日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data

Schultheis, H., Bentsen, M., Heger, V., & Looso, M. (2024). Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data. SCIENTIFIC REPORTS, 14(1):. doi:10.1038/s41598-024-59989-2.

Item is

基本情報

非表示:
アイテムのパーマリンク: https://hdl.handle.net/21.11116/0000-000F-84EE-0 版のパーマリンク: https://hdl.handle.net/21.11116/0000-000F-84F0-C
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

非表示:
 作成者:
Schultheis, Hendrik1, 著者           
Bentsen, Mette1, 著者           
Heger, Vanessa2, 著者           
Looso, Mario1, 著者           
所属:
1Bioinformatics, Max Planck Institute for Heart and Lung Research, Max Planck Society, ou_2591704              
2Max Planck Institute for Heart and Lung Research, Max Planck Society, ou_2324692              

内容説明

非表示:
キーワード: -
 要旨: Transcription factors (TFs) are crucial epigenetic regulators, which enable cells to dynamically adjust gene expression in response to environmental signals. Computational procedures like digital genomic footprinting on chromatin accessibility assays such as ATACseq can be used to identify bound TFs in a genome-wide scale. This method utilizes short regions of low accessibility signals due to steric hindrance of DNA bound proteins, called footprints (FPs), which are combined with motif databases for TF identification. However, while over 1600 TFs have been described in the human genome, only similar to 700 of these have a known binding motif. Thus, a substantial number of FPs without overlap to a known DNA motif are normally discarded from FP analysis. In addition, the FP method is restricted to organisms with a substantial number of known TF motifs. Here we present DENIS (DE Novo motIf diScovery), a framework to generate and systematically investigate the potential of de novo TF motif discovery from FPs. DENIS includes functionality (1) to isolate FPs without binding motifs, (2) to perform de novo motif generation and (3) to characterize novel motifs. Here, we show that the framework rediscovers artificially removed TF motifs, quantifies de novo motif usage during an early embryonic development example dataset, and is able to analyze and uncover TF activity in organisms lacking canonical motifs. The latter task is exemplified by an investigation of a scATAC-seq dataset in zebrafish which covers different cell types during hematopoiesis.

資料詳細

非表示:
言語:
 日付: 2024-04-23
 出版の状態: オンラインで出版済み
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): ISI: 001207399200050
DOI: 10.1038/s41598-024-59989-2
PMID: 38654130
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

非表示:
出版物名: SCIENTIFIC REPORTS
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 14 (1) 通巻号: 9275 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 2045-2322