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Effect of the atomic structure of complexions on the active disconnection
mode during shear-coupled grain boundary motion
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The migration of grain boundaries leads to grain growth in polycrystals and is one mechanism of grain-
boundary-mediated plasticity, especially in nanocrystalline metals. This migration is due to the movement of
dislocationlike defects, called disconnections, which couple to externally applied shear stresses. While this has
been studied in detail in recent years, the active disconnection mode was typically associated with specific
macroscopic grain boundary parameters. We know, however, that varying microscopic degrees of freedom
can lead to different atomic structures without changing the macroscopic parameters. These structures can
transition into each other and are called complexions. Here, we investigate [111] symmetric tilt boundaries in
fcc metals, where two complexions—dubbed domino and pearl—were observed before. We compare these two
complexions for two different misorientations: In �19b [111] (178) boundaries, both complexions exhibit the
same disconnection mode. The critical stress for nucleation and propagation of disconnections is nevertheless
different for domino and pearl. At low temperatures, the Peierls-like barrier for disconnection propagation
dominates, while at higher temperatures the nucleation is the limiting factor. For �7 [111] (145) boundaries,
we observed a larger difference. The domino and pearl complexions migrate in different directions under the
same boundary conditions. While both migration directions are possible crystallographically, an analysis of the
complexions’ structural motifs and the disconnection core structures reveals that the choice of disconnection
mode and therefore migration direction is directly due to the atomic structure of the grain boundary.

DOI: 10.1103/PhysRevMaterials.8.063602

I. INTRODUCTION

Grain boundaries (GBs) influence mechanical properties
of polycrystalline materials and GB engineering is critical in
materials design [1]. The motion of GBs is the key factor in
the microstructure evolution of poycrystalline materials [2,3].
When subjected to shear stress, GBs move and can account
for part of the plastic deformation in nanocrystalline materials
[4–7]. Some of the GB-related deformation mechanisms dis-
cussed in the literature are GB sliding [8–11], grain rotation
[12–16], shear-coupled GB migration [17–35], diffusional
creep [6,36], dislocation interaction at GBs [4,6,36,37], and
enhanced partial dislocation activity [4,6,36,37].

Shear coupling is the migration of GBs driven by shear
stress across the GB plane [20,25,38]. It can lead to complex
effects during grain growth in a polycrystal, such as grain
rotation, stress generation, and grain growth stagnation, which
are all interrelated [16]. A shear coupling factor β = v‖/v⊥
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describes how a GB migrates: A relative shear velocity v‖ of
the two grains parallel to the GB is coupled directly to the
GB migration velocity v⊥ normal to its plane [13,20,39,40].
This factor β is influenced by parameters such as temperature,
bicrystallography, and the type of the driving force [41]. The
existing models of conservative GB kinetics, such as the GB
dislocation model [13,20], the shear migration geometrical
model [25,42], and GB disconnections [20,38–40,43,44] are
used to explain the effect of GB geometry on shear-coupled
motion. Microscopically, shear-coupled motion is caused by
the movement of disconnections, which are line defects at the
GB [39,40,45,46]. Disconnections have dislocation character
insofar that they have a Burgers vector b, which couples to
externally applied stress. They also lead to a step of size h
in the GB, which results in the GB migration normal to its
habit plane during disconnection nucleation and movement
[38,47]. The shear coupling factor β arises directly from the
coupling of b to h. Consequently, the formation and migration
of disconnections play a vital role in the kinetic properties of
GBs [48–52] and preexisting mobile disconnections lead to a
reduced stress required for GB migration [53].

There are several possible disconnection modes (combina-
tions of b and h) that can be activated during shear-coupled
motion. Prior works have considered the choice of active
mode based on macroscopic GB parameters (bicrystallogra-
phy) as well as magnitude of applied stress and temperature
[20,33,40,41,49,51,54,55]. However, even GBs with the
same macroscopic parameters can exhibit different atomic
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TABLE I. Symmetric � tilt GBs used to study shear coupled GB
motion.

CSL type �7 �19b

Misorientation 38.21◦ 46.83◦

Tilt axis [111] [111]
GB planes (145) (415) (178) (718)

structures due to the microscopic degrees of freedom. Such
differences in atomic GB structure and first-order transitions
between them were observed even in pure metallic materials
[56–63]. These different structures can be treated as interface
phases, which can only exist in contact with the abutting
crystallites, and can be treated using a thermodynamic frame-
work [64–69]. They are called complexions [70–73] or GB
phases [74]. Complexion transitions, then, are analogous to
bulk phase transitions: The GB structure, composition, and
properties change discontinuously at critical values of ther-
modynamic parameters such as temperature, pressure, and
chemical potential [68–70,72–74]. Until now, to the best of
our knowledge, there has been only one study [75] that reports
that two complexions in �5 [001] (210) tilt GBs have different
signs of the shear coupling factor. This emphasizes that com-
plexions can affect the choice of active shear-coupling mode,
but it has not been reported why this occurs. Furthermore,
that study only covers a single GB and more evidence would
be needed to reveal if this is a common phenomenon or an
exceptional case.

In this paper, we thus report on the shear-coupled mo-
tion of �19b [111] (178) and �7 [111] (145) symmetric
tilt GBs, which are of interest because they both have two
possible complexions: domino and pearl [61–63]. We find that
the complexions of the �7 GB also exhibit different shear-
coupling factors β and explain how the choice of β is due to
their structural motifs. The �19b complexions both have the
same β, but vary in the critical shear stress needed to activate
the shear-coupled motion, which we investigate in detail.

II. COMPUTATIONAL METHODS

We studied bicrystals with symmetric tilt GBs using molec-
ular dynamics (MD) simulations, which were performed using
LAMMPS [76,77] with the embedded atom method (EAM)
potential of Mishin et al. [78]. This potential reproduces
some properties of Cu very well, comprising elastic constants,
phonon frequencies, thermal expansion, intrinsic stacking
fault energy, the coherent twin boundary energy, and others.
We used a time integration step of 2 fs for all dynamics simu-
lations.

The bicrystals for �19b [111] (178) symmetric tilt GBs
(misorientation of 46.83◦) were created by constructing two
fcc crystals with the desired crystallographic orientations
[532], [178], [111] in x, y, z directions for the top crystal and
[352], [718], [111] for the bottom crystal [Fig. 1(a)]. Here, y
is the GB normal and z the tilt axis. The x and z directions
were periodic and we used open boundaries in y direction,
allowing us to produce differently sized cells by repeating the
unit cell along the periodic directions. Similarly, the bicrystals
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FIG. 1. (a) Schematic of the bicrystallography of a
�19b [111] (178) symmetric tilt GB, marked as bicrystal A.
Top and bottom fcc crystals are joined in the indicated orientations,
leading to a misorientation between the two crystals of 46.83◦.
Similar GB construction followed for �7 [111] (145) symmetric
tilt GB (Table I). (b) Bicrystal B has a GB that is moved by
one migration step compared to bicrystal A. This was achieved
by moving the GB plane by a step height and shifting the top
crystal by the corresponding Burgers vector before minimization.
(c) Schematic of the construction of the disconnection dipole with
opposite Burgers vectors by assembling a simulation cell from
bicrystals A and B. By varying the number of B unit cells, the
dipole width δ between disconnections can be controlled. Periodic
boundary conditions were applied in x and z directions and open
boundary conditions in y direction.

for �7 [111] (145) symmetric tilt GBs (misorientation of
38.21◦) were created by constructing two fcc crystals with the
desired crystallographic orientations [321], [145], [111] in x,
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FIG. 2. Atomic structures of the (a) domino and (b) pearl complexions of �19b [111] (178) symmetric tilt GBs in our computer model.
Both complexions consist of two repeating structural units (...LRLRLR...). Shear coupling simulations for 20 ns with a shear velocity of 0.1 m/s
at 300 K lead to a migration distance on the order of 2 nm in the positive y direction for both (c) domino and (d) pearl. Atomic structures of
the (e) domino and (f) pearl complexions of �7 [111] (145) symmetric tilt GB in our computer model. Domino consists of two repeating
overlapped structural units (...lrlrlr...). Pearl instead consists of a single repeating structural unit (...ppp...). Shear coupling simulations for 16 ns
lead to a migration distance on the order of 0.8 nm in the negative y direction and 2.1 nm in the positive y direction for (g) domino and (h)
pearl, respectively. The red and blue atoms belong to the GBs, the gray atoms are fcc atoms, and the brown atoms represent the boundary.
Shear-coupled GB motion is highlighted by the yellow fiducial mark, which exhibits a slope (equivalent to β−1) in the region traversed by the
GB. The initial GB positions are indicated by the dashed lines.

y, z directions for the top crystal and [231], [415], [111] for
the bottom crystal (Table I).

The GB structures were formed by combining the two
crystallites, sampling the microscopic degrees of freedom
by displacing the top crystal, and minimizing the result in
molecular statics (γ -surface method). We did this until the
previously reported pearl and domino complexions for both
GBs [61–63] were found (we evaluated that structure, GB
energy, and excess volume match). The minimum energy GB
structures for domino and pearl are visualized using OVITO
[79] and are shown in Fig. 2.

The periodic unit cell dimensions of the �19b GB were
Lx = 11.142 Å and Lz = 6.261 Å. We used Ly ranging from
385.317 Å to 5790.070 Å (see below). The periodic unit
cell dimensions of the �7 GB were Lx = 6.763 Å and Lz =
6.261 Å, with Ly ranging from 210.487 Å to 1171.61 Å. These
unit cells were used as building blocks that can be repeated
along the periodic x and z directions.

For the simulation of shear-coupled GB mo-
tion of �19b, we used a simulation cell of size
222.814×385.317×62.613 Å3 (20×20×10 unit cells,

resulting in 455 400 atoms) unless specified otherwise. For
�7, a simulation cell of size of 135.258×210.487×62.613 Å3

(20×18×10 unit cells, resulting in 151 200 atoms) was used.
We started by using molecular statics simulations (T = 0 K)
and applying a displacement on the top boundary in the
x direction and keeping the bottom boundary fixed. Both
boundaries were the regions at the surfaces (in y direction).
Each boundary region is with an extent of 55 Å for the �19b
GBs and an extent of 30 Å for the �7 GBs (Fig. 2). To study
GB migration in domino and pearl, the shear displacement
d was applied stepwise in increments of 0.05 Å, while
minimizing the system after every step. We calculated the
resulting shear stress by dividing the reaction force at the
boundary by the area Lx×Lz of the top boundary.

Then, MD simulations were performed in the canonical en-
semble (Nosé–Hoover thermostat at T = 100, 200, 300, 400,
500, 600 K). At finite temperatures, the system was scaled to
obtain the correct lattice constant at the desired temperature
T and then equilibrated for 4 ns. In this simulation procedure,
we applied a velocity in the x direction to the top boundary,
while keeping the bottom boundary fixed (see Ref. [20] and
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Fig. 2). The top boundary was allowed to move freely in the
y and z directions. Shear-coupled simulations were performed
for shear velocities in the range from 0.01 m/s to 10 m/s. We
typically applied a constant shear velocity of 0.1 m/s unless
otherwise noted. Shear stress was calculated for the molecular
statics simulations.

Disconnection dipoles observed in both the complexions
during shear-coupled motion were constructed manually to
obtain disconnection formation and migration energies. The
disconnection dipoles were constructed for different dipole
widths δ (separation distance between the two disconnec-
tions). This is similar to the construction of disconnections
as described in Refs. [80,81]: Bicrystals A and B were
generated such that they contain the same complexion
[Figs. 1(a) and 1(b)]. The GB in bicrystal B was moved
by one step height compared to A. By replicating A and B
and assembling them (e.g., as AABBBAA), two disconnec-
tions with opposite Burgers vectors appear at the junctions
...AB... and ...BA... [Fig. 1(c)]. By varying the number of
B unit cells, the separation δ between disconnections can
be controlled. We calculated the energy of the disconnection
dipoles in simulation cells of sizes 1114.220×Ly×6.261 Å3

(100 unit cells in x direction). To ensure convergence with
Ly, we used values from Ly = 964.490 Å (5.6×105 atoms)
to 5790.070 Å (3.4×106 atoms). We found that the dipole
energies converged at Ly = 1929.540 Å, corresponding to
100×100×1 unit cells with 1.1×106 atoms (see Fig. S1 in
the Supplemental Material (SM) [82]). For �7, we also used
100×100×1 unit cells, resulting in simulation cells of size
676.304×1171.61×6.261 Å3 with 4.2×105 atoms.

The energy of the resulting disconnection dipole is

Edipole = E1 − E0

Lz
, (1)

where E0 is the energy of a system with a GB but no dis-
connection, E1 is the energy of the same system with a
disconnection dipole, and Lz is the width of the system along
the disconnection lines. The dipole energy consists of core en-
ergies for each disconnection and an elastic interaction energy
[40,53,83,84]:

Edipole = 2Ecore + Eelastic. (2)

Sometimes, the core energy is split into a core and step energy,
where the energy cost of the GB step is considered separately.
Here, we will consider the core and step energy in terms of a
single core energy. The elastic interaction energy is [84]

Eelastic = Kb2 ln

(
δ

δc

)
, (3)

where K is the energy coefficient describing the anisotropic
crystal elasticity [84] and δc is the disconnection core size.
Equations (2) and (3) can be simplified by a mathemati-
cal trick: we can hide the core energies by defining δ0 =
δc exp(−2Ecore/(Kb2)) and writing

Edipole = Kb2 ln

(
δ

δ0

)
. (4)

The length δ0 is now an effective core size without direct phys-
ical meaning, but Eq. (4) can be fitted directly to the dipole
energies obtained by molecular statics simulations without

knowledge of Ecore. With periodic boundary conditions along
the x and z directions in a bicrystal simulation, the energy of
pair of disconnections is given by [29,40,50]

Edipole = Kb2 ln

(
sin(πδ/Lx )

sin(πδ0/Lx )

)
, (5)

taking into account the image interactions. When Lx is infinite,
Eq. (5) reduces to Eq. (4). In our simulations of the �19b GBs,
we considered the periodic case with a simulation box size of
1114.220 Å×Ly×6.261 Å. We varied Ly to verify that there
are no size effects for Ly � 1929.540 Å (Fig. S1, Tables S1
and S2 in the SM [82]).

The energy of the disconnection dipole is maximum at the
disconnection dipole width δ∗ = Lx/2, and its value is

E∗
dipole ≈ Kb2 ln

(
Lx

πδ0

)
(6)

for periodic boundary conditions and δ0/Lx � 1.
Finally, to obtain the barriers for the migration of the

disconnections themselves, the minimum energy path for a
change of the disconnection dipole width δ was obtained by
nudged elastic band (NEB) method calculations [85,86]. The
spring constants for the parallel and perpendicular nudging
forces were both 1.0 eV/Å2. The minimization scheme used
was QUICKMIN [87]. The initial and final states of the min-
imum energy path are the GB structures with disconnection
dipole widths δ varying by 11.142 Å and 6.763 Å for �19b
and �7, respectively (equivalent to a CSL periodicity vector
and thus the distance between two local minima for the dis-
connections). The saddle point observed along the minimum
energy path is the required disconnection migration barrier
(difference in minimum and maximum energy observed along
minimum energy path).

Raw data for all simulations and analyses is available in the
companion data set [88].

III. RESULTS AND DISCUSSION

A. Shear coupling factor

We investigated �19b [111] (178) and �7 [111] (145)
symmetric tilt GBs in copper, which each exhibit both a pearl
and a domino complexion (Fig. 2). These two complexions
in the �19b GB can each be thought of as consisting of two
alternating motifs, designated L and R [Figs. 2(a) and 2(b)].
We simulated their shear-coupled motion by applying a shear
displacement d . The result for the applied shear velocity v‖ =
0.1 m/s after a simulation time of 20 ns at 300 K is shown in
Figs. 2(c) and 2(d). Before the simulations, atoms in a vertical
line were marked in yellow. This fiducial line highlights the
atomic displacements: The GB has moved in positive y direc-
tion [Figs. 2(c) and 2(d)] from its original position (dashed
line), while the material was sheared in positive x direction.
The macroscopically applied displacement thus couples to the
GB migration. The slope of the fiducial line provides the ratio
of GB migration distance to sliding and is therefore equivalent
to the inverse of the shear coupling factor [13,20,39,40]

β�19b = v‖
v⊥

= 0.865, (7)
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where v‖ is the shear velocity applied to the system and
v⊥ the velocity of GB migration. A more exact calculation
method for β is provided in Appendix A. We note that both
complexions exhibit the same value of β�19b.

For the �7 GBs, we also find domino and pearl structures
[Figs. 2(e) and 2(f)], but with some differences to the �19b
GBs. The domino complexion also consists of two alternating
motifs, but they partially overlap. We therefore designate these
motifs as lower-case l and r. The pearl complexion, however,
only has a single motif per unit cell (here designated p).
The results of the shear-coupling simulations are shown in
Figs. 2(g) and 2(h). We note that the two complexions mi-
grate in opposite directions under the same applied boundary
conditions and obtain (see also Appendix A)

β
pearl
�7 = +0.692 and (8)

βdomino
�7 = −1.734. (9)

To understand this, we need to look more closely at the GB
migration mechanism.

B. Origin of the active disconnection modes

It is known that line defects with dislocation character can
exist on GBs [38–40,45–47]. These are called secondary GB
dislocations or disconnections and possess both a Burgers vec-
tor b (leading to the dislocation character) and a step height
h. Disconnections can only exist on and move along the GB,
where they also introduce a step of the GB plane. Similar to
a bulk dislocation, the structure of the GB on both sides of
the disconnection is undisturbed. Thus, the Burgers vectors
must be a displacement shift complete (DSC) vector. The DSC
vectors can be obtained from the dichromatic pattern, i.e.,
by plotting the crystal lattices of both crystallites on top of
each other (Fig. 3). The figure contains some example Burgers
vectors, using the notation bi/ j [89]. The vector starts on a
crystallographic plane i parallel to the GB plane and ends on
plane j. The integers i and j correspond to the distance of the
plane from a coincidence site, i.e., vector b−1/1 in Fig. 3(a)
starts one plane below the coincidence site (i = −1) and ends
one plane above ( j = 1).

Since the glide plane of the active disconnections needs to
be equal to the GB plane, the shortest possible Burgers vector
for �19b is b−15/−15 = b4/4 = [0.586, 0, 0] Å [Fig. 3(a)]. The
possible step heights are obtained by moving the top crystal
by this shortest Burgers vector. The new resulting coinci-
dence sites nearest to the original coincidence site position
(gray circle) along 〈178〉 are marked with a red circle and
a black circle, respectively [Fig. 3(b)]. The differences in
the original and new coincident site positions along 〈178〉
result in step heights (GB migration distance) h1 = 0.677 Å
(4×h0) and h2 = −2.535 Å (−15×h0), with unit step height
h0 = a/2

|178| . The step height h1 is significantly smaller than the
next possible value, leading to the lowest step energy and
thus the lowest Ecore out of all possible step heights. The
only disconnection mode, which appears for both domino and
pearl, is thus (b, h) = ([0.586, 0, 0] Å, 0.677 Å), resulting in
β = bx/h = 0.865 as obtained in the previous section.

For �7, likewise, the shortest possible Burgers vec-
tor along the GB plane is b−2/−2 = b5/5 = [0.966, 0, 0] Å

[Fig. 3(c)]. We obtain two step heights h1 = −0.557 Å
(−2×h0) and h2 = 1.395 Å (5×h0), with unit step height
h0 = a/2

|145| [indicated by red and blue circles in Fig. 3(d)].
This would mean that only the mode with h1 should be active,
having the lowest step energy.

To investigate why the pearl complexion in �7 GBs
nonetheless exhibits a step height of h2, we constructed
disconnection dipoles of all modes that were observed in
the shear-coupling simulations and minimized the simulation
cells with molecular statics [see Methods and Fig. 1(c)]. This
leads to a pair of opposite disconnections, namely, (b, h)
and (−b,−h) with separation δ. Figure 4 shows the struc-
ture of the disconnection cores for �19b and �7 of the
active modes. We verified that we obtained the desired de-
fects by making a Burgers circuit around them [32,90,91]
(black atoms, see Figs. S2 and S3 in the SM [82] for details
on the calculation of the Burgers vector and step height).
When trying to construct the modes with step height h2

for �7 domino and h1 for �7 pearl (i.e., the modes that
were not observed), these disconnections were unstable and
dissociated into the favored disconnection mode plus an ad-
ditional step (Fig. 5). The active disconnection modes thus
have a lower core energy and favorable core structure, com-
pensating for the higher step height h2 that occurs for the
pearl complexion. As a result, domino has the mode (b, h) =
([0.966, 0, 0] Å,−0.557 Å), resulting in β = bx/h = −1.734,
while pearl has the mode ([0.966, 0, 0] Å, 1.395 Å), re-
sulting in β = 0.692, as also observed in the previous
section.

Why are these specific core structures energetically favor-
able and why is there no difference in �19b? An answer
can be found by referring back to the dichromatic patterns
in Fig. 3. The vector between two equivalent positions in
the dichromatic pattern before and after applying a Burgers
vector b possesses both a vertical (h) and a horizontal com-
ponent (sx). The former is, of course, the step height, but
the latter also has a physical meaning and is not identical
to the Burgers vector b. The component sx determines how
the atomic motifs on the GB shift along the x direction,
i.e., along the GB. For the active modes in �19b and �7
domino, sx corresponds to approximately half the unit cell.
These structures also contain two motifs in our nomenclature
(L/R and l/r). The disconnection core thus, e.g., results in
a shift from ...lrlrlr... to ...lrllrl... (cf. Fig. 4). When forcing
the �7 domino complexion to assume the other step height,
which is connected to sx ∼ 0, it would have to retain the order
...lrlrlr... for its motifs at the disconnection core. Figure 5(a)
shows that this seems to be energetically and structurally very
unfavorable, so the lr defect dissociates into an ll and an rr
defect. In �7 pearl, on the other hand, we only marked a
single structural motif p in our unit cell. We can see from
Figs. 4(d) and 5(b) that pearl indeed prefers the ...pppp...
ordering and that splitting the p-motif would be connected
to an energy cost. Thus pearl migrates with the mode h2,
where s2

x ∼ 0, which leads to a low-energy disconnection core
structure.

These results show that not all crystallographically possi-
ble disconnection modes actually exist. Indeed, for the same
macroscopic GB parameters and for the same boundary condi-
tions of our shear-coupling simulations, the atomic structure
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FIG. 3. Dichromatic patterns of the bicrystals. Gray and black symbols represent the atoms from the two different grains. Circle, triangle,
and square indicate different layers along z (ABC stacking sequence). (a) Dichromatic pattern of the �19b [111] (178) symmetric tilt GB in the
xy plane. Four DSC vectors bi/ j of low magnitude are marked by arrows, where i and j indicate the starting and ending plane as counted from
the coincidence site. The equivalent DSC vectors b4/4 = b−15/−15 are marked with red and black arrows and lie within the (178) GB plane.
They are therefore the shortest possible Burgers vectors occurring during conservative shear-coupling (no climb). (b) Pattern after moving the
top crystal by b4/4. If we imagine—without loss of generality—that the original GB plane passed through the coincidence site marked by a
gray circle, the new GB plane must also pass through a coincidence site (red circle or black circle), because the GB structure must be equivalent
before and after a disconnection has moved through the GB. Possible new GB planes therefore move in the 〈178〉 direction by step heights
of either h1 (observed in both domino and pearl) or h2 (not observed). At the same time, the new coincidence sites are also shifted along the
〈532〉 (x) direction. This shift can be interpreted as a shift of the atomic structure of the GB to the left or right. For h1, this shift s1

x corresponds
to approximately half a unit cell, while for h2 the shift s2

x is very small. (c) Dichromatic pattern of the �7 [111] (145) symmetric tilt GB in
the xy plane. The DSC vectors b5/5 = b−2/−2 (red and blue arrow) lie within the (145) GB plane and are thus the relevant Burgers vectors for
shear coupling. (d) Pattern after moving the top crystal by b5/5. We similarly find the pairs h1/s1

x and h2/s2
x for possible new GB planes. For

�7, however, both were observed: h1/s1
x for domino and h2/s2

x for pearl.

of both complexions as well as the disconnection cores de-
termine which of these modes will be active in a given
complexion.

C. Critical stress of GB migration

While the �19b complexions exhibit the same shear-
coupling factor, it is nevertheless of interest if the critical shear
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disconnection dipole
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p

FIG. 4. Structure of the constructed disconnection dipoles for
(a) domino and (b) pearl of �19b. On the left, the discon-
nection is b = [0.586, 0, 0] Å, h = 0.677, with structural units
...LRLLRL.... On the right, we have the opposite disconnection (b =
[−0.586, 0, 0] Å, h = −0.677) with structural units ...RLRRLR....
The disconnection core is therefore equivalent to a shift of the
structural motifs by half a unit cell. (c) The same is observed for
the domino complexion in �7 (b = ±[0.966, 0, 0] Å, h = ∓0.557).
(d) For pearl, however, there is no such shift in the motifs, and
the ...pppp... structural pattern is uninterrupted in the disconnection
cores (b = ±[0.966, 0, 0] Å, h = ±1.394). The three dots between
the images indicate that the dipole width δ is greater than shown
here and the GB between the two disconnections is elided. Burgers
circuits are drawn around the disconnections (black atoms) to verify
the disconnection mode obtained after minimization.

stress required for GB migration differs. In molecular statics
simulations, displacement was imposed and the GB migration
velocity v⊥ only depends on the applied shear velocity v‖
and β. In reality, it is often the case that a given stress is

Σ7 [111] (145)(a)

(b)

r rl l rl rl l rr rl l r rll l rl l rr r rl l

b = [0,0,0] Å
h = 7ho =1.952 Å

b = [0.966,0,0] Å
h =-2ho =-0.557 Å

p p p p p p p pp p p p p p p p

b = [0.966,0,0] Å
h = 5 ho = 1.394 Å

b = [0,0,0] Å
h =-7 ho =-1.952 Å

b = [-0.966,0,0] Å
h =-5 ho =-1.394 Å

b = [0,0,0] Å
h = 7 ho = 1.952 Å

b = [0,0,0] Å
h =-7 ho =-1.952 Å

            Left side of             
disconnection dipole

Right side of 
disconnection dipole

...

...

b = [-0.966,0,0] Å
h =-2 ho =-0.557 Å

FIG. 5. Construction of the nonactive disconnection dipoles for
�7 domino and pearl. When attempting to introduce the discon-
nection mode (b, h) = ([0.966, 0, 0] Å, 1.394 Å) for domino (a) and
([0.966, 0, 0] Å, −0.557 Å) for pearl (b), the disconnections disso-
ciate instead into the disconnections from Figs. 4(c) and 4(d) and
a step to compensate the difference towards the imposed, unfavor-
able step height. This indicates that the disconnection modes that
were not observed during our shear-coupling simulations are not
stable (even in molecular statics) due to their high core energy. Thus
the structurally feasible disconnections in Figs. 4(c)–(d) control the
GB migration.

applied, so a relevant figure of merit is the critical stress
τc required to start GB migration. This can be obtained by
monitoring the reaction forces at the boundary where the shear
is applied. We started with deformation in molecular statics
(T = 0 K). As the displacement d increases, the shear stress
τ increases linearly in the elastic regime until stress drops
occur (Fig. 6). This saw-tooth behavior is similar to earlier
reported simulation studies [20,22,23,29]. We note that the
residual displacement ds after unloading at the first stress drop
(dotted lines) together with the GB migration distance h after
a single migration event [92] can also be used to calculate
β = ds/h. We obtain the same values as earlier within the
expected error bounds. Continuing the unloading simulations
to negative displacements until the first stress drop and then
reversing the loading direction again leads to the expected
hysteresis. The results for positive and negative displacement
directions are symmetric.

For �19b, only a single disconnection mode was observed
in all cases. However, we obtained different critical shear
stresses τc for pearl (1.117 GPa) and domino (0.849 GPa),
meaning that the complexions affect the activation barrier
of the shear-coupled motion. In contrast, the differences in
critical shear stress of the �7 complexions are expected due
to the different disconnection modes. We find τc = 0.434 GPa
for pearl and 1.405 GPa for domino. We also find that there is
an additional, small stress drop when reversing the displace-
ment direction for the pearl complexion (critical shear stress
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FIG. 6. (a) Shear stress response to displacement at 0 K plotted
for domino and pearl of �19b GBs. Each shear stress drop observed
corresponds to a unit step GB migration. The maximum shear stress
is the critical shear stress τc required for GB migration. In inset,
the residual displacement ds ≈ 0.550 Å is the shear obtained for GB
migration by a unit step for both domino and pearl. The migration
normal to the GB plane from the initial position obtained from
atomistic simulations is 0.647 Å and 0.686 Å for domino and pearl,
respectively. (b) The same for �7 GBs, with ds ≈ 1 Å and migra-
tion distances of −0.490 Å (domino) and 1.401 Å (pearl). When
switching the displacement direction, a transition between degener-
ate microstates of the pearl complexion occurs at τsc (see inset).

τsc = 0.18 GPa). The reason is that two degenerate states of
the pearl complexion exist [63]. These are slightly sheared
either to the left or to the right [63]. Their degeneracy dis-
appears under applied shear stress, meaning that depending
on the direction of the applied displacement, either one or the
other state is stabilized. This only affects simulations where
the displacement direction is switched and does not influence
the shear-coupled motion otherwise, which is why we do not
further discuss this effect.

To understand the differences in the critical shear stress,
we first obtained an estimate of the relative formation energies
of the disconnection dipoles. We use the differences in dipole

TABLE II. Disconnection dipole parameters obtained from fit-
ting Eq. (5) to Edipole from the simulations. We list the system size Ly,
the parameter K describing anisotropic crystal elasticity, the effective
disconnection core size δ0, the dipole energy E∗

dipole for δ = Lx/2, and
the Peierls barrier Emig, each for the domino and pearl complexions.
The dipole energy differences �E∗

dipole = E * domino
dipole − E * pearl

dipole are also
listed.

CSL type �7 �19b

Ly (Å) 1171.61 1929.540

Kdomino (meV/Å3) 79.214 77.462

δdomino
0 (Å) 5.082 3.540

E * domino
dipole (meV/Å) 277.015 120.027

E domino
mig (meV/Å) 3.430 1.083

Ly (Å) 1170.29 1929.540

Kpearl (meV/Å3) 79.214 76.822

δ
pearl
0 (Å) 92.652 4.067

E * pearl
dipole (meV/Å) 64.634 115.460

E pearl
mig (meV/Å) 0.532 7.618

�E∗
dipole (meV/Å) 212.381 4.567

energy as discussed in Sec. II, Eq. (5), for domino and pearl as
an indicator of this. The dipole energy depends on the system
size Lx and dipole width δ, wherefore we constructed several
dipoles with different δ as described above. (An exploration
of the influence of Lx is provided in Fig. S4 in the SM [82].)
The results follow the expectations from the theory in Eq. (6).
Note that this is effectively a 2D model of dipole formation
as parallel disconnection lines instead of disconnection loops
[40]. We found that the critical shear stress is not affected by
the thickness of our samples up to the maximum investigated
thickness of 12 nm (Fig. S5 in the SM [82]), which means that
the present samples are still thin enough that the 2D model ap-
plies to our simulations. We will discuss the implications for
experimental samples and thick systems later, but for now use
the present results at the very least as a qualitative indicator.

The data points (circles and squares) in Fig. 7(a) show the
results for �19b. While the dipole energy depends on δ, the
difference between domino and pearl is approximately con-
stant and disconnection dipoles in domino complexions have
a consistently higher energy. This contradicts our findings
that the critical stress to move �19b pearl GBs is higher. In
contrast, the data for �7 GBs in Fig. 8 is in accordance with
our earlier results: The dipole energy and critical shear stress
for domino complexions is much higher than for pearl com-
plexions. The lines connecting the data points represent fits
of Eq. (5), parameters are listed in Table II. The resulting pa-
rameters are comparable to those in previous studies, see Ap-
pendix C for details. We also note that the parameter K , which
represents the anisotropic elastic response of the material, can
be calculated analytically from the stiffness tensor of the crys-
tals [84,93–95]. Following the methods of Eshelby et al. [93]
and Stroh [95], we obtained K = 76.7 meV/Å3 for both �19b
and �7 GBs, in rough accordance with the fitted values.

Apart from the dipole formation, disconnections also need
to move to facilitate GB migration. In analogy to bulk
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FIG. 7. (a) The formation energies Edipole of disconnections
for different dipole widths δ of the disconnection mode (b, h) =
([0.586, 0, 0] Å, 0.677 Å) are plotted for domino and pearl complex-
ions of �19b GBs. (b) Zoom of the gray area in (a). The energies
of dipoles during their migration (thick lines) were obtained by
NEB between the indicated local minima (squares and circles). The
difference in disconnection widths of local minima taken for NEB
study is given by �δ. The disconnection migration barrier Emig is
highlighted by red and blue arrows for domino and pearl.

dislocations, there is also a Peierls barrier Emig for discon-
nections, requiring a critical Peierls–Nabarro stress τmig to
move [50,51,53,83,96,97]. The atomic configuration at the
saddle point of this barrier is not stable and can therefore not
be explored with simple molecular statics calculations. The
minimum energy path for the migration of a disconnection
along the GB, extending the dipole width by the distance �δ

between two minima, was calculated using NEB (thick lines
in Figs. 7 and 8). For �19b, we find that Emig is much higher
for pearl (7.6 meV/Å) as compared to domino (1.1 meV/Å),
leading to a steeper energy landscape during disconnection
migration and a high τmig. For �7 GBs, Emig is higher for
domino (3.430 meV/Å) than for pearl (0.532 meV/Å). This
means that the difference between critical shear stresses in
�19b GBs is dominated by the Peierls barrier, at least at

Σ7 [111] (145)
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FIG. 8. The formation energies Edipole of disconnections in �7
GBs for two different dipole widths δ are plotted for (a) domino
with the disconnection mode (b, h) = ([0.966, 0, 0] Å, −0.557 Å)
and (b) pearl with the disconnection mode ([0.966, 0, 0] Å, 1.394 Å).
The energies of dipoles during their migration (thick lines) were
obtained by NEB between the indicated local minima (squares and
circles). The difference in disconnection widths of local minima
taken for NEB study is given by �δ. The disconnection migration
barrier Emig is highlighted by red and blue arrows for domino and
pearl.

low temperatures. Both the formation and Peierls barrier of
domino in �7 GBs are much higher than for pearl, making
this case much more straightforward.

We could not find conclusive structural reasons for the
large differences in �19b GBs, where all complexions share
the same active disconnection mode. An investigation of
atomic displacements during GB migration did not reveal
any obvious differences between pearl and domino that could
be responsible for higher migration barriers (Appendix B).
A possible explanation could be the generally higher GB
excess volume of domino compared to pearl [63]: With more
available free volume, the barriers for atomic rearrangement
might be lower. However, due to the limited available data,
this remains a hypothesis.
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These simulations are, of course, probing an idealized
case. In reality, in thicker systems, GB migration proceeds
through the formation of islands of atoms or disconnection
loops [40,98,99], most likely nucleated heterogeneously at
defects [99]. The results of Sec. III B should not be af-
fected by this, since they are intrinsic to the structure of
the complexions and their crystallography and not due to
the exact nucleation process. The energy barriers and crit-
ical stresses calculated in the present section, on the other
hand, represent theoretical values. We nevertheless argue that
they are useful because they can give qualitative insights into
the influence of complexions on GB properties, such as GB
migration.

D. Temperature effects

In addition to the molecular statics simulations, we also re-
peated the analysis of shear coupling factor and critical stress
at finite temperatures with MD simulations. We found the
shear coupling factor to be independent of both applied shear
velocity and temperature (Fig. S6 in the SM [82] shows this
for the example of �19b). For temperatures up to T = 600 K,
we averaged the critical stress over several migration events
(which are each equal to a stress drop), each time recording
the maximum of the stress curve. At 700 K and above, the
�19b domino phase transitions into pearl within the first few
migration events, making it impossible to extract meaningful
data. (The domino complexion is metastable over the whole
temperature range [61], but the higher temperatures accel-
erate its transition to pearl even within the short simulation
timescale). We thus restricted all simulations to the lower
temperatures.

The results for �19b are shown in Fig. 9(a). Interest-
ingly, the critical stress of pearl is only higher than that
of domino up to a point between 100 K and 200 K. If we
compare the Peierls barrier Emig to the absolute formation
energy Edipole, however, we notice that the former is quite
small (Fig. 7). Only due to its steepness is it connected to a
high stress. It is conceivable that the thermal energy would be
sufficient to help overcome this small barrier, so in the end
only the formation energy matters. We tested this by start-
ing with systems that already have a disconnection dipole of
width δ∗ = Lx/2 inserted before applying shear. We can thus
probe only τmig, the critical stress for disconnection migration.
Figure 10(a) shows that domino has τmig ≈ 0 GPa, while pearl
has τmig ≈ 0.5 GPa for �19b. The difference in critical shear
stress τc for GB migration (Fig. 6) is roughly 0.27 GPa, which
is smaller. That is not surprising, since there is also a higher
stress connected to the nucleation of domino. With increas-
ing T , however, the disconnection migration barrier can be
overcome more and more easily, resulting in τmig ≈ 0 GPa for
both domino and pearl already at T = 200 K [Figs. 10(b)–
10(d)]. This can explain the temperature dependence: It is
easier to nucleate disconnections in the pearl complexion,
but at low temperatures these disconnections have to cross
high barriers to move. These barriers, however, are only
high compared to domino and can be overcome with ther-
mal energy. At room temperature and above, pearl GBs are
easier to migrate since the GB migration is limited by defect
nucleation.

0 100 200 300 400 500 600
Temperature T (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
rit

ic
al

 s
he

ar
 s

tr
es

s 
c

(G
Pa

)

Domino
Pearl

0 100 200 300 400 500 600
Temperature T (K)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cr
iti

ca
l s

he
ar

 s
tr

es
s 

c
(G

Pa
)

Domino
Pearl

(a)

(b)

Σ19b [111] (178)

Σ7 [111] (145)

FIG. 9. The critical shear stress τc for GB migration as a function
of temperature. (a) For �19b, at temperatures of around 200 K and
above, the critical stress τc of pearl drops below the one for domino.
(b) For �7, the critical stress τc of pearl migration is always below
domino.

For �7, the critical stresses are shown in Fig. 9(b). Con-
trary to �19b, the temperature dependence of the critical
stress is straightforward to understand: Domino complexions
always have higher formation and Peierls barriers for discon-
nection dipoles than pearl and thus exhibit a higher τc. The
obtained values are in all cases of similar magnitude as other
GBs in fcc metals (see Appendix C).

IV. CONCLUSION

We investigated elementary mechanisms of shear-coupled
GB motion of two complexions, namely, domino and pearl
in Cu [111] tilt GBs. It is known from previous literature
that several disconnection modes can exist for the same GB,
leading, e.g., to opposite migration directions under the same
applied shear. Which mode is active, however, could not be
predicted. In this paper, we show that the selection of the
disconnection mode, identified by a Burgers vector and step
height, depends on the complexion. In �19b GBs, the pearl
and domino complexions exhibit the same modes, while in
�7 GBs these complexions migrate in opposite directions.
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FIG. 10. (a)–(c) Shear stress–displacement curves of �19b [111] (178) GBs with preexisting disconnection dipoles of width δ∗ = Lx/2.
The shear stress response to displacement at temperatures (a) 0 K, (b) 100 K, and (c) 200 K is plotted. The critical stress τmig for disconnection
migration is indicated by the horizontal dotted lines. (d) It reduces with increasing temperature, dropping to close to zero at 200 K and above
for both domino and pearl.

The selection of the active mode is a result of the structural
motifs of the complexions, which dictate the core structures
of the disconnections. We found that the combination of struc-
tural GB motifs in the disconnection core lead to significantly
different core structures, some of which are energetically un-
stable, thereby selecting the active mode as the energetically
favorable core structure. Even if the complexions exhibit the
same mode (here in the �19b GBs), their different atomic
structures also affect the critical shear stress required to move
the GBs, at least in our model setup with symmetric, defect-
free GBs.
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APPENDIX A: SHEAR COUPLING FACTOR
OF COMPLEXIONS

To more accurately calculate β, we can record the displace-
ment ux of the atoms and plot it as a function of the atomic
position normal to the GB (Fig. 11). The slope can be obtained
by linear regression and corresponds directly to β. Here, the
shear coupling factor is obtained for simulations at 300 K after
20 ns in �19b GBs, shown in Figs. 2(a) and 2(b), and after
16 ns in �7 GBs, shown in Figs. 2(c) and 2(d).

APPENDIX B: ATOMIC SHUFFLING
DURING GB MIGRATION

The simulations of perfect complexions go through a cycle
of nucleating, propagating, and annihilating the disconnec-
tions. For �19b, we seem to observe the same disconnection
mode for domino and pearl (same β), the differences in shear
stress required to move the disconnection can also be due
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FIG. 11. Atomic displacements ux as a function of the atom’s position along the y axis. Note that y = 0 corresponds to the initial GB
position. The shear coupling factor β is the slope (red and blue lines) of these graphs and was obtained by linear regression [Eq. (7)]. Result
for simulations at 300 K for �19b GBs after 20 ns with (a) domino and (b) pearl complexions and for �7 GBs after 16 ns with (c) domino and
(d) pearl complexions are shown. The regions belonging to the bottom crystal (left part of the graph with zero displacement) and the regions
belonging to the top crystal (right part of the graph with ux = d) are strain-free (constant displacement), while the region traversed by the GB
was sheared. The arrows indicate the direction of GB migration; note that for domino in �7 (c), the bottom crystal shrinks, while it grows in
all other cases (a)–(b), (d).

to the differences in the atomic shuffling during GB migra-
tion for both the complexions [55,100]. The atomic shuffling
during GB migration for both the complexions was observed
after 20 shear stress drops in the molecular statics calculations
(corresponding to n = 20 unit steps of GB migration). The
mean GB plane moved a total distance of nh = 13.540 Å
along y and the shear displacement 20ds = n|b| = 11.720 Å
along x for both the complexions. In Fig. 12, the initial po-
sitions of the atoms in the top and bottom grains before GB
migration are plotted in black and their final positions after
migration are marked in red and blue for domino and pearl,
respectively. At first glance, we can see that the dichromatic
pattern appears in the traversed region. This is as expected,
due to the rearrangement of atoms in this regions from the
crystallography of the top crystal (black, before) to the one
of the bottom crystal (red and blue, after) [98,101]. On

closer inspection, it can be seen that there are no true coin-
cidence sites, which is a result of the microscopic degrees of
freedom of the GB: The dichromatic pattern is always plotted
such that coincidence sites exist, but in reality the top crystal
can always be translated arbitrarily against the bottom crys-
tal [63,69,102]. Furthermore, a more complex pattern arises
above and below the traversed region. It appears that atoms
do not directly jump from their initial to their final position
during one GB migration step.

Hence, we also analyzed the atomic displacements of
perfect �19 GB complexions during a single step of GB mi-
gration. A simulation cell of size 11.142×192.291×6.261 Å3

(1×10×1 units cells, 1137 atoms) was used for this. We only
considered atoms that were not identified as fcc atoms either
before or after the GB migration step, utilizing the polyhedral
template matching structure identification method [103] as
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FIG. 12. Atom positions in (a) domino and (b) pearl of �19b
GBs before (black) and after (red or blue) shear-coupled GB mo-
tion. These images are after n = 20 unit steps of GB migration,
which correspond to a GB migration distance of nh = 13.540 Å
along y and a shear displacement n|b| = 20ds = 11.720 Å along x.
In the traversed region, an image similar to the dichromatic pat-
tern appears due to overlaying atoms from before the migration,
which belong to the top crystal, and after the migration, which
now belong to the bottom crystal. An additional offset between the
atoms in the pattern is due to the microscopic degrees of freedom,
i.e., the top and bottom crystal are shifted against each other depend-
ing on the complexion. Furthermore, the pattern at the start and end
of the migration region is somewhat smeared out, indicating that the
atomic jumps during the GB migration do not necessarily go from
the initial to the final position, but can also occupy intermediary
positions

implemented in OVITO [79]. The results are shown in Fig. 13.
The jump vectors are symmetric around |b|/2 = 0.586 Å/2 =
0.293 Å in the x direction. The average of all jumps has to be
|b|/2 because the displacement for atoms with y coordinates
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FIG. 13. Displacements of the atoms in the GB during a single
GB migration step in �19b GBs, plotted by (a) ux and uy compo-
nents and (b) ux and uz components. Here, we define GB atoms as
those atoms that were not identified as fcc either before or after the
migration event by the polyhedral template matching method [103]
in OVITO [79]. The displacements are symmetric around |b|/2 =
0.293 Å in x direction, but do not correspond to DSC vectors. This
indicates that the jumps during one migration step go to intermediate
positions, before arriving at their final environment in the defect-free
crystal after several migration steps.

below the GB has to be zero, while the displacement above the
GB has to be |b|. The additional symmetry of the jump vectors
is due to the symmetry of the GB. The atomic displacements
during a single GB migration step do not correspond to DSC
vectors. In our simulations, atoms thus transition from one
crystallite to the GB region and only then to the second crys-
tallite during GB migration. The non-DSC nature of the jump
vectors is due to the internal degrees of freedom for the atomic
positions of the domino and pearl complexions.

We furthermore probed the effort required to effect those
jumps by calculating the L2-norm of a combined vector
of the displacement components for the GB atoms i as√∑n

i=1 (x2
i + y2

i + z2
i ). The atomic jump lengths are eval-

uated to be 3.018 Å for domino and 2.877 Å for pearl.
The difference in jump lengths is small and seems to
be unlikely to explain the differences in τc for the two
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complexions. It is therefore necessary to calculate the ex-
act energy cost of introducing the disconnections as in
Sec. III C.

APPENDIX C: SHEAR COUPLED MOTION IN OTHER
GBS OF FCC METALS IN LITERATURE

The energy of disconnections depends on both their core
energy and their system-size-dependent elastic interaction en-
ergy, and is therefore best described by the parameters K and
δ0 (see Eqs. 2–6).

Here, K encodes the elasticity of the crystal lattice and δ0

the properties of the disconnection core. Only a limited num-
ber of studies list such values, and for copper GBs we only
found Ref. [29], in which a �13 [001] (320) symmetric tilt GB
is simulated. They obtained a value of K = 30.468 meV/Å3

[29], whereas we found K = 76.822 meV/Å3 for �19b and
K = 79.214 meV/Å3 for �7. The difference could be a re-
sult of the anisotropy of copper and the different GB planes.
The ratio of K values for orientations along the 〈111〉 and
〈100〉 directions is 2.517, which is consistent with the ra-
tio of anisotropic Young’s moduli for orientations along the
〈111〉 and 〈100〉 directions being 2.893 [104,105]. The pa-
per reported Ecore = 5.3 meV/Å and δc = 3.615 Å [29]. The
latter was chosen arbitrarily and we therefore combined
these values into δ0 = 2.556 Å [see Eq. (4) and surround-
ing discussion], which is of the same order of magnitude

as our values of δ0 = 3.8-4.4 Å obtained in �19b GBs and
quite lower than values δ0 = 5.082-92.652 Å obtained in �7
GBs (Table II). The migration barrier Emig was reported as
5.2 ± 0.4 meV/Å [29], which is in the same range as our
values of Emig = 1.1−7.6 meV/Å of �19 GB and Emig =
0.532−3.430 meV/Å of �7 GB.

Previously, the critical shear stress τc for GB migration
was calculated for various GBs in fcc metals. Values lie in
the range of 1–4 GPa [29,52,75,106]. At 0 K, shear stress
in �13 [001] (320) and �17 [001] (410) symmetric tilt
Cu GBs is observed to be 1.4 GPa and 2.1 GPa, respec-
tively [29,52]. Likewise, shear stress in the �41 [001] (540)
Al GB is noted to be 2.85 GPa [106]. This is in the
same range as our 0 K values, which are 1.117 GPa and
0.849 GPa for pearl and domino, respectively. Shear stress
as a function of temperature is reported for complexions in
Cu �5 [001] (210) GB [75]. At 500 K, shear stress is ob-
served to be ≈0.95 GPa and ≈0.58 GPa for split kite and
filled kite complexions, respectively. At the same tempera-
ture, the critical shear stress in this study is ≈0.5 GPa and
≈0.4 GPa, respectively. The shear stress difference between
the complexions are irrespective of the activation of differ-
ent disconnection modes. In Cu, the split kite and filled kite
complexions of �5 are similar to the domino and pearl of
�7 in having different disconnection modes contrary to the
domino and pearl of �19 GB having the same disconnection
mode.

[1] V. Randle, Grain boundary engineering: An overview after 25
years, Mater. Sci. Technol. 26, 253 (2010).

[2] C. J. Simpson, K. T. Aust, and W. C. Winegard, The four stages
of grain growth, Metall. Trans. 2, 987 (1971).

[3] G. Riontino, C. Antonione, L. Battezzati, F. Marino, and M. C.
Tabasso, Kinetics of abnormal grain growth in pure iron,
J. Mater. Sci. 14, 86 (1979).

[4] H. V. Swygenhoven, A. Caro, and D. Farkas, Grain boundary
structure and its influence on plastic deformation of polycrys-
talline FCC metals at the nanoscale: A molecular dynamics
study, Scr. Mater. 44, 1513 (2001).

[5] Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M.
Follstaedt, and S. X. Mao, Grain boundary-mediated plasticity
in nanocrystalline nickel, Science 305, 654 (2004).

[6] M. Meyers, A. Mishra, and D. Benson, Mechanical properties
of nanocrystalline materials, Prog. Mater. Sci. 51, 427 (2006).

[7] J. Lohmiller, M. Grewer, C. Braun, A. Kobler, C. Kübel,
K. Schüler, V. Honkimäki, H. Hahn, O. Kraft, R. Birringer,
and P. A. Gruber, Untangling dislocation and grain boundary
mediated plasticity in nanocrystalline nickel, Acta Mater. 65,
295 (2014).

[8] H. Fukutomi and T. Kamijo, Grain boundary sliding-migration
of aluminum 〈110〉�11 {113} symmetric tilt coincidence grain
boundary and its interpretation based on the motion of perfect
dsc dislocations, Scr. Metall. 19, 195 (1985).

[9] H. Fukutomi, T. Iseki, T. Endo, and T. Kamijo, Sliding be-
havior of coincidence grain boundaries deviating from ideal
symmetric tilt relationship, Acta Metall. Mater. 39, 1445
(1991).

[10] T. G. Langdon, Grain boundary sliding revisited: Develop-
ments in sliding over four decades, J. Mater. Sci. 41, 597
(2006).

[11] L. Wang, Y. Zhang, Z. Zeng, H. Zhou, J. He, P. Liu, M. Chen,
J. Han, D. J. Srolovitz, J. Teng, Y. Guo, G. Yang, D. Kong, E.
Ma, Y. Hu, B. Yin, X. Huang, Z. Zhang, T. Zhu, and X. Han,
Tracking the sliding of grain boundaries at the atomic scale,
Science 375, 1261 (2022).

[12] M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki,
Atomic-level observation of disclination dipoles in mechani-
cally milled, nanocrystalline Fe, Science 295, 2433 (2002).

[13] J. W. Cahn and J. E. Taylor, A unified approach to motion
of grain boundaries, relative tangential translation along grain
boundaries, and grain rotation, Acta Mater. 52, 4887 (2004).

[14] M. Upmanyu, D. Srolovitz, A. Lobkovsky, J. Warren, and
W. Carter, Simultaneous grain boundary migration and grain
rotation, Acta Mater. 54, 1707 (2006).

[15] L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen,
and X. Han, Grain rotation mediated by grain boundary dis-
locations in nanocrystalline platinum, Nat. Commun. 5, 4402
(2014).

[16] S. L. Thomas, K. Chen, J. Han, P. K. Purohit, and D. J.
Srolovitz, Reconciling grain growth and shear-coupled grain
boundary migration, Nat. Commun. 8, 1764 (2017).

[17] M. Winning, G. Gottstein, and L. Shvindlerman, Stress in-
duced grain boundary motion, Acta Mater. 49, 211 (2001).

[18] M. Winning, G. Gottstein, and L. Shvindlerman, On the mech-
anisms of grain boundary migration, Acta Mater. 50, 353
(2002).

063602-14

https://doi.org/10.1179/026708309X12601952777747
https://doi.org/10.1007/BF02664229
https://doi.org/10.1007/BF01028331
https://doi.org/10.1016/S1359-6462(01)00717-5
https://doi.org/10.1126/science.1098741
https://doi.org/10.1016/j.pmatsci.2005.08.003
https://doi.org/10.1016/j.actamat.2013.10.071
https://doi.org/10.1016/0036-9748(85)90181-4
https://doi.org/10.1016/0956-7151(91)90229-T
https://doi.org/10.1007/s10853-006-6476-0
https://doi.org/10.1126/science.abm2612
https://doi.org/10.1126/science.1067430
https://doi.org/10.1016/j.actamat.2004.02.048
https://doi.org/10.1016/j.actamat.2005.11.036
https://doi.org/10.1038/ncomms5402
https://doi.org/10.1038/s41467-017-01889-3
https://doi.org/10.1016/S1359-6454(00)00321-9
https://doi.org/10.1016/S1359-6454(01)00343-3


EFFECT OF THE ATOMIC STRUCTURE OF COMPLEXIONS … PHYSICAL REVIEW MATERIALS 8, 063602 (2024)

[19] A. Suzuki and Y. M. Mishin, Atomic mechanisms of grain
boundary motion, Mater. Sci. Forum 502, 157 (2005).

[20] J. W. Cahn, Y. Mishin, and A. Suzuki, Coupling grain
boundary motion to shear deformation, Acta Mater. 54, 4953
(2006).

[21] D. Gianola, S. V. Petegem, M. Legros, S. Brandstetter, H. V.
Swygenhoven, and K. Hemker, Stress-assisted discontinuous
grain growth and its effect on the deformation behavior of
nanocrystalline aluminum thin films, Acta Mater. 54, 2253
(2006).

[22] Y. Mishin, A. Suzuki, B. P. Uberuaga, and A. F. Voter,
Stick-slip behavior of grain boundaries studied by accelerated
molecular dynamics, Phys. Rev. B 75, 224101 (2007).

[23] V. A. Ivanov and Y. Mishin, Dynamics of grain boundary
motion coupled to shear deformation: An analytical model
and its verification by molecular dynamics, Phys. Rev. B 78,
064106 (2008).

[24] T. Gorkaya, D. A. Molodov, and G. Gottstein, Stress-driven
migration of symmetrical 〈100〉 tilt grain boundaries in al
bicrystals, Acta Mater. 57, 5396 (2009).

[25] D. Caillard, F. Mompiou, and M. Legros, Grain-boundary
shear-migration coupling. II. Geometrical model for general
boundaries, Acta Mater. 57, 2390 (2009).

[26] F. Mompiou, D. Caillard, and M. Legros, Grain boundary
shear–migration coupling.I. In situ TEM straining experiments
in Al polycrystals, Acta Mater. 57, 2198 (2009).

[27] F. Mompiou, M. Legros, and D. Caillard, Direct observation
and quantification of grain boundary shear-migration coupling
in polycrystalline Al, J. Mater. Sci. 46, 4308 (2011).

[28] D. A. Molodov, T. Gorkaya, and G. Gottstein, Migration of the
�7 tilt grain boundary in Al under an applied external stress,
Scr. Mater. 65, 990 (2011).

[29] A. Rajabzadeh, F. Mompiou, M. Legros, and N. Combe,
Elementary mechanisms of shear-coupled grain boundary mi-
gration, Phys. Rev. Lett. 110, 265507 (2013).

[30] J. Li and A. Soh, Toughening of nanocrystalline materi-
als through shear-coupled migration of grain boundaries,
Scr. Mater. 69, 283 (2013).

[31] E. R. Homer, S. M. Foiles, E. A. Holm, and D. L. Olmsted,
Phenomenology of shear-coupled grain boundary motion in
symmetric tilt and general grain boundaries, Acta Mater. 61,
1048 (2013).

[32] A. Rajabzadeh, F. Mompiou, S. Lartigue-Korinek, N. Combe,
M. Legros, and D. Molodov, The role of disconnections in
deformation-coupled grain boundary migration, Acta Mater.
77, 223 (2014).

[33] K. D. Molodov and D. A. Molodov, Grain boundary mediated
plasticity: On the evaluation of grain boundary migration—
shear coupling, Acta Mater. 153, 336 (2018).

[34] Q. Zhu, G. Cao, J. Wang, C. Deng, J. Li, Z. Zhang, and S. X.
Mao, In situ atomistic observation of disconnection-mediated
grain boundary migration, Nat. Commun. 10, 156 (2019).

[35] J. Wei, B. Feng, R. Ishikawa, T. Yokoi, K. Matsunaga, N.
Shibata, and Y. Ikuhara, Direct imaging of atomistic grain
boundary migration, Nat. Mater. 20, 951 (2021).

[36] M. Dao, L. Lu, R. Asaro, J. De Hosson, and E. Ma, To-
ward a quantitative understanding of mechanical behavior of
nanocrystalline metals, Acta Mater. 55, 4041 (2007).

[37] V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H.
Gleiter, Dislocation processes in the deformation of nanocrys-

talline aluminium by molecular-dynamics simulation,
Nat. Mater. 1, 45 (2002).

[38] J. Hirth and R. Pond, Steps, dislocations and disconnections
as interface defects relating to structure and phase transforma-
tions, Acta Mater. 44, 4749 (1996).

[39] M. Ashby, Boundary defects, and atomistic aspects of bound-
ary sliding and diffusional creep, Surf. Sci. 31, 498 (1972).

[40] J. Han, S. L. Thomas, and D. J. Srolovitz, Grain-boundary
kinetics: A unified approach, Prog. Mater. Sci. 98, 386
(2018).

[41] K. Chen, J. Han, S. L. Thomas, and D. J. Srolovitz, Grain
boundary shear coupling is not a grain boundary property,
Acta Mater. 167, 241 (2019).

[42] F. Mompiou, M. Legros, and D. Caillard, SMIG model: A new
geometrical model to quantify grain boundary-based plasticity,
Acta Mater. 58, 3676 (2010).

[43] A. H. King and D. A. Smith, The effects on grain-boundary
processes of the steps in the boundary plane associated with
the cores of grain-boundary dislocations, Acta Cryst. A 36,
335 (1980).

[44] C. M. F. Rae and D. A. Smith, On the mechanisms of grain
boundary migration, Philos. Mag. 41, 477 (1980).

[45] W. Bollmann, General geometrical theory of crystalline inter-
faces, in Crystal Defects and Crystalline Interfaces (Springer,
Berlin, Heidelberg, 1970), pp. 143–185.

[46] J. Hirth and R. Balluffi, On grain boundary dislocations and
ledges, Acta Metall. 21, 929 (1973).

[47] J. Hirth, R. Pond, and J. Lothe, Disconnections in tilt walls,
Acta Mater. 54, 4237 (2006).

[48] A. Rajabzadeh, M. Legros, N. Combe, F. Mompiou, and D.
Molodov, Evidence of grain boundary dislocation step mo-
tion associated to shear-coupled grain boundary migration,
Philos. Mag. 93, 1299 (2013).

[49] N. Combe, F. Mompiou, and M. Legros, Disconnections kinks
and competing modes in shear-coupled grain boundary migra-
tion, Phys. Rev. B 93, 024109 (2016).

[50] O. MacKain, M. Cottura, D. Rodney, and E. Clouet, Atomic-
scale modeling of twinning disconnections in zirconium,
Phys. Rev. B 95, 134102 (2017).

[51] K. Chen, J. Han, and D. J. Srolovitz, On the temperature
dependence of grain boundary mobility, Acta Mater. 194, 412
(2020).

[52] N. Combe, F. Mompiou, and M. Legros, Multiple coupling
modes to relax shear strain during grain boundary migration,
Acta Mater. 218, 117222 (2021).

[53] H. Khater, A. Serra, R. Pond, and J. Hirth, The disconnection
mechanism of coupled migration and shear at grain bound-
aries, Acta Mater. 60, 2007 (2012).

[54] K. Chen, D. J. Srolovitz, and J. Han, Grain-boundary topolog-
ical phase transitions, Proc. Natl. Acad. Sci. USA 117, 33077
(2020).

[55] I. Chesser, E. Holm, and B. Runnels, Optimal transportation
of grain boundaries: A forward model for predicting migration
mechanisms, Acta Mater. 210, 116823 (2021).

[56] T. Frolov, D. L. Olmsted, M. Asta, and Y. Mishin, Struc-
tural phase transformations in metallic grain boundaries,
Nat. Commun. 4, 1899 (2013).

[57] M. Aramfard and C. Deng, Mechanically enhanced grain
boundary structural phase transformation in Cu, Acta Mater.
146, 304 (2018).

063602-15

https://doi.org/10.4028/www.scientific.net/MSF.502.157
https://doi.org/10.1016/j.actamat.2006.08.004
https://doi.org/10.1016/j.actamat.2006.01.023
https://doi.org/10.1103/PhysRevB.75.224101
https://doi.org/10.1103/PhysRevB.78.064106
https://doi.org/10.1016/j.actamat.2009.07.036
https://doi.org/10.1016/j.actamat.2009.01.023
https://doi.org/10.1016/j.actamat.2009.01.014
https://doi.org/10.1007/s10853-011-5369-z
https://doi.org/10.1016/j.scriptamat.2011.08.030
https://doi.org/10.1103/PhysRevLett.110.265507
https://doi.org/10.1016/j.scriptamat.2013.04.014
https://doi.org/10.1016/j.actamat.2012.10.005
https://doi.org/10.1016/j.actamat.2014.05.062
https://doi.org/10.1016/j.actamat.2018.04.057
https://doi.org/10.1038/s41467-018-08031-x
https://doi.org/10.1038/s41563-020-00879-z
https://doi.org/10.1016/j.actamat.2007.01.038
https://doi.org/10.1038/nmat700
https://doi.org/10.1016/S1359-6454(96)00132-2
https://doi.org/10.1016/0039-6028(72)90273-7
https://doi.org/10.1016/j.pmatsci.2018.05.004
https://doi.org/10.1016/j.actamat.2019.01.040
https://doi.org/10.1016/j.actamat.2010.03.003
https://doi.org/10.1107/S0567739480000782
https://doi.org/10.1080/01418618008239327
https://doi.org/10.1016/0001-6160(73)90150-8
https://doi.org/10.1016/j.actamat.2006.05.017
https://doi.org/10.1080/14786435.2012.760760
https://doi.org/10.1103/PhysRevB.93.024109
https://doi.org/10.1103/PhysRevB.95.134102
https://doi.org/10.1016/j.actamat.2020.04.057
https://doi.org/10.1016/j.actamat.2021.117222
https://doi.org/10.1016/j.actamat.2012.01.001
https://doi.org/10.1073/pnas.2017390117
https://doi.org/10.1016/j.actamat.2021.116823
https://doi.org/10.1038/ncomms2919
https://doi.org/10.1016/j.actamat.2017.12.062


PEMMA, JANISCH, DEHM, AND BRINK PHYSICAL REVIEW MATERIALS 8, 063602 (2024)

[58] Q. Zhu, A. Samanta, B. Li, R. E. Rudd, and T. Frolov,
Predicting phase behavior of grain boundaries with evolu-
tionary search and machine learning, Nat. Commun. 9, 467
(2018).

[59] T. Frolov, Q. Zhu, T. Oppelstrup, J. Marian, and R. E. Rudd,
Structures and transitions in bcc tungsten grain boundaries and
their role in the absorption of point defects, Acta Mater. 159,
123 (2018).

[60] C. Yang, M. Zhang, and L. Qi, Grain boundary structure search
by using an evolutionary algorithm with effective mutation
methods, Comput. Mater. Sci. 184, 109812 (2020).

[61] T. Meiners, T. Frolov, R. E. Rudd, G. Dehm, and C. H.
Liebscher, Observations of grain-boundary phase transfor-
mations in an elemental metal, Nature (London) 579, 375
(2020).

[62] L. Langenohl, T. Brink, R. Freitas, T. Frolov, G. Dehm,
and C. H. Liebscher, Dual phase patterning during a con-
gruent grain boundary phase transition in elemental copper,
Nat. Commun. 13, 3331 (2022).

[63] T. Brink, L. Langenohl, H. Bishara, and G. Dehm, Universality
of grain boundary phases in fcc metals: Case study on high-
angle [111] symmetric tilt grain boundaries, Phys. Rev. B 107,
054103 (2023).

[64] J. W. Gibbs, The Collected Works of J. Willard Gibbs, Volume
1: Thermodynamics (Yale University Press, New Haven, CT,
1948).

[65] E. W. Hart, Two-dimensional phase transformation in grain
boundaries, Scr. Metall. 2, 179 (1968).

[66] J. W. Cahn, Transitions and phase equilibria among grain
boundary structures, Le J. Phys. Colloq. 43, C6-199 (1982).

[67] C. Rottman, Theory of phase transitions at internal interfaces,
J. Phys. Colloq. 49, C5-313 (1988).

[68] T. Frolov and Y. Mishin, Thermodynamics of coherent inter-
faces under mechanical stresses. I. Theory, Phys. Rev. B 85,
224106 (2012).

[69] T. Frolov and Y. Mishin, Thermodynamics of coherent inter-
faces under mechanical stresses. II. Application to atomistic
simulation of grain boundaries, Phys. Rev. B 85, 224107
(2012).

[70] M. Tang, W. C. Carter, and R. M. Cannon, Diffuse interface
model for structural transitions of grain boundaries, Phys. Rev.
B 73, 024102 (2006).

[71] S. J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, Com-
plexion: A new concept for kinetic engineering in materials
science, Acta Mater. 55, 6208 (2007).

[72] P. R. Cantwell, M. Tang, S. J. Dillon, J. Luo, G. S. Rohrer, and
M. P. Harmer, Grain boundary complexions, Acta Mater. 62, 1
(2014).

[73] P. R. Cantwell, T. Frolov, T. J. Rupert, A. R. Krause, C. J.
Marvel, G. S. Rohrer, J. M. Rickman, and M. P. Harmer, Grain
boundary complexion transitions, Annu. Rev. Mater. Res. 50,
465 (2020).

[74] T. Frolov and Y. Mishin, Phases, phase equilibria, and phase
rules in low-dimensional systems, J. Chem. Phys. 143, 044706
(2015).

[75] T. Frolov, Effect of interfacial structural phase transitions on
the coupled motion of grain boundaries: A molecular dynam-
ics study, Appl. Phys. Lett. 104, 211905 (2014).

[76] S. Plimpton, Fast parallel algorithms for short-range molecular
dynamics, J. Comput. Phys. 117, 1 (1995).

[77] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,
W. M. Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer,
S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J.
Tranchida, C. Trott, and S. J. Plimpton, LAMMPS - a flexible
simulation tool for particle-based materials modeling at the
atomic, meso, and continuum scales, Comput. Phys. Commun.
271, 108171 (2022).

[78] Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter,
and J. D. Kress, Structural stability and lattice defects in cop-
per: Ab initio, tight-binding, and embedded-atom calculations,
Phys. Rev. B 63, 224106 (2001).

[79] A. Stukowski, Visualization and analysis of atomistic sim-
ulation data with OVITO–the open visualization tool,
Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

[80] I. Winter, T. Oppelstrup, T. Frolov, and R. Rudd, Character-
ization and visualization of grain boundary disconnections,
Acta Mater. 237, 118067 (2022).

[81] I. S. Winter, R. E. Rudd, T. Oppelstrup, and T. Frolov, Nucle-
ation of grain boundary phases, Phys. Rev. Lett. 128, 035701
(2022).

[82] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevMaterials.8.063602 for
additional data.

[83] F. Nabarro, Mathematical theory of stationary dislocations,
Adv. Phys. 1, 269 (1952).

[84] J. P. Hirth, J. Lothe, and T. Mura, Theory of dislocations
(2nd ed.), J. Appl. Mech. 50, 476 (1983).

[85] G. Henkelman and H. Jónsson, Improved tangent estimate
in the nudged elastic band method for finding minimum
energy paths and saddle points, J. Chem. Phys. 113, 9978
(2000).

[86] G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climb-
ing image nudged elastic band method for finding saddle
points and minimum energy paths, J. Chem. Phys. 113, 9901
(2000).

[87] D. Sheppard, R. Terrell, and G. Henkelman, Optimization
methods for finding minimum energy paths, J. Chem. Phys.
128, 134106 (2008).

[88] S. Pemma, R. Janisch, G. Dehm, and T. Brink, Data set for
“Effect of the atomic structure of complexions on the active
disconnection mode during shear-coupled grain boundary mo-
tion,” Zenodo (2024).

[89] A. Serra and D. J. Bacon, A new model for {1012} twin
growth in hcp metals, Philos. Mag. A 73, 333 (1996).

[90] R. Pond, TEM studies of line defects in interfaces,
Ultramicroscopy 30, 1 (1989).

[91] D. L. Medlin, K. Hattar, J. A. Zimmerman, F. Abdeljawad,
and S. M. Foiles, Defect character at grain boundary facet
junctions: Analysis of an asymmetric � = 5 grain boundary
in Fe, Acta Mater. 124, 383 (2017).

[92] The GB migration distance h traveled by the GB during a
single event is obtained from atomistic simulations by marking
an equivalent position in the structural unit (e.g., in R, r, or p)
before and after the migration step. The difference in their
atomic positions along the y direction is then equal to h.

[93] J. Eshelby, W. Read, and W. Shockley, Anisotropic elasticity
with applications to dislocation theory, Acta Metall. 1, 251
(1953).

[94] A. Foreman, Dislocation energies in anisotropic crystals,
Acta Metall. 3, 322 (1955).

063602-16

https://doi.org/10.1038/s41467-018-02937-2
https://doi.org/10.1016/j.actamat.2018.07.051
https://doi.org/10.1016/j.commatsci.2020.109812
https://doi.org/10.1038/s41586-020-2082-6
https://doi.org/10.1038/s41467-022-30922-3
https://doi.org/10.1103/PhysRevB.107.054103
https://doi.org/10.1016/0036-9748(68)90222-6
https://doi.org/10.1051/jphyscol:1982619
https://doi.org/10.1051/jphyscol:1988538
https://doi.org/10.1103/PhysRevB.85.224106
https://doi.org/10.1103/PhysRevB.85.224107
https://doi.org/10.1103/PhysRevB.73.024102
https://doi.org/10.1016/j.actamat.2007.07.029
https://doi.org/10.1016/j.actamat.2013.07.037
https://doi.org/10.1146/annurev-matsci-081619-114055
https://doi.org/10.1063/1.4927414
https://doi.org/10.1063/1.4880715
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1016/j.actamat.2022.118067
https://doi.org/10.1103/PhysRevLett.128.035701
http://link.aps.org/supplemental/10.1103/PhysRevMaterials.8.063602
https://doi.org/10.1080/00018735200101211
https://doi.org/10.1115/1.3167075
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.2841941
https://doi.org/10.5281/zenodo.10996648
https://doi.org/10.1080/01418619608244386
https://doi.org/10.1016/0304-3991(89)90165-4
https://doi.org/10.1016/j.actamat.2016.11.017
https://doi.org/10.1016/0001-6160(53)90099-6
https://doi.org/10.1016/0001-6160(55)90036-5


EFFECT OF THE ATOMIC STRUCTURE OF COMPLEXIONS … PHYSICAL REVIEW MATERIALS 8, 063602 (2024)

[95] A. N. Stroh, Dislocations and cracks in anisotropic elasticity,
Philos. Mag. 3, 625 (1958).

[96] R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52, 34
(1940).

[97] F. R. N. Nabarro, Dislocations in a simple cubic lattice,
Proc. Phys. Soc. 59, 256 (1947).

[98] C. P. Race, R. Hadian, J. von Pezold, B. Grabowski, and J.
Neugebauer, Mechanisms and kinetics of the migration of
grain boundaries containing extended defects, Phys. Rev. B 92,
174115 (2015).

[99] R. Hadian, B. Grabowski, C. P. Race, and J. Neugebauer,
Atomistic migration mechanisms of atomically flat, stepped,
and kinked grain boundaries, Phys. Rev. B 94, 165413
(2016).

[100] I. Chesser, B. Runnels, and E. Holm, A taxonomy
of grain boundary migration mechanisms via displace-
ment texture characterization, Acta Mater. 222, 117425
(2022).

[101] H. Zhang and D. J. Srolovitz, Simulation and analysis of the
migration mechanism of �5 tilt grain boundaries in an fcc
metal, Acta Mater. 54, 623 (2006).

[102] T. Frolov, D. L. Medlin, and M. Asta, Dislocation content
of grain boundary phase junctions and its relation to grain
boundary excess properties, Phys. Rev. B 103, 184108 (2021).

[103] P. M. Larsen, S. Schmidt, and J. Schiøtz, Robust
structural identification via polyhedral template matching,
Modell. Simul. Mater. Sci. Eng. 24, 055007 (2016).

[104] L. B. Freund and S. Suresh, Thin Film Materials: Stress, De-
fect Formation and Surface Evolution (Cambridge University
Press, Cambridge, 2004).

[105] D. Armstrong, A. Wilkinson, and S. Roberts, Measuring
anisotropy in Young’s modulus of copper using microcan-
tilever testing, J. Mater. Res. 24, 3268 (2009).

[106] M. Larranaga, F. Mompiou, M. Legros, and N. Combe, Role of
sessile disconnection dipoles in shear-coupled grain boundary
migration, Phys. Rev. Mater. 4, 123606 (2020).

063602-17

https://doi.org/10.1080/14786435808565804
https://doi.org/10.1088/0959-5309/52/1/305
https://doi.org/10.1088/0959-5309/59/2/309
https://doi.org/10.1103/PhysRevB.92.174115
https://doi.org/10.1103/PhysRevB.94.165413
https://doi.org/10.1016/j.actamat.2021.117425
https://doi.org/10.1016/j.actamat.2005.10.001
https://doi.org/10.1103/PhysRevB.103.184108
https://doi.org/10.1088/0965-0393/24/5/055007
https://doi.org/10.1557/jmr.2009.0396
https://doi.org/10.1103/PhysRevMaterials.4.123606

