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SUMMARY

Physical forces are ubiquitous in biological processes across scales and diverse contexts. This review high-
lights the significance of mechanical forces in nervous system development, homeostasis, and disease. We
provide an overview of mechanical signals present in the nervous system and delve into mechanotransduc-
tion mechanisms translating these mechanical cues into biochemical signals. During development, mechan-
ical cues regulate a plethora of processes, including cell proliferation, differentiation, migration, network for-
mation, and cortex folding. Forces then continue exerting their influence on physiological processes, such as
neuronal activity, glial cell function, and the interplay between these different cell types. Notably, changes in
tissue mechanics manifest in neurodegenerative diseases and brain tumors, potentially offering new diag-
nostic and therapeutic target opportunities. Understanding the role of cellular forces and tissue mechanics
in nervous system physiology and pathology adds a new facet to neurobiology, shedding new light on many
processes that remain incompletely understood.
THE FORCE IS STRONG IN CELLS OF THE NERVOUS
SYSTEM

Animal tissue cells, including neurons and glia, constantly and

actively exert forces on their environment. This is evident when

cells navigate through tissue, such as during axon growth or mi-

croglial chemotaxis. In order to move, cells exert pushing and

pulling forces on their immediate surroundings. For example,

during brain development, growth cones at the tip of advancing

axons pull themselves and their axons forward,1,2 and in the

absence of dominant growth cones, axons can also push their

way through the tissue.3 The forces exerted by growth cones

on their axons also generate tension along the axon,4 which

may regulate axon fasciculation (i.e., bundling),5 much like a

zipper closeswhen sufficient force is applied. Ultimately, it is me-

chanical forces that lead to cortical folding in the brain of large

mammalian species.6–8 In essence, forces drive motion at every

scale, from the subcellular to the tissue level.

In homeostasis, forces can be perceived by specialized sen-

sory neurons and their associated structures. For example,

different types of mechanoreceptors in our skin detect tiny tissue

deformations, thus enabling the sense of touch. Similarly, hair

cells in the inner ear and the lateral line system of fish transduce

pressure (sound) waves into electrical signals, whereas proprio-

ceptors located in the musculoskeletal system sense and

respond to various kinematic parameters, fine-tuning body

posture and movement. However, apart from these specialized
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mechanosensors, every other nervous system cell also mechan-

ically interacts with their surrounding tissue. Even in the absence

of external forces or discernible motion, stationary tissue cells,

such as neural progenitor cells, mature neurons, or quiescent as-

trocytes, actively probe their mechanical environment.

These cells possess a contractile actomyosin cytoskeleton,

which generates and maintains a baseline tension—a force

directed in parallel to the cell surface. The actin cytoskeleton is

coupled to the external environment via transmembrane proteins

such as integrins and cadherins. Through this linkage, forces

generated by actomyosin are transmitted to the cell membrane

and neighboring cells and/or the extracellular matrix (ECM).

Concurrently, neighboring cells exert forces back, and the

ECM may resist cellular forces to varying degrees depending

on itsmechanical properties. Despite cells sensing and respond-

ing to suchmechanical signals, the complex mechanical interac-

tions between nervous system cells and their environment are

often overlooked, in part due to a lack of tools and techniques.

Neuro-mechanobiology has gained significant traction only

in recent years, with the merging of the physical with the

life sciences and the resulting development of new methods

for measuring and manipulating cellular forces and tissue

mechanics, coupled with the discovery of crucial mechano-

responsive proteins. Examples of such proteins include mecha-

nosensitive ion channels (MSCs) of the Piezo family9 and the

transcriptional regulator yes-associated protein (YAP).10 In this

review, we highlight recent advances in the field, unveiling
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Figure 1. Mechanical signals encountered
by nervous system cells
Schematic representation of active external
forces (left and middle) and passive mechanical
properties of the environment (right) experienced
by cells: tension, compression, shear stress, hy-
drostatic/osmotic pressure, and environmental
stiffness/viscoelasticity. Closed arrows indicate
directions of forces. Arrow thickness in right panel
indicates the magnitude of forces (i.e., on stiffer
substrates, cells generate higher forces than on
softer substrates).
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compelling contributions of mechanical signals to the develop-

ment, normal function, and pathology of the nervous system.

Specifically, our focus lies on cells that are not directly associ-

ated with any mechanical senses.

MECHANICAL SIGNALS ENCOUNTERED BY NERVOUS
SYSTEM CELLS

Neurons and glial cells constantly encounter diverse mechanical

cues (Figure 1). They actively explore the passive mechanical

properties of their environment, including tissue stiffness, tissue

viscosity, and, in the case of motile cells, the available space.

Simultaneously, they passively experience forces generated

actively by neighboring cells, fluid flows, or larger-scale tissue

movements.

Passive material properties of CNS tissue
What is being measured?

Overall, the brain and spinal cord are among the softest tissues in

our body.11 Central nervous system (CNS) tissue is mechanically

heterogeneous, with certain regions being stiffer or softer, or

more or less viscous, than others.12–21 These stiffness heteroge-

neities result in distinct patterns of mechanical signals, analo-

gous to the chemical signal patterns that shape CNS develop-

ment and repair.

Brain tissue progressively stiffens during development,

throughout maturation, and into adulthood,12,18,22–26 where

brain stiffness plateaus. However, these stiffness changes occur

non-monotonically, and in humans andmice, brain softens again

from �40 years27 and �10 months of age,26 respectively. More-

over, mechanical properties of brain tissue also undergo

changes in many diseases and after injury (see mechanics in

pathological processes section). However, whether these me-

chanical changes are merely an accompanying feature that

can be used for diagnosis or if they are causally linked to the

onset and progression of the disease28 remains to be

determined.

Importantly, there is not one single value that characterizes the

mechanical properties of CNS tissue. Tissue is viscoelastic,
behaving both elastically (i.e., it stores

the applied energy and resumes its shape

after being deformed) and viscously (i.e.,

the applied energy is dissipated or lost

through viscous flow). Elastic stiffness is

usually characterized by an elastic (stor-
age) modulus (Pa), whereas viscosity (Pa$s) is represented by

the loss modulus (Pa). Furthermore, water, a major component

of tissues, flows through the network of cells and ECM, influ-

enced by the tissue’s local porosity, impacting mechanical prop-

erties and measurements as well. Finally, motile cells may

encounter tissues with varying degrees of connectivity. Loosely

connected tissue allows for easier movement through it,

whereas densely packed tissue may restrict cell motility, result-

ing in steric hindrance. We will primarily focus on tissue stiffness

as an important mechanical parameter that regulates cell

function.

Viscoelastic materials are characterized by time-dependent

deformation, i.e., when a constant force is applied, thematerial’s

deformation increases with time. Hence, brain tissue feels softer

when forces are applied on a slower timescale compared with

when forces are applied more rapidly.28,29 For example, when

brain tissue stiffness is assessed by applying a small stress

(i.e., force per area) at the seconds timescale (at a frequency of

�1 Hz), such as during atomic forcemicroscopy (AFM)measure-

ments, it has an elastic modulus on the order of �100 Pa. If the

same tissue is measured at a higher frequency, for example, us-

ing magnetic resonance elastography (MRE) (see also the sub-

section on brain tumors) or ultrasound-based shear-wave elas-

ticity imaging, it appears much stiffer, with an elastic modulus

on the order of�10 kPa.26,27 In short, the rate of force application

can affect the perceived stiffness of brain tissue.

A key factor contributing to this difference in behavior is that,

on slower timescales, the energy applied through the measuring

device can be dissipated by viscous flow—the material has time

to relax, andwater can flow away from the regionwhere the force

is applied. However, at faster timescales, this is not the case, and

the material increasingly resists the applied forces.

Hence, it is crucial to select the appropriate measurement pa-

rameters based on the problem being studied. For instance,

when investigating how cells sense mechanical properties of tis-

sue (‘‘mechanosensing’’), forces should be applied to the tissue

at a timescale similar to that at which cells probe their mechan-

ical environment, typically within seconds to minutes. On the

other hand, computational studies on how the brain deforms
Neuron 112, February 7, 2024 343



ll
OPEN ACCESS Review
during the initial impact leading to traumatic brain injuries, where

the head (and thus the brain) experiences a sudden, very quick

external mechanical impact, should be based on mechanical

brain properties assessed at these rapid timescales (�kHz

and above).

The local mechanical properties of CNS tissue depend on the

mechanical properties of local tissue constituents, including neu-

rons, glial cells, ECM, and blood vessels. Glial cells, for instance,

are about twice as soft as their neighboring neurons.29 Thus, a re-

gion with a higher proportion of glia will likely be softer overall.

Furthermore, different ECM components have different mechan-

ical properties,whichmayexplainwhy theneurogenic niche in ro-

dents, which is rich in the ECM-cross-linking enzyme transgluta-

minase,30 is stiffer than the remaining brain parenchyma.19

Alterations in any of these components, both in composition or

arrangement, could account for alterations in CNS tissue me-

chanics during development and disease.12,18,23–25,31

Additionally, the density of cells has been shown to correlate

with local CNS tissue stiffness; however, this relationship is not

straightforward. In embryonic Xenopus brains, regions with

higher stiffness strongly correlate with high cell densities,20

and perturbing mitosis leads to a decrease in both cell density

and tissue stiffness.25 However, in developing chick somites,

cell densities increase only after the tissue has stiffened,32 and

in the mouse hippocampus, cell densities negatively correlate

with tissue stiffness.33 The discrepancies in the relationship be-

tween cell density and local CNS stiffness could be the result of

various cell-intrinsic factors, such as cell type and stage, theme-

chanical properties of individual cells, e.g., their cytoskeletal

composition and arrangement, as well as the adhesion strength

(i.e., coupling) between the cells. All in all, the study of how tissue

microarchitecture affects local tissue mechanical properties is

an active field of research, with more questions than answers

at present.

How to measure tissue mechanics?

Obtaining measurements of brain tissue mechanics is further

complicated by a dearth of available methods. Shear rheome-

ters, commonly available in most engineering and materials sci-

ence departments, can be used to reliably measure the visco-

elastic properties of CNS tissue slices. However, these

measurements have limited spatial resolution (�cm) and tell us

very little about properties at the cellular or molecular scale. A

much higher resolution can be achieved using AFM-based

indentation measurements, which have become a gold standard

in the field.34,35 AFM applies forces at time and length scales

relevant to cellular mechanosensing and can generate stiffness

(and more recently, viscoelasticity) maps of tissues in vivo and

ex vivo at cellular resolution.15,20,25,36 One important limitation

of this method, however, is that measurements are restricted

purely to the surface of a material. As such, to probe mechanics

deeper within tissues, non-contact methods are required. MRE

and Brillouin microscopy are recent techniques that indirectly

assess mechanical properties such as shear-wave speeds and

longitudinal moduli, respectively, within tissues. Although MRE

and Brillouin measurements may correlate with direct mechani-

cal tests (e.g., by AFM),13,37–39 more work is needed to fully un-

derstand how the measured parameters relate to tissue stiffness

and viscosity as sensed by cells.
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To summarize, the mechanical properties of neural tissue are

complex and depend on several measurement parameters,

including the frequency (i.e., speed) at which the tissue is probed

and the applied strain (i.e., the tissue deformation as a function of

how much force is applied).28 As different methods work at

different length and timescales, results obtained from the same

tissue may vary significantly, depending on the method and pa-

rameters used. However, when the mechanical properties of

CNS tissue within the same system are assessed using similar

approaches, the results are highly reproducible, demonstrating

that cells encounter robust time- and location-specific mechan-

ical signals.

Another factor contributing to the wide variation in CNS me-

chanics data in the literature is sample preparation. Tissue sam-

ples need to be very fresh, with measurements conducted within

a few hours post-mortem and maintained in physiological buffer

solution at the right temperature, as their mechanical properties

may otherwise change quickly.34 Freezing, drying, or fixing of tis-

sues, even if only partial, will massively alter their mechanical

properties and fail to preserve relative local differences in tissue

stiffness. However, after excluding these studies, the remaining

body of literature is largely consistent.

Active forces experienced by CNS cells
Motile CNS cells, including microglia and neuronal growth

cones, exert forces on their environment1,2,40,41 and pull on adja-

cent cells.8,42,43 Furthermore, growth cones pull on their own

axons, and axons themselves are contractile.1,4,5,41,44–50 This

means that axons are under tension from early growth and

even after connections are established. Additionally, dendrites

generate tensile forces, which, for example, pull on the overlying

nose skin cells in the developing zebrafish, triggering nostril

opening.51 On a larger scale, it has long been demonstrated

that air or fluid flow or pulsating blood vessels generate forces

that may be perceived by CNS cells.52,53 Ultimately, tissue

movements, such as those occurring during cortex folding and

brain growth, are driven by and generate forces.6,54 These forces

are transmitted to cells and the ECM within the tissue. Overall,

these active forces are also sensed by CNS cells and contribute

to regulating their migration, morphology, and overall function.

MECHANISMS OF MECHANOTRANSDUCTION

Mechanotransduction is the process by which cells convert me-

chanical forces into biochemical or electrical signals. Cellular

forces are generated largely by actin polymerization and the

interaction of actin with myosin motors, which leads to contrac-

tility and a smaller degree by microtubule polymerization and

dynein-basedmicrotubule sliding (for recent reviews on neuronal

forces see Franze1 and Miller and Suter41). These intracellular

forces are transmitted through the cell membrane to the ECM

and neighboring cells via protein complexes containing cell

adhesion molecules (CAMs) such as integrins and cadherins,

respectively. Each protein in this linear force chain, from actin

to adapter proteins, (e.g., talin and vinculin), to adhesion mole-

cules to ECM, experiences the same force. If this force sur-

passes intramolecular forces, it may lead to conformational

changes in any of these proteins. Because the function of a



Figure 2. Mechanisms of
mechanotransduction
(A) Unfolding of cryptic binding sites. Talin, for
example, which connects actin to integrins, has
cryptic binding sites for vinculin. At low force re-
gimes, vinculin cannot bind to talin, while at high
forces, talin domains unfold and vinculin can bind,
linking talin to more actin via vinculin, thus re-
inforcing traction forces.
(B) Opening of mechanosensitive ion channels
(MSCs) allows an influx of ions along their con-
centration gradients, leading to biochemical al-
terations within the cell. Forces can be transmitted
directly through alterations in the lipid bilayer
(force from lipids) or by linkage via auxiliary pro-
teins such as the extracellular matrix (ECM) or
cytoskeleton (force from filaments).
(C) Biased transport of transcription factors be-
tween the cytoplasm and the nucleus through
nuclear pore complexes (NPCs). On stiffer sub-
strates, cells are more spread, deforming the nu-
cleus, leading to a change in nuclear envelope
geometry and permeability of the NPC to tran-
scription factors such as YAP. F: denotes forces.
Closed red arrows indicate direction of force,
closed dashed arrows indicate flow direction of
ions/transcription factors through a channel/pore.
CAMs, cell adhesion molecules; TF, transcription
factor.
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protein is governed by its shape, such conformational changes

can lead to functional changes. These force-induced changes

in activity may lead to side effects in proteins that are not primary

mechanosensors, such asN-methyl-D-aspartate (NMDA) recep-

tors.55 However, many proteins in CNS cells are meant to sense

and respond directly to mechanical signals. In this section, we

briefly highlight the currently best-studied mechanosensitive

proteins and mechanotransduction mechanisms that are rele-

vant to neurons and glial cells (Figure 2).

Unfolding of cryptic binding sites
Oneway in which such conformational changesmay impact pro-

tein function is through the unfolding of cryptic binding sites

(Figure 2A). One of the best-studied examples in mechanobiol-

ogy is the interaction of the two cytoskeletal proteins vinculin

and talin. In its relaxed state, talin, which connects actin fila-

ments to integrins, has several cryptic binding sites for vinculin.

Thus, in the absence of forces, vinculin cannot bind to talin. How-

ever, forces above a certain threshold led to the unfolding of talin

domains and the exposure of these binding sites.56 When talin is

unfolded, vinculin can bind to talin, indirectly linking talin to more

actin through vinculin’s actin-binding sites. This reinforces the

link between actin and talin, enabling the generation and trans-

mission of larger forces.57 The increased forces generate a pos-

itive feedback loop, leading to further unfolding of talins, rein-

forcing the connection between talin and vinculin, further

leading to more binding, etc.

Stiffer substrates provide more traction than softer ones,

enabling a faster buildup of forces.58 Furthermore, integrins

form catch bonds with their ECM binding partners,59 and the life-

times of these bonds increase with the tensile force applied.

Hence, on soft substrates with a stiffness below a cell type-spe-

cific threshold value, the lifetime of integrin bonds is shorter than

the time needed to build up sufficient force to unfold talin. How-
ever, above this threshold, the longer lifetimes of integrin bonds

allow for the buildup of sufficiently high forces to unfold talin,

which in turn leads to increased vinculin recruitment, actin

engagement, reinforcement, and growth of adhesion sites,

thus ultimately amplifying the mechanical signal of ‘‘stiffness.’’

As a consequence, the (traction) forces exerted by neurons

and glial cells increase on stiffer substrates.60–65 Depletion of

vinculin leads to the loss of this mechanoresponse in neurons,

rendering them insensitive to substrate stiffness.64

Further proteins found at adhesion sites, which are involved in

mechanotransduction cascades, include the tyrosine kinases

Src kinase and focal adhesion kinase (FAK), potentially linking

mechanical signaling to receptor-mediated chemical signaling

cascades.66

Opening of MSCs
MSCs are pore-forming transmembrane proteins that sense and

respond to mechanical stimuli, such as stretch, bending, torsion,

pressure, shear, osmotic forces, and touch,bychanging theopen-

ing probability of their pore (Figure 2B). They are among the most

rapid signal transducers known, converting mechanical signals

into relevant biochemical signals within tens of milliseconds.67

The activation of MSCs is thought to bemediated either by forces

transmitted directly through the lipid bilayer (membrane-delimited

‘‘force from lipid’’ models)68 or by auxiliary proteins, such as the

ECMand/or thecytoskeleton,which transmit forces to thechannel

complex (‘‘tethered’’ models).69–71 There has been considerable

progress in understanding the proposed gating mechanisms and

structures ofMSCs72,73; however, there is still much to learn about

the specific mechanical signals that cells respond to in vivo.70,73

Regardless of the activation mechanism, MSCs respond to me-

chanical forces along the plane of the cell membrane, allowing

an influx of, usually, cations e.g., Na+, K+, and Ca2+, through the

channel along their concentration gradients.
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MSCs identified in the nervous system include the epithelial

sodium channel (ENaC)/degenerin (DEG) channels, transient re-

ceptor potential (TRP) channels, TWIK-related potassium chan-

nel (TREK) and TWIK-related arachidonic acid activated potas-

sium channel (TRAAK) which are members of the two-pore

domain K+ (K2P) ion channels family, and Piezo channels. How-

ever, with the exception of Piezo1 and Piezo2, it is not clear

whether in vertebrates these channels are primary mechanosen-

sors or rather activated downstream in mechanotransduction

cascades. Furthermore, although TRP, K2P, and ENaC/DEG

channels affect nervous system function, these channels not

only respond to mechanical cues but also to molecular signals

and changes in pH and temperature. Thus, isolating the effects

of mechanical signaling from these other modalities is complex.

Piezo channels, on the other hand, exclusively respond to me-

chanical signals, providing an advantage in mechanostransduc-

tion studies, as the responses to mechanical cues are not

confounded by other signals.

Mechanosensing through Piezo channels plays a diverse and

critical role in the nervous system, from early development to

adult function, and potentially also in neurological disorders

(for a recent review, see Delmas et al.74). Piezo is a non-selective

cation channel, which is largely thought to be activated by an in-

crease in membrane tension.75 This notion is based on in vitro

and in silico studies, and the absence of binding sites with the

cytoskeleton and the ECM. However, although Piezo1 activity in-

creases with larger actomyosin-based traction forces on stiffer

substrates,76 membrane tension in axons does not.60 Recently

identified interactions of Piezo1 with cadherins77 may potentially

explain this discrepancy, or an increase in membrane tension

could be restricted to the immediate vicinity of the force-trans-

mitting adhesion sites. How Piezo channels are activated in vivo

will need to be addressed in future work.

Experimentally addressing themechanosensitivity of cells is not

straightforward. There are a few drugs available impacting MSC

activity. Currently, there are a small number of synthetic ago-

nists—Yoda1, Jedi1, and Jedi2—specific to Piezo1,78,79 whereas

there is no equivalent agonist available for Piezo2. These agonists

shouldonlybeappliedonshort timescales, as theyallowcations to

flow along their concentration gradients, depletingmembrane po-

tentials on longer timescales. MSC inhibitors, such as gadolinium

ions (Gd3+), rutheniumred,and thespidervenompeptideGsMTx4,

are typically non-specific. They exert their effects on multiple ion

channel classes and mostly act indirectly by altering membrane

mechanics80,81 rather than directly or specifically blocking the

channel. Genetic manipulations such as knocking down/out or

overexpressing various MSCs have vastly increased our under-

standing of the role of these channels in diverse biological sys-

tems. Nonetheless, the question often remains what the origins

and nature of the native forces within a cell are, which activate

Piezo and other mechanosensors.

Biased transport of TFs through NPCs
Another important mechanism of mechanotransduction is

through mechanically regulated shuttling of transcription factors

(TFs) between the cytoplasm and the nucleus10 (Figure 2C).

These TFs are active when inside the nucleus but not when

outside of it.
346 Neuron 112, February 7, 2024
On stiffer substrates, cellular traction forces increase (see

above), resulting in more cell spreading and thus greater defor-

mation of the nucleus.82 This nuclear deformation leads to a

change in curvature of the nuclear envelope, thereby altering

the geometry and, thus, permeability of nuclear pore complexes

(NPCs). Permeability changes of NPCs depend on the cargo’s

molecular weight and its affinity for nuclear transport receptors.

The molecular-weight-dependent increase in NPC permeability

is larger for passive diffusion than for facilitated nucleocytoplas-

mic transport, leading to a force-dependent bias in cargo trans-

port into or out of the nucleus,83 thus linking tissue stiffness to

transcriptional regulation via the regulation of cellular forces.

The first transcriptional co-regulators whose activity was iden-

tified to be controlled by the stiffness of the substrate on which

cells grew were YAP and transcriptional coactivator with PDZ-

binding motif (TAZ).10 Although YAP was initially recognized as

a downstream regulator of organ growth in the Hippo pathway,

it was then found to be mechanically activated independently

of Hippo signaling.10 Additionally, although other mechano-

responsive TFs have been identified,83,84 YAP has remained a

prominent focus in cellular mechanotransduction studies since

its discovery in 2011.

Although this force-dependent regulation of TF activity may be

less critical for processes occurring in the axons of neurons—far

away from the nucleus—it may constitute an important mecha-

nism regulating the function of CNS cells without distinct axons.

We provide several examples in the following subsection.

Further mechanisms of mechanotransduction
In addition to these well-established mechanosensitive struc-

tures and mechanotransduction mechanisms, there are many

other ways to translate mechanical cues into an intracellular,

biochemical response.85 For instance, primary cilia found in

most cell types are potential mechanosensitive structures,86

and membrane reservoirs containing specific receptors could

be pulled open by forces, facilitating targeted chemical signaling

cascades if the appropriate signaling molecules are present.

Membrane reservoirs could also regulate membrane tension

and thus, indirectly, the activity ofMSCs. Furthermore, compres-

sion and tension of polymers, such as F-actin or microtubules,

change their chemical potential.87 Consequently, post-transla-

tional modifications of cytoskeletal proteins may be regulated

by and/or regulate mechanical signals. For example, microtu-

bule acetylation has recently been identified as a crucial compo-

nent in cellular mechanotransduction events.88–90 As a final

example, mechanosensitive G-protein-coupled receptors have

been suggested to be involved in detecting shear stress and/or

cell swelling/stretch,91 although the exact mechanotransduction

mechanisms are still poorly understood. These examples repre-

sent a fraction of the structures involved in cellular responses to

mechanical signals, and further investigation will shed light on

their intricate interactions.

Integrating different signals
Ultimately, the various mechanisms discussed synergistically

contribute to cellular responses. Contractile forces generated

by the actomyosin cytoskeleton are transmitted toward (1) adhe-

sion sites, where they are transmitted to the extracellular
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environment; (2) membrane via linking proteins such as ezrin,

radixin, andmoesin (ERM proteins), potentially influencingmem-

brane tension and MSC activity; and (3) the nucleus via linker of

nucleoskeleton and cytoskeleton (LINC) complexes containing

nesprin and other linking proteins, potentially impacting TF shuf-

fling. Adhesion proteins, Piezo1, YAP, and others are thus often

activated collectively,89,92–95 and their activity may be intercon-

nected. For example, depleting Piezo1 in cells cultured on glass

leads to more nuclear exclusion of YAP.92 The interactions of

different mechanotransduction mechanisms could fine-tune

the cellular response to mechanical cues.

In addition to mechanical signals, cells are also exposed to a

plethora of chemical cues, such as signaling molecules, and

need to integrate these different signals. In the end, mechanical

and chemical signals converge on shared intracellular down-

stream signaling pathways, influencing common gene regulatory

networks, and thus potentially affecting similar gene expression

patterns and functions of CNS cells.96–98 For example, the activ-

ities of the tyrosine kinases’ FAK and Src kinase are regulated

both chemically and mechanically,66 as are intracellular levels

of the second messenger Ca2+.

On one hand, mechanical signals can modulate intracellular

and extracellular chemical signaling. For instance, inhibiting

Piezo1 increases the secretion of pro-inflammatory mediators

from microglia.99 Conversely, activating Piezo1 in vitro inhibits

the release of cytokines and chemokines, such as interleukin

(IL)-1b, IL-6, and tumor necrosis factor alpha (TNF-a),

from lipopolysaccharide (LPS)-stimulated astrocytes100 and

microglia.101 These findings suggest that Piezo1 activity

could decrease neuroinflammation—potentially through Ca2+

signaling—by inhibiting the nuclear factor (NF)-kB inflamma-

tory signaling pathway.

On the other hand, chemical signals may modulate mechani-

cal signaling. When advancing growth cones of commissural

neurons encounter immobilized netrin-1, a well-established

chemical axon guidance cue, traction forces increase,102 likely

through p21-activated kinase 1 (Pak1-mediated phosphoryla-

tion of the ‘‘clutch’’ protein shootin1, which couples F-actin to

the adhesion molecule L1CAM.103,104 Similarly, microglial trac-

tion forces and their migratory bias toward stiffer substrates

(‘‘durotaxis’’) increase after exposure to LPS,62 a potent immune

activator.

Understanding the integration of chemical and mechanical

signals in CNS cells will be key to understanding CNS develop-

ment and disease and should thus be a focus of future research.

In the following sections, we will review recent evidence for the

role of mechanics in regulating CNS development, homeostasis,

and disease.

MECHANICS IN NERVOUS SYSTEM DEVELOPMENT

Given the dynamic interplay between the physical environment,

cellular mechanosensing, gene transcription, and cell function

(reviewed in Wagh et al.105), mechanics unsurprisingly plays an

important role in shaping nervous system development. In this

section, we will explore how mechanics affects neural stem

cell proliferation, differentiation, migration, axon growth and

connection, and cortex folding (Figure 3).
Proliferation
The proliferation rate of neural stem cells cultured in 3D sub-

strates inversely scales with the stiffness of the substrate.106 Af-

ter 7 days in culture, neural stem cell numbers increased 14-fold

in soft substrates (�0.2 kPa), whereas in stiff substrates

(�20 kPa), the number of cells merely doubled. Similarly, brain

organoids encapsulated in stiffer (�3.6 kPa) gels showed more

restricted growth, forming fewer neuroepithelial buds compared

with organoids embedded in gels that were 303 softer, and in

stiffer environments, cells shifted from a proliferative to a more

differentiated state.107

Although substrate stiffness likely contributes to this me-

chano-response, the observed behavior might largely be a

consequence of the available space. As cells proliferate, their to-

tal volume increases, causing the colony to expand as long as

space is available. In a confined 3D environment, proliferating

cells will push against the surrounding substrate, thus generating

pressure (this pressure may be important in cortex folding, elab-

orated below). In a softer 3D environment, space can be gener-

ated easily by shifting the material boundary (i.e., by deforming

thematrix) through the pressure generated by growth, facilitating

cell proliferation. In contrast, in a stiffer environment, growth

pressure leads to less deformation of the surrounding matrix

and hence to less space available for cells to grow into.

Additionally, in the yeast Saccharomyces cerevisiae, growth-

induced pressure leads to increased osmotic pressure and

macromolecular crowding within the cell, potentially hindering

protein expression and diminishing cell growth.108 This mecha-

nism is likely to be evolutionarily conserved and could contribute

to reduced neural cell proliferation in stiffer environments.

These phenomena could explain the preference for prolifera-

tion in softer 3D in vitro environments. Hence, substrate softness

may serve as a permissive cue, rather than an instructive one, in

cell proliferation. This implies that brain tissue stiffness should

not exceed a certain critical value to maintain an environment

conducive to cell proliferation. However, it is important to note

that a feedback loop may exist, as demonstrated in the devel-

oping Xenopus brain, where cell proliferation leads to an in-

crease in tissue stiffness.25

In addition to environmental stiffness, cells in the developing

nervous system are also subjected to fluid flow-based shear

forces. An ENaC-dependent mechanism was shown to induce

the proliferation of adult neural stem cells in themurine subepen-

dymal zone in response to fluid flow.109

Differentiation
Following the initial proliferative divisions of neural stem cells,

asymmetric divisions occur, generating more stem cells, non-

stem cell progenitors, neurons, and eventually glia.110 Whether

progenitor cells differentiate into neurons or glia may be influ-

enced, in part, by the mechanical properties of the environment,

at least in vitro. For example, induced neural stem cells exhibited

a preference for differentiating into neurons on softer gels and

glia on stiffer gels.111,112 As brain tissue stiffness increases

throughout development,12,18,22–25 one could speculate whether

this alteration in stiffness affects the shift from neurogenesis to

gliogenesis during brain development. Interestingly, when

cultured on soft gels, rat adult hippocampal neural stem cells
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Figure 3. Mechanical regulation of developmental processes in the nervous system
(A) In vitro, neural stem cells are more proliferative in softer than in stiffer substrates.
(B) Neural stem cell fate is also affected by substrate stiffness in vitro.
(C) Migration occurs radially from the ventricle toward the pial surface and tangentially along the brain surface, forming the appropriate cortical lamination. In vitro,
cell migration is regulated by substrate stiffness.
(D) The application of tension to a neurite is sufficient to make it an axon in vitro (Di and Dii), and in the presence of an existing axon, an additional axon can be
generated by external tension (Dii and Diii).
(E) Axon growth velocity is higher on stiffer substrates. As fasciculated axons are coupled to each other, the faster growing axons on the stiffer side are pulled
toward the slower growing axons on the softer side, resulting in turning of an axon bundle exposed to a stiffness gradient in vitro and in vivo.
(F) Mechanical tension along an axon regulates vesicle clustering at the presynaptic terminal (Fi). Severing the axon decreases tension along the axon, resulting in
a loss of vesicle clustering at the neuromuscular junction. Pulling on the severed end is sufficient to restore clustering in vivo. Similarly, mechanical pushing of the
axonal bouton by dendritic spine enlargement results in an increase of vesicular release from the presynaptic bouton (Fii).
(G) Several mechanical forces contribute to the folding of the brain cortex, including differential expansion of specific brain regions due to heterogeneities in cell
proliferation and migration, and tension along axons within the tissue. F: denotes forces. Closed filled arrows indicate direction of force, dashed arrows indicate
direction of migration.
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also preferentially differentiated into neurons on softer sub-

strates and into glia on stiffer ones. In contrast, human neural

stem/progenitor cells displayed the opposite behavior,92 high-

lighting species or cell-type-specific differences either inmecha-

notransduction and/or in the readout of conserved mechano-

transduction mechanisms.

Various mechanotransduction mechanisms have been identi-

fied to impact the fate decisions of neural precursor cells in vitro.

For example, Piezo1 activity in human neural stem/progenitor

cells was lower on softer substrates than on stiffer ones,92 and

perturbations of Piezo1 activity resulted in a decrease in neuro-

genesis and an increase in astrogenesis.92 The effect of Piezo1

activity on neural stem cell fate may be mediated by cholesterol

biosynthesis.113

Moreover, in neural precursor cells cultured on stiff substrates,

YAP translocates into the nucleus, whereas on soft substrates, it

remains cytoplasmic, and YAP activity has been linked to

neuronal differentiation.92,114,115 Similarly, the TF Olig1, which
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is involved in oligodendrocyte formation andmaturation, is trans-

located to the nucleus on stiff but not on soft substrates.84

The effect of environmental stiffness on differentiation extends

beyond the developing nervous system as adult neural stem

cells also respond to substrate mechanics.19,116,117 Neurogenic

niches in adult mouse brains are about twice as stiff as non-

neurogenic niches.19 When neural stem cells from these niches

were cultured on substrates with stiffness levels corresponding

to those of the non-neurogenic and neurogenic niches, higher

neuroblast formation was found on the stiffer gel, further sup-

porting the role of mechanics in neural differentiation.19 Piezo1

is involved in adult neurogenesis and cognitive function;

Piezo1-deficient mice have impaired hippocampal volume,

learning, and memory functions.117

Migration
After neurogenesis, neurons migrate from their proliferative and

neurogenic niches throughout the CNS to form the appropriate
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lamination and connectivity within the brain.118–120 This process

involves migration along various substrates such as the sur-

rounding ECM, across neighboring neurons, over other axons,

and along radial glia cells. These substrates have their intrinsic

mechanical properties that likely contribute to directing neuronal

migration.

For example, Cajal-Retzius cells, which are some of the first

neurons to emerge, develop in various proliferative niches in

the brain before migrating to the cortical surface. The marginal

zones of the developing mouse cortex, along which these cells

migrate, are characterized by stiffness heterogeneities.121

In vitro, Cajal-Retzius cells migrated across longer distances

on stiffer substrates. However, Cajal-Retzius cells from different

proliferative niches migrated at different rates and exerted

different forces on the substrate, even when the stiffness of the

substrate was the same. This suggests that cell-intrinsic me-

chanical properties may also influence migratory patterns, in

addition to the mechanical properties of the environment.
Identity and growth
After migrating neurons arrive at their final location, they form

connections and networks that are essential for brain develop-

ment and function. Neurons polarize by developing several pro-

jections, including a single axon that transmits information and,

typically, several highly branched dendrites that receive informa-

tion. In this subsection, we explore the role of mechanics in neu-

rite identity (axon vs. dendrite) and growth, whereas the final

subsection addresses morphology and connections.

Seminal work from the 1980s demonstrated that the external

application of mechanical tension to the neurites of chick sen-

sory ganglion neurons is sufficient to induce axon formation.122

Further studies in hippocampal neurons revealed that applying

tension to other neurites, even in the presence of an existing

axon, resulted in the formation of additional axons.123 However,

it remains to be shown whether neurite tension generated

by advancing growth cones1,40 is sufficient to initiate axon

formation.

Once the axon is specified, it needs to elongate until it reaches

its target, where it stops growing and forms synapses. Compre-

hensive reviews on the forces involved in axon growth can be

found here.1,40,41 In essence, axon elongation can occur through

the following two distinct processes: tip growth, where the

growth cone at the tip of an axon exerts forces on its surround-

ings and pulls the axon forward, and towed growth, whereby the

connected axon shaft stretches as the organism grows.

As the growth cone inches forward, its directionality is influ-

enced by a complex interplay of chemical and mechanical

cues. Chemo-attractive or -repulsive signals cause asymmetric

remodeling of the cytoskeleton and thus traction forces exerted

by the growth cone on substrates, thereby changing the direc-

tion of force application and hence axon growth. In addition, me-

chanical cues, such as tissue stiffness, also affect axon turning:

when encountering stiffness gradients, axons of Xenopus retinal

ganglion cells turn toward softer tissues in vitro as well as

in vivo.20,25 This turning may be a direct consequence of larger

neuronal forces on stiffer substrates,63 leading to torque in

axon bundles growing on stiffness gradients.124 However, the
MSC Piezo1 is also involved in regulating axon growth in this

system.20

MSCs are also involved in stopping axon growth and poten-

tially in axon branching or pruning. Local mechanical stimulation

of growth cones may lead to a calcium influx through MSCs,

leading to neurite retraction.125 Different parts of a neuron

show different calcium responses, with axons showing higher

susceptibility to mechanical stimulation and sustained re-

sponses, whereas dendrites exhibit transient responses.126

Along these lines, EnaC/DEG channels are important for den-

dritic arbor morphogenesis,127 and TRP channels may inhibit

axon growth,128 affect axon turning,129 or promote neurite

elongation.130

A beautiful in vivo example of towed axon growth has

recently been identified in the developing zebrafish olfactory

placode. After axon tip growth is terminated and synapses

have formed, the cell body moves away from the axon terminal,

leading to the extension of the axon. The forces driving this

mode of axon extension are not cell intrinsic but rather originate

from neighboring cells, which push the soma of the neuron

away.42

Similarly, growing dendrites in the nematodeC. elegans sense

mechanical forces through MSCs of the DEG/ENaC family.127

Ion currents triggered by the activation of these MSCs are

required for proper adhesion and thus force transmission of

the dendrites. Inhibiting ENaC/DEG channels resulted in

decreased dendritic growth and branching in vivo, whereas

overexpression of Piezo in these DEG/ENaC mutant worms

rescued dendritic growth.127

The tension required for axon and dendrite elongation can be

maintained in vitro and in vivo after growth is completed.

Reduced axonal tension results in neurite retraction,4,41 empha-

sizing the significance of tension in maintaining neurite structure.

In the following subsection, we will illuminate the critical role of

axon tension in the establishment and maintenance of neural

networks.

Neural networks
Mechanical forces are important for diverse processes leading

to the formation of neural networks. For example, as briefly

mentioned in the introduction, axon zippering and unzippering

in growing axon bundles and existing neural networks arise

from the competition of axon-axon adhesion and mechanical

tension along the axons.5 Hence, axonal tension is a critical

parameter controlling the fasciculation of axon bundles.

Furthermore, in rat hippocampal neurons, membrane tension

propagates along axons but not dendrites. High tension at the

growth cone promotes rapid axon growth while suppressing

branching; conversely, low tension at the growth cone front

(e.g., through a physical obstacle) enhances branching and the

growth of collateral structures.131 Thus, the propagation ofmem-

brane tension plays a crucial role in controlling the geometry of

neurons.

Dendrite branching is also mechanically regulated and in-

creases with substrate stiffness.132 The resulting branching pat-

terns can be modified through perturbations of a-amino-3-hy-

droxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA

receptors or by treating the neurons with astrocyte-conditioned
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media, confirming that neurons integrate mechanical and chem-

ical signals.

Once connections are made and neural networks are estab-

lished, synapse shape and function depend not only on electrical

and chemical signals but also on mechanical factors. Mechani-

cal aspects of synaptic structures (e.g., cytoskeletal dynamics,

CAMs, and other mechanoregulatory molecules) that potentially

affect connectivity and plasticity are reviewed in Kilinc,133 with a

focus on dendritic spine dynamics in Minegishi et al.134 while the

role of forces in synapse function is discussed below.

Cortex folding
At the tissue level, the folding of the cerebral cortex of large

mammalian species is a mechanical process.7 Work on the

role of mechanics in cortex folding commenced almost half a

century ago.135 Although the origin of the forces required to

fold the brain is still not fully understood, the widespread hypoth-

esis that the cortex folds because the skull imposes a mechan-

ical constraint can be ruled out.136,137

Under pulling (‘‘tensile’’) forces, tissues will stretch, and

because they are viscoelastic, sustained tension will lead to per-

manent growth and relaxation of the mechanical stress. In

contrast, under pushing (‘‘compressive’’) forces, tissues will be

compressed. Sustained compression may lead to tissue shrink-

ing, or if the compressive forces are large enough, tissue may

buckle (i.e., suddenly bend) to assume an energetically more

favorable state.138

The prevailing view in the field is that cortex folding results

mainly from a ‘‘buckling instability,’’ i.e., from a sudden change

in shape (i.e., bending) under load. Buckling may occur when

the cortex expands at a higher rate than the underlying white mat-

ter.135,138–141 Cell proliferation, astrogenesis, neuronal migration,

and likely dendrite formation, which are all crucial events in cortex

folding,118,135,142–148 contribute to the tangential expansion of the

cortex. This expansion leads to the generation of compressive

forces. Beyond a critical point, a further increase in tissue

compression leads to buckling, which is why the cortex folds.135

Additional contributions to cortex folding are made by the

ECM.149 As mentioned above, the ECM is an important contrib-

utor to local tissue stiffness. For folding to occur, the cortex has

to be stiffer than the underlying white matter,150 potentially ex-

plaining why perturbations to the ECM may alter brain folding

patterns149—as these alterations affect the stiffness ratio of

gray and white matter.

Finally, axon tension was also suggested to contribute to cor-

tex folding. Although axon tension is not involved in pulling the

base of developing gyri together,49 as initially hypothesized,151

it exists in subcortical white matter tracts,49 where it could

enable the propagation of forces across large distances. Such

a mechanism could explain why a lesion of a frontal lobe results

in bilateral changes in sulcal patterns.152 The frontal lobes are

tightly connected. Thus, lesions in one lobe could cause a relax-

ation of the connecting axons, leading to a force redistribution in

the contralateral lobe and hence altered folding patterns.

For a more in-depth discussion of the mechanisms and forces

at play during cortex folding, please see the following excellent

reviews: Llinares-Benadero and Borrell,6 Garcia et al.,138 and

Del-Valle-Anton and Borrell.153 In summary, many players
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across length scales—starting from gene expression pat-

terns,154 local progenitor cell proliferation, neuronal migration,

and ECM composition—regulate local mechanical tissue prop-

erties and tissue-scale forces in cortex folding. Reciprocally,

forces and mechanical tissue properties regulate gene expres-

sion patterns, cell proliferation, neuronal migration, and ECM

composition.1,138 How exactly this intricate interplay of molecu-

lar and cellular processes as well as cellular and tissue-level

forces lead to the folding of the mammalian cerebral cortex will

need to be studied in future.

MECHANICS IN HOMEOSTASIS

Once the neuronal network is established, synapses are formed

and astrocytes are distributed throughout the CNS,mechanics is

still an important regulator of many cell functions. We here pro-

vide a few prominent examples.

Neuronal activity
Neuronal activity is regulated by mechanical signals at many

levels. For example, in Drosophila photoreceptors, the absorp-

tion of light leads to conformational changes in the photosensi-

tive molecule rhodopsin, which activates the enzyme phospholi-

pase C, whose activity leads to changes in the physical

properties of the cell membrane. Consequently, the microvilli in

the photoreceptor cells—and hence the whole ommatidia (com-

pound eye units)—contract in response to light, and the resulting

forces lead to the opening of ‘‘light-sensitive’’ ion channels,

which actually appear to be mechanosensitive.155 This exem-

plifies how mechanical forces can serve as ‘‘second messen-

gers’’ in an otherwise metabotropic signaling pathway. Consis-

tent with this, changes in the mechanical properties of the

photoreceptors’ cell membranes lead to changes in the speed

and sensitivity of phototransduction in Drosophila.156

Similarly, bright flashes of light induce a rapid shortening of the

outer segments of vertebrate photoreceptor cells.157 In Xenopus

rod inner segments, the expression of mechanosensitive chan-

nels such as transient receptor potential canonical 1 (TRPC1)

and Piezo1 is crucial for proper photoreceptor function.157 These

data suggest that mechanosensitivity is an essential component

of vertebrate vision as well.

As mentioned above, the activity of NMDA receptors, a

neuronal glutamate receptor, may be modulated by mechanical

forces.55 At the level of the neuromuscular junction inDrosophila,

where information is sent from the nervous system to muscles,

synaptic vesicle clustering requires tension (i.e., actively gener-

ated forces) along the axon in vivo.50 The activity-dependent

structural plasticity of dendritic spines also requires mechanical

forces generated by the actomyosin cytoskeleton, which must

be properly linked to adhesion sites in the spine to push against

the membrane for spine enlargement.158 Additionally, recent

work has shown that applying mechanical forces on the presyn-

aptic terminal increases neurotransmitter release.159 Extrinsic

forces generated by transiently pushing presynaptic boutons in

rat brain slices with a glass pipette resulted in an increase of

glutamate release and soluble N-ethylmaleimide-sensitive

factor activating protein receptor (SNARE) complex assembly.

Moreover, inducing postsynaptic spine enlargement through
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glutamate uncaging resulted in enhanced SNARE complex as-

sembly and increased glutamate release specifically when the

spine was pushed against the presynaptic bouton (Figure 3F).159

At the network level, synapse densities and neuronal activity

seem to be regulated by substrate stiffness, even if the softest

substrates used were two orders of magnitude stiffer than brain

tissue.160 Once neuronal networks are established on similarly

stiff substrates, the presynaptic activity, synaptic glutamate con-

centration, calcium influx, NMDA receptor activity, and postsyn-

aptic activity were all enhanced on even stiffer substrates.161

Collectively, these findings indicate that mechanical cues

actively influence neuronal activity across many levels, thereby

shaping function, plasticity, memory, and learning in organisms.

Mechanical glial cell functions in homeostasis
During eye movements, the vertebrate retina is exposed to large

forces. M€uller cells, the principal glial cells of the vertebrate retina,

span the entire thickness of the tissue, connecting all retinal neu-

rons. In addition to numerousmetabolic, electrochemical, and op-

tical roles,162,163 M€uller cells also have important mechanical

functions. These cells are contractile in vitro and in vivo164,165

and actively generate mechanical tension in the healthy retina,

promoting tissue cohesion and integrity.165 Furthermore, M€uller

cells are also sensitive to tissue-level changes in tension.166 Me-

chanical stretch, such as that which might occur during rapid

eye movements or trauma (in particular in glaucoma patients167),

elicits calcium transients in M€uller cells, likely mediated by MSCs

such as transient receptor potential vanilloid 4 (TRPV4) and

TRPC1.168 These calcium transients lead to early stress re-

sponses,166 enabling the cells to react to the mechanical signal.

Also, microglia, astrocytes, and oligodendrocytes possess

MSCs, including Piezo1. Although little is known about the me-

chanical signals that activate these MSCs in glial cells in healthy

conditions, the activation of Piezo1 in astrocytes has been

shown to lead to the calcium-mediated release of ATP, thus

affecting adult neurogenesis, hippocampal structure, long-term

potentiation, learning, and memory in vivo.117 Many mechano-

sensitive glial cell functions are related to pathological processes

though, as described below.

Mechanical interaction between neurons and glial cells:
Myelination
Axons may be wrapped in a myelin sheath, which improves the

conduction of action potentials, optimizing information transmis-

sion along axons. Themyelination process involves oligodendro-

cytes in the CNS and Schwann cells in the PNS extending

thin processes, which wrap around axons. Although forces

must be involved in the extension of these protrusions and the

wrapping process, we still know relatively little about howmyelin

sheaths form.

Recent studies revealed that oligodendrocyte precursor and

Schwann cell function, as well as myelination, are indeed depen-

dent on substrate stiffness169–171 and regulated by Piezo193,172

and YAP.173,174 Notably, the aging-related stiffening of the brain

increasingly activates Piezo1 in oligodendrocyte precursor cells

and thus eventually prevents remyelination in the aged brain.24

It was suggested that the internodal lengths of myelin seg-

ments may be determined by forces arising from towed growth
of axons (see subsection identity and growth),175 potentially ex-

plaining why larger species have longer internodal lengths. How-

ever, whether myelinating glial cells are stretched directly during

growth or through their tight connections to the axons and/or the

ECM remains to be determined. In any case, stretching of oligo-

dendrocyte precursor cells induces nuclear YAP accumulation,

which affects oligodendrocyte maturation and morphology

in vivo.174 Once myelination is complete, mechanosensitive

TRAAK channels are localized exclusively to nodes of Ranvier,

the action potential propagating elements of myelinated nerve fi-

bers. The exact function of these channels is still unclear though

and warrants further exploration.176
MECHANICS IN PATHOLOGICAL PROCESSES

The mechanical properties of neural tissue change during

various diseases and following injury. These changes may be

an epiphenomenon of molecular and cellular changes occurring

during diseases. They may, however, also be key players in the

pathogenesis of CNS disorders, contributing to the onset and/

or progression of disease. Importantly, not only neurons but

also glial cells, which play a pivotal role in many CNS disor-

ders,177–179 are mechanosensitive. Glia respond to the mechan-

ical properties of their environment and may be (immune)acti-

vated when their mechanical environment changes62,98,180–182

(see subsection integrating different signals). In this section,

we review recent advances in our understanding of how me-

chanical signals might be involved in CNS diseases.
Neurodegenerative diseases
In many neurodegenerative diseases, including Alzheimer’s dis-

ease (AD),183,184 Parkinson’s disease,185,186 and multiple scle-

rosis (MS),187,188 brain tissue becomes softer in vivo

(Figures 4A and 4B). This tissue softening correlates with histo-

pathological changes in the tissue, including a decrease in cell

numbers, loss of connectivity, and inflammation.184,192,193

Many neurodegenerative diseases are characterized by the

presence of intracellular and/or extracellular amyloid fibrils (i.e.,

protein aggregates with a cross-b structure), such as amyloid

beta (Ab) peptide in AD and a-synuclein in Parkinson’s disease.

Amyloid fibrils are among the stiffest protein fibers known.194 If

they assemble into larger scale structures, such as amyloid pla-

ques in AD, theymight constitute stiff objects within an otherwise

soft tissue. These structures may be big enough to be mechan-

ically probed by cells (or AFM cantilevers195). However, it has yet

to be determined whether cells primarily respond to overall tis-

sue softening or localized stiffness of the amyloid plaques.

Eitherway,mechanosensingbyglial cells seems tobean impor-

tant factor in neurodegenerative diseases. For example, Piezo1

expression is upregulated in AD models either in astrocytes196 or

microglia.195 Microglia cluster around Ab plaques in a Piezo1-

dependent fashion195 and could be attracted to the plaques by

anattractivegradient in tissuestiffness.62Piezo1activity increases

Ab clearance in microglial cells in both human and mouse models

of AD,195,197 suggesting that this MSC might be critically involved

in disease progression and could be an interesting target in future

treatment strategies. Additionally, thenuclear translocationofYAP
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Figure 4. Pathological changes in CNS tissue
mechanics
(A and B) Complex shear moduli of human brains
measured by magnetic resonance elastography
(MRE). Brain tissue of patients with Alzheimer’s
disease (AD) (B) is softer than that of age-matched
healthy controls (A). Adapted from Gerischer
et al.,189 NeuroImage: Clinical, 18, Gerischer
et al.,189 with permission from Elsevier. Considering
hippocampal stiffness in in addition to magnetic
resonance imaging-based hippocampal volume
and mean diffusivity significantly improved diag-
nostic sensitivity.189

(C and D) Elastic moduli of rat spinal cord tissue
measured by atomic force microscopy (AFM). In
adult rats, where neurons do not normally regen-
erate, spinal cord tissue significantly softens after
injury (D) if compared with healthy tissue (C). Scale
bars, 500 mm. Adapted from Moeendarbary et al.36

and reprinted with permission from Nature Com-
munications. In contrast, peripheral nerve tissue in
rats and spinal cord tissue in zebrafish, both sys-
tems in which neurons do regenerate, stiffen after
injury.190,191
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was recently suggested to be involved in the mechanosensing of

microglia in the context of AD.198

In contrast to AD, Piezo1 expression is downregulated in the

brains of patients with MS.199 In MS, the demyelination of axons

leads to the softening of the tissue,200 which lacks amyloid fibrils,

indicating that the tissue is also soft at the micro-scale and that

thus microscale tissue stiffness might regulate Piezo1 expres-

sion patterns. In agreement, Piezo1 is upregulated on stiffer sub-

strates in vitro.201 Piezo1 activity leads to a decrease in the pro-

liferation and migration of oligodendrocytes.199 It furthermore

decreases the myelination of axon tracts, and its inactivation

was suggested to alleviate demyelination.172

In addition, neuronal homeostasis may be mechanically regu-

lated by Ab. A recent study suggested that Ab oligomers lead to

an increase in membrane tension, thus indirectly activating

NMDA and AMPA receptors, leading to excitotoxicity202 and

contributing to AD progression. Hence, AD may also progress

through the perturbation ofmechanical lipidmembrane properties

that are mediated by Ab and sensed by NMDA and AMPA

receptors.

In summary, in AD, where Piezo1 activity may be beneficial,

stiff plaques may lead to the activation of the MSC. In contrast,

in MS, Piezo1 activity seems to be detrimental, and here, stiff

plaques potentially required for activating mechanosensing are

absent. Based on only these two exemplary neurodegenerative

diseases, it is tempting to speculate whether pharmacologically

interfering with brain stiffness might help in slowing down dis-

ease progression. Further research is required to unravel the

complex interplay between mechanics, pathology, and potential

therapeutic interventions.

Axon regeneration
Neural tissue stiffness also dramatically changes with traumatic

injuries. Similar to other organ systems in our body, neural tissue
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is replaced by scar-like tissue after signifi-

cant injury. Typically, collagen deposition

leads to a stiffening of the fibrotic scar

compared with healthy tissue. In the
mammalian peripheral nervous system, where damaged neu-

rons can regenerate, a similar scarring mechanism occurs.

Here, collagen expression is significantly increased after crush

and transection injuries in vivo, and hence, nerve tissue stiffness

is increased relative to the stiffness of the healthy nerve.190 Simi-

larly, spinal cord tissue in zebrafish, where neurons can also fully

regenerate, stiffens after injury.191 The mechanical signature of

scar tissue in the mammalian CNS, however, is far more

intriguing. In the adult mammalian CNS, where neurons usually

fail to regenerate, brain and spinal cord tissue soften after

injury36 (Figures 4C and 4D), although tissue stiffness may revert

to healthy values and beyond at chronic time points.203 These

data imply a positive correlation between tissue stiffness and

the regenerative capacity of injured neurons

However, it has been shown that, in Drosophila, Piezo1 activ-

ity, which is likely increased in stiffer tissues,60,76 actually inhibits

axon regeneration through the activation of nitric oxide syn-

thase.204 Downstream effectors include the cyclic guanosine

monophosphate-dependent protein kinase G (PKG) as well as

the ataxia-telangiectasia-mutated-and-Rad3-related kinase

and checkpoint kinase 1 (Atr-Chek1) pathway.204,205 Why axons

regenerate better in stiffer tissues, whereas Piezo1 activation in-

hibits their regeneration, remains to be illuminated in future work.

Engineering approaches to promote neuronal regeneration

include biomimetic scaffolds for temporarily replacing damaged

spinal cord tissue206,207 and implants like cuffs to facilitate

regeneration of peripheral nerves.208 The aim of such ap-

proaches is to promote neuronal regeneration while inhibiting

excessive inflammatory reactions. Although both aims can be

achieved, at least to some degree, by slow sustained release

of different drugs, decreasing the stiffness of the whole implant

or its surface has been shown to work similarly well.98,208 Mate-

rials with a stiffness above that of the host tissue leads to the nu-

clear translocation of YAP in surrounding cells, culminating in
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inflammation and scar formation.208 Future approacheswill likely

combine appropriate mechanical and chemical signals to facili-

tate neuronal regeneration in the damaged adult mammalian

nervous system.207

Brain tumors
Tumors generate compressive forces during growth and expan-

sion, whereasmigrating tumor cells exert forces on their environ-

ment during metastasis and invasion. Hence, mechanics is likely

a significant component of brain tumor biology. In the CNS, the

most common and aggressive type of primary tumor is the glio-

blastomamultiforme (GBM), which has a very poor prognosis for

survival. In humans, GBM is generally softer than healthy brain

tissue, as measured by MRE in vivo, and they are mechanically

highly heterogeneous.209,210 Briefly, MRE assesses tissue stiff-

ness by applying external mechanical vibrations and using mag-

netic resonance imaging (MRI) to monitor the resulting wave

propagation. As waves propagate at different rates in materials

of different stiffness (in soft tissues, waves travel more slowly,

whereas in stiff tissues, waves travel faster), monitoring wave

propagation enables non-invasive tissue stiffness mapping in

clinical and pre-clinical settings.

Other types of brain cancer are mechanically similar to

GBM.211 In Drosophila, however, glioma tissue is stiffer than

healthy brain.201 Papers reporting GBM in mammals to be stiffer

than healthy brain tissue used either frozen, fixed, or dried brain

tissue for measurements, calling to question the meaningfulness

of the measurements. However, under compression human gli-

oma tissue stiffens more than healthy brain tissue,212 suggesting

that under sufficient tumor growth pressure, brain tumors might

indeed be stiffer than healthy brain.

This altered mechanical environment in a tumor may signifi-

cantly affect tumor cell function. For example, in 2D cultures,

stiffer environments enhance the proliferation and tumorigenesis

in patient-derivedGBMcells through the activation ofWnt/b-cat-

enin signaling213 and/or epidermal growth factor/ protein

kinase B (EGFR/Akt) signaling,214 as well as GBM aggressive-

ness.215,216 Furthermore, GBM cell motility is enhanced on stiffer

2D substrates.217 In 3D cultures, however, GBM cell proliferation

and motility are decreased in stiffer substrates,218 likely due to

steric hindrance (i.e., less available space, due to the smaller

mesh size and lower deformability of stiffer substrates).

Increased proliferation and motility of GBM cells in 2D can also

be triggered by hyaluronic acid via phosphoinositide 3-kinases

(PI3K) activation, even on soft substrates,219 suggesting that

the mechanical and chemical signals of the tumor microenviron-

ment can equally regulate the behavior of cancer cells.

Glioma cells themselves are also characterized by heteroge-

neous mechanical properties. Recurrent GBMs are character-

ized by high tension and high levels of glycoproteins, which

increase the bulkiness of the glycocalyx. This bulky glycocalyx

potentiates integrin-basedmechanotransduction and tissue ten-

sion, thus promoting a stem-cell-like phenotype in GBM cells.220

Potentiallymore invasiveGBMcells, sampled from the tumor pe-

riphery, are characterized by lower adhesive forces and

increased motility, compared with GBM cells sampled from the

bulk of the same tumor.221 The most invasive glioma cells are

stiffer and generate larger traction forces than less invasive cells,
in a microtubule, myosin II, and formin-dependent manner.222

Although the depletion of myosin IIA impairs tumor invasion, it

also increases tumor proliferation in a substrate mechanics-

dependent manner.223

An exciting recent study revealed that in mice, medulloblas-

tomas are characterized by a gradient in tissue stiffness around

blood capillaries.224 This stiffness gradient is sensed by theMSC

Piezo2 in projections of quiescent and slow-cycling Sox2+-ex-

pressing tumor cells. The activation of Piezo2 leads to enhanced

traction forces and growth of the projections toward the capil-

laries, which they eventually ensheath. This way, the tumor cells

strengthen the blood-tumor barrier, limiting the access of most

therapeutic agents. Consequently, Piezo2 knockout compro-

mises the blood-tumor barrier, reduces the quiescence of

Sox2+ tumor cells, and enhances the response of the medullo-

blastoma to chemotherapy,224 indicating that mechanical sig-

nals are an important target for future therapeutic interventions.

In most gliomas, however, Piezo1 (but not Piezo2) is overex-

pressed, and similar to many other types of solid tumors across

different organ systems, Piezo1 abundance inversely correlates

with patient survival.201 Furthermore, Piezo1 is predominantly

localized at adhesion sites of GBM stem cell processes. It is up-

regulated on stiffer substrates, and in Drosophila, enhanced

Piezo levels correlate with increased brain tissue stiffness,

implying a positive feedback loop.201 Once a tumor has formed,

Piezo1 is required for gliomamaintenance, growth, and progres-

sion. In vitro, Piezo1 knockdown abolishes the stiffness-depen-

dent tumor cell proliferation described above. In vivo, Piezo1

knockdown inhibits the growth of GBM and significantly pro-

longs the survival of mice with brain tumors,201 potentially by dis-

rupting the vicious circle betweenmechanically induced cell pro-

liferation and increasing tissue stiffness.

OUTLOOK

Every tissue in our body is built from its own set of specific con-

stituents, giving rise to the tissue’s distinct mechanical proper-

ties. As the local composition and properties of the constituents

change during development, aging, and disease, the tissue’s

local mechanical properties change as well. Thus, throughout

the body, tissue mechanics serve as signals that exist without

requiring additional energy expenditure—e.g., no extra ATP is

needed to generate the signal. Consequently, it is unsurprising

that neurons and glial cells evolved mechanisms to detect and

respond to mechanical signals.

In this review, we have examined recent advances in our un-

derstanding of how mechanical signals regulate nervous system

development and homeostasis, and how the same signals may

be involved in different pathological processes. Although we pri-

marily focused on tissue stiffness and cellular forces, it is impor-

tant to acknowledge the presence of other mechanical signals,

such as shear forces exerted by fluid flow, steric hindrance

due to the crowded environment in tissues, and tissue fluidity

(leading, for example, to rearrangements of cells in response to

forces).

In contrast to receptor-mediated chemical signaling, mechan-

ical signals, such as tissue stiffness, are not specific. As stiffer

substrates provide more traction to cells, cellular forces increase
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in stiffer tissues.62,63 This increase in force directly impacts cell

motility. Substrate stiffness thus directly regulates parameters

such as cell migration velocity and persistence, and motile

CNS cells can even be guided by stiffness gradients.20,25,62,224

However, due to the lack of specificity, tissue stiffness alone is

unlikely to instruct cells on where and when to stop migrating,

and on which cells to connect to or interact with. Here, chemical

signals are essential. Nevertheless, tissue mechanics may

modulate chemical signaling (and vice versa), enhancing the

signal-to-noise ratio and robustness of cellular responses to

the available signals.

Although significant progress has been made in understand-

ing mechanosensitive proteins and the underlying mechano-

transduction cascades, we are still just scratching the surface,

and many open questions remain. Future work will show how

mechanical and chemical (and potentially electrical225,226) sig-

nals are integrated by cells to jointly regulate cell function.

Knowledge about this integration will be critical for our under-

standing of developmental processes in the nervous system

and will also enable us to gain insights into aging and various

disorders.

In certain CNS diseases, mechanical changes of tissues may

be disease-specific (‘‘pathognomonic’’)227 and could thus

potentially be used in the clinic to support diagnosis.189 At the

same time, incorporating mechanical signals in our understand-

ing of the pathogenesis of CNS disorders will yield deeper in-

sights and potentially lead to the development of new therapeu-

tic interventions targeting, for example, mechanosensing

proteins or their downstream effectors, thus improving treatment

options.

Overall, mechanical forces are pivotal in numerous biological

processes; the study of nervous system mechanobiology, and

its integration with more established neurosciences disciplines,

will significantly advance our understanding of nervous system

function and disease.
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