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The time evolution of quantum many-body systems is one of the most promising applications for
near-term quantum computers. However, the utility of current quantum devices is strongly ham-
pered by the proliferation of hardware errors. The minimization of the circuit depth for a given
quantum algorithm is therefore highly desirable, since shallow circuits generally are less vulnera-
ble to decoherence. Recently, it was shown that variational circuits are a promising approach to
outperform current state-of-the-art methods such as Trotter decomposition, although the optimal
choice of parameters is a computationally demanding task. In this work, we demonstrate a simplifi-
cation of the variational optimization of circuits implementing the time evolution operator of local
Hamiltonians by directly encoding constraints of the physical system under consideration. We study
the expressibility of such constrained variational circuits for different models and constraints. Our
results show that the encoding of constraints allows a reduction of optimization cost by more than
one order of magnitude and scalability to arbitrary large system sizes, without loosing accuracy in
most systems. Furthermore, we discuss the exceptions in locally-constrained systems and provide
an explanation by means of an restricted lightcone width after incorporating the constraints into
the circuits.

I. INTRODUCTION

Quantum computers are promising computational
platforms which are expected to lead to breakthroughs
for several difficult problems like integer factorization,
optimization or machine learning algorithms by signif-
icant quantum speedups over their classical counter-
parts [1–4]. While most tasks will not become feasible
before the realization of scalable quantum error correc-
tion, the simulation of quantum many-body systems is
one of the most promising applications on near term
devices [5]. The non-equilibrium behavior of different
condensed matter systems [6–13], lattice gauge theo-
ries [14, 15] or quantum interactive dynamics [16, 17] are
examples for applications which were studied recently.
Current experimental platforms range from tens to more
than a hundred qubits [18, 19], with thousands of qubits
projected for the near future. Such quantum processor
sizes becomes increasingly challenging to simulate using
the capabilities of classical computers [20–24].

While the physical system sizes are increasingly im-
pressive, the reachable quantum volume [25] of present-
day devices is still limited by the presence of noise. The
coupling to the environment, gate imperfections, and
measurement errors can destroy the coherence of the
quantum state and limit the accuracy of the results of
quantum computations. There are several attempts to
quantify the amount of errors and to find protocols which
allow one to average out the errors by increasing the num-
ber of required measurements. These techniques can be
summarized by the term quantum error mitigation [26–
39]. Recent work has shown that a combination of quan-
tum simulation and quantum error mitigation gives com-
petitive results for the time evolution of quantum sys-
tems [23, 24].

An alternative approach consists of reducing the cir-

cuit depth of the algorithm. The idea is simple: The
proliferation of errors is suppressed when the possibili-
ties where such an error can occur are reduced. In other
words, one can try to squeeze a given quantum algorithm
into a given quantum volume by finding a more efficient
circuit representation of the algorithm. For simulations
of time evolution in this era of noisy quantum comput-
ing, the state-of-the-art-method is the Trotter decompo-
sition [40–43].

Here the unitary operator U generating the time evo-
lution U |ψ⟩ is expressed by a circuit of few-body gates,
which can then be evaluated on a quantum computer.
The error resulting from this mapping can be controlled
by the circuit depth. Trotter circuits have the best known
asymptotic error scaling for a large class of local quan-
tum many-body systems and do not require any ancilla
qubits [44]. They are projected to be the best iterative
algorithms for gate and qubit counts that are expected in
the early fault-tolerant era [45, 46]. Nevertheless, at fixed
time the circuit depth can potentially be made smaller
by employing numerical optimization.

One promising approach are variational circuits [47–
70]. The main idea is to describe the time-evolved state
or the time-evolution operator using a parametrized cir-
cuit. Choosing the parameters boils down to an opti-
mization problem, which can be tackled using the gradi-
ent descent method. Several proposed algorithms try to
optimize the circuit on a quantum computer or simula-
tor [51–66]. However, this is currently unfeasible due
to the high error rate on present-day devices. Other
attempts, including our previous work, utilize a circuit
optimization algorithm that is specifically designed for
classical computers [67–70]. In some cases, we could re-
duce the circuit depth by almost 50% in comparison to
standard Trotter decomposition at fixed fidelity. While
this approach is thus a promising strategy for the future,
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one major drawback is the large computational cost of
the optimization. A possible solution for this issue is to
exploit constraints of the system to reduce the number
of independent parameters in the circuit. These can be
encoded directly into the variational circuit ansatz.

In this work we study this approach for different con-
straints and analyze the resulting error scaling in com-
parison to generic variational circuits and Trotter decom-
position.

This paper is organized as follows: In Secs. IIA and
IIB, we describe our variational circuits and the imple-
mentation of constraints. Furthermore we describe our
optimization procedure in detail in Sec. II C. In Sec. III,
we present our results for optimizing the time evolution
of three different models with different constraints: The
Heisenberg XXZ chain, the PXP model and the quantum
link model. Finally, we discuss the implications of our re-
sults for encoding constraints into variational circuits in
Sec. IV.

II. METHODS

In this section, we explain in detail the different cir-
cuit architectures that we use to approximate the exact
time evolution of a given Hamiltonian. In Sec. IIA, we
introduce a generic brickwall circuit architecture tailored
to hardware-native gates. In the following discussions
we will refer to these as unconstrained circuits. If the
underlying time evolution has conserved charges or lo-
cal constraints, these can be incorporated into our cir-
cuit template. This is described in Sec. II B. We refer to
them as blocked circuits. In Sec. II C, we describe our
cost functions and optimization strategies to determine
the free parameters of our circuits. Finally, we explain
in Sec. IID how the optimized circuits can be used to
simulate time evolution on quantum computers for large
systems and long time scales beyond the capability of
classical devices.

A. Parameterized circuits

Since our main intention is to simplify the implementa-
tion of the time evolution of a many-body wave function
using a quantum computer, it is sensible to use a set
of native gates as building blocks. In our case, we use
single-qubit gates parametrized as

u(θ, ϕ, χ) =

(
eiϕ cos(θ) eiχ sin(θ)

−e−iχ sin(θ) e−iϕ cos(θ)

)
, (1)

and controlled NOT (CNOT) gates. These gates form a
universal gate set [71].

The unconstrained circuit architecture C consists ofM
brickwall layers, as shown in Fig. 1(a). Each brickwall
layer consists of two half-layers of CNOT gates connect-
ing neighboring qubits, with general single-qubit layers

σ1 σ2 σ3 σ4

σ1 σ2 σ3 σ4

(a)

(b)

FIG. 1. (a) Template for an unconstrained circuit with M = 2
layers. Each layer of CNOT gates is interspersed with a single-
qubit gate layer. At the end of the circuit, we add an ex-
tra layer of single-qubit unitaries. Equal colored single-qubit
gates are identical. The dotted box encloses one layer of the
circuit. (b) By adding translation symmetry, we reduce the
number of different single-qubit unitaries to two independent
single-qubits per half layer. Note that we can not further
reduce the number of different unitaries since the brickwall
gate layout manifestly breaks site-inversion symmetry. For
the rest of the work, we call this architecture translationally
invariant variational brickwall (TIVB) circuits.

interspersed. At the end of the circuit, we add a fi-
nal layer of single-qubit unitaries. The advantage of the
brickwall architecture is its minimal depth for a fixed
amount of CNOTs. This is favorable in the presence of
non-correctable errors.

B. Symmetries and constraints

When the targeted unitary U has conserved charges
because of an underlying symmetry or local constraint,
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we can incorporate these into the parameterized circuit
by constraining the angles of the one-qubit unitaries or
modifying the circuit structure.

1. Lattice symmetries

We are often interested in translationally invariant sys-
tems. In this case we choose the one-qubit unitaries as
in Fig. 1(b), where we illustrate a translation-invariant
circuit with M = 2 brickwall layers. Here each horizon-
tal layer of one-qubit unitaries contains two independent
unitaries (equal colors have equal parameters), giving a
circuit with 12M + 6 real parameters. We note that the
translation invariance in a brickwork circuit is necessarily
reduced: The minimal unit cell for translations consists
of two qubits. This implies that we require two different
single-qubit unitaries per half layer.

Apart from reducing the number of parameters to op-
timize, the implementation of translation symmetry has
additional advantageous implications for the optimiza-
tion: A fundamental property that C should reproduce
is the Lieb-Robinson bound of correlation spreading for
local many-body quantum systems [72, 73]. As a result,
if we want to approximate the unitary U(t) for system
size L∗, and the corresponding lightcone of correlations
has width W (t) < L∗, then optimizing C at a smaller
size L > W (t) is sufficient.

This allows us to perform a difficult optimization pro-
cedure for a small amount of qubits and use the result
for larger system sizes. We find that this extrapolation
works extremely well, sometimes even when L < W (t).
For the timescales we have considered, we find that op-
timization for L = 8 qubits is sufficient, with additional
optimization at larger sizes giving only insignificant im-
provements. For the rest of this work, we have imple-
mented this translation symmetry in our most generic
variational circuits, denoting them as translationally in-
variant variational brickwall (TIVB) circuits.

2. Local constraints

Apart from lattice symmetries, many systems of in-
terest exhibit symmetric couplings that induce a global
symmetry. Here each coupling only connects states with
equal global charges. These charges can also be local, as
it is the case for gauge theories, or do not need to be as-
sociated to a symmetry or gauge freedom at all. Instead,
a local constraint is sufficient, as for example in the PXP
model [74].

The constraints or conserved quantities imposes a
block-diagonal time evolution operator U(t). Each block
corresponds to a different charged sector. In the follow-
ing, we want to encode such symmetries or constraints di-
rectly into the circuit architecture, which we will then de-
note as a blocked circuit architecture. By incorporating
such special properties into the circuit architecture, we

get a blocked circuit that manifestly has the correspond-
ing block-diagonal structure. This restricts the space of
variational circuits to a subspace in which the targeted
time-evolution operator U lives, and reduces the param-
eter count per number of CNOTs. However, it does not
guarantee an increased accuracy. In fact, such a restric-
tion can reduce the expressibility, e.g. restricting the
maximum possible distance that correlations can travel
among the qubits in M layers of CNOTs.

C. Optimization

As a cost function for the optimization of circuits C to
faithfully represent a given unitary tranformation U , we
use the normalized Frobenius distance between U and C,

ϵ =
||C − U ||2F

2L+1
=

∑
ij |Cij − Uij |2

2L+1
= 1− Tr[C†U ]

2L
. (2)

The last equality holds because both C and U are unitary.
For small system sizes up to L ≈ 16 this expression can
be evaluated exactly, representing U and C as matrices
with dimension 2L. Otherwise, we represent U and C as
matrix-product operators (MPOs), where we inevitably
lose information at large t due to entanglement trunca-
tion [70]. To represent the exact evolution operator U
as a MPO, we Trotterize the exact time evolution using
a sufficiently small step size ∆t such that the discretiza-
tion error is smaller than machine precision or truncation
errors due to the entanglement barrier.
To determine the parameters of the single-qubit uni-

taries in the specific architecture, we minimize the dis-
tance (2), which we do with first-order gradient descent,
using the Adam optimizer [75] (see Algorithm 1). This
optimizer uses exponentially-decaying averages of the
first and second moments of previous parameter updates
to modulate the next update.
Our goal is to compress the time-evolution operator

U(t) for a sequence of times t = 1, 2, ..., 10 into param-
eterized circuits with M layers. The minimization of
ϵ is performed for each pair (t,M) separately. For a
fixed layer count M , we first optimze the circuit for the
smallest timestep t = 1. We initialize C as the iden-
tity circuit and choose a set of Adam hyperparameters
(λ, β1, β2, ϵreg). We perform O(105) iterations of gradi-
ent descent to reduce the possibility of getting stuck in
local minima. For t > 1, we initialize with the same set
of hyperparameters and the optimal result of t− 1.
We perform this optimization simultaneously for a

large grid of hyperparameters. In particular, we choose

β1, β2 ∈ {0.9, 0.99, 0.999, 0.9999}
ϵreg ∈ {10−2, 10−4, 10−8, 10−12}

λ ∈

{
{0.5, 0.2, 0.1, 0.01, 0.001, 0.0001}, blocked
{10−1, 10−2, . . . , 10−6}, TIVB circuit

(3)
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Algorithm 1 The Adam optimizer [75]. We want to
minimize the distance ϵ as a function of the the circuit
parameters θ⃗. Adam uses first-order gradient descent to

update the parameters. With Adam, we calculate
exponentially decaying running averages of the first
moment m and the second moment v of the gradient,
which are then used to update the parameters as

δθ⃗ ∝ m/
√
v. This ensures that the updates are steered

away from tiny or huge values to improve convergence
to the global minimum, by providing a mechanism to
escape local minima without excessively large updates
(which are likely to be inaccurate since we are using

only local gradient information).

Hyperparameters:
λ: Base learning-rate
β1: First moment decay rate
β2: Second moment decay rate
δ: Regularization
Niters: Amount of iterations

Initial conditions:
m0 ← 0 (First moment initially set to zero)
v0 ← 0 (Second moment initially set to zero)

for ( i = 0; i < Niters; i = i+1 ) do

gi ← ∇θ⃗i−1
ϵ(θ⃗i−1) (Calculate gradient at current pa-

rameters)
mi ← β1mi−1 + (1− β1)gi (Update running average of

first moment)
m∗

i ← mi/(1− βi
1) (Bias correction)

vi ← β2vi−1 + (1 − β2)g
2
i (Update running average of

second moment)
v∗i ← vi/(1− βi

2) (Bias correction)

θ⃗i ← θ⃗i−1 − λm∗
i /(

√
v∗i + δ) (Update parameters)

end for
return θ⃗i (Final circuit parameters)

The difference in the choice of λ accounts for the fact
that the blocked circuits have less parameters per num-
ber of CNOTs. After this sequential optimization, we
determine the best set of hyperparameters at each (t,M)
and use the corresponding parameters to initialize an-
other round of optimization at L = 6, with the same
set of hyperparameters and amount of iterations as be-
fore. These results are used to initialize the last round of
optimization, now for L = 8, with O(104) iterations.
Removing any of the sequential optimization steps

leads to results that are orders of magnitude worse in ac-
curacy. Furthermore, we find that using a finer sequential
optimization, e.g. starting at t = 10−2 and progressing
in steps of 10−2, decreases the accuracy of the circuits
after every round of optimization.

D. Stacking circuits

The circuits shown in this work are optimized on small
system sizes and for short evolution times. As mentioned

σ1 σ2 σ3 σ4 σ5 σ6

FIG. 2. The blocked architecture that we use to compress
the XXZ time-evolution operator. Equal-colored gates are
identical, with the architecture consisting of U(1)-symmetric
two-qubit unitaries (5). The dotted box encloses one layer
of circuits. The colors display the manifest translational and
bond-inversion symmetries of the XXZ model.

in Sec. II B 1, the translation symmetry of the circuit
template allows to extend the optimized circuits to ar-
bitrarily large system sizes. Furthermore, stacking the
circuits [70] allows to reach time scales on a quantum
device beyond classical capabilities: Consider a circuit,
optimized for a given time t∗. By repeatedly applying
this circuit n times on a quantum computer, this allows
to implement the time step nt∗ on the quantum device. It
was analyzed in Ref. [70] that the advantageous scaling in
terms of resource cost for the compressed circuit in com-
parison to Trotter decomposition persists while stacking
a circuit multiple times.

III. MODELS AND RESULTS

In this section, we consider specific models and investi-
gate whether shallow depth circuits benefit from incorpo-
rating conserved quantities or local constraints into the
compressed circuit ansatz C.

A. XXZ model

We start with the following XXZ model on a periodic
chain

H =
∑
⟨i,j⟩

Sx
i S

x
j + Sy

i S
y
j +

1

2
Sz
i S

z
j , (4)

which satisfies [H,Q] = 0 with Q =
∑L

i=1 S
z
i . The con-

servation of the total z-spin can be associated with the
global U(1) symmetry corresponding to the invariance of
(4) under a simultaneous rotation of all spins in the XY
plane. This conserved global charge Q induces a splitting
of the time-evolution operator U(t) = exp(−itH) into
O(L) blocks with fixed Q. Specifically, because Q has
L + 1 possible values, i.e. Q = −L/2,−L/2 + 1, ..., L/2,
there is an equal amount of diagonal blocks. The di-
mension of the largest block, i.e. the zero-magnetization
sector, is equal to the binomial coefficient

(
L

L/2

)
. The
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second-largest sector has
(

L
L/2−1

)
, such that their ratio is

((L/2)!)2/((L/2 + 1)!(L/2 − 1)!). This approaches 1 for
large L. More broadly, for the XXZ model there is never
a single block that significantly outsizes the rest.

A TIVB circuit architecture from Sec. IIA does not
respect this conservation by default. We can modify this
circuit, however, by replacing the elementary CNOT gate
with the U(1) symmetric gate

UXXZ(θ, ϕ) = eiθ(σx⊗σx+σy⊗σy)+iϕσz⊗σz

. (5)

Furthermore, we remove the one-qubit unitaries. This is
illustrated in Fig. 2.

The gate (5) can be decomposed into three CNOTs
with one-qubit unitaries, see e.g. Eq. (6) in Ref. [76].

This yields a blocked circuit of M̃ U(1)-symmetric brick-

wall layers with 2M̃ parameters. The number of CNOT
gates is the same as for the previous TIVB circuit with
M = 3M̃ layers. The lightcone width for a fixed amount
of CNOTs is reduced by a factor three, since a minimum
of three CNOTs is required to entangle neighboring spins,
instead of only one CNOT for the TIVB architecture.

Choosing θ = t/2 and ϕ = t/4, we obtain the local
evolution operator

Ul = e−it(Sx
i S

x
j +Sy

i S
y
j +

1
2S

z
i S

z
j ), (6)

so the blocked circuit is a generalization of first-order
Trotter decomposition with variational time steps [56,
64, 65, 68]. We find that compressing into the second-
order Trotter layout, i.e. adding an extra half-layer on
top of the circuit in Fig. 2, provides no advantage over the
first-order layout. To be more concrete, the optimized ϵ
decreases smoothly as we add half-layers to the architec-
ture. We checked that in both cases we get the Trotter
scaling from Ref. [77] when stacking the optimized cir-
cuits.

In order to see the advantages of the blocked architec-
ture, we benchmark it against the TIVB architecture. We
compare blocked circuits with M̃ = 1, 3, 4, 5, 7, 8 layers
against TIVB circuits withM = 4, 8, 12, 16, 20, 24 layers.
As we discussed before, each U(1)-conserving two-qubit
gate can be expressed by a combination of unitaries and
at most three CNOT layers. The number of CNOT gates
for a blocked circuit with M̃ layers is thus the same as for
the previous TIVB circuit with M = 3M̃ layers. There-
fore we have a slight mismatch in our comparison by
means of circuit depth, since only for M̃ = 4, 8 can we
exactly match the CNOT count with M = 12, 24. The
other compared circuits differ at most by one additional
brickwall layer of CNOTs.

We minimize Eq. (2) for the time-evolution operator
of (4) for times t = 1, 2, ..., 10. The results are shown in
Fig. 3 for system size L = 16. We optimized the parame-
ters of the circuit for system sizes L = 6 and L = 8 and in-
terpolated to larger system sizes by imposing translation
symmetry as described above. We compare the error for
TIVB (solid lines), blocked (dashed), and second-order

Trotter circuits with M̃ + 1/2 layers (dotted).

100 101

t

10−9

10−7

10−5

10−3

10−1

ε

(a)

M, M̃

4, 1

8, 3

12, 4

16, 5

20, 7

24, 8

0 2 4 6 8 10

t

−1.0

−0.5

0.0

0.5

1.0

P

(b)
exact

FIG. 3. Results for the compression of the XXZ time-
evolution operator for system size L = 16 and times up to
t = 10 for brickwall circuits for a different number of layersM .
We compare TIVB circuits with M = 4, 8, 12, 16, 20, 24 with
blocked circuits with M̃ = 1, 3, 4, 5, 7, 8. (a) The normalized
distance ϵ of the optimized circuits as a function of the evo-
lution time t, for the TIVB circuits (solid lines), blocked cir-
cuits (dashed lines) and second-order Trotter decomposition

with M̃ + 1/2 steps (dotted lines). The blocked architecture
outperforms the TIVB architecture in ϵ per number of CNOTs
for all t. Both parameterized architectures outperform the
second-order Trotter circuits. (b) The z-magnetization im-
balance P of the propagated Néel state |Z2⟩ for the different
circuits architectures. As before, the blocked architecture out-
performs the other approaches, as long as ϵ is on the order of
1% at most. The observable is calculated on a time grid with
spacing δt = 1 and lines are guides to the eye.

In Fig. 3(a), we show the normalized distance ϵ of the
optimized circuits. The blocked circuits outperform the
TIVB circuits for all investigated timesteps t. This dif-
ference is most prominent at short times and vanishes for
large times. For small timesteps t, the second-order Trot-
ter circuits perform worse than the optimized circuits.
For large t, the performance is similar to the optimized
blocked circuit. Even if this observation is tight only for
M = 12, 24 due to the equal number of CNOT gates, it
extends to other numbers of layers M . However, in this
case the comparison is more difficult due to the mismatch
in CNOTs.

We are not only interested in the distance between
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the circuit and the targeted unitary, but also in the re-
sulting error for measurable observables. Moreover, we
want to know if optimizing the full distance also yields
systematically-increasing accuracy on the dynamics of
the biggest block. As a check for that, we show in
Fig. 3(b) the z-magnetization imbalance

P =
∑
j

(−1)j⟨σz
j ⟩ (7)

for the Néel-state

|Z2⟩ = | ↑↓↑ ...⟩ (8)

propagated to time t by the different circuit architec-
tures. The time evolution of |Z2⟩ is constrained to the
largest block when the global U(1) constraint is satisfied.
We compare with the exact time evolution obtained from
exact diagonalization (red line). The blocked circuits re-
produce P with the highest accuracy as long as at least
ϵ ∼ O(10−2). As an example, for M = 12 the blocked
circuit is best until t = 5, where its error is a few percent.
The blocked circuit withM = 24 is best until t = 8, after
which the Trotter circuit is best. For larger distance ϵ,
the TIVB and Trotter circuits perform better, with al-
most all Trotter curves lying around the exact curve until
t = 10. As long as at most ϵ ∼ O(10−2), the accuracy
on P increases systematically, i.e. determining a deeper
circuit with lower ϵ generally also improves the accuracy
on P .
It is unclear whether this situation will change sig-

nificantly when performing a simulation on noisy quan-
tum computers. In that case, we can perform classical
post-processing based on the constraint, discarding out-
put states that violate it, in an effort to mitigate errors
[29]. Furthermore, it should be noted that the TIVB
architecture has more than eighteen times as many pa-
rameters as the blocked architecture for an equivalent
circuit depth. This makes the backpropagation compu-
tations during the optimization process at least eighteen
times as expensive.

In App. B we show that the relative performance of
the blocked and TIVB circuits cannot be improved by
constraining the cost function to one of the largest blocks
and its off-diagonal.

B. PXP model

The PXP model on a chain of L qubits with periodic
boundary conditions is given by [74]

H =

L∑
j=1

P z
j−1σ

x
j P

z
j+1, (9)

where σα
j denote the Pauli operators acting on spin j

and P z
j = (1 − σz

j )/2 is a projector of the j-th qubit
into its ground state. The three-body term introduces

U3(θ)

θ −θ θ −θ

π/4

π/4

π/4

−π/4

−π/4

−π/4

σ1

σ2

σ3

FIG. 4. The three-qubit circuit U3(θ) that implements a
PXP-blocked rotation on the middle site. The blue unitaries
correspond to u(θ, 0, 0) and the gray to u(0, ϕ, 0). The gray
and CNOT gates ensure that u(4θ, 0, 0) is applied to the in-
ner qubit only when its neighboring qubits are in the ground
state.

a local constraint: neighboring excited states are immo-
bile and cannot be created or annihilated. This can be
associated with an extensive number of conserved local
charges Qj = (1+σz

j )(1+σ
z
j+1) that encode the absence

(Qj = 0) or existence (Qj = 1) of a frozen pair on the
bond between sites j and j + 1. The time-evolution op-
erator splits into O(2L) blocks, each block being labeled
by a particular charge configuration {Qj}. The largest
block has Qj = 0 ∀j and is well known for its weak er-
godicity breaking: its Hilbert space has an exponentially
small fraction of ETH violating states, as revealed by the
revivals in return probability and z-magnetization imbal-
ance that occur when time-evolving Néel product states
[74].
Besides the PXP model having exponentially many

more blocks than the XXZ model (4), another quali-
tative difference is the relative size between the largest
and second largest blocks: The largest block has dimen-
sion FL−1 + FL+1, where Fj is the Fibonacci sequence
F0 = 0, F1 = 1, ... [74]. The second-largest block has a
dimension equal to that of the largest block of the L− 4
PXP model with OBC, i.e. FL−2. Their ratio approaches
5.8541... for L → ∞. The PXP model thus has a domi-
nant block in the Hilbert space, in contrast to the XXZ
model where this ratio approaches 1.

1. Circuit architectures

We compare again the compression of the PXP time-
evolution operator into TIVB and blocked circuit archi-
tectures. The TIVB architecture is the same as in Fig. 1,
which breaks the site-inversion symmetry of the PXP
model (9).

In order to incorporate the local constraint of the
PXP model, we have to fix the relation between differ-
ent one-qubit angles. To do so, we consider a blocked
circuit U3(θ) acting on three qubits that satisfies the
local constraint. It has a single parameter and is dis-
played in Fig. 4. In this figure, the blue unitaries denote
u(θ, 0, 0) = exp(iθσy). The gray unitary gates corre-
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π
4 θ1 θ2 θ3 = θ2 θ4 = θ1 −π

4

σ1

σ2

σ3

σ4

FIG. 5. The blocked architecture with M = 8 brickwall layers. The building blocks is the sub-circuit U3(θ) defined in Fig. 4
and indicated by a black dashed box. The implemented circuit has a time-inversion symmetry, resulting in M/4 parameters
for M brickwall layers. The gray unitaries correspond to u(0,±π/4, 0), and the blue and green unitaries to u(θj , 0, 0), with
equal-colored gates being equivalent.

spond to u(0,±π/4, 0). The interplay of u(0,±π/4, 0)
and the CNOT gates ensures that the inner qubit is
only rotated when the neighboring qubits are in the
ground state. With the choice θ = t/4, it is an im-
plementation of the local time-evolution operator Uj =
exp(−itPj−1σ

x
j Pj+1).

It is important to note that we can generalize U3(θ) to
a full circuit which implements the constraint on all even
qubits (and then on all odd qubits) simultaneously. This
allows us to construct a blocked circuit as shown in Fig. 5,
implementing the PXP constraint for the entire system.
From this circuit diagram it is immediately clear that
information can only travel one site after four brickwall
layers of CNOT gates.

We find that we can implement a time-inversion sym-
metry without loosing accuracy, i.e choosing the angles
θi symmetric as θi = θM/2−i. The resulting brickwall
circuit with M layers has M/4 free parameters.
Similarly to the U(1)-symmetric circuits in Sec. III A,

the blocked ansatz is a first-order Trotter circuit
with variational time steps, and it always satisfies
M mod 4 = 0 due to its construction. It gives the iden-
tity operator when all angles are set to zero.

We compress the PXP time-evolution operator for
times t = 1, 2, ..., 10 into TIVB and blocked circuits with
M = 4, 8, ..., 24 brickwall layers of CNOTs. The results
are shown in Fig. 6, evaluated at L = 16. The TIVB
circuits are shown as solid lines, the blocked circuits as
dashed lines, and the second-order Trotter circuits with
M + 2 layers as dotted lines.

2. Distance and imbalance

In Fig. 6(a) we show the normalized distance ϵ. The
accuracy of the TIVB circuits is at least one order of mag-
nitude better than the blocked circuits for fixed circuit
depth. This is in contrast to the case for the XXZ chain.
As before, both architectures outperform the Trotter cir-
cuits in terms of distance.

We evolve the Néel state (8) up to a time t and measure

100 101

t

10−8

10−6

10−4

10−2

100

ε

(a)

M = 4

M = 8

M = 12

M = 16

M = 20

M = 24

0 2 4 6 8 10

t

−1.0

−0.5

0.0

0.5

1.0

P

(b)

exact

FIG. 6. Results for the compression of the PXP time-
evolution operator for system size L = 16 and times up to
t = 10 for brickwall circuits with up to M = 24 layers.
(a) The normalized distance ϵ as a function of the timestep
t, results for the TIVB circuits (solid lines), blocked cir-
cuits (dashed) and second-order Trotter circuits with M + 2
layers (dotted). The TIVB architecture outperforms the
blocked architecture with the same circuit depth. Both ar-
chitectures outperform the second-order Trotter circuits, al-
though the blocked architecture is only marginally better at
large t. (b) The imbalance P (7) as a function of time, start-
ing from the Néel state. The exact result is shown as a solid
red line. The same qualitative picture emerges as in panel
(a).
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the imbalance P defined in Eq. (7). In the case of the
PXPmodel, the dynamics gives rise to prominent revivals
in the imbalance P , since the initial |Z2⟩ state has large
overlap with scarred eigenstates of the model [29, 74]. In
Fig. 6(b) we show the results for the optimized circuits
from Fig. 6(a). The red line displays the exact values
Pexact obtained from exact diagonalization.

Although we focus here on a state that evolves within
a single block of the Hilbert space, the same picture as
in Fig. 6(a) carries over: The TIVB circuits outperform
the blocked circuits with the same circuit depth. For a
fixed amount of gates and a fixed accuracy threshold ϵ,
the TIVB circuits can reach times around 2t when the
blocked and Trotter circuits reach t. Similar to the sit-
uation for the XXZ model, the blocked circuits outper-
form the Trotter circuits when ϵ is of order O(10−2) at
most. Afterwards, there is a short region where the Trot-
ter circuit is most accurate, before both the Trotter and
constrained circuits are inaccurate. This is in contrast
to our results for the XXZ model, where the Trotter cir-
cuits remained fairly accurate for the magnetization even
when ϵ was highly inaccurate.

3. Detailed error analysis

To understand the origin of the discrepancy between
the architectures, we consider the component-wise abso-
lute error |Uij−Cij |2 for L = 6 at time t = 5 withM = 20
in Fig. 7. We compare the TIVB architecture (left), with
a total distance ϵ ≈ 10−2, with the blocked architec-
ture (right), which is significantly worse with ϵ ≈ 10−1.
The block structure of the Hilbert space is indicated by
turquoise lines. The main contributions of errors in the
TIVB circuit stem from violation of the block structure.
In particular, we find that the optimization systemati-
cally leads to hybridization of blocks that have an equal
amount of frozen spin pairs, i.e it allows for small moves
of the frozen spin-up pairs.

As a compensation, this allows a significant increase of
expressibility within the diagonal blocks in comparison
to the blocked architecture: The errors within a diago-
nal block are more than one order of magnitude lower
on average. In case the violation of the constraint is not
severe, this still allows the use of post-processing quan-
tum simulation data in real experiments, e.g. discarding
measurement output which violates the constraint. This
improves the mitigation of errors in a quantum simula-
tion. The downside of the TIVB architecture is the op-
timization cost: This architecture has 48 times more pa-
rameters than the blocked circuits for fixed circuit depth.
This increases the cost of backpropagation during the op-
timization process by at least the same amount.
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FIG. 7. The component-wise absolute error |Cij − Uij |2 of
a TIVB circuit (a) and a blocked circuit (b) with M = 20
brickwall layers for L = 6 at t = 5. The blocks are shown
as turquoise boxes. The TIVB circuit connects different sub-
spaces: It hybridizes blocks that have a fixed amount of frozen
pairs but at slightly shifted locations. This hybridization is
accompanied with a higher approximation accuracy inside of
the blocks, where the errors are more than an order of mag-
nitude smaller than for the blocked circuit architecture with
the same circuit depth.

4. Growth of correlations

To gain more insight, we analyze the results for the
out-of-time-ordered correlator (OTOC)

CL/2,j(t) = ||[σz
L/2(t), σ

z
j ]||2F (10)

as a function of j and t. The average is taken only over
the largest block without frozen spin-up pairs. The re-
sults are shown in Fig. 8 for a system with L = 16 sites,
up to time t = 8. In the left panel we show the exact
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t

FIG. 8. The out-of-time-ordered correlators CL/2,j(t) (10) as
a function of time t and position j, traced over the largest
subspace. Results are shown for the exact L = 16 PXP
time-evolution operator (left panel), the TIVB brickwall cir-
cuit approximation (center), and the blocked brickwall circuit
approximation (right). Both circuits have a fixed depth of
M = 16 layers for all times t. The architecture of the blocked
circuit constraints its correlation range. As a consequence, it
can reproduce CL/2,j(t) only for times t < 4. In contrast, the
TIVB architecture is only limited by the expressibility due to
its given circuit depth.

results. In the middle and right panels, we look to repro-
duce this using the TIVB and blocked architecture with
M = 16 layers.
Due to the specific construction of U3 shown in Figs. 4

and 5, the blocked circuit can only reproduce correlations
within M/4 sites. As a result, the blocked architecture
has a reduced maximum-velocity lightcone width, which
limits its expressibility. As is shown in Fig. 8, this re-
stricts the reachable times of the blocked circuit: In case
of M = 16, the maximum reachable time is thus t = 4.
In contrast, the TIVB architecture has no such limita-
tion and is capable to reproduce the lightcone structure
of the OTOC up to t = 8.

5. Scaling with system size

Now we will check the scaling of accuracy with sys-
tem size. We use the M = 24 circuits optimized at
t = 1, 2, ..., 10 with L = 8 to calculate their distances
to the exact time-evolution operator at larger sizes L =
10, 12, 14, 16. In Fig. 9 we present the results. All ar-
chitectures have a weak dependence on system size L.
This shows the scalability of our approach to system sizes
larger than investigated in this work.

6. Comparison with Trotter decomposition

In order to compare the optimized blocked circuits
with the Trotter circuits, we analyze the optimized circuit
parameters θl. As mentioned above, the Trotter circuits
have the same structure as the blocked circuits, but with
fixed angles θ1 = t/(2M) and θl = t/M for l > 1.

In Fig. 10(a), we compare the six angles θl of the
blocked circuit with M = 24 layers at various times and
compare it with the angles of the Trotter circuit. In

100 1012× 100 3× 1004× 100 6× 100

t
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10−2

100

ε

L = 8

L = 10

L = 12

L = 14

L = 16

FIG. 9. The system-size extrapolation of the normalized dis-
tance ϵ for the TIVB (solid), blocked (dashed) and second-
order Trotter circuits with M = 24 layers (dotted) at times
t = 1, 2, ..., 10. The circuits are optimized at L = 8 and then
used to evaluate the quantities at larger sizes L = 10, 12, 14, 16
by exploiting translational invariance. All optimized circuits
extrapolate as good as the Trotter circuits, with errors that
show only weak dependence on system size. Thus the opti-
mization of circuits is scalable to larger system sizes without
losing accuracy.

Fig. 10(b), we compare the sum of the optimized angles∑
j θj as a blue solid line, with the sum of Trotter angles

t/4 shown as a dotted line.
The optimized angles are far off the Trotter parame-

ters in most cases. The blocked circuits implement a se-
quence of forward and backward time evolutions. In con-
trast their sums

∑
j θj are close as long as ϵ ∼ O(10−2).

Higher-order Trotter circuits also contain backward time
evolution [43], but we did not find any symmetrical Trot-
ter decomposition that matches our optimized angles.
Specifically, the angles of the often-used decompositions
from Ref. [43] are significantly smaller.
In App. A we consider the scar states of the PXP model

in more detail. In App. B we consider the distance (2)
restricted to various blocks. There we also show that the
distance of the largest block is not improved by restrict-
ing the cost function to it. We show this for the PXP
and XXZ models.

C. Quantum link model

As a third model, we consider the massless spin-1/2
quantum link model (QLM)

H = −
L∑

j=1

σ+
j s

+
j,j+1σ

−
j+1 + h.c., (11)

which describes matter spins σj that are coupled by
gauge spins sj,j+1 that live on the links. It is equiva-
lent to a discrete massless Schwinger model with stag-
gered fermions [78]. The time-evolution operator splits
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FIG. 10. (a) The six optimized angles θl of the blocked ar-
chitecture with M = 24 brickwall layers. The angles of the
second-order Trotter circuit with two extra brickwall layers
are shown as dotted lines. While the angles of the Trotter
circuit θl are positive, the optimized blocked circuit relies on
the cancellation of multiple forward and backward evolutions.
(b) The sum of the optimized angles from panel (a) shown as
a solid line, and the sum of the Trotter angles t/4 shown as a
dotted line. Both angles sum up to the same value of t/4, as
long as the blocked circuit has an optimized distance below
ϵ ≈ 10−1. The sequences of forward and backward evolutions
observed in panel (a) always accumulate to t/4 when it is suf-
ficiently accurate.

σ1 s1,2 σ2 s2,3 σ3 s3,4 σ4 s4,1

FIG. 11. One layer of the TIVB architecture used for the
quantum link model (11). Each horizontal layer of one-qubit
unitaries contains four distinct one-qubit unitaries.

σ1

s1,2

σ2

π/4 −π/4

π/4 −π/4

G3(θ)

−θ −θ θ θ −θ −θ θ θ

FIG. 12. CNOT implementation of the parameterized con-
strained coupling G3(θ) between a gauge field and its neigh-
boring matter sites. It contains a single parameter θ. The
gray one-qubit unitaries are u(±π/4, 0, 0), the green are
u(±θ,−π/2, 0) and the yellow are u(±θ, π/2, 0).

into exponentially many blocks, to account for the gauge
freedom that is generated by the conserved charges

Qj = (σz
j + szj−1,j − szj,j+1 + (−1)j)/2, (12)

which act on a matter spin and its neighboring gauge
spins. It takes on the values Qj = 0,±1,±2.
One of the two largest blocks corresponds to the gauge-

invariant sector Qj |ψ⟩ = 0 ∀j. When tracing out the
matter spins in this sector, we get a PXP model for the
gauge spins [79]. As such, the gauge-invariant block is
simply the largest block of a PXP model with L sites.
The other largest block corresponds to the charged sec-
tor with Qj |ψ⟩ = (−1)j |ψ⟩, which is the largest block of
a dual PXP model where neighboring gauge spins are
frozen when they both point down. The next-largest
blocks correspond to the charge configurations Qj that
can be obtained from the gauge-invariant sector by re-
placing pairs of neighboring Qj = 0 with Qj = (−1)j ,
leaving at least one pair of zeros. The ratio of the dimen-
sions of the largest and second-largest blocks is 1.206....
Hence there are many similarly-sized blocks, unlike the
PXP model where the largest block is multiple times
larger than the rest. The situation is analogous to the
XXZ model, where at finite L the second-largest block
is only marginally smaller than the largest block. How-
ever, we now have L conserved charges instead of one,
such that there are exponentially more blocks (that are
therefore exponentially smaller).
To account for the doubled unit cell of the QLM, we

compress its time-evolution operator into TIVB brick-
wall circuits that contain four unique one-qubit unitaries
per half-brickwall layer. This is illustrated in Fig. 11 for
M = 1. This TIVB architecture has 24M + 12 param-
eters. Due to the chosen layout of matter and gauge
spins, each elementary nearest-neighbor gate always acts
on a matter and gauge spin. To compress while re-
specting the local constraint, we start by decomposing
the local time-evolution operator into nearest-neighbor
CNOTs and one-qubit unitaries. This yields the circuit
G3(θ) shown in Fig. 12. The local time-evolution oper-
ator is obtained by setting θ = t/8. G3(θ) is our build-
ing block for a charge-conserving circuit, as is shown in
Fig. 13 for M̃ = 2 layers. Each three-qubit gate rep-
resents a two-local subcircuit G3(θ), and equal-colored
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σ1 s1,2 σ2 s2,3 σ3 s3,4 σ4 s4,1

FIG. 13. The translationally-invariant blocked architecture
with M = 2 layers, where every three-qubit “gate” is a G3(θ)
subcircuit. The circuit has a time-inversion symmetry, as
indicated by the colors, such that a blocked circuit with M̃
layers has only M̃ parameters.

gates have equal angles in order to enforce translation
and time-inversion symmetry. Consequently, the blocked
circuit with M̃ layers has only M̃ parameters, and has
an equal amount of CNOTs as a brickwall circuit with
M = 6M̃ . However, because a blocked circuit cannot be
cast into a two-local brickwall circuit, the comparison at
fixed gate count is not entirely straightforward.

The performance of the circuit compressions for the
QLM model is shown in Fig. 14. The normalized dis-
tance ϵ for the different circuit architectures is shown
in Fig. 14(a). The situation is analogous to that for the
XXZ model from Fig. 3. The blocked circuits outperform
the other approaches for fixed gate count when ϵ ≤ 10−2,
and afterwards they all perform similarly. For the circuit
sizes that we have considered, any significant advantage
over the Trotter circuits is restricted to t < 3.
The curves for M = 6, 12 are an exception, since here

the second-order Trotter circuits appear to outperform
the optimized circuits. However, the Trotter architecture
gets an extra half-layer in Fig. 13, such that in Fig. 14
we e.g. compare a blocked circuit with M̃ = 1 with a
Trotter circuit with M̃ = 1+1/2. The difference is three
brickwall layers worth of CNOT gates. This difference
becomes negligible at large M̃ , but for small M̃ it skews
the comparison, as we see for M = 6, 12 in Fig. 14.
As a further test, we simulate the dynamics of

the gauge-invariant block, again in order to determine
whether optimizing the global distance ϵ also yields
systematic improvement on a block-restricted quantity.
Specifically, because the QLM restricted to the gauge-
invariant sector is a PXP model on the gauge spins, the
propagation of states in this block can again yield revivals
[79]. For this correspondence, the gauge z-spin opera-
tor is mapped onto a staggered z-spin operator. Conse-
quently, revivals now occur for uniform up or down states
of the gauge spins, as captured by the magnetization

P =

L∑
i=1

⟨szi,i+1⟩/L. (13)

We consider the initial state

|ZQLM
2 ⟩ = | ↓σ1

↓s1↑σ2
↓s2↓σ3

↓s3 ...⟩, (14)
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FIG. 14. Results for the compression of the massless spin-1/2
quantum link model time-evolution operator for system size
L = 16, counting both matter and gauge spins, and times
up to t = 7 for brickwall circuits with up to M = 36 layers.
The blocked circuit with M̃ layers has an equal amount of
CNOTs as the TIVB circuit with M = 6M̃ , but the CNOT
architecture is deeper in the blocked case. For convenience
we label M̃ as 6M in the plots. (a) The normalized distance
ϵ of the optimized circuits. We compare TIVB circuits (solid
lines), blocked circuits (dashed) and second-order Trotter cir-

cuits with M̃ +1/2 layers (dotted). The blocked circuits out-
perform the others for fixed gate count, most prominently at
low t. (b) The string-order parameter P of the gauge spins,
evaluated for the circuits from panel (a). The exact result
is shown as a red line. As for the PXP model, this quantity
shows revivals. The relative performance observed in panel
(a) carries over for the circuits with ϵ below some threshold
of order O(10−2).

which is the product of a staggered state for the mat-
ter spins | ↓σ1

↑σ2
...⟩ and a uniform down state for the

gauge spins | ↓s1↓s2 ...⟩. The state (14) is part of the
gauge-invariant sector, in which it remains as long as it is
evolved with a circuit that obeys the local constraint. We
show the results in Fig. 14(b), where the exact curve is
shown as a red line. As for the other models, the picture
from panel (a) carries over for the circuits with distance
smaller than ϵ ≲ O(10−2). For larger compression errors,
all circuits show large deviations from the exact curve.
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IV. DISCUSSION

In this work, we have studied the performance of dif-
ferent circuit architectures to simulate time evolution in
the presence of conserved charges. In particular, we put
an emphasis on the accuracy that the compressed circuits
can achieve when we directly encode constraints into the
circuit architecture.

In the presence of global charges and also for lattice
gauge theory, we can decrease the optimization cost by
more than two orders of magnitude and simultaneously
increase the accuracy. At the same time, translation in-
variance allows for a scalability of our circuits to arbi-
trary large system sizes while remaining accurate. The
only exception arises for systems with local constraints
such as the PXP model. In this case, the expressibility of
the blocked circuits is reduced to the extent that lifting
the constraint gives rise to substantial improvement. It
manifests itself as a severely restricted lightcone of cor-
relation spreading (see Fig. 8) and thus imposes funda-
mental limitations on the accuracy that can be reached
with shallow circuits.

Furthermore, we believe that the ability of the TIVB
architecture to outperform the blocked architecture on
only one of the three considered models is related to the
different symmetry block structures of the Hamiltonians.
As shown in Fig. 7, lifting the constraint allows for a
hybridization of different symmetry blocks in the PXP
model. While this induces additional errors violating the
constraint, the hybridization of different blocks allows a
larger expressibility and thus error reduction within a
symmetry block.

Another interesting observation arises for the blocked
circuits: In many cases, the constraint puts such heavy
constraints on the final architecture that they auto-
matically turn out as a Trotter circuit with variational
timesteps. However, our optimized circuits did not co-
incide with any conventional Trotter decompositions, re-
lying on the cancellation of relatively large forward and
backward local time evolutions. In the case of the PXP
model they achieved an increase in accuracy of more than
an order of magnitude in comparison to standard second
order Trotter decomposition with the same gate count,
as measured in the normalized distance. It is desirable to
get a more rigorous understanding of the origins of this
improved accuracy [44].

Another interesting direction for future studies is the
use of different cost functions to simulate quantum dy-
namics. In the case of adaptive Trotter decomposition, it
was shown that bounding the errors in the mean and the
variance of the energy is sufficient to obtain very precise
expectation values for local observables at intermediate
to long times [64, 65]. This raises the question whether
we can use shallower circuits if we only care about repro-
ducing the time evolution of local observables.
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Appendix A: Quantum many-body scars in the PXP
model

The PXP model is known to host so-called quantum
many-body scars [6, 74]. In this section we probe the
accuracy with which these states are reproduced by the
different architectures. To do so, we show in Fig. 15 the
absolute overlap between the eigenstates |λ⟩ of the cir-
cuits with eigenvalues λ and the Z2 Néel state. The calcu-
lations were performed at L = 14 for t = 4. The overlap
with eigenstates of the blocked circuit with M = 16 are
shown in dark blue, and of the TIVB circuit withM = 16
in cyan. As a reference we show the overlap for the ex-
act time evolution with red crosses. The TIVB circuit
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FIG. 15. The absolute overlap of the eigenstates |λ⟩ with the
Néel state |Z2⟩, versus the argument of the complex eigenval-
ues λ, for the exact PXP time-evolution operator and com-
pressed circuits with M = 16 layers at time t = 4 for sys-
tem size L = 14. Note that these are the eigenstates of the
entire unitary, not only the first block. Even though the
TIVB circuit simulates the time evolution most accurately,
the breaking of the constraint leads to multiple additional
non-degenerate eigenstates with small overlap. The six exact
eigenstates with the largest overlap are encircled in red. The
TIVB architecture can reproduce them to high precision.
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reproduces the uppermost scarred eigenstates to high ac-
curacy, while the blocked circuit is visibly off. This is
in line with their distance, namely ϵ ∼ O(10−3) for the
TIVB circuit and ϵ ∼ O(10−2) for the blocked circuit,
as can be seen in Fig. 6(a). On account of breaking the
constraint, there are many spurious states for the TIVB
circuit. It is shown in Fig. 6(b) that these do not signifi-
cantly affect the imbalance revivals.

Appendix B: Restricted distances

To better understand how the TIVB circuits can out-
perform the blocked circuits in compressing the PXP
time-evolution operator, we plot in Fig. 16 the Frobe-
nius distance (2) restricted to various parts of the uni-
tary. We do this for a TIVB and a blocked circuit, both
with M = 24 brickwall layers, shown as the solid and
dashed light blue lines. The second-order Trotter circuit
with M = 26 is shown as a dashed green line. In panel
(a) we show the distance of the largest diagonal block
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FIG. 16. The normalized Frobenius distance for various parts
of the PXP time-evolution operator with size L = 12. We con-
sider a TIVB and a blocked circuit with M = 24, shown as
solid and dashed lines, respectively. The second-order Trotter
circuit withM = 26 is shown as a dashed green line. The light
blue curves correspond to circuits that were optimized with
the total distance ϵ as cost function, which for the dark blue
curves was restricted to the largest diagonal block and its off-
diagonal rectangles. In panel (a) we show the distance of the
largest diagonal block ϵd1, in (b) the distance of the remain-
ing diagonal blocks ϵd1, in (c) the distance of the off-diagonal
rectangles adjacent to the largest diagonal block ϵo1, and in
(d) the distance of the remaining off-diagonal rectangles ϵor.
The block cost function provides a marginal increase in ac-
curacy for the first diagonal block, which is outweighed by
the exponential complexity of determining the block. Inter-
estingly, for t > 1 the restricted cost function achieves equally
high accuracy outside of the first block.

ϵd1, in panel (b) the distance of the remaining diagonal
blocks ϵdr, in panel (c) the distance of the off-diagonal
rectangles adjacent to the largest block ϵo1, and in panel
(d) the distance of the remaining distances. To normal-
ize the Frobenius norm we divide it by 2

√
Ne, with Ne

being the amount of matrix entries in the average. This
reduces to the normalized distance (2) when the average
is over one or multiple diagonal blocks.

We see that all distances are roughly equal, indicating
that optimizing the total ϵ leads to systematic improve-
ment of all sectors. The TIVB circuit has almost two or-
ders of magnitude higher accuracy on the diagonal blocks
than the blocked circuit. We know from Sec. III B 2 that
this gain carries over to the simulation accuracy of the
imbalance revivals, even at times when the largest di-
agonal block couples to the other diagonal blocks with
ϵo1 ∼ ϵor ∼ O(10−2).

Given these results, it is sensible to ask whether we can
increase the accuracy of the largest block by restricting
the cost function to the largest block and the adjacent
off-diagonal rectangles. The results of this optimization
are shown as the dark blue lines in Fig. 16. First we
consider the TIVB circuit. There is a marginal improve-
ment in the distance of the largest diagonal block ϵd1
and the distance of its off-diagonal rectangles ϵo1. Fur-
thermore, the distance of the other diagonal blocks ϵdr
and the distance of its off-diagonals ϵor are automatically
reproduced to almost the same extent as when using the
full cost function. Only at t = 1 the accuracy of the dis-
tances ϵdr and ϵor is diminished, which does not affect the
distances ϵd1 and ϵo1. We have checked that the imbal-
ance revivals are reproduced equally accurate with both
cost functions. For the blocked circuit there is no gain at
all, with the differences stemming from the optimization
procedure. In summary, there seems to be little merit to
a restricted cost function, especially because determining
the blocks is exponentially complex in L and requires a
priori knowledge of the particular structure of U .

In Fig. 17 we repeat this analysis for the XXZ model,
now for a TIVB circuit with M = 24 brickwall layers of
CNOT gates and a blocked circuit with M̃ = 8 brick-
wall layers of U(1)-symmetric gates. The second-order

Trotter circuit has M̃ = 8+1/2 brickwall layers of U(1)-
symmetric gates, with the +1/2 indicating an extra half
brickwall layer. Clearly, the restricted cost function pro-
vides no benefit.
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FIG. 17. The normalized Frobenius distance for various parts
of the XXZ time-evolution operator with size L = 12. We
consider a TIVB circuit with M = 24 and a blocked circuit
with M̃ = 8, shown as solid and dashed lines, respectively.
The second-order Trotter circuit with M̃ = 8 + 1/2 is shown
as a dashed green line. The light blue curves correspond to
circuits that were optimized with the total distance ϵ as cost
function, which for the dark blue curves was restricted to
the largest diagonal block and its off-diagonal rectangles. In
panel (a) we show the distance of the largest diagonal block
ϵd1, in (b) the distance of the remaining diagonal blocks ϵd1,
in (c) the distance of the off-diagonal rectangles adjacent to
the largest diagonal block ϵo1, and in (d) the distance of the
remaining off-diagonal rectangles ϵor. The block cost function
does not improve the accuracy of the first diagonal block, and
it no longer automatically yields high accuracy on the smaller
diagonal blocks.
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Hartmut Neven, and Ryan Babbush, “Improved fault-
tolerant quantum simulation of condensed-phase cor-
related electrons via trotterization,” Quantum 4, 296
(2020).

[47] Jarrod R McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik, “The theory of variational
hybrid quantum-classical algorithms,” New Journal of
Physics 18, 023023 (2016).

[48] Xiao Yuan, Suguru Endo, Qi Zhao, Ying Li, and Si-
mon C. Benjamin, “Theory of variational quantum sim-
ulation,” Quantum 3, 191 (2019).

[49] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C.
Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. Mc-
Clean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles, “Variational quantum algorithms,” Na-
ture Reviews Physics 3, 625–644 (2021).

[50] Reza Haghshenas, Johnnie Gray, Andrew C. Potter, and
Garnet Kin-Lic Chan, “Variational power of quantum cir-
cuit tensor networks,” Physical Review X 12 (2022).
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