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Abstract: The live-attenuated yellow fever 17D strain is a potent vaccine and viral vector. Its manu-
facture is based on embryonated chicken eggs or adherent Vero cells. Both processes are unsuitable
for rapid and scalable supply. Here, we introduce a high-throughput workflow to identify suspension
cells that are fit for the high-yield production of live YF17D-based vaccines in an intensified upstream
process. The use of an automated parallel ambr15 microbioreactor system for screening and process
optimization has led to the identification of two promising cell lines (AGE1.CR.pIX and HEKDyn) and
the establishment of optimized production conditions, which have resulted in a >100-fold increase
in virus titers compared to the current state of the art using adherent Vero cells. The process can
readily be scaled up from the microbioreactor scale (15 mL) to 1 L stirred tank bioreactors. The viruses
produced are genetically stable and maintain their favorable safety and immunogenicity profile, as
demonstrated by the absence of neurovirulence in suckling BALB/c mice and consistent seroprotec-
tion in AG129 mice. In conclusion, the presented workflow allows for the rapid establishment of a
robust, scalable, and high-yield process for the production of live-attenuated orthoflavivirus vaccines,
which outperforms current standards. The approach described here can serve as a model for the
development of scalable processes and the optimization of yields for other virus-based vaccines that
face challenges in meeting growing demands.

Keywords: live-attenuated vaccine; process intensification; virus yield; high cell density; suspension
cells; YF17D; Zika vaccine

1. Introduction

The Zika virus (ZIKV) and yellow fever virus (YFV) are enveloped, single-stranded
RNA viruses within the Orthoflavivirus genus. Both viruses are primarily transmitted by
Aedes mosquitoes and cause widespread infections in more than 80 countries, particularly
in the Americas, Africa [1,2], and, for ZIKV, Asia (Indian subcontinent and Thailand) [3,4].
Due to the occurrence of severe congenital malformations in fetuses [5] and neurological
disorders such as Guillain–Barré Syndrome [6] in adults following recent ZIKV infections,
the WHO has declared ZIKV a global health emergency. Vaccination would provide a cost-
effective and efficient prevention strategy, but currently, licensed vaccines are only available
against Orthoflavivirus infections with the YFV (i.e., live-attenuated YF17D vaccine), the
Japanese encephalitis virus (JEV), the four dengue viruses, and the tick-borne encephalitis
virus. Currently, there are more than 50 ZIKV vaccine candidates in various stages of
research and development [7], including inactivated [8], subunit [9], live virus [10], viral
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vector [11,12], and DNA or RNA [13,14] vaccines, with some promising results in pre-
clinical and clinical trials [13]. Inactivated and subunit vaccines, while safe, often necessitate
the use of high antigen doses and periodic boosting [15]. Live-attenuated vaccines such as
YF17D, conversely, typically induce a more comprehensive and lasting immune response.
While emerging vaccine technologies such as mRNA vaccines have demonstrated high
efficacy in preventing symptomatic COVID-19 infection and disease [16], dependence on
ultra-low temperatures for storage and transport, limited production capacity, high cost,
and the need for repeated booster dosing hinder widespread use in regions with limited
medical infrastructure. As ZIKV is primarily endemic in developing regions in the Southern
Hemisphere, the practical significance of a low-cost and single-dose vaccine that does not
require specialized cold-chain storage would be advantageous.

The YF17D vaccine is renowned for its exceptional efficacy and safety profile. Over
1 billion doses have been administered globally since its development in the 1930s [17], and
the vaccine is associated with a very low incidence of serious adverse side effects (~1 per
million [18]). A single dose of YF17D induces well-balanced and durable immunity [19].
By inserting foreign antigens into the viral polyprotein [20], YF17D can also be further
used as a platform to engineer novel vaccines against unmet medical needs [12,21–25].
This approach has undergone extensive validation, exemplified by the approval of two
human YF17D-based chimeric vaccines targeting Japanese encephalitis virus (Imojev®)
and dengue virus (Dengvaxia®). Nevertheless, many aspects of contemporary vaccinology
remain empirical and confined to conventional methodology, including means of manu-
facture. Realistically, “one-size-fits-all” manufacturing solutions do not exist. However,
the exploration of new production platforms and the use of advanced process technolo-
gies could open new avenues as seen in the development of first-generation COVID-19
vaccines. Alternative manufacturing modes, besides egg-based production and production
in anchorage-dependent cell lines, such as adherent Vero (African green monkey kidney)
cells, need to be investigated to satisfy the increasing vaccine demand [26] and to enable
rapid, sustainable, robust, and scalable manufacturing of novel vaccine candidates based
on the YF17D platform.

In the present study, we have established a workflow that allows for efficient process
optimizations by screening multiple parameters in a parallel high-throughput manner using
our chimeric YF17D-based Zika virus vaccine candidate YF-ZIK [12,27] as an example.
Ultimately, this results in the definition of reliable and efficient process parameters for the
establishment of an upstream process for the production of live orthoflavivirus vaccines,
with yields that far exceed the current state of the art based on a single cell line. Starting
from 14 potential cell lines grown in suspension format, we rapidly identified host cell
candidates for subsequent process optimization using a fully automated single-use ambr15
microbioreactor system (Sartorius). Commercially relevant infectious virus titers were
obtained with two suspension cell lines (AGE1.CR.pIX and HEKDyn) in batch and fed-
batch mode, exceeding the productivity of adherent Vero cells by more than 100-fold at
different scales (15 mL to 1 L). Finally, the produced YF-ZIK maintained the expected high
genetic stability, favorable safety, and immunogenicity as assessed by sequence analysis
and plaque assay in vitro, and in suckling BALB/c mice and AG129 mice. Our approach of
rapid process intensification for the production of live orthoflavivirus vaccines should be
translatable to a broader spectrum of live viral vaccines.

2. Materials and Methods
2.1. Cell Lines, Media, and Viral Seed Stock

Detailed information on all used cell lines (e.g., origin, media, and supplier) is provided
in Table S1 in the Supplementary file. All suspension cell line cultures (Supplementary
Table S1) were cultivated in a Multitron Pro incubator (Infors AG, Bottmingen, Switzerland)
at their respective rpms (50 mm orbital throw, Supplementary Table S2) using non-baffled
or baffled shake flasks (Corning, Corning, NY, USA, Supplementary Table S2) with a 50 mL
working volume (wv) of their specific media (Supplementary Table S1). Cells were seeded
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at viable cell concentrations (VCCs) between 5.0 and 8.0 × 105 cells/mL and passaged twice
a week. Adherent cells (Supplementary Table S1) were cultivated at 37 ◦C in a 5% CO2
atmosphere in T175 cell culture flasks (Greiner, Pleidelsheim, Germany) or 490 cm2 roller
bottles (Greiner, Germany) with an initial VCC of 3.0–5.0 × 105 cells/mL and a working
volume (wv) of 50 mL or 200 mL, respectively. For cell passaging, cells were detached
by washing twice with PBS followed by incubation with 1× trypsin/EDTA solution for
10 min. Cell diameter, VCC, and percentage of viability were measured using an automated
Vi-CELL XR cell counter (Beckman Coulter, Brea, CA, USA).

The construction and rescue of YF-ZIKprM/E virus (YF-ZIK), a derivative of the
YF17D vaccine strain expressing an Asian-lineage ZIKV prM/E envelope, has been de-
scribed previously [12,27]. After 3 consecutive passages of YF-ZIK in dividing cells, viral
seed stocks were prepared. Here, adherent Vero E6 cells were seeded into T175 flasks at
0.5 × 105 cells/mL in 50 mL GMEM-Z medium. After 24 h of growth, the cells in one
flask were detached to determine the VCC. The other flasks were washed twice with PBS,
and cells were infected at a multiplicity of infection (MOI) of 10−4 using 10 mL serum-free
VPSFM infection medium containing YF-ZIK. Following a 4 h incubation period, the in-
fection medium was removed, the flasks were washed twice with PBS, and 40 mL of fresh
VPSFM was added. The viral stock material was harvested at 5 dpi, centrifuged, and stored
at −80 ◦C until use (7.4 × 106 PFU/mL, passage 4).

2.2. YF-ZIK Batch Production

For batch infection experiments, cells were seeded at 8.0 × 105 cells/mL in either an
ambr15 vessel (Sartorius, Göttingen, Germany) or 1 L stirred DASGIP bioreactors (STR;
Eppendorf AG, Hamburg, Germany) with a starting wv of 15 mL or 350 mL, respectively.
Dissolved oxygen was controlled at 50% saturation by sparging of an air–oxygen mixture
through a pipe sparger (ambr15) or drilled hole L-sparger (1 L STR). The addition of 1 M
sodium bicarbonate (NaHCO3) or CO2 enrichment were used to control pH. Optionally,
antifoam C (3% stock solution) was added to prevent foaming. During cell growth, culture
temperature was maintained at 37 ◦C and pH value was controlled at 7.2 for all cell
lines. Ambr15 agitation rates (Supplementary Table S2) were scaled down based on
tip speeds described in the literature for 1 L STR runs and kept constant across scaling.
For infection in the ambr15 system, the wv was decreased by half and filled up with
fresh medium containing YF-ZIK, resulting in a 1.7-fold dilution. For the 1 L STR, the
wv was directly increased by the addition of 350 mL fresh medium containing YF-ZIK
to achieve a 1:2 dilution. Cell lines were infected at MOIs ranging from 0.1 to 10−4.
After infection, the cultivation temperature was either maintained at 37 ◦C or lowered to
32–34 ◦C. Ambr15 vessels and 1 L STRs were sampled daily to measure VCC, offline pH,
and virus titer.

2.3. YF-ZIK Fed-Batch Production

Seeding and process control strategies for fed-batch experiments in the ambr15 system
were identical to those for batch experiments. Cells were already infected one day after
inoculation at an MOI of 10−3 for both HEKDyn and AGE1.CR.pIX (abbreviated as pIX for
the remainder of the text) cells. Feeds used for fed-batch mode were the respective media
(Dynamis and CD-U7; FB1), CHO Feed 1 (FB2; Sigma Aldrich, St. Louis, MO, USA), or
HEKFS (FB3; Sartorius, Germany). The daily volume of concentrated feeds varied from
3 to 10% (v/v) of the current culture volume and was derived from the manufacturer’s
instructions. In total, 33% (v/v) of total culture volume was added for FB3, 18% (v/v) for
FB2, and 20% (v/v) for FB1.

2.4. Plaque Assay

Infectious YF-ZIK titers were determined by a plaque assay with a coefficient of vari-
ance of 25% (±0.15 log). Here, porcine stable kidney (PS) cells (courtesy of A. Teichmann,
Robert Koch Institute, Berlin, Germany) were seeded in 24-well plates at a concentration of
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0.2 × 105 cells/well. After 2 days of growth, the medium was removed, and diluted virus
samples were added and incubated for 4 h at 37 ◦C. Subsequently, the mixture was overlaid
with 1.6% (w/v) carboxyl-methyl-cellulose (CMC) in Z-Medium and incubated for four days
at 37 ◦C in 5% CO2. After removing the supernatant from each well, the infectious virus
was inactivated and the cells were fixed by adding glyoxal solution (197.3 mL 96% ethanol,
78.3 mL 40% glyocal, 7.5 mL acetic acid, filled to 1 L with ddH2O) for 15 min and stained
with napthalin black (1 g naphthol blue black, 13.6 g sodium acetate, 60 mL glacial acetic
acid, added to 1 L ddH2O) for 1 h (adapted from [28]). Plaques were manually counted
and reported as PFU/mL.

To determine infectious virus input for mice experiments and to analyze plaque
phenotypes, selected samples were re-measured with an alternative plaque assay using
BHK-21J cells, exactly as described elsewhere [12], with the only modification of a 2 h
incubation period at 37 ◦C (instead of 1 h at room temperature) for virus absorption prior
to removal of the inoculum and agar overlay.

2.5. Reverse-Transcription Chain Reaction (RT-PCR) and Sequencing

Final harvest samples produced in CR, pIX, HEKDyn, and HEKFS cells in 1 L STRs were
subjected to whole-genome sequencing. Using QIAamp Viral RNA Kits (Qiagen, Hilden,
Germany), viral RNA was extracted as previously described [12,29]. Subsequently, cDNA
fragments spanning the complete genome were synthesized from the extracted RNA using
the qScriptTM one-step RT-PCR (Quanta bioscience, Beverly, MA, USA) with Kapa Hifi DNA
polymerase (Kapa Biosystems, London, UK) according to the manufacturer’s instructions.
RT-PCR amplicons were generated using the primers and amplification strategy listed in
Supplementary Table S3. These amplicons were designed to cover the entire viral genome
with overlapping regions, with each amplicon ranging in size from 1.8 to 3 kb and having a
250–500 bp overlap. For single amplicons, the RT-PCR products were purified using an
affinity column purification kit QIAquick Gel Extraction Kit (Qiagen, Germantown, MD,
USA) with 30–50 µL of elution buffer. Subsequently, 20 µL of the purified product was
mixed with 2 µL of corresponding primers, and the resulting mixture was subjected to
Sanger sequencing (Macrogen, Amsterdam, The Netherlands). Final de novo assembly of
the viral genome was carried out using Snapgene v6.2 (GSL Biotech, San Diego, CA, USA).

2.6. Mice

Pregnant BALB/c dams were purchased from Janvier Labs (Le Genest-Saint-Isle,
France). After delivery, to evaluate neurovirulence, 3–6-day-old pups (n = 6–11 per group)
were intracranially (i.c.) inoculated with 10 PFU/10 µL or 1000 PFU/10 µL of YF-ZIK
YF-ZIK grown on HEKDyn or pIX cells, 10 PFU/10 µL YF17D (positive control), or medium
only (sham; negative control). All pups were monitored daily for morbidity and mortality
for 3 weeks after inoculation, as described previously [12].

AG129 mice (Interferon-α/β and γ receptor-deficient; B&K Universal, Marshall Bio
resources, Hull, UK) were bred in-house at the University of Leuven (Experimental Animal
Facilities) and randomly assigned for this study. The standards outlined by the Federation
of European Laboratory Animal Science Associations and Belgian guidelines for animal
experimentation were rigorously followed for all mouse experiments. Ethical approval for
all experiments was obtained from the Ethical Committee of the Animal Research Center at
the University of Leuven (project number P100/2019). Male and female mice (n = 5 per
group) aged 6–8 weeks were either sham vaccinated (MEM with 2% FBS) or vaccinated
intraperitoneally (i.p.) with 100 PFU/200 µL and 1 × 104 PFU/200 µL YF-ZIK grown on
either HEKDyn or pIX cells, or 270 PFU/200 µL and 2.7 × 104 PFU/200 µL of YF-ZIK grown
on Vero E6 cells. Vaccinated animals were bled on days 7, 14, 21, and 28 for determination
of serum antibodies.
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2.7. Serum Neutralizing Titers

Zika (ZIKV-mCherry) reporter virus construction and the serum neutralizing titer
(SNT) assay have been described in detail previously [22]. Briefly, serum dilutions were
incubated with 10 TCID50 ZIKA-mCherry virus in 96-well plates for 1 h at 37 ◦C. Following
this, serum–virus complexes were transferred to 1.0 × 104 BHK-21J cells grown in 96-well
plates and incubated for 72 h. The percentage of mCherry-expressing cells was quantified
using a Cell Insight CX5/7 High Content Screening platform (ThermoFisher Scientific,
Waltham, MA, USA). Neutralization half-maximal inhibitory concentration values were
determined by fitting the serum neutralization dilution curve, which was normalized to a
virus (100%) and cell control (0%), using Graphpad Prism (GraphPad Software V9.0).

2.8. Calculations

Cell-specific growth rate (µ) and cell-specific virus yield (CSVY) were determined
using the following equations:

µ =
ln
(
VCC(t n+1

)
/VCC(t n

)
)

tn+1 − tn
(1)

CSVY =
PFUmax

VCCmax
(2)

Here, VCC represents the viable cell concentration (cells/mL), VCCmax the maximum
viable cell concentration post infection (cells/mL), t cultivation time (h), n sampling time
point (h), and PFUmax the maximum infectious virus titer (PFU).

2.9. Statistical Analysis

All statistical evaluations were performed using GraphPad Prism V9 (GraphPad
Software, San Diego, CA, USA). The data are presented as either mean values ± standard
error of the mean (SEM) or ±standard deviation (STD), as indicated in the figure or table
legend. Statistical significance was assessed using a two-way ANOVA followed by Šidák’s
multiple comparison test or Kruskal–Wallis test, unless otherwise stated. The log-rank
(Mantel–Cox) test was employed to compare survival between groups. Statistical differ-
ences between groups are denoted by p-values < 0.05: * p-values < 0.05, ** p-values < 0.01,
*** p-values < 0.001, **** p-values < 0.0001.

3. Results
3.1. Identification of High-Producing Host Cell Lines

As a first step of process development, we evaluated 14 suspension cell lines (some
growing in varying media, Supplementary Table S1) in parallel using the ambr15 system in
various GMP-compliant media for efficient YF-ZIK production (a total of 18 variations, all
infected at about 2 × 106 cells/mL, MOI 0.05). Productivity was evaluated based on CSVYs
and infectious virus titers in the supernatant and compared to an optimized production in
adherent Vero cells (Table 1).

During 72–96 h of initial cell growth, all but one of the cell lines displayed similar
growth characteristics with high viabilities above 95%, achieving µ values from 0.014 to
0.035 1/h (exception: poorly growing HEKFS). However, following infection, the cells
started to display different cell growth characteristics. While most cell lines continued to
grow to VCCs between 4.8 and 10.0 × 106 cells/mL, some such as pIX, CR, MDCKs, and
MDCKMDXK reached VCCs above 14 × 106 cells/mL (Table 1, Figure 1a–f). Cell-specific
growth rates of all infected cell lines were reduced compared to uninfected growth (Table 1).
After maximum VCCs (VCCmax) were reached, viabilities declined rapidly, resulting in
final culture viabilities between 50 and 80%, depending on the cell line (Figure 1a–f).
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Figure 1. Screening of suspension cell lines for the production of YF-ZIK. Cell and virus growth
kinetics in an ambr15 system. (a–g) VCC (full lines) and culture viabilities (dashed lines) are shown
for cell lines grouped by host origin. (a) Avian origin: pIX (beige circles), CR (dark green squares),
CCX.E10 (orange triangles). (b) Rodent origin: BHKHIP (purple triangles), BHKPEM (bordeaux
triangles), BHK-A (orange squares), BHK-P (brown circle). (c) Pig origin: PBG.PK-21 (green circle).
(d) Canine origin: MDCKMDXK (purple circle), MDCK4C (blue crosses), MDCKS (brown triangles),
MDCKDM (blue dashes). (e) Monkey origin: VeroPDM (black triangles), VeroPDM/MDXK (purple
triangles). (f) Human origin: HEKFS (orange diamond), HEKDyn (brown square), HEKvp (green
triangle), HEKPEM (blue diamonds). (g) Infectious virus titers determined by a plaque assay compared
to production using Veroadh cells (red diamonds). Dashed black line indicates time of infection; red
dashed line maximum infectious virus titer reached using Veroadh cells. Values represented as
mean ± STD of two biological replicates.
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Table 1. Growth characteristics of cell lines before and after infection and virus yields.

Cell Line VCCmax p.i.
(106 Cells/mL) µ (1/h) µinf (1/h) inf. vir. Titer

(106 PFU/mL) CSVY (PFU/Cell)

VeroPDM 4.0 ± 0.4 0.02 ± 0.003 0.015 <0.01 <0.1
VeroPDM/MDXK 5.6 ± 0.4 0.022 0.014 <0.01 <0.1

pIX 14.1 ± 0.1 0.024 0.024 55.9 ± 29.1 4 ± 2
CR 14.8 ± 0.9 0.026 ± 0.002 0.021 ± 0.001 6.0 ± 2.7 <1

CCX.E10 5.7 ± 0.1 0.020 0.010 0.8 ± 0.1 <0.1
BHKPEM 10.0 ± 0.3 0.024 ± 0.002 0.017 ± 0.001 <0.01 <0.1
BHKHIP 12.4 ± 0.1 0.027 0.018 0.02 <0.1

BHK-PPEM 4.8 ± 0.3 0.024 ± 0.001 0.022 ± 0.001 <0.01 <0.1
HEKPEM 6.2 ± 0.4 0.021 ± 0.002 0.020 ± 0.001 1.1 ± 0.4 <1
HEKFS 2.6 ± 0.7 0.008 0.010 ± 0.002 10.6 ± 5.8 4 ± 2

HEKDyn 6.1 ± 0.3 0.018 0.014 55.0 ± 13.7 9 ± 2
HEKvs 6.8 ± 0.4 0.017 ± 0.002 0.017 ± 0.002 0.3 ± 0.1 <0.1

PBG.PK-21 7.7 ± 0.5 0.014 ± 0.001 0.011 0.1 <0.1
MDCKMDXK 16.2 ± 0.3 0.035 ± 0.001 0.028 <0.01 <0.1

MDCKDM 8.1 ± 0.1 0.02 ± 0.002 0.017 <0.01 <0.1
MDCK4C 8.4 ± 0.3 0.023 ± 0.001 0.013 <0.01 <0.1
MDCKS 16.3 ± 0.2 0.031 ± 0.002 0.027 <0.01 <0.1
Veroadh 2.5 ± 0.1 0.028 ± 0.001 0.003 ± 0.001 1.5 ± 0.1 <1

Maximum viable cell concentration (VCCmax) post infection (p.i.); cell-specific growth rate before (µ) and after
infection (µinf); maximum infectious virus titer (inf. vir. titer); cell-specific virus yield (CSVY). Orange: high
producers; white: low producers; gray: no producers. All runs carried out in duplicates. Values mean ± STD. If
no deviation is given, values are too small to be displayed.

In general, a prolonged growth phase after infection resulted in higher culture viabilities
at later stages of infection (e.g., CCX.E10, MDCKMDXK, MDCKDM, HEKvp) (Figure 1a–f).
Plaque assay was used to determine the number of infectious virus particles in the super-
natants. Cell lines could be categorized into three groups: high producers, low producers,
and no producers (Table 1). Surprisingly, when grown in suspension, Vero, MDCK, and
BHK cells showed no evidence of virus replication, regardless of the used media or source.
Here, the infectious virus titer either remained stable (at the calculated input titer corre-
sponding to an MOI of 0.05) or decreased over time (Figure 1g). Low producers, including
CCX.E10, HEKvp, and PBG.PK-21, were found to be susceptible to YF-ZIK, yet viral titers
in the supernatant reached only low levels (1.0–8.0 × 105 PFU/mL). The highest infectious
virus titers were achieved in the duck cell lines pIX and CR, as well as HEKDyn, HEKFS, and
HEKPEM (Figure 1g and Table 1). However, only low CSVYs up to 9 PFU/cell were reached.

This observation shows the profound effects of not only cell origin, but also cell line
history and culture media on virus replication.

3.2. Accelerated Parallel Assessment of Critical Process Parameters

Next, we investigated parameters relevant to productivity in a batch process, while
minimizing additional process complexity. For this, we selected six host cell lines including
all four high producers (pIX, CR, HEKDyn, HEKFS), one low producer (HEKPEM), and one
no producer (BHKPEM) under previous standard cultivation conditions. We assessed the
effect of two process parameters (MOI and temperature) on infectious virus titers and
confirmed the robustness of the resulting optimized process conditions in three biologically
independent experiments (Figure 2). Cells were infected at MOIs ranging from 0.1 to 10−4

at 37 ◦C, or after reducing the temperature to 34 ◦C.
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Figure 2. Optimizing YF-ZIK production in selected host cells. Effect of MOI and temperature on
infectious virus titers in ambr15 system. (a) MOI screening. Cells infected at MOI 0.1 (blue squares),
0.01 (red triangles), 0.001 (green diamonds), and 10−4 (purple circles). Values from a single cultivation.
(b) Impact of temperature on maximum viable cell concentrations (VCCmax) post infection (left) and
resulting infectious virus titers (right). Values mean ± STD of n = 2 for runs at 37 ◦C and n = 4 for
runs at 34 ◦C. BHKPEM and HEKPEM at 34 ◦C as single runs. Two-way ANOVA followed by Šidák’s
multiple comparison; p values * < 0.05 were considered significant. (c) Optimized productions were
repeated as a biological triplicate to confirm reproducibility and robustness. VCCs (full symbols)
and culture viabilities (empty symbols and dashed lines) are shown left, infectious virus titers right.
Dashed lines indicate time of infection. Values are represented as the mean ± STD of n = 3.
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Higher amounts of virus input (MOI 0.1 or 0.01) resulted in higher (pIX, BHKPEM,
HEKPEM, HEKDyn) or similar infectious virus titers (CR, HEKFS) compared to lower virus
inputs (MOI 10−3 or 10−4) (Figure 2a). Interestingly, no impact on VCCmax was observed
for BHKPEM, HEKPEM, HEKDyn, and HEKFS cells regardless of virus input, while higher
MOIs resulted in lower VCCsmax for both duck cell lines pIX and CR (Supplementary
Table S4). Peak titers were reached between days 4 and 5 regardless of the initial virus
input (except pIX at MOI 0.1; Figure 2a). However, each cell line clearly had a different
optimal MOI. The highest maximum titers observed were 4.1 × 107 PFU/mL at an MOI of
0.01 for pIX, 1.2 × 107 PFU/mL at an MOI of 0.001 for CR, 4.4 × 105 PFU/mL at an MOI of
0.1 for BHKPEM, 1.0 × 107 PFU/mL at an MOI of 0.1 for HEKPEM, 2.4 × 108 PFU/mL at an
MOI of 0.01 for HEKDyn, and 9.2 × 107 PFU/mL at an MOI of 0.001 for HEKFS (Figure 2a).
Both HEKDyn and HEKFS achieved strongly improved CSVYs of 35 and 19 PFU/cell,
respectively (Supplementary Table S3). In the next step, the impact of reducing cultivation
temperature to 34 ◦C on VCCsmax and infectious virus titers was evaluated using the
optimal MOIs identified. While µ and VCCmax (Tables 1 and 2) were generally lower at
reduced temperatures for both duck cell lines, as well as for BHKPEM, this decrease was only
significant for pIX cells (Figure 2b). There was no measurable effect on VCCmax or general
growth kinetics (Tables 1 and 2) for any HEK-derived cell line. Lowering the temperature to
34 ◦C at time of infection (TOI) resulted in higher infectious virus titers for all host cell lines;
however, only for HEKDyn and HEKFS were the 3.4-fold and 13.2-fold increases significant
(p = 0.022 and p = 0.049; two-way ANOVA followed by Šidák’s multiple comparison test).
As BHKPEM and HEKPEM remained either no or low producers, both were excluded from
further investigations. The reproducibility and robustness of the identified optimizations
were subsequently confirmed in three independent experiments (Figure 2c, Table 2).

Table 2. Growth and productivity of selected cell lines under optimized conditions.

Cell Line MOI VCCmax p.i.
(106 Cells/mL)

µ

(1/h)
µinf
(1/h)

inf. vir. Titer
(107 PFU/mL)

CSVY
(PFU/Cell)

pIX 0.01 12.3 ± 0.2 0.022 ± 0.006 0.016 ± 0.006 7.7 ± 2.3 6 ± 2
CR 0.001 14.3 ± 0.6 0.021 ± 0.006 0.015 ± 0.004 8.5 ± 1.1 6 ± 1

HEKDyn 0.01 6.0 ± 0.6 0.019 ± 0.004 0.013 ± 0.008 11.3 ± 1.2 19 ± 2
HEKFS 0.001 3.5 ± 0.2 0.028 ± 0.007 0.012 ± 0.007 8.3 ± 3.6 24 ± 11

Maximum viable cell concentration (VCCmax) post infection (p.i.); growth rate before (µ) and after infection (µinf);
maximum infectious virus titer (inf. vir. titer); cell-specific virus yield (CSVY). Orange, high producers; white, low
producers; gray, no producers. All runs carried out in duplicates. Values are given as the mean ± STD with n = 3.

In summary, the optimization of two critical parameters for virus production reliably
increased infectious virus titers for all selected cell lines without increasing the complexity
of the production process.

3.3. Fed-Batch Process with Early Infection at Low MOI

As YF-ZIK replicates slowly and VCCs continue to increase for up to 4–5 days p.i.
(Figure 2c), we previously diluted the suspension culture 1.7–2-fold immediately prior to in-
fection. However, because such a step complicates large-scale industrial batch productions,
we omitted this initial cell expansion phase for HEKDyn and pIX cells and instead infected
the cells just one day after seeding. Additionally, the previously identified optimum MOI
(Table 2) was reduced by 1 log10 to further minimize the input of virus seed and to allow
for additional cycles of viral amplification (now referred to as early low infection, ELI
mode). Finally, the impact of daily addition of concentrated feeds (three different fed-batch
modes, FB1–3) combined with the ELI mode on virus yields was evaluated. For pIX cells,
FB3 was omitted, as the respective feed is specifically designed for HEK cells and has
previously demonstrated poor performance in another avian cell line. Due to the fixed
working volume requirements in the ambr15 systems, no metabolite measurements could
be carried out.
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As shown in Figure 3a, ELI mode, FB1 and FB2 did not result in higher VCCs compared
to the batch process for HEKDyn cells. However, the maximum values were reached earlier
(day 5 vs. day 8). For FB3, the cells continued to grow until day 7, reaching a VCCmax of
10.7 × 106 cells/mL (1.8-fold increase compared to batch). Surprisingly, both ELI mode and
fed-batch processes resulted in steep declines in cell viability after day 4 (3 days p.i.), with
final culture viabilities below 40% (Figure 3a). FB3 resulted in the lowest maximum infectious
virus titer of 2.4 × 107 PFU/mL at day 6, followed by a drastic decrease of 3 log10 after culture
viability decreased by 40%. The highest maximum titers observed were 5.0 × 107 PFU/mL
for ELI, 8.5 × 107 PFU/mL for FB1, 3.8 × 107 PFU/mL for FB2, and 2.4 × 107 PFU/mL
for FB3. While all process variations resulted in markedly lower maximum infectious virus
titers compared to the batch control (about 1.3–4.8 fold; Table 2), maximal titers were reached
3–4 days earlier. However, both FB1 and FB2 supported cell growth to higher VCCs com-
pared to the batch process (Figure 3b). Here, VCCsmax of 15.4 × 106 cells/mL for FB1 and
14.3 × 106 cells/mL for FB2 were reached on day 8. Infectious virus titers were not improved
by FB1 or FB2; however, for HEKDyn cells, maximum infectious virus titers were reached
earlier (day 5 compared to day 8 for the batch control).
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Figure 3. YF-ZIK production using HEKDyn (a) and pIX (b) cells in batch, ELI mode, and fed-batch
mode. Values from batch mode (blue circles) from Figure 2c for comparison. VCCs (full symbols) and
viability (empty symbols and dashed lines) are shown left, infectious virus titer right. For productions
using early low infection mode (ELI, purple triangle) or fed-batch modes (FB1–3), cells were already
infected one day after inoculation. Feeds used for fed-batch mode were media (FB1, green square),
CHO Feed 1 (FB2, brown square), or HEKFS (FB3, orange circle). Arrows indicate the time of feeding;
dashed lines indicate time of infection. Values from single experiments, except batch runs, are shown
as mean ± STD with n = 3. Working volume increase due to feed: FB1 20%, FB2 18%, FB3 33%.
Infectious virus titer and VCC are not corrected for volume increase.

Taken together, the combination of ELI mode and fed-batch operation resulted in
significantly decreased production times; however, maximum infectious virus titers were
reduced up to 4.8-fold when neglecting the volume increase by feeding.
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3.4. Scale-Up to Laboratory Scale Stirred Tank Bioreactor

To demonstrate translation of the pH-, temperature-, agitation- and DO-controlled
processes that had been optimized at a small scale (10−2 L vessels) directly for larger biore-
actors, we carried out pilot runs in 1 L benchtop STRs. As temperature p.i. was identified as
a significant factor for increased infectious virus titers in HEKDyn cells (Figure 2b), a further
reduction to 32 and 33 ◦C was investigated. Both HEKDyn and pIX cells were seeded
exactly as for the ambr15 system at 0.8 × 106 cells/mL and cultivated until a VCC of about
4.0 × 106 cells/mL was obtained (Figure 4a,b).
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Here, cell-specific growth rates of 0.018 ± 0.001 1/h and 0.020 ± 0.002 1/h for HEKDyn
and pIX cells were reached, which were consistent with previous cultivations in the
ambr15 system (Tables 1 and 2). After infection, HEKDyn cells continued to grow un-
til 5 days p.i, with both reactors infected at 33 ◦C showing similar cell-specific growth
rates of 0.014 ± 0.002 1/h and growth curves before the onset of cell lysis (VCCmax
8.2–8.4 × 106 cells/mL). At 32 ◦C, µ decreased to 0.008 1/h, and a lower VCCmax of
5.2 × 106 cells/mL was reached (Figure 4a). Despite differing growth kinetics at 32 and
33 ◦C, infectious virus titers were similar, reaching maximum titers of 0.7–1.2 × 108 PFU/mL
and CSVYs of 7–18 PFU/cell, as in the ambr15 system (Figure 4a; Tables 1 and 2). For
pIX cells, there was no discernible difference in cell-specific growth rate (0.009–0.011 1/h)
nor VCCmax (7.1–8.2 × 106 cells/mL) p.i., regardless of the temperature (Figure 4b). In-
terestingly, VCCsmax were 1.5-fold lower compared to the ambr15 system operated at
34 ◦C. Maximum infectious virus titers were comparable (1.5–3.2 × 107 PFU/mL) across
all conditions, but three times lower compared to ambr15 system cultivations (Figure 4b,
Tables 1 and 2). Nevertheless, due to the lower VCCsmax, similar CSVYs of 3–5 PFU/cell
were reached.
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For HEKFS and CR cells, only one run each at 32 ◦C was carried out (Supplemen-
tary Figure S1a). Here, maximum infectious virus titers of 6.5 × 107 PFU/mL and
2.4 × 106 PFU/mL were reached, respectively. Regardless of the cell line, there was
no limitation in glucose or glutamine, nor an accumulation of secondary by-products to
critical levels over the entire process time (Supplementary Figure S1b). Reactors operated
at 32 ◦C were harvested at day 5 p.i., the cells were removed by centrifugation at 1500× g
at 4 ◦C for 15 min, and the supernatant was stored at −80 ◦C.

3.5. In Vitro Characterization of STR YF-ZIK Batches from Different Host Cell Lines

A change of line and growth conditions may induce genetic adaptations in the produced
viruses, which could potentially impact the consistency and safety of vaccine lots. Therefore,
YF-ZIK produced in 1 L STRs at 32 ◦C from pIX, CR, HEKDyn and HEKFS cells as well as the YF-
ZIK stock produced in Veroadh were selected for further in vitro and in vivo characterization.
To obtain the full-length RNA genomic sequence for assessment of the genetic stability (identity
and homogeneity) of the different YF-ZIK batches, five cDNA fragments (see Supplementary
Table S3) covering the entire genome of YF-ZIK from each batch were amplified by RT-
PCR, visualized and purified by agarose gel electrophoresis, and subjected to direct Sanger
sequencing. A subsequent sequence comparison showed full identity with passage 1 Veroadh
YF-ZIK stock. To determine the accurate virus input for subsequent in vivo studies, the
previously determined infectious virus titers were validated using a plaque assay on BHK-21J
cells (Supplementary Table S5). Lastly, the plaque morphology of the different YF-ZIK batches
was assessed and compared to parental YF17D (Figure 5a). As expected, the resulting plaque
sizes of Veroadh-, HEKDyn-, and pIX-derived YF-ZIK were homogenous, and remained all
significantly reduced (p < 0.0001) compared to YF17D (Figure 5b) [12], suggesting preservation
of an overall high homogeneity, and likewise no emergence of more aggressively growing live
vaccine virus variants of general safety concern.
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Figure 5. In vitro characterization of STR YF-ZIK batches produced in selected host cells. Plaque
morphology of YF-ZIK batches vs. parental YF17D virus. BHK-21J cells in 6-well plates infected
and plaques visualized 6 days post infection. (a) Plaque phenotypes of different YF-ZIK batches and
YF17D are shown. (b) Size distribution of plaques. Median ± IQR for 100–150 individual plaques
for each batch. Error bars represent the lowest and highest values. Kruskal–Wallis test followed by
Dunn’s multiple comparison test, **** p < 0.0001.
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3.6. In Vivo Characterization of STR YF-ZIK Batches from Different Host Cell Lines

YF-ZIK batches produced in pIX and HEKDyn cells at the 1L STR scale were selected for
final assessment of neurovirulence and immunogenicity and compared to parental YF17D-
and Veroadh-grown YF-ZIK, the starting seed material (Figure 6). Mirroring a classical
YF17D neurovirulence/potency test [12], groups of suckling BALB/c pups (n = 8–11) were
inoculated intracranially with 10 PFU or 1000 PFU of either Veroadh-, HEKDyn-, or pIX-
derived YF-ZIK, or 10 PFU of YF17D (n = 5) or medium (sham) as positive and negative
controls, respectively. Intriguingly, even when using up to 100-fold higher input doses
(1000 PFU) of YF-ZIK, all pups survived, in contrast to those inoculated with as little
as 10 PFU of YF17D (Figure 6d), which is known for its pronounced neurovirulence in
suckling mice (p < 0.0001, log-rank test). The body weight was compared between the
treatment groups by calculation of the area under the curve (AUC, Figure 6c). There was no
significant difference in body weight between the sham group and pups treated with 10 or
1000 PFU YF-ZIK, regardless of the host cell origin. Conversely, the AUC was significantly
lower for pups inoculated with YF17D compared to the sham group (p = 0.018) as well as
10 and 1000 PFU of YF-ZIK-Veroadh (p = 0.089 and p = 0.001). In summary, the production
process (cell line, medium, and scale of production) did not affect the favorable safety
profile of YF-ZIK, which appeared to be improved over the parental YF17D [12,30].

To assess ZIKV-specific immune responses elicited by YF-ZIK produced on Veroadh,
HEKDyn, or pIX, and to exclude any neuroinvasive properties, we used adult IFN type I and
II receptor-knockout (AG129 [21,22]) mice, which are highly susceptible to lethal orthofla-
vivirus infection. In line with anticipated vaccine safety and as previously demonstrated
for Vero E60derived YF-ZIK [12], i.p. vaccination with YF-ZIK at any dose (Supplementary
Table S6) did not result in any overt disease symptoms (normal behavior, coat, gait, and
posture). The majority of AG129 mice did not exhibit body weight loss (Figure 7b,c). Only
one out of five mice receiving either 100 or 104 PFU of HEKDyn-derived vaccine experi-
enced a significant (>15%) body weight loss, requiring euthanasia. In contrast, YF17D was
uniformly lethal in this model at doses as low < 1 PFU [12,31]. Animals vaccinated with a
low 100 PFU dose of pIX-derived material showed a slight gain in body weight similar to
sham-treated mice (Figure 7b).

Finally, all n = 30 AG129 mice that were vaccinated with YF-ZIK seroconverted to high
titers of ZIKV-neutralizing antibodies (nAb) as early as 7 days post vaccination (Figure 7d).
Furthermore, the animals remained seropositive until the end of the study (day 28 p.i.),
regardless of the host cell origin. This was observed to occur in a dose-dependent manner,
though the results were not statistically significant when analyzed using the Kruskal–Wallis
test (Figure 7d,e).
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Figure 6. In vivo characterization of neurovirulence of STR YF-ZIK batches from different cell lines.
Comparative analysis of BALB/c pups following i.c. inoculation of 10 (a) or 1000 PFU (b) of YF-ZIK
derived from pIX (blue circles), HEKDyn (brown diamonds), and Veroadh cells (gray squares), or
10 PFU of YF17D (red triangles) or sham (hollow circles). (a) Weight evolution of 3–6-day-old pups
after i.c. with 10 PFU of YF-ZIK grown on Veroadh (original seed virus; n = 9), HEKDyn (n = 11), or pIX
cells (n = 10), 10 PFU of YF17D (positive control; n = 5) or sham. (b) Item using 1000 PFU of YF-ZIK.
(c) Area under the curve (AUC) mean ± SEM. Kruskal–Wallis test followed by Dunn’s multiple
comparison to assess the statistical significance with * p < 0.05 and ** p < 0.01 and (d) Survival rate
(number of surviving mice at the endpoint is indicated).
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Figure 7. In vivo characterization of safety and immunogenicity of YF-ZIK from 1 L STR batches.
(a) AG129 mice inoculated i.p. with high (104 PFU) or low (102 PFU) doses of YF-ZIK derived from
HEKDyn and pIX cells; doses for Veroadh-derived YF-ZIK were about 2.7× higher. (b,c) Body weight
evolution after vaccination with a low (b) or high dose (c) of Veroad- (gray squares), HEKDyn- (brown
diamonds), and pIX-derived YF-ZIK (blue circles), or sham (asterisk). (d) Reciprocal nAb kinetics
after vaccination for both low (full symbols) and high (hollow symbols) doses of Veroadh- (gray),
HEKDyn- (brown) and pIX (blue)-derived YF-ZIK. Low and high doses separated by dashed line.
(e) Reciprocal nAb titers on day 28 p.i. after vaccination with YF-ZIK batches. Data mean ± SEM
(b,c) or median ± IQR (d,e). Two-tailed Kruskal–Wallis test followed by Dunn’s multiple comparison,
significant p values * < 0.05 and ** <0.01 as indicated.
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4. Discussion

Vaccination is a fundamental strategy for the prevention of endemic or emerging in-
fectious diseases. Therefore, the implementation and development of vaccine technologies
that allow for timely and scalable manufacture are highly desired [26]. Despite several
advancements, the inherent biological complexity and resulting variability in the manufac-
turing process, coupled with strict regulatory specifications, add to the lengthy and costly
nature of traditional vaccine production [32]. Novel platform solutions entailing multiple
alternative approaches for antigen and vector design, production, and formulation [33,34]
are required to match both the speed and productivity of emerging technologies such as
mRNA as well as the need to adapt processes to yield drug products of highest desirable
safety and immunogenicity [35,36]. Overall, it thus becomes evident that universally appli-
cable manufacturing solutions do not exist. Here, we describe a workflow for upstream
process development for the high-yield production of live recombinant YF17D-vectored
vaccines using YF-ZIK as an example [12]. Our stepwise approach guides efficient process
optimization by screening multiple parameters in a targeted high-throughput manner,
providing a blueprint that might be applicable to other live-attenuated and vectored viral
vaccines both established and currently in development.

4.1. Selection of a Favorable Cell Line

The type, culture format, and origin of the host cell have an enormous impact on the
yield and quality of a vaccine production process [37–39]. In the current study, we started
testing with a large panel of suspension cell lines as possible host cell lines for the YF-ZIK
replication. Out of the 14 tested suspension cell lines, only 5 supported notable YF-ZIK
production, with select human (HEK) and avian (CR, pIX) cell lines showing the most
promising productivity (Table 1, Figure 1g). Intriguingly, besides MDCK (canine) cells that
had not been tested before for YF-ZIK, BHK-21 (hamster) and Vero (simian) cells were poor
producers. This is unexpected as the latter cells—yet originating from different sources
and grown in adherent monolayers—had previously been shown to support infection
with YF-ZIK [12] as well as with both YF17D and ZIKV [28,40]. Additionally, a similar
YF17D derivative ChimeriVax-Zika, described by others [25], had been grown to high
yields in Veroadh cells (although it is difficult to compare absolute virus titers between
studies) [12,25]. This failure to support productive infection (Figure 1g) was furthermore
unexpected, because we obtained high titers for the parental YF17D in MDCK [41,42] and
BHK-21 cells [28], whereas the YF-ZIK high producers (pIX, CR, and HEK cells) identified
here showed only poor yields for the parental YF17D in a previous study [42]. In fact,
infection of HEKDyn and pIX cells with YF-ZIK yielded over a 30-fold higher infectious
virus titer than Veroadh cells, even considering that CSVYs were initially low (Table 1). Our
comprehensive parallel screening approach demonstrates the importance of a rapid cell line
selection protocol at the onset of a vaccine production development, even for closely related
vectored constructs. Compared to process development based on a single cell line, our
approach is more likely to yield significant process improvements while simultaneously
reducing the total time required for process development (Supplementary Figure S2).

4.2. Optimizing Culture Conditions

In addition to the culture format and media, reducing the temperature during the viral
replication phase can increase virus stability and/or maximum virus titers [43–47]. Here,
a reduction in temperature p.i. to 34 ◦C significantly increased infectious virus titers in
HEKDyn and HEKFS cells. In particular, for pIX and CR cells, the µ p.i. was decreased with
the temperature, resulting in a prolonged cell growth phase (5 days vs. 3 days at 37 ◦C;
Figure 1a, Figure 2c). While VCCsmax were not affected, viabilities at time of peak virus
titer were higher. A greater proportion of intact cells limits the amount of host cell-derived
debris and the release of protein (including proteases) and DNA. The combined benefits
include lower levels of impurities at the onset of subsequent downstream operations,



Vaccines 2024, 12, 755 17 of 23

reduced loss of infectious units to adsorption to debris or by proteolytical digestion, and
improved physical stability of particles at lower temperatures.

We also investigated the effect of MOI on YF-ZIK production. Varying the amount
of virus input at the time of infection has been described to primarily influence viral
replication kinetics [48,49], as higher MOIs lead to an instantly increased population of
infected cells. Except for pIX cells, the maximum infectious virus titers were reached on
day 5 p.i., irrespective of the virus input (Figure 2a). Lower MOIs (10−2 to 10−3) resulted
in the highest infectious virus titers for all YF-ZIK-replicating cell lines (Supplementary
Table S3). Although not investigated further in this study but possibly important in
subsequent downstream developments, the fraction of infectious virions to the viral genome
copies (I/NI) is an additional critical production parameter that is responsive to process
temperatures and time to harvest [50]. Here, the optimized process temperature (<37 ◦C)
and MOI (<10−2) revealed four potential producer cell lines (pIX, CR, HEKDyn, and HEKFS
cells) with similar virus production kinetics and markedly higher yields, resulting in up to
more than 100-fold higher peak titers compared to Veroadh cells (Table 2).

4.3. Proof of Concept for Translatability and Scale-Up

Concerning the operating expenditures associated with virus production processes,
the input of virus seed has been identified as a significant cost factor (e.g., up to 27% of
total cost for modified vaccinia Ankara virus [51]). As the maximum infectious virus titers
were previously not negatively affected by lowering the MOI (Figure 2), we implemented
a multiple infection cycle/low-MOI approach to minimize the required virus input. We
further combined this approach with (i) an early infection [35], 1 day post seeding, as used
for, e.g., hepatitis C virus as another slow-replicating virus [52], and (ii) feeding strategies
to prevent nutrient limitations (Figure 3). Although for HEKDyn cells, process variations
resulted in lower viabilities and lower peak titers compared to the batch control (Table 2),
the expansion of the infected culture by the addition of feeds (1.2–1.3-fold) yielded similar
absolute amount of infectious virus particles and peak titers up to 3 days earlier with
10-fold reductions in requirements for virus seed (Figure 3a). As previously discussed,
lower viabilities may complicate downstream processing and must be calculated against
the savings made by more economical use of input virus.

Direct scale-up over three orders of magnitude can be challenging and usually requires
thorough engineering considerations. In addition, the particular geometry and small height
of the ambr15 vessels result in a distinct fluid dynamic profile and high specific power
input [53]. Nevertheless, for virus production, three earlier studies have shown that scale-
up or scale-down solely based on tip speed results in similar growth performance and
production yields across scales (up to 3L) [54–56]. Here, we also show that comparable
virus titers can be reached in the ambr15 vessel and the 1 L STR cultivations by using tip
speed as the sole scale-up parameter. Further temperature reductions to 33 or 32 ◦C did not
affect infectious virus titers; however, at 32 ◦C, final culture viabilities on day 5 p.i. were as
high as 90% with obvious benefits regarding purification needs for a future drug substance
(Figure 4).

4.4. Consistency of Live Vaccine Produced in an Intensified Process

The most important critical quality attribute of live vaccines is the maintenance of
attenuation. Although the genetic stability of YF17D and its derivatives is high [31,57–59],
a switch in cell line may lead to adaptive mutations that could impact virulence [60–64],
vaccine safety, and potency [65–68]. Serial passaging of virus stocks has been shown
to improve viral replication dynamics and titers of YF-ZIK in Veroadh cells [12] and is
commonly applied for other viruses [38,69]. It is noteworthy that YF-ZIK, which was
originally derived from a molecular clone, only gained full replication competence and
potency after several passages in Veroadh. This phenotype was acquired via critical amino
acid changes in the E and Canch domains [12]. The earlier observation contrasts with
our results, which demonstrate that YF-ZIK remained genetically stable in suspension
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cultures. For instance, serial passaging of YF-ZIK over five passages in BHK-21PEM cells
did not result in any obvious cell culture adaptation, but rather in virus extinction. More
importantly, during enhanced replication in HEKDyn and pIX cells, Sanger sequencing
did not reveal mutations in the YF-ZIK genome compared to the P1 Veroadh YF-ZIK seed
material. However, future studies that should include deep sequencing analysis of virus
populations might be important to provide valuable insights into the genetic diversity,
mutational landscape, and evolutionary dynamics of the virus [70].

Plaque phenotype analysis on adherent BHK-21J cells further supports that attenu-
ation of YF-ZIK produced in pIX, CR, HEKDyn, and HEKFS cells was not affected. We
found that plaques, regardless of the host cell origin and thus passaging history, remained
uniform in appearance and significantly smaller in size than those formed by YF17D [12]
(Figure 5b). This result suggests that there was no or very low variability within resulting
virus populations without the formation of viral quasi-species [71], which is a favorable
indication for the safety and immunogenicity of our vaccine candidate [31,68,72,73].

4.5. In Vivo Safety and Immunogenicity

Consistent with YF-ZIK produced in Veroadh cells as well as other chimeric YF17D-
based constructs [23–25,65], we observed that all YF-ZIK batches demonstrated an im-
proved safety profile in vivo compared to parental YF17D. All tested batches of YF-ZIK
were devoid of the high neurovirulence properties of YF17D when inoculated intracranially
(even at very high doses) in BALB/c pups [65] (Figure 6a–d). The lack of neuroinvasive
properties of YF-ZIK was further confirmed by the absence of neurotropic growth follow-
ing systemic injection into highly susceptible (immunocompromised) AG129 mice [74]
(Figure 7). Though active replication of the vaccine virus in AG129 mice had some impact
on their weight gain, in total, only 2/10 mice exposed to YF-ZIK (produced in HEKDyn
cells) suffered from significant weight loss until the humane endpoint.

In summary, we did not observe in orthogonal assays that the growth and massive
amplification of YF-ZIK during replication in a new cell line and an intensified upstream
process leads to any loss of attenuation. Conversely, the overall benign phenotype of
YF-ZIK is preserved when tested in two highly sensitive in vivo models (BALB/c pups and
AG129 mice), in which the parental YF17D strain is uniformly lethal.

Vaccine immunogenicity was also not affected. A single dose of both the low (pIX
and HEKDyn: 100 PFU or Veroadh: 270 PFU) and high dose (pIX and HEKDyn: 1.0 × 104 or
Veroadh:2.7 × 104 PFU) of YF-ZIK resulted in the rapid seroconversion (within 7 days) to
high levels of ZIKV-specific binding antibodies (Figure 7c). As expected, nAb titers were
significantly elevated following a 100-fold higher vaccine dose. However, importantly,
no differences could be observed when comparing batches from different origins. This
suggests that the 50–110-fold higher titers obtained in the intensified process translated
directly into a linearly increased higher volumetric yield of active drug substance.

4.6. Implications of Improved Yields

Calculating with a similar downstream recovery of 40% as for inactivated YF vac-
cine [75], our processes would allow the production of approximately 3 × 105 (pIX) to
5 × 105 doses (HEKDyn) per 1 L cultivation. Assuming 105 PFU/dose for human applica-
tion, such yields would significantly exceed the 1000 doses per liter that are required to be
competitive from a manufacturing perspective [35]. To produce the same amount of doses
in traditional systems, either 700–1200 specific pathogen-free eggs (400 doses/egg [75]) or
80 L of Veroadh supernatant would be required.

5. Conclusions

All combined, we demonstrate a rapid, multifactorial, and highly parallel workflow
with precisely regulated variations of culture conditions and infection parameters for
identification of suitable host cells in different media. Starting at a small scale, we were
able to identify two potential producer cell lines within a short timeframe (4–6 weeks), and
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to propose optimized conditions for scalable processes yielding over 100-fold increased
virus titers compared to the current benchmark. Critical properties for vaccine candidates
such as immunogenicity, attenuation, genetic, and phenotypic stability remained constant
in both in vitro and in vivo studies. Such a workflow could serve as a roadmap to rapidly
develop or optimize production processes for novel chimeric YF17D-based constructs and
other live-attenuated vectored viral vaccines.
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Abbreviations

µ cell-specific growth rate
AUC area under the curve
CSVY cell-specific virus yield
CMC carboxyl-methyl-cellulose
DO dissolved oxygen
ELI early low infection mode
hpi hours post infection
i.p. intraperitoneal
I/NI ratio of infectious to non-infectious virions
JEV Japanese encephalitis virus
MOI multiplicity of infection
nAb virus-neutralizing antibodies
PEM protein expression medium
PFU plaque-forming units
p.i. post infection
PS porcine kidney stable cells
RT-PCR reverse-transcription chain reaction
SEM standard error of the mean
STD standard deviation
SNT serum neutralizing titers
STR stirred tank bioreactor
VCC viable cell concentration
VCCmax maximum viable cell concentration
wv working volume
YF17D yellow fever vaccine strain 17D
YFV yellow fever virus
YF-ZIK chimeric YF-ZIKprM/E vaccine virus
ZIKV Zika virus
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