to Corollary 7.15
and Theorem 7.18, we have the following commutative diagram (with notation the same as
in Subsection 7.2).

HT 2(X)τ ×HΩ−1(X)τ // HΩ1(X)τ

HH2(X)τ ×HH−1(X)τ

j∗1
��

∩ //

IK

OO

HH1(X)τ

j∗1
��

IK

OO

HH2(A1)
τ ×HH−1(A1)

τ ∩ // HH1(A1)
τ

Since the maps j∗1 : HH1(X) → HH1(A1) and j∗1 : HH−1(X) → HH−1(A1) are isomorphisms
and both of them are equivariant with respect to the action τ∗, j∗1 induces isomorphisms
HH−1(X)τ ∼= HH−1(A1)

τ and HH1(X)τ ∼= HH1(A1)
τ .
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Definition 7.20. We define γ : HH2(A1)
τ → Hom(HΩ−1(X)τ ,HΩ1(X)τ ) as follows. Let

a ∈ HH2(A1)
τ and b ∈ HΩ−1(X)τ , then γa(b) := IK ◦ j∗−1(a ∩ j∗1 ◦ IK−1(b)). Define η as the

composition of the inclusion H1(X,TX ) ⊂ HT 2(X), the isomorphism IK and the projection
j∗1 . Define dp as the natural action of vector fields on differential forms.

Combining the commutative diagrams above, we immediately obtain the following theorem.

Theorem 7.21. The following diagram is commutative.

HH2(A1)
τ γ // Hom(HΩ−1(X)τ ,HΩ1(X)τ )

H1(X,TX)τ

η

OO
dp

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

To conclude the paper, we consider cubic threefolds with a non-Eckardt involution which
have been our main examples. Let Y be a cubic threefold with a non-Ekcardt type involution
τ ; recall that we have a semi-orthogonal decomposition which is preserved by τ

Db(Y ) =
〈
Ku(Y ),OY ,OY (1)

〉
.

Using Theorem 7.21 we obtain the following corollary. As discussed in Proposition 2.2 (see
also [CMMZ23, Proposition 3.4]), the morphisms dp and hence η are injective for a general
(Y, τ). By [Per21, Theorem 4.4], there is a natural inclusion HH2(Ku(Y ))τ ⊂ HH2(KuZ2(Y )).
Thus Corollary 7.22 can be regarded as an equivariant version of the infinitesimal categorical
Torelli theorem for non-Ekcardt cubic threefolds.

Corollary 7.22. There exists a commutative diagram for a cubic threefold Y with a non-
Eckardt involution τ as follows.

HH2(Ku(Y ))τ
γ // Hom(HΩ−1(Y )τ ,HΩ1(Y )τ )

H1(Y, TY )
τ

η

OO
dp

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

Moreover, if (Y, τ) ∈ M0 as in Proposition 2.2 (see also [CMMZ23, Proposition 3.4]), then

the map H1(Y, TY )
τ η
→ HH2(Ku(Y ))τ ⊂ HH2(KuZ2(Y )) is injective.
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[Căl03] Andrei Căldăraru. The Mukai pairing, I: the Hochschild structure. arXiv preprint
math/0308079, 2003.
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[GL96] Arnaldo Garćıa and R. F. Lax. Rational nodal curves with no smooth Weierstrass
points. Proc. Amer. Math. Soc., 124(2):407–413, 1996.

[GLZ22] Hanfei Guo, Zhiyu Liu, and Shizhuo Zhang. Conics on Gushel-Mukai fourfolds,
EPW sextics and Bridgeland moduli spaces. Preprint arXiv:2203.05442, 2022.

[HR19a] Daniel Huybrechts and Jørgen Vold Rennemo. Hochschild cohomology versus
the Jacobian ring and the Torelli theorem for cubic fourfolds. Algebr. Geom.,
6(1):76–99, 2019.

[HR19b] Daniel Huybrechts and Jørgen Vold Rennemo. Hochschild cohomology versus
the Jacobian ring and the Torelli theorem for cubic fourfolds. Algebr. Geom.,
6(1):76–99, 2019.

[Hu23] Xianyu Hu. Equivariant Kuznetsov components of certain cubic fourfolds.
Preprint arXiv:2312.17392, 2023.

[Huy06] Daniel Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford
Mathematical Monographs. The Clarendon Press, Oxford University Press, Ox-
ford, 2006.

[Ike20] Atsushi Ikeda. Global Prym-Torelli theorem for double coverings of elliptic curves.
Algebr. Geom., 7(5):544–560, 2020.

[JLLZ23] Augustinas Jacovskis, Xun Lin, Zhiyu Liu, and Shizhuo Zhang. Infinitesimal cate-
gorical Torelli theorems for Fano threefolds. J. Pure Appl. Algebra, 227(12):Paper
No. 107418, 26, 2023.

[JLLZ24] Augustinas Jacovskis, Xun Lin, Zhiyu Liu, and Shizhuo Zhang. Categorical
Torelli theorems for Gushel-Mukai threefolds. J. Lond. Math. Soc. (2), 109(3):Pa-
per No. e12878, 52, 2024.

[Kal08] Dmitry Kaledin. Non-commutative Hodge-to-de Rham degeneration via the
method of Deligne-Illusie. Pure Appl. Math. Q., 4(3):785–875, 2008.

[Kal17] Dmitry Kaledin. Spectral sequences for cyclic homology. In Algebra, geome-
try, and physics in the 21st century, volume 324 of Progr. Math., pages 99–129.
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