English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Meeting Abstract

The metric α(CHa3O2) indicates ozone formation sensitivity towards NOx and VOCs in the global troposphere

MPS-Authors
/persons/resource/persons256981

Nussbaumer,  Clara M.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101196

Pozzer,  Andrea
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101104

Lelieveld,  Jos
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100935

Fischer,  Horst
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Nussbaumer, C. M., Pozzer, A., Lelieveld, J., & Fischer, H. (2024). The metric α(CHa3O2) indicates ozone formation sensitivity towards NOx and VOCs in the global troposphere. In EGU General Assembly 2024, Vienna, Austria & Online. doi:10.5194/egusphere-egu24-2586.


Cite as: https://hdl.handle.net/21.11116/0000-000F-89CF-E
Abstract
In EGU General Assembly 2024, Vienna, Austria & Online





While stratospheric ozone (O3) is essential to life on Earth, tropospheric ozone can have adverse effects. At the surface, it contributes to air pollution and impacts human health. Further, it is the third most important anthropogenic greenhouse gas enhancing global warming and climate change, and its radiative forcing efficiency is largest in the upper troposphere. Therefore, it is imperative to investigate ozone formation and its sensitivity to the precursor gases nitrogen oxides (NOx) and volatile organic compounds (VOCs). Commonly used metrics apply to the planetary boundary layer but fail to identify O3 formation sensitivity at higher altitudes. We introduce the new metric α(CH3O2) to indicate O3 sensitivity, which represents the share of methyl peroxy radicals (CH3O2) forming O3 through the reaction with NO in competition with the reaction with HO2 terminating the catalytic (O3 forming) HOx cycle. We demonstrate the versatility and applicability of α(CH3O2) by investigating a number of studies, including several based on data from stationary field measurements, aircraft observations and model simulations in various locations around the globe, across all altitudes from the surface to the upper troposphere and over a time period of the past 20 years. We identify where O3 chemistry is sensitive to NOx or VOCs in the global troposphere considering a wide range of ambient conditions.