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Abstract
1.	 Phenological shifts across plant species is a powerful indicator to quantify the ef-

fects of climate change. Today, mobile applications with automated species iden-
tification open new possibilities for phenological monitoring across space and 
time.

2.	 Here, we introduce an innovative spatio-temporal machine learning methodol-
ogy that harnesses such crowd-sourced data to quantify phenological dynamics 
across taxa, space and time. Our algorithm links individual phenological responses 
across thousands of species and geographical locations, using a similarity meas-
ure. The analysis draws on nearly ten million plant observations collected through 
the AI-based plant identification app Flora Incognita in Germany from 2018 to 
2021.

3.	 Our method quantifies changes in synchronisation across the annual cycle. 
During the growing season, synchronised behaviour can be encoded by a few 
characteristic macrophenological patterns. Nonlinear spatio-temporal changes of 
these patterns can be efficiently quantified using a data compressibility measure. 
Outside the growing season, the phenological synchronisation diminishes intro-
ducing noise into the patterns.

4.	 Despite biases and uncertainties associated with crowd-sourced data, for exam-
ple due to human data collection behaviour, our study demonstrates the feasibil-
ity of deriving meaningful indicators for monitoring plant macrophenology from 
individual plant observations. As crowd-sourced databases continue to expand, 
our approach holds promise to study climate-induced phenological shifts and 
feedback loops.
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1  |  INTRODUC TION

Phenology analyses the plant response to climatically driven sea-
sonal variability (Menzel et  al.,  2020; Piao et  al.,  2019). Multiple 
plant physiological metrics for characterising plant phenological 
conditions are routinely applied. At the plant level, observations 
such as bud-burst, leaf-out or flowering are recorded to understand 
phenological shifts across years or over geographical space. National 
institutions such as the German Weather Service (DWD) oversee 
phenological networks that mobilise citizen scientists to document 
local-level phenological changes across broader regions (Renner & 
Chmielewski,  2021). These networks systematically collect exten-
sive, long-term data sets through the contributions of thousands of 
trained volunteers adhering to well-defined protocols. Nevertheless, 
a persistent decline in the number of volunteers over several years 
poses a substantial risk to data accuracy, affecting not only German 
but also other networks (Yuan et  al.,  2021). Phenological gardens 
are widespread but sparsely distributed and, and are partly hosted 
by meteorological or long-term ecological monitoring networks 
(Renner & Chmielewski,  2021). They follow meticulous sampling 
protocols, partly requiring cloned species to exclude the effect of 
biological adaptation. This large effort necessarily leads to sparse 
observation networks.

Near surface sensing such as PhenoCams, that is digital cam-
eras that monitor vegetation, have emerged as a much less labour-
intensive, yet also a less detailed alternative. They essentially record 
integrated vegetation phenological stages across a range of ecosys-
tems (see e.g. Richardson et al., 2018). Although these monitoring 
approaches are of high temporal quality and resolution, their global 
distribution is likewise sparse, lacking spatial continuity between ob-
servation sites. A systematic approach for ground measurements is 
prohibitively expensive and thus will always remain limited in spatial 
and temporal range. Here, we examine to which extent opportunis-
tic data collection through mobile applications can be considered a 
useful alternative (Moles & Xirocostas, 2022).

Today, mobile phone applications have the potential to signifi-
cantly enhance the spatio-temporal resolution and coverage of 
plant observations. The phenological observations are made by cit-
izens who collect individual plant observations. First studies have 
reported successful usage of smartphone data for deriving phe-
nological metrics of crops (Hufkens et al., 2019), shrubs and trees 
(Barve et  al.,  2020), and herbaceous species (Katal et  al.,  2023; 
Klinger et  al.,  2023; Rzanny, Mäder, et  al.,  2024). However, these 
studies have to develop new methods to derive phenological in-
formation from data collected by smartphone applications, which 
are typically not tailored for this purpose, but rather developed for 
species identification. Examples are iNaturalist (Unger et al., 2021), 
Pl@ntNet (Goëau et al., 2013), Flora Incognita (Mäder et al., 2021), 

to only name a few. Overviews of these applications are given by 
Jones (2020) and Katal et al. (2022), illustrating the fast recent de-
velopments. Using Flora Incognita, Mäder et al. (2021) and Rzanny, 
Mäder, et al. (2024) showed that once sufficient data on one species 
are recorded, the time stamp of the recording offers a good indica-
tor for species phenological conditions. There are two main factors 
for this phenomenon. First, the application's automatic recognition 
capabilities are optimised for plants in a flowering state (Rzanny 
et  al.,  2019). Second, flowering or fruiting plants tend to be more 
visually appealing making them more likely to be photographed and 
identified (Katal et al., 2023; Klinger et al., 2023).

Studies analysing plant phenology, whether through field obser-
vations or crowd-sourced data, typically focus on a limited number 
of species (Alecrim et al., 2023; Katal et al., 2023; Klinger et al., 2023; 
Miller et al., 2023; Puchałka et al., 2022; Rzanny, Mäder, et al., 2024). 
However, it remains a challenge to link the individual phenological 
response across taxa, spatial scales and a variety of ecosystems 
(Gallinat et  al.,  2021; Piao et  al.,  2019). Although, remote sensing 
monitors an integrated surface phenology at large scales, there is 
limited information on the dynamics of individual species observa-
tions (Gallinat et al., 2021) and it is challenging to link it to ground ob-
servations (Tian et al., 2021). Macrophenology is an emerging field 
that adopts a macroecological perspective (Brown & Maurer, 1989; 
McGill, 2019) on phenology (Gallinat et al., 2021). The term was first 
introduced by Doi et al. (2017) and defined as an ‘approach to study 
phenological responses to ongoing climate change at broad scales 
using tools and theories developed in macroecology’. Here, we build 
on this idea to derive integrated phenology for plant communities or 
entire ecosystems. Our idea is to offer a link between remote sensing 
(Carl et al., 2013; Tian et al., 2021; Wagner, 2021; Zeng et al., 2020; 
Zhang et al., 2003) and individual plant observations, by retaining a 
species-specific approach, while at the same time studying the inte-
grated phenology across taxa, time and space.

How can macrophenological dynamics be derived from oppor-
tunistically sampled occurrence data? Our fundamental premise is 
that coherent patterns can emerge from the group behaviour of spe-
cies occurrences, which have been shaped by shared evolutionary 
and biogeographic processes (Almeida-Neto & Lewinsohn,  2004) 
and as a result often exhibit significant redundancy. In the static 
case, that is where time does not factor in, indirect ordina-
tion methods (also referred to as dimension reduction methods, 
Legendre & Legendre,  2012) have proven successful in extracting 
such underlying patterns (Mahecha et al., 2007, 2021; Mahecha & 
Schmidtlein, 2008; van der Maaten et al., 2012). In essence, the au-
thors derive biogeographic gradients from species co-occurrences. 
They reduce the species dimension, which can be of the order of 
thousands, by measuring similarities across geographical sampling 
locations. This spatial similarity structure is represented by a few 

K E Y W O R D S
citizen science, Isomap, machine learning, macroecology, macrophenology, nonlinear 
dimension reduction, plant phenology, spatio-temporal dynamics
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1424  |    MORA et al.

characteristic patterns, that is a low-dimensional representation of 
spatial ecological gradients. In the dynamic case, the same method 
has been employed to detect collective animal behaviour, such as 
fish schools, where the movement of individuals converge to create 
a group dynamic (Abaid et al., 2012; DeLellis et al., 2014). Theoretical 
experiments involving agent-based models further bolster the no-
tion that group behaviour, which is characterised by low-dimensional 
coherent patterns, can be discerned through these methods (Abaid 
et al., 2012; Gajamannage et al., 2015).

Here, we asked whether we can use the temporal detection 
information across the full range of species recorded with mobile 
applications to describe macrophenological dynamics. We propose 
a novel macrophenological approach, which reveals integrated phe-
nological dynamics from the group behaviour of individual plant 
observations. Specifically, we analysed crowd-sourced observa-
tions of plant occurrences and their time-stamp information using 
the nonlinear dimension reduction method isometric feature mapping 
(Isomap) (Tenenbaum et al., 2000). Robustness is ensured through 
our temporal data aggregation procedure, and its analysis involves 
examining the relationship between temporal changes in group be-
haviour and observation counts.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Flora Incognita

The Flora Incognita (FI) smartphone application https://​flora​incog​
nita.​com allows users to identify plants directly in the field. The 
process is based on automatic image classification of one or more 
images aided by the botanical, geographical and climatic context of 
the observation (Mäder et al., 2021; Wittich et al., 2018). Currently, 
the application can identify more than 30,000 vascular plant species, 
with a strong focus on the flora of Central Europe. An evaluation of 
identification accuracy when the app was published revealed that 
93% of the inspected observations were correct (Mäder et al., 2021). 
Since then, the identification model has been continuously improved 
and now achieves an accuracy of >95% for Central European wild 
flowering plant species (Rzanny, Bebber, et  al., 2024). Although 
poor-quality images may impact individual observations, app-based 
species identification is typically as accurate or exceeds expert 
judgement. In contrast to targeted phenological observations, the 
FI app does not comprise a protocol for phenological studies, is not 
focused on the recording of phenological data, and is primarily used 
by botanical laypersons without any prior botanical knowledge. 
Species are predominantly identified by their most distinct feature, 
in particular flowers or fruits (Katal et al., 2023; Mäder et al., 2021). 
Here, we focus on the active phenological state and do not distinguish 
between flower, leaf or fruit as the goal of our macrophenological 
approach is to analyse phenology across as many taxa as possible. 
For this purpose, we employ presence-only binary data, that is 

1 = observed active phenological state and 0 = no information. In this 
analysis, a FI observation consists of the name of the species, the grid 
cell (location) and the date of the observation (Mäder et al., 2021). 
This analysis uses 9,759,894 observations collected throughout the 
period April 2018 (launch) to end of 2021 in Germany. During this 
period, a total of 2820 plant species were observed.

2.1.2  |  Human population density

The number of observations collected with FI have been shown to 
depend on the human population density, when time is not taken 
into account (Mahecha et al., 2021). To analyse whether we observe 
the same effect across time, we employed human population data 
from the most recent German National Census 2011, provided by 
the Federal Statistical Office (2011).

2.2  |  Spatio-temporal approach to 
macrophenological dynamics

The spatio-temporal species occurrence is not random but a re-
sponse to biogeographic processes and driven by seasonal weather 
and biological dynamics (e.g. herbivory, plant competition and pol-
lination). This is the basis for our assumption that the occurrence 
of active phenological states embeds and represents inherent in-
formation on environmental gradients and seasonal changes. We 
propose that the phenological group behaviour across time exhib-
its low-dimensional characteristic patterns, which can be extracted 
by nonlinear dimension reduction methods. Specifically, we derive 
macrophenological patterns and measures from opportunistically 
crowd-sourced occurrence data.

Our approach, visualised in Figure 1, is as follows. In the pre-
processing step, these data were aggregated into a grid. We gen-
erated a time series of FI occurrence data per grid cell (location � ), 
which serves as an indicator of observable phenological states in 
Germany. The simultaneously active phenological states are ag-
gregated in discrete time steps using a sliding window approach 
to diminish temporal bias. We employed the dimension reduction 
method Isomap (Tenenbaum et al., 2000) per time step, with the 
aim to reduce up to approximately 3000 species to a few char-
acteristic patterns. These characteristic patterns are referred to 
as macroecological patterns (MEPs), introduced by (Mahecha 
et  al.,  2021) and are combined to form a time series referred to 
as a macrophenological series (MPS). We computed the residual 
variance (RV) to estimate data compressibility per time step. To 
quantify temporal changes in MEPs between two consecutive time 
steps, we used canonical correlation analysis (CCorA) (Legendre & 
Legendre, 2012).

In the following section, we first explain how the time series 
was generated, second how Isomap was adapted and employed, and 
third how the CCorA was utilised. The analysis was performed with 
the software R (R Core Team, 2020, version 3.6.3).
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2.2.1  |  Pre-processing: Time-series aggregation

In the pre-processing step, all data sets, that is FI observations and 
human population counts, were aggregated using the spatial grid em-
ployed by (Mahecha et al., 2021). This grid was chosen to maintain 
continuity with previous national plant surveys (Kühn et al., 2004; 
Mahecha et al., 2021). Each grid cell is the size of 10′ (arc-minutes) 
longitude × 6′ latitude, which corresponds to a surface area of ap-
proximately 130 km2, and referred to as location �. The observations 
density is relatively high due to the high data volume for the cho-
sen grid, and no gap filling or interpolation methods were applied 
throughout the paper to generate the maps. Our macrophenological 
approach can be easily adapted to any grid type, provided it is not af-
fected by large observation gaps, that is multiple adjacent grid cells 
without observations.

The FI data were collected daily over multiple years (2018–2021) 
and temporally aggregated to represent a time series of an average 
annual cycle by using overlapping time windows (Figure 1). At each 
time step t a binary matrix Xt ∈ {0, 1}

�×s with � locations and s spe-
cies was generated from FI records. Each matrix Xt is comprised of 
observations across a time window of 90 days with consecutive time 
windows being seven days apart. The sequence of time windows 
are shown with the date format day/month: {1/1–30/3, 8/1–6/4, … 
30/12–29/3}. We obtained a total of 53 time steps (with t = 1, … , 53 ), 
corresponding to the weeks of the year, Figure 1. For simplicity, we 
also refer to some time windows with the corresponding name of 

the meteorological season, that is spring (Spr) ≈ [4/3–30/3] corre-
sponds to t = 10, summer (Sum) ≈ [3/6–31/8] corresponds to t = 23, 
autumn (Aut) ≈ [2/9–30/11] corresponds to t = 36, and winter (Win) 
≈ [2/12–1/3] corresponding to t = 49. For simplicity we refer to the 
period spring—autumn as growing season, and autumn—spring as 
non-growing season. Overall, across Germany the number of species 
s and observation locations � fluctuate periodically across the annual 
cycle, that is s ∈

[
1622, 2782

]
 and � ∈

[
2684, 2991

]
 with scaled val-

ues in Figure 2c.
With a 90-day time window, we aim to span the duration of a 

season, while also keeping observation gaps, which could otherwise 
affect the dimension reduction results, to a minimum. Specifically, 
in Figure 2c, we show that the scaled number of locations remains 
above 89.7% throughout the annual cycle, and above 99.0% for 33 
out of 53 time steps. Moreover, this window size mitigates the im-
pact of human data collection behaviour, that is no increased obser-
vations peaks due to weekends or holidays are observed, Figure 2c. 
It also accounts for local intra-specific asynchrony in phenological 
conditions (Almeida-Neto & Lewinsohn, 2004). We also performed 
computations with a 45-day time window, which are presented in 
Appendix  S5. The seven-day progression was chosen to mitigate 
human behaviour bias due to the human seven-day rhythm.

In Figure 2a, we show that the observation distribution varies in 
time and can be concentrated around more densely populated areas, 
for example in winter Figure 2b. This motivated the analysis to quan-
tify the effects of human population density on Isomap results.

F I G U R E  1  The spatio-temporal analysis follows three steps. (1) Pre-processing: We aggregated daily plant occurrence observations 
from the FI data to represent a time series of an average annual cycle. Per time step t the simultaneous occurrences over 90-day long 
time windows were gathered, i.e. [1/1–30/3]. Per time step the observation, species and location (grid cell) counts across Germany were 
determined. (2) Nonlinear dimension reduction (Nonlin. dim. reduction) with Isomap of up to 3000 species per time step t was performed. 
This gives rise to the macroecological patterns (MEPs). The time series of MEPs is referred to as a macrophenological series (MPS). The 
residual variance quantifies the data compressibility. (3) We computed the common patterns of consecutive time steps with canonical 
correlation analysis. Temporal changes between t and t + 1 were quantified by the canonical correlations. Finally, we study the relationship 
between the residual variance (RV), canonical correlations and counts, i.e. a proxy of human data collection behaviour.
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1426  |    MORA et al.

Moreover, the 90-day time window captures a majority of the 
species throughout the average annual cycle indicating data ro-
bustness. The shape of the seasonal curves in Figure  2c indicate 
that fewer total observations do not imply fewer species detected, 
for example with 50% of the total maximum observations (before 
[26/02–25/05] and after [29/07–26/10]) we still observe more than 
90% of the maximum number of distinct species.

In addition, as a reference to the data compressibility poten-
tial, comparable to the results by Mahecha et al. (2021), we aggre-
gated a single and static FI matrix XFI ∈ ℝ

2992×2820, with all species 
occurrences during the full period 2018–2021, that is no temporal 
changes are included. As certain species occur only in certain time 
windows, this static matrix has different dimension s and � to the 
time series of matrices.

2.2.2  |  Nonlinear dimension reduction with 
isometric feature mapping

Isometric Feature Mapping (Isomap) is a manifold learning or nonlin-
ear dimension reduction method (Tenenbaum et al., 2000), which is 
also referred to as an indirect ordination in the ecology community. 
We assumed that in similar biogeographical locations, many species 
behave similarly, that is the exhibit active phenological states during 
the 90-day observation time window. Thus, we expected that the 
phenological group behaviour can be approximated by a few pat-
terns, that is the number of species s (up to 2782 species per time 
step t) can be approximated by p (≪ s) Isomap components. This al-
lows us to analyse group behaviour and compute macrophenologi-
cal patterns from individual observations across time. Isomap is a 
nonlinear extension of classical multi-dimensional scaling (Legendre 
& Legendre, 2012), which aims to detect a low-dimensional manifold 
Y embedded in high-dimensional data X, by preserving the local as 
well as the global manifold structure, that is grid cells with similar 
species co-occurrence remain close and dissimilar ones remain far 
away. Below, we give a high-level description of the adapted Isomap 
algorithm.

First, Isomap constructs a geometric representation, that is a 
graph, of the phenological group behaviour at time t by quantify-
ing the species co-occurrence similarity between locations i  and j 
with observations Xt

i⋆
 and Xt

j⋆
 where i, j = 1, … ,m using the Jaccard 

distance dJ

F I G U R E  2  Pre-processed data: (a) The number of observations 
per time step and per grid cell, which where scaled by the maximum 
per time step (for visualisation only, not part of this analysis). (b) 
The human population density (number of persons per grid cell) 
appears to affect observations in (a). (c) Observation counts: the 
scaled number of total observations, distinct species, and locations 
(grid cells) across Germany per time step. The counts have been 
scaled by their respective annual maximum (Appendix S1). The 
curves indicate periodic but asymmetric behaviour.

(a)

(b)

(c)
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    |  1427MORA et al.

where the notation Xt

i⋆
 refers to row i . From this, the symmetric 

dissimilarity matrix DJ ≔ dJ

(
X
t

i⋆
,X

t

j⋆

)

i,j
∈ ℝ

�×� is constructed. The 
Jaccard distance is an intuitive replacement for the typically em-
ployed Euclidean distance to deal with binary data first proposed 
for Isomap by Mahecha et al. (2007). Alternative dissimilarity mea-
sures (Mainali et al., 2022) can be explored in future work. From 
the dissimilarity matrix DJ an undirected neighbourhood graph is 
constructed, where the graph vertices represent the geographical 
locations and the graph edges the dissimilarity measure between 
the corresponding locations, dJ. The neighbourhoods are approx-
imated using the k-nearest-neighbour approach, i.e. k locations 
(vertices) with the most similar species composition are connected. 
We chose k = 16 for consistency with previous results (Mahecha 
et al., 2021).

Second, the geometry of the similarity structure of the species 
co-occurrence is preserved by using the geodesic distance, that is 
the distance between two points along a curved manifold. The geo-
desic distance is approximated by computing the shortest path of 
the graph.

Last, the p-dimensional embedding manifold is constructed with 
classical Multidimensional scaling (cMDS), such that the geometry 

of the intrinsic space preserves the geometry of the original co-
occurrence data space.

This study focuses on the four leading Isomap components 
Y
t
∈ ℝ

�,p with p = 4 per time step t, which have been shown to ex-
plain most of the variance Mahecha et al. (2021). Each Isomap com-
ponent per time step is visualised across Germany, Figure  3 (see 
Appendix S2 for alternative visualisation). They represent environ-
mental gradients, which are referred to as empirical macroecological 
pattern (MEP) and were first introduced by Mahecha et al.  (2021). 
Consequently, per time step MEPs represent sub-manifolds of the 
underlying manifold (Gajamannage et  al.,  2015; Gajamannage & 
Bollt,  2017), that is snapshots of the underlying macroecological 
gradients.

The four leading MEPs were assembled into a time series cov-
ering the annual cycle, 

{
Y
1
,Y

2
, … ,Y

53
}

, which we refer to as the 
macrophenological series (MPS), as they represent macrophenologi-
cal changes. As the MEPs are invariant with respect to direction, we 
used the cosine of the angle among MEPs of consecutive time steps 
to make them unidirectional.

The residual variance (RV), which quantifies the proportion of data 
not represented by the respective Isomap components (Tenenbaum 
et  al.,  2000), was used to determine approximation quality and data 
compressibility. The idea is that group behaviour is characterised by 
low-dimensional manifolds. A similar approach was employed by Abaid 

(1)dJ

(
X
t

i⋆
,X

t

j⋆

)
= 1 −

|
|
|
X
t

i⋆
∩ X

t

j⋆

|
|
|

|
|
|
X
t

i⋆
∪ X

t

j⋆

|
|
|

∈
[
0, 1

]
,

F I G U R E  3  Macrophenological series (MPS) across one average annual cycle. They are assembled from the four leading Isomap 
components, referred to as macroecological patterns (MEPs), per time step. Each MEP, i.e. each map, indicates how similar plant co-
occurrence is among grid cells per 90-day time window, that is plant behaviour. Similar group behaviour of plants is indicated by similar 
colours. The MPS reveal two phases. In phase I characteristic patterns and local changes are observed during the growing season, e.g. Alpine 
region switches colours in MPS3. In phase II these patterns deteriorate and become noisy indicating a decline in the group behaviour during 
the non-growing season. Snapshots are a selection of MEPs: the MEPs of the corresponding meteorological season are shown, that is spring 
(Spr) ≈ [4/3–30/3], summer (Sum) ≈ [3/6–31/8], autumn (Aut) ≈ [2/9–30/11], winter (Win) ≈ [2/12–1/3]. Legend: the colour bar indicates the 
values of the corresponding MEP vector. The first MEP, which explains most of the variance, has the largest value range.
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1428  |    MORA et al.

et al.  (2012); Gajamannage et al.  (2015), who used data generated by 
agent-based models to demonstrated that RV increases as group be-
haviour in a single species deteriorates. For a comparison of RV among 
the time steps, we computed the scaled residual variance (sRV), that is 
scaled by the residual variance at dimension one (Appendix S3).

The Isomap algorithm was implemented in R and follows the set 
up of Kraemer et  al.  (2018, with a general overview of dimension 
reduction methods).

2.2.3  |  Common patterns with canonical 
correlation analysis

Canonical correlation analysis (CCorA) computes multivariate 
correlations between two data matrices, Y1 and Y2 (Legendre & 
Legendre,  2012). With CCorA, we analysed temporal changes 
between the five leading MEPs of consecutive time steps, 
that is Y1 = Y

t
∈ ℝ

�×5 and Y2 = Y
t+1

∈ ℝ
�×5, which is denoted 

CCorA

(
Y
t
,Y

t+1
)
 for t = 1, … , 53. Canonical variates (CVs), which 

are linear combinations of the respective MEPs, represent com-
mon patterns between the two MEPs Yt and Yt+1 and will be re-
ferred to as such. The strength of the linear relationship among 
canonical variates is measured by the canonical correlation �. 
Here, it quantifies how much MEPs have changed from one time 
step to the next. Explicitly, CCorA seeks coefficients a1 ∈ ℝ

5 and 
b1 ∈ ℝ

5, which maximise the canonical correlation �1 between the 
linear combinations z(1)

1
≔ Y1a1 and z(1)

2
≔ Y2b1 of matrices Y1 and 

Y2, respectively,

The vectors z(1)
1

 and z(1)
2

 are referred to as the first CV pair. The subse-
quent CV pairs z(i)

1
 and z(i)

2
 with i = 2, … , 5 are sought in a similar way 

but are subject to the constraint that new pairs are uncorrelated to the 
previous ones, that is each CV matrix Z1 =

[
z
(1)

1
, z

(2)

1
… , z

(5)

1

]
∈ ℝ

�×5 
and Z2 =

[
z
(1)

2
, z

(2)

2
… , z

(5)

2

]
∈ ℝ

�×5 is orthogonal. The correspond-
ing canonical correlations are given by � =

{
�1, … , �5

}
. Above, we 

assumed that the MEPs Yt and Yt+1 cover the same observation lo-
cations. When this is not the case, common locations � are selected 
before performing the CCorA.

Moreover, CCorA was employed to analyse the effects of the 
human population density Ypop on the MPS per time step, that is 
CCorA

(
Y
t
,Ypop

)
 for t = 1, … , 53.

3  |  RESULTS

3.1  |  Macrophenological series

Our macrophenological approach with Isomap yields a low-
dimensional representation of the group behaviour over the 
course of an aggregated annual cycle represented by the MPS {
Y
1
,Y

2
, … ,Y

53
}

 (Figure  3). We visualise the four leading MEPs 

across the 53 time steps, which represent the thousands of ob-
served plant species (min = 1622, max = 2782 depending on the 
time step). An alternative to the data cube visualisation is shown in 
Appendix S2.

The MPS in Figure 3 reveal two main phases. Phase I occurs 
during the growing season and is characterised by a coherent 
spatio-temporal pattern, which indicates group behaviour. Phase 
II occurs during the non-growing season, especially winter, and the 
coherent patterns deteriorate and become noisy. The absence of 
patterns signifies that group behaviour is not detectable from oc-
currence data as the phenological states are not visible to the mo-
bile application. From the ecological perspective, this represents 
dormancy or death. The transition between the two phases is 
gradual. During phase I, each MPS is dominated by a distinct and 
robust characteristic feature, for example MPS1 exhibits a north–
south divide in similarity of group behaviour Figure 3. Moreover, it 
appears to be a near time invariant pattern, this is further quanti-
fied in Section 3.4. Overall, all MPS indicate geographic character-
istics such as mountain ranges, lowlands, or rivers. In each MPS, 
local changes can be observed, for example in MPS3, the Alpine 
region is similar to northeast Germany in spring and autumn, but 
during summer, it is more similar to central Germany (Figure  3). 
Overall, certain regions exhibit varying start and end times of 
group behaviour similarity. In phase II, while MPS2-4 are mostly 
noisy, MPS1 distinguishes group behaviour similarity between 
regions with high (dark teal) and low (brown) human population 
density, for example winter in Figure 3.

3.2  |  Temporal changes in residual variance 
indicate changes in data compressibility

We analysed the data compressibility at each time step. The sRV 
quantifies the proportion of data points that is not represented by 
the respective MEPs. At the same time, it indicates how well the data 
can be compressed.

To gain an intuition for the temporal changes in the residual vari-
ance, we compared the sRV of five time windows and the static FI 
data (Figure 4a). The sRV varies among time windows. It exhibits the 
most rapid decline and to lower values in the static FI data alongside 
the meteorological spring ≈ [4/3–30/3] and summer ≈ [3/6–31/8] 
(Figure 4a). This suggests a superior approximation and greater com-
pressibility in comparison with the other time windows (autumn ≈ 
[2/9–30/11], winter ≈ [2/12–1/3], and [1/1–30/3]). Heuristically, 
the minimal suitable number of MEPs necessary to represent the 
flowering occurrence (embedding dimension p), is determined by the 
‘elbow’ in the sRV curve as the dimension increases, that is the di-
mension at which the curve's slope flattens. During the non-growing 
season this elbow feature is less pronounced and the sRV remains 
high across 15 dimensions, for example for autumn ≈ [2/9–30/11], 
winter ≈ [2/12–1/3], and, [1/1–30/3] (Figure 4a).

The temporal changes in the sRV across the annual cycle are grad-
ual (Figure 4b). Here, the elbow feature is indicated by the absence 

(2)�1 = corr

(
z
(1)

1
, z

(1)

2

)
.
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    |  1429MORA et al.

of gaps between the curves. Although the embedding dimension p 
varies across time, higher dimensions (> 4) do not explain substantially 
more variance, validating our focus on the four leading MEPs (p = 4) in 
this study. Overall, the sRV curves for all dimensions have a periodic 
yet asymmetrical shape, that is the slopes in early spring period are 
steeper than in the autumn period (Figure 4b). The spring–summer 
transition is characterised by a relatively high and constant sRV. Both, 
the low sRV and the low embedding dimension of p = 4, indicate a 
high data compressibility. We interpret this as group behaviour, which 
reflected in the corresponding MPS exhibiting coherent patterns 
(Figure 3). Between autumn and early spring, the high sRV indicates 
that these data are difficult to compress and that all 15 components 
do not represent the occurrence data well. During this phase, the 

corresponding MPS are noisy and structureless (Figure 3), reflecting 
the absence of group behaviour detectable in occurrence data.

3.3  |  Seasonal transitions: Data compressibility vs. 
observation counts

We analysed how the temporal changes in scaled residual variance 
(Figure 4) are affected by the changes in observation counts across 
Germany (Figure  2c). We found the cyclical relationship between 
the sRV and the corresponding counts (Figure 5) to be partly over-
lapping (deformed cycles). This result is robust across dimensions 
(Appendix S4).

F I G U R E  4  Scaled residual variance (sRV) indicates data compressibility, that is low sRV indicates high compressibility and high sRV 
vice-versa. (a) The sRV of five time windows and static FI data (all) vary. The elbow feature is less distinct toward the end of the annual cycle 
(orange, green, blue). (b) The sRV curves across the annual cycle for 15 dimensions (colour bar) are plotted here vertically per time step. The 
curve for dimension 1 is constant, as this is the scaling value. The sRV for dimension 2–15 exhibits a seasonal but asymmetrical cycle. The 
transition in early spring occurs faster than in autumn.

(a) (b)

F I G U R E  5  Temporal relationship between data compressibility indicated by the scaled residual variance (sRV) for embedding dimension 
p = 5 (from Figure 4b) and the scaled number of observations (a), species (b), and locations (c) (from Figure 2c), respectively. These partly 
overlapping cycles indicate distinct seasonal differences. Even when the counts are the same, differences in sRV can be observed in pre- and 
post-winter (dark blue, magenta). The differences pre- and post-summer are minor in comparison (yellow, green).

(a) (b) (c)
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1430  |    MORA et al.

Overall, we expected similar counts to result in similar sRV, for ex-
ample as is observed for the period pre-spring to summer (time steps 
6–22 or [5/2–4/5]–[27/5–24/8]) and summer to autumn (time steps 
23–36 or [3/6–31/8]–[2/9–30/11]), where the data points mostly 
overlap. This indicates that during these time periods the occurrence 
data are comparably compressible (Figure 5a,b). Consequently, the 
quality of group behaviour is very similar at the corresponding time 
points even if the corresponding MEPs differ.

However, we also show that, even when the counts are the same, 
the sRV can differ. Specifically, larger values are observed in the au-
tumn–winter period (time windows 37–49 or [9/9–7/12]–[2/12–1/3]), 
indicating a worse approximation quality and data compressibility, 
than in the winter–spring period (time windows 50–6 or [9/12–8/3]–
[5/2–4/5]) (Figure 5a,b). We also observe that in the winter–spring 
period, unlike the autumn–winter period, the data points are further 
apart as the scaled number of species increases, indicating a faster 
increase in scaled species numbers. In other words, for the same 
counts, we observe better data compressibility with corresponding 
coherent, less noisy MPS during the winter–spring transition. This 
indicates that group behaviour similarity has a seasonal character-
istic, which changes gradually and does not seem to dependent on 
observation counts alone.

We also investigated whether location gaps, resulting from 
grid cells without observations, affect the approximation quality 
(Figure 5c). For most of the growing season, the scaled number of 
locations is above 0.98. It is during this period that approximation 
quality changes to low residual variance. This is most likely a result 
of the decreasing total observation and species numbers and not 
location gaps.

In the following, we remark on specific seasonal transitions 
in Figure  5. The spring to summer period is characterised by the 
most compressible occurrence data with low sRV of (0.38,0.48) and 
small variations in species count (0.96,1.00) despite a large varia-
tion in scaled observation counts (0.6,1.0). This indicates strong 
group behaviour. During the summer to autumn period, the sRV 
varies substantially more, that is (0.38,0.67), as a result of a large 
variation in observations counts (0.3,0.9), while variation in scaled 
species counts remain low (0.89,1.00). This indicates that towards 
the end of the period, the flowering behaviour loses its group 
characteristic and may start to become affected by declining ob-
servation numbers. During the autumn to winter period, the data 
are most difficult to compress, that is high sRV in (0.67,0.92). The 
observation count is low with a small range (0.0,0.3). The scaled 
species reach their minimum, that is (0.59,0.89). Toward the end of 
this period, the corresponding MPS lose their coherent patterns. 
This demonstrates that as long as the scaled observation counts 
remain above 30%, the underlying environmental gradients give 
rise to coherent patterns and indicate group behaviour. The co-
herent pattern in the MPS return during the winter to spring period. 
The occurrence data become more compressible as the scaled sRV 
(0.48,0.92) decreases with increasing scaled observation (0.0,0.6) 
and species (0.59,0.96) counts.

Each data point is associated with a time window in the annual 
cycle indicated by the colour bar. The start of the year is indicated by 
the arrow, and crosses indicate the time windows corresponding to 
the meteorological seasons. These annual cycle curves are deformed 
circles, which partly overlap. Low sRV indicates high data compress-
ibility (group behaviour) and high sRV vice versa.

3.4  |  Temporal changes in common 
MPS of consecutive time steps with canonical 
correlation analysis

We analysed how much MEPs change between two consecutive 
time steps t and t + 1. To quantify these changes, we used canoni-
cal correlation analysis, CCorA

(
Yt ,Yt+1

)
. The strength of the linear 

relationship among CVs, which was measured by canonical correla-
tions �1, … , �4, changes in time, (Figure 6). Each CV (Appendix S6) 
is predominantly associated with the corresponding MEP per time 
step t (Appendix S7).

Overall, Figure  6 demonstrates that, despite the overlap of 
83 days, the MPS capture substantial and rapid changes in the 7 days 
at the beginning or end of the consecutive time windows. The first 
canonical correlation remains relatively constant and high, with 
�1 ∈ (0.93,0.99) throughout the annual cycle. The corresponding 
canonical variates, Z(1)

t
,Z

(1)

t+1
, have a strong linear relationship, which 

indicates that they are largely time invariant. This indicates that the 
associated MPS represent processes that are changing little or not 
at all in time.

In contrast, the other correlation values, �2, �3, �4, exhibit distinct 
periodic behaviour indicating that the canonical variates and hence 
the corresponding MPS undergo seasonal changes. The largest and 
fastest changes are observed during the transitions winter–spring 
and late summer–winter. During the growing season, we observe 
the highest correlation, which remains fairly constant. During this 

F I G U R E  6  Canonical correlations �i for i = 1, … , 4 indicate 
seasonal changes in macroecological patterns between consecutive 
time steps. High values indicate few changes in macrophenological 
series as observed during spring—autumn, and vice versa.
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    |  1431MORA et al.

period, the canonical variates between consecutive time steps 
have a strong linear relationship indicating small temporal changes. 
During the non-growing season, the linear relationship is less strong, 
reaching a minimum of �4 = 0.47 in early winter due to the corre-
sponding noisy MEPs.

3.5  |  Seasonal transitions: Canonical 
correlations of common MPS of consecutive time 
steps vs. observation counts

We analysed the relationship between the temporal changes be-
tween consecutive time steps, measured by the canonical correla-
tions (from Figure 6), and the changes in observation counts across 
Germany (from Figure 2c). Here, we focus on the canonical correla-
tion �2 (Figure 7), as �1 exhibits only few changes in time, and the 
results for �3 and �4 are equivalent (Appendix S8).

Overall, the cyclic relationship is comprised of an overlapping 
and a non-overlapping curve section in the annual cycle (Figure 7), as 
exhibited by sRV in the previous section. The overlapping curve sec-
tions show similar changes in MEPs between consecutive time steps 
during seasonal transitions. Specifically, the canonical correlation 
�2 remains above 0.94 despite large variations in the scaled num-
ber of observations (0.34 − 1.00), with the scaled number of spe-
cies remainaining high (0.89, 1.00), during pre-spring–summer (time 
steps 7–22, i.e. [12/2–11/5]–[27/5–24/8]) as well as during summer-
autumn (time steps 23–36, i.e. [3/6–31/8]–[2/9–30/11]). Moreover, 
the pre-spring MEPs (at t = 7, 8, 9, 10) change slightly more than the 

summer-autumn MEPs as indicated by �2 (Figure  7). This is more 
pronounced in the canonical correlations �3 and �4 (Appendix S8). 
Due to the high observation count and good approximation quality 
(high sRV), we interpret this to indicate a predominantly phenolog-
ical change.

The non-overlapping curve sections in the annual cycle are 
characterised by larger variations in scaled total observations and 
species counts between consecutive time steps (Figure  7). The 
canonical correlation �2 indicates that the corresponding MPS un-
dergo fewer changes in winter—pre-spring (time steps 49–6, i.e. 
[2/12–1/3]–[5/2–4/5]) than in autumn—winter (time steps 36–48, 
i.e [2/9–30/11]–[25/11–22/2]) despite arising from the same scaled 
total observation and species counts. These seasonal differences in-
dicate that the MEPs and hence the group behaviour deteriorates 
fast between consecutive time steps from autumn onward and be-
come noisy (low �2). In winter [2/12–1/3] as the group behaviour 
emerges again the MEPs change slowly once established indicated 
by slowly increasing �2 (Figure 7).

3.6  |  Temporal effects of human population density

The constant human population density in Germany is one factor 
that appears to affect the observations in time (Figure  2a,b). We 
analysed how this spatial pattern influences the five leading MPS. 
To quantify this effect we apply canonical correlation analysis to the 
two data sets: static scaled human population density Ypop and the 
FI macrophenological series per time step Yt, that is CCorA

(
Ypop,Yt

)

F I G U R E  7  Temporal relationship between changes in MEPs between consecutive time steps indicated by canonical correlation �2 (from 
Figure 6) and scaled number of observations (a) and species (b) (from Figure 2c), respectively. These partly overlapping cycles indicate 
seasonal differences. Even when the counts are the same, differences in �2 can be observed in pre- and post-winter (dark blue, magenta). The 
differences pre- and post-summer are minor in comparison (yellow, green). Each data point is associated with a time window in the annual 
cycle indicated by the colour bar. The arrow indicates the start of the annual cycle, and crosses indicates the time windows corresponding to 
the meteorological seasons.

(a) (b)

 2041210x, 2024, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14365 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [09/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1432  |    MORA et al.

. The temporal changes in the canonical correlations revealed a more 
pronounced influence of human population density during the non-
growing season with 𝜌 > 0.57 (Figure  8a). We used the structural 
correlation squared to quantify the proportion each MPS contributes 
to the respective canonical variates at time t, Figure 8b. It revealed 
that MPS1 is most affected by the human population density in 
comparison with other MEPs, especially during the non-growing 
season. During the growing season, also MPS2 is influenced, albeit 
to a lesser extent than MPS1. This indicates that MPS1 isolates the 
human population density signal component and thus can be viewed 
as an effective filtering step in this analysis.

4  |  DISCUSSION

Our approach shows how our machine learning methodology can 
overcome the challenge to analyse the phenology of thousands of 
species across taxa, space, and time. Our study reveals synchro-
nised group behaviour among thousands of plant species across time 
and the ecosystems they share. This behaviour exhibits an inherent 
order, which is characterised by coherent patterns (MPS in Figure 3), 
approximated by nonlinear dimension reduction techniques. Our 
macrophenological approach provides a macroecological prospec-
tive on the phenology of numerous species using individual occur-
rence observations. This is only possible with a large data set, such 
as crowd-sourced data from the Flora Incognita app, which covers 
broad spatial and temporal scales. While our substantial data set of 
nearly ten million observations offers statistical power, our study 

makes the entanglement of human data collection behaviour and 
macrophenology visible and shows the challenges in establishing 
thresholds between the two. Therefore, it is crucial to interpret these 
findings cautiously, acknowledging that the reliability of our results 
and the applicability of this approach in similar contexts depend on 
the quality of the underlying data.

In the following, we first discuss the capabilities of our macro-
phenological approach, second disentangling phenology and human 
behaviour, third the data quality of automated species identification, 
forth validation and bias, and fifth the potential for future regional to 
global macrophenology studies.

4.1  |  Macrophenological approach

We adopt a complex systems perspective of macroecology, where 
the co-occurrence among thousands of individual species obser-
vations leads to emerging patterns, here represented by the MPS 
(Figure 3). This approach is combined with the ecology of large-scale 
systems (McGill,  2019) by covering extensive scales across taxa, 
space and time. This comprehensive scope enables the definition and 
examination of macrophenology (Gallinat et  al.,  2021), here repre-
sented by the MPS (Figure 3).

Our findings underscore the feasibility of our approach to de-
scribe macrophenological dynamics across an annual cycle. They re-
veal that a spatio-temporal approach is necessary to fully capture the 
emergent macrophenological patterns (Figure  3). We showed that 
our macrophenological approach detects two main spatio-temporal 
phases in the FI occurrence data: group behaviour during the grow-
ing season and absence of group behaviour during the non-growing 
season. This was quantified by two measures: (i) the MPS revealing 
gradual transition between coherent and noisy patterns (Figure  3) 
and (ii) the sRV indicating temporal changes in data compressibility 
(Figure 4b). We have shown that the MEPs and hence the group be-
haviour across the average annual cycle changes nonlinearly across 
time, indicating that group behaviour emerges fast in spring, remains 
strong over the summer, and declines slowly in autumn when the 
corresponding patterns become noisy. Our analysis revealed one 
nearly time invariant and three dynamic MEPs demonstrating that 
our approach can robustly distinguish between more static (MPS1) 
and dynamic processes (MPS2-4) (Figure 6). All measures uncovered 
periodic but asymmetric dynamics with gradual changes. Moreover, 
these measures consistently detect seasonal differences before 
time window [12/2–11/5] and after time window [2/9–30/11] as the 
number of observations and species change (Figures 5 and 7). We 
propose these time windows as the start and end points of the mac-
rophenological growing season in Germany, which is characterised 
by group behaviour in the MPS (Figure 3). This definition of growing 
season requires further comparison with other data sets, which goes 
beyond the scope of this study.

During the growing season, this dynamics appears robust with 
respect to the observation counts, that is the data compressibility 
remains high despite considerable variations in observation counts 

F I G U R E  8  Effects of human population density on MPS per time 
step quantified by canonical correlation analysis CCorA

(
Ypop,Yt

)

. (a) Canonical correlation (�) and (b) structural correlations squared 
(SCSq) indicate that the largest human population density effect 
occurs in MPS1 during the non-growing season.

(a)

(b)
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(Figure 5). Moreover, the sRV exhibits nearly identical dynamics be-
tween the first and the second half of the macrophenological grow-
ing season as data counts vary, that is overlapping curve sections in 
Figure 5. This indicates similar changes in the compressibility of the 
occurrence network, despite potentially varying human data collec-
tion behaviour. This suggests that our approach reveals macrophe-
nological dynamics, which shows signs of symmetry between the 
first and the second half of the macrophenological growing season.

Outside the growing season, the time series exhibits more varied 
dynamics. On the one hand, during the winter period, the low obser-
vation counts affect data compressibility and thus drive the dynam-
ics, which is characterised by the absence of group behaviour. This 
could reflect the unobservable phenological states, that is plants 
are either dormant or dead, or that not enough observations were 
made to represent the group behaviour in winter. The relation to 
human behaviour is elaborated on in Section 4.2. On the other hand, 
when observation counts are approximately the same, seasonal dif-
ferences in the sRV (Figure 5) and canonical correlations (Figure 7) 
become evident between the pre- and the post-winter period. 
Specifically, the group behaviour is stronger post-winter than pre-
winter. This indicates that despite approximately the same low ob-
servation counts the co-occurrence relations can give rise to group 
behaviour. This also suggests macrophenological dynamics.

The time window size (TWS) serves not only as a parameter 
in our algorithm but also as an indicator of the temporal dynamics 
within the data over a specified period (see Appendix S5). Reducing 
the TWS to 45 days leads to observations and analysis of different 
plants. Particularly in spring (see Appendix  S5), we observe rapid 
changes in occurrence, with a noticeable decrease in residual vari-
ance of approximately 6–7 weeks (42–49 days) after reducing the 
TWS, suggesting that the phenological group behaviour among plant 
species emerges in late spring. Conversely, the phenological tran-
sition in late autumn remains comparable between TWS of 45 and 
90 days, indicating consistent spatio-temporal species occurrence 
and phenological group behaviour regardless of TWS. Overall, our 
method effectively captures the main emerging and ceasing char-
acteristic patterns (MPS) across varying TWS (Appendix S5), under-
scoring the robustness of our approach. However, it is important to 
consider the limitations of TWS imposed by data density as well as 
for interpreting phenological results.

4.2  |  Disentangling phenology and human  
behaviour

Disentangling phenology and human data collection behaviour is a 
complex challenge. To address this, various steps were taken to miti-
gate or quantify the effects of human behaviour. Here, we discuss 
advantages and disadvantages of such approaches and ask to what 
extent disentangling is possible.

We employed a time-series aggregation procedure in our study 
to mitigate the potential temporal bias introduced by human data 
collection behaviour (Binley & Bennett, 2023; Callaghan et al., 2021; 

Knape et al., 2022; Primack et al., 2023). This approach smoothed 
the occurrence counts (Figure  2c) in two ways. First, it smoothed 
the fluctuations in observation counts resulting from human be-
haviour, such as data collection peaks during weekends (Courter 
et  al.,  2013; Knape et  al.,  2022; Sparks et  al.,  2008) and holidays 
(Callaghan et al., 2021; Knape et al., 2022), or fewer observations 
during extreme weather events. Second, it provided an average oc-
currence data set, which is not affected by plant individual variability 
(Almeida-Neto & Lewinsohn, 2004). However, this aggregated time 
series limits our ability to investigate macrophenology at finer time 
scales. This limitation is expected to diminish as the database con-
tinues to grow.

The low counts observed in winter pose a particular challenge 
due to their impact on their statistical power. Moreover, it remains 
unclear to what degree these low counts are driven by the underly-
ing phenological changes, such as a decline in species occurrence, 
or by data collection behaviour, i.e. a reduction in the species being 
observed. Possible validation approaches with alternative data sets 
are discussed in Section 4.4.

Despite our data aggregation, we observed a human popula-
tion density bias, which appears to be linked to the relatively low 
observation numbers during the non-growing season (Figure  5). 
We showed that this bias mainly manifested in one of the leading 
components (MPS1), especially during the non-growing season. 
As such, the bias can be considered isolated, and our approach 
presents an effective filtering (Figure 8). At the same time, MPS1 
characterises static processes, of which human population den-
sity is one but not the only factor. What other factors underlie 
the prominence of MPS1? For example, it could be resulting from 
the distribution of wind-pollinated species (Kühn et  al.,  2006), 
which give rise to a similar north–south pattern. What gives rise 
to the distinct urban–rural pattern non-growing season? Further 
analyses are needed to understand to what degree MPS1 results 
from human data collection behaviour, such as citizen scientists 
going on fewer/shorter excursions during the winter months, and 
to what extent it is influenced by the greater species richness 
in urban areas (Kühn et al., 2004), where phenology is impacted 
by urban heat, artificial light, and pollution (Kühn et  al.,  2004; 
Wohlfahrt et al., 2019).

4.3  |  Data quality of automated species 
identification

Opportunistically collected presence-only data typically exhibit 
temporal, spatial and taxonomical imbalances, resulting in charac-
teristic seasonal patterns (Knape et al., 2022). For species with at-
tractive flowering or fruiting stages, the number of observations 
increases, when there is a sudden change in the app users identifi-
cation interests. This is usually the case when those plants start to 
bloom or fruit. Such species provide a clear signal that can be linked 
to distinct phenological stages (Katal et al., 2023). However, this is 
not the case for species with less attractive flowering stages such as 

 2041210x, 2024, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14365 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [09/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1434  |    MORA et al.

many trees, grasses or sedges, which do not show uniquely attrac-
tive stages during their yearly cycle. Generally, such species are less 
likely to be observed by the app users. These taxonomic biases may 
lead to a stronger contribution of visually attractive species to the 
overall phenological signal, but they do not appear to affect annual 
changes in the observed group behaviour. Evidence for this are the 
MPS, which are characterised by a consistent and characteristic pat-
tern across the growing season.

4.4  |  Validation and bias

Opportunistically collected crowd-sourced data from mobile appli-
cations are considered a novel data source (Callaghan et al., 2021) 
and require the same validation standards as professionally col-
lected scientific data. It was shown that both data sources are sub-
ject to very similar biases and errors (Binley & Bennett, 2023).

One of the main differences between crowd-sourced and tra-
ditional scientific data is the sampling strategy. Data collected with 
mobile applications are opportunistic and partly driven by human be-
haviour, while traditional large scale data collections are considered 
more systematic. Overall, analyses of mobile application data have 
shown to yield comparable results to systematically collected data 
(Katal et al., 2023; Klinger et al., 2023; Mahecha et al., 2021; Schiller 
et al., 2021; Wolf et al., 2022). For example, Wolf et al. (2022) have 
shown good agreement of plant trait maps derived from iNaturalist 
(global coverage) with the scientifically collected sPlotOpen data set 
(regional coverage).

In the static case, the Flora Incognita data set was shown to be 
in high agreement with the more systematically collected data set 
FlorKart, the German inventory of vascular plant occurrences in 
Germany (Mahecha et al., 2021). To find an appropriate reference 
data set for phenological comparisons with the Flora Incognita data, 
which encompasses the same spatial and temporal coverage, re-
mains a challenge (Katal et al., 2023). One future validation avenue 
could explore the relationship between our macrophenological ap-
proach and the macrophenology derived from satellite observations, 
for example (Purdy et al., 2023; Studer et al., 2007; Tian et al., 2021; 
Zeng et al., 2020; Zhang et al., 2003).

4.5  |  Outlook: Potential for regional to global 
macrophenology studies

Our methodology is scalable, making it in principle suitable for ap-
plications across a wide range of spatial scales and for data of much 
higher spatio-temporal resolutions. This versatility allows for its 
effective deployment, whether at the local level, such as in grid-
based plot studies in controlled experiments, or on a global scale. 
At the local scale, our macrophenological approach can be adeptly 
employed to describe and characterise plant communities within 
specific study sites. Focusing on regional flowering data our ap-
proach could explore phenological dependencies between plants 

and pollinators. Conversely, at the global scale macrophenological 
patterns could be extracted from crowd-sourced data such as iN-
aturalist (Unger et al., 2021), Pl@ntnet (Goëau et al., 2013), or The 
Global Biodiversity Information Facility (2023) to name only a few. 
These have the potential to analyse biodiversity and discern the 
drivers behind biogeographic processes, all derived from individual 
observations.

We have shown that regional changes in MPS occur at different 
rates and different points in time Figure 3. For example, group differ-
ences in mountainous regions versus lowlands are pronounced in spring 
and autumn but level out during summer in MPS2. These changes could 
represent the varied response to the local microclimate as well as the 
feedback loop of the microclimate shaping vegetation and vice versa, 
(Kemppinen et al., 2023). These results are in line with the study by 
Rzanny, Mäder, et  al.  (2024), who showed that opportunistically col-
lected data of 20 species reveal shifts in flowering phenology across 
Europe, particularly accentuated for spring-flowering species, with ele-
vational shifts of 6–17 days per 1000 m. Studies focusing on a transect 
of elevation gradients show, that changes in microclimate affect the 
mean flowering time nonlinearly (Rafferty et al., 2020) as well as the 
flowering synchrony (Fisogni et al., 2022). With our nonlinear approach 
such studies could be extended across spatio-temporal scales detecting 
delayed responses across ecological and elevation gradients.

Plant species can develop phenological feedback loops with 
other species, e.g. the phenology of the tree canopy can affect the 
phenology of the undergrowth, (Alecrim et al., 2023; Lee et al., 2022; 
Miller et  al.,  2023). Crowd-sourced data from mobile applications 
can provide information on species below the canopy, which is not 
detectable with satellite remote sensing. In general, our macrophe-
nological approach could examine phenological feedback loops and 
shifts across a variety of habitats globally.

Climate change affects the seasonal onset, for example spring 
advancing at rates of 2–7 days per decade (Menzel et al., 2020; Piao 
et al., 2019). To analyse to what extent seasonal shifts can be de-
tected by our macrophenological approach with crowd-sourced data, 
multiple years 2020, 2021, 2022 and 2023 could be compared with 
each other and the average annual cycle. The relationship between 
MPS, climate variables and photoperiod could be studied, enabling 
a nuanced understanding of the contribution of climate drivers and 
the impact of climate change on phenology at macroscales. The ex-
tensive versatility of our approach highlights its effectiveness in ad-
dressing ecological questions spanning various temporal and spatial 
scales through individual observations. Yet, achieving this versatility 
relies heavily on the availability of crowd-sourced data that covers 
such expansive ranges. Therefore, there is a pressing need for on-
going enhancements and a deeper comprehension of such data to 
advance our capabilities in exploring macrophenology.

5  |  CONCLUSIONS

Our study explores the relationship among simultaneous active 
phenological states of thousands of species across space and time, 
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collected via a plant identification app by thousands of citizens. We 
present a novel macrophenological approach using nonlinear dimen-
sion reduction. We showed that the time-varying co-occurrences can 
be interpreted as a manifestation of phenological group behaviour. 
We revealed that the macrophenological dynamics are characterised 
by coherent macroecological patterns during the growing season, 
which deteriorate during the transition to the non-growing season. 
This group behaviour, indicating dynamic plant synchronisation, 
requires further validation from alternative data sources in future 
research. The crowd-sourced data, obtained via the mobile app for 
plant classification, Flora Incognita, was essential in our approach. 
It furnished us with a statistically robust spatio-temporal data set, 
amassing nearly 10 million observations. We also showed that the 
entanglement between human data collection behaviour and mac-
rophenological patterns is complex and can be partly mitigated and 
isolated. Future phenology monitoring should consider the potential 
of macrophenological approaches based on crowd-sourced data, ide-
ally integrated with other in-situ or remotely sensed observations.
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