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Macroscopic dynamics of ferromagnetic smectic-A
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We derive the macroscopic dynamic equations for ferromagnetic smectic-A liquid crystals for which the
spontaneous magnetization is parallel to the layer normal of the layering. As additional macroscopic variables
when compared to simple fluids, we have the layer displacement u, familiar from smectic liquid crystals, and the
magnetization density M. We find a number of reversible and dissipative cross-coupling terms to the additional
macroscopic variables and discuss possible experiments to detect them. Among other effects, we point out that
the velocity of first sound becomes anisotropic due to the influence of the modulus of the magnetization, while
the magnitude of the velocity of second sound is modified. As for the static behavior, we find cross-coupling
terms between the magnitude of the magnetization, on the one hand, and layer compression as well as osmotic
pressure, on the other hand. In addition, we point out that as a dissipative effect, temperature gradients can induce
gradients in the magnetization parallel to the layer normal, mediated by layer compressions.
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I. INTRODUCTION

Here we investigate a system combining layering as in a
smectic liquid crystal with ferromagnetism. For over three
decades, only magnetizable nematic liquid crystals (called
ferronematics), without a spontaneous permanent magnetiza-
tion, have been found [1–7]. These experimental efforts were
stimulated by the pioneering paper of Brochard and de Gennes
[8] on ferronematics.

This situation completely changed about a decade ago with
the synthesis of ferromagnetic nematics [9,10]. Since then,
these systems have been investigated by a number of groups,
experimentally [11–15] and theoretically [16,17]. More re-
cently, ferromagnetic cholesterics have also been reported and
characterized [18].

Regarding smectic systems with magnetic properties, un-
til now only lyotropic systems have been studied [19,20],
where a ferrofluid made of magnetic (micellar) particles is
put into the layers (compare Ref. [21] for an overview of the
macroscopic properties of isotropic magnetic liquids). These
lyotropic systems do not show magnetic ordering and so far
no ferromagnetic smectic liquid crystals have been reported
experimentally.

It seems worthwhile to contrast this situation with the
question of ferro electricity in liquid crystals. Ferroelectric
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nematic liquid crystals were prepared and characterized by
two groups about five years ago [22,23] and have since been
studied experimentally by various groups [24–37]. Also, there
has been theoretical work on ferroelectric nematics before
their discovery and ever since [38–41]. In 2022, ferroelec-
tric smectic-A phases with C∞v symmetry were also found
experimentally [42–44]. In these liquid crystalline phases, the
permanent electric polarization is oriented parallel to the layer
normal of the smectic layers, which otherwise show in-plane
fluidity just like a classical nonpolar smectic-A phase [42–44].

Quite recently, a macroscopic description of ferroelectric
smectic-AF phases was elucidated [45]. It was shown that
aside from static and dissipative cross-coupling terms, the
sound wave spectrum is also significantly altered compared
to that of a nonpolar smectic-A phase [45]. It should be noted
that the macroscopic properties of nonpolar smectic-A phases
(without being ferroelectric or ferromagnetic) have been stud-
ied for decades [46–49].

Based on this situation regarding the multiferroic prop-
erties of nematic and smectic liquid crystalline phases, here
we study the macroscopic properties of smectic-AM , a ferro-
magnetic smectic-A phase. We select the simplest possibility,
namely, a phase for which the spontaneous magnetization is
oriented parallel to the smectic layer normal.

The approach used is that of macroscopic dynamics [50].
This approach has been used to describe a large number of
condensed matter systems with spontaneously broken con-
tinuous symmetries and macroscopic variables, including
nematic liquid crystals [47,50,51], smectic-A liquid crystals,
crystals [47], magnetic systems [52], and ferroelectric ne-
matics, as well as various types of superfluids, including
superfluid 4He [53] and the superfluid phases of 3He in the
bulk [54–57] as well as in thin layers [58]. Recently, this
approach was applied to ferromagnetic nematics as well as
to ferroelectric smectic-AF [45].
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In the smectic-AM phase, we have as variables, in addition
to those from a miscible binary mixture, the layer displace-
ment of the smectic layers, the modulus of the spontaneous
magnetization, and the variations in the orientation of the
magnetization.

Of particular interest are two main features concerning
the macroscopic dynamics: first, the differences between fer-
romagnetic nematics and ferromagnetic smectics due to the
layering, and, second, the differences between ferroelectric
smectic-AF , studied recently, and ferromagnetic smectic-AM

studied here. The differences due to the different behavior of
the spontaneous magnetization and the spontaneous macro-
scopic polarization under parity and time reversal are crucial.
These differences in turn lead to different cross-coupling
terms to the layer displacement statically and dynamically
in the two systems, both of which are multiferroic in the
sense that one has a high degree of order with respect to two
properties: layering in both cases, and ferromagnetism and
ferroelectricity for ferromagnetic smectic-AM and ferroelec-
tric smectic-AF , respectively.

The paper is organized as follows. In Sec. II, we discuss
in detail the macroscopic variables that are used: con-
served quantities, variables associated with spontaneously
broken continuous symmetries, and macroscopic variables,
which relax on long, but finite and macroscopically relevant
timescales. In Sec. III, we present the free-energy functional,
thereby defining the thermodynamic conjugates. The macro-
scopic dynamic equations (Sec. IV) are followed in Secs.
V and VI by the reversible and dissipative phenomenologi-
cal currents. In Sec. VII, we analyze the effects of selected
cross-coupling terms which might be suitable for experimen-
tal detection in ferromagnetic smectic-AM and help to identify
the phase. A summary and perspective are given in Sec. VIII.

II. VARIABLES

The system we study here is the simplest possibility of
a ferromagnetic smectic-AM liquid crystalline phase. We as-
sume a smectic layer structure (with the layer normal p̂i) of
the same nature as a regular smectic-A phase [47], and, in
addition, a ferromagnetic structure,

Mi = Mm̂i, (1)

with a permanent magnetization M along the direction m̂i.
In Fig. 1, we have sketched one layer of a ferromagnetic
smectic-AM phase. We consider the case where the two pre-
ferred directions are parallel in equilibrium, m̂0

i ‖ p̂0
i . In the

presence of external fields, they will, in general, no longer
be parallel. This feature resembles the analogous situation in
ferromagnetic nematics [10,11]. The preferred directions are
described by unit vectors p̂2 = 1 and m̂2 = 1.

The set of macroscopic variables, which arises for such a
system, comprises, first, the usual conserved quantities of a
simple fluid, mass density ρ, density of momentum g, and
energy density ε, and, second, variables related to the internal
structure. The smectic layer structure (the one-dimensional
density wave) spontaneously breaks translational symmetry
along p̂i, giving rise to a displacement variable u = ui p̂i

with ui the displacement vector. Homogeneous translation
u = const does not cost energy, while first-order gradients of

FIG. 1. One layer of the ground state of a ferromagnetic smectic-
AM phase. The arrows indicate the direction of the ferromagnetic
magnetization. The normal to the smectic layering is taken to be in
the ẑ direction. (Adapted from Ref. [59]).

u describe compression or dilation and rotations and second-
order gradients account for bent of the layers. Within the
perpendicular layers, a smectic-AM liquid crystal is isotropic
and no structural variable occurs.

The existence of the preferred direction p̂i breaks rotational
symmetry and the two rotations δpi (with p̂iδ p̂i = 0) are the
appropriate variables. According to the smectic-A structure,
δpi and u are not independent, but related (in linear order) by.

δ p̂i = −δ⊥
i j ∇ ju, (2)

with the transverse Kronecker symbol δ⊥
i j = δi j − p̂i p̂ j . Of

course, compression or dilation of the layers, p̂i∇iu, cannot
be described by δ p̂i. Therefore, we will use the gradients of u
as the hydrodynamic variables. The smectic and the nematic
order parameter will not be taken into account since, gener-
ally, they relax very rapidly.

The magnetic structure, given by Eq. (1), gives rise to
rotations of the direction, δm̂i, and fluctuations of the mag-
netization, δM (the magnetic order parameter). There is a
finite equilibrium magnetization M0, and δM = M − M0 is
a macroscopic variable, which relaxes on a long, but finite
timescale.

To set up the hydrodynamic equations, we make use of
symmetries, such as translational and rotational symmetries,
spatial inversion, and time-reversal symmetry. In the present
case, we also have to respect the p̂i → −p̂i invariance that is
inherited from the smectic-A structure. As a result, p̂i behaves
effectively as an axial vector. This is similar to the director n̂i

in nematic liquid crystals with the n̂i → −n̂i invariance. In
particular, the layer displacement u = p̂iui, associated with
the density wave, is odd in p̂i, odd under space inversion,
and even under time reversal. The vectorial variables δm̂i,
associated with a broken rotational symmetry, are even in p̂i
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and even under parity (axial vectors), and odd under time
reversal. Finally, the macroscopic variable δM is a true scalar,
even under parity and time reversal. To account for mixture
effects, we use a concentration variable δφ. Depending on the
specific material under consideration, it might be interpreted
as a mixture effect between magnetic and nonmagnetic mate-
rials or as the density of impurities, giving rise to a conserved
variable or a nonconserved one, respectively.

Throughout this paper, we will not consider two-fluid
effects bringing along a second velocity. Such effects are char-
acteristic for immiscible and/or partially miscible complex
fluids that allow for long-living relative motions (e.g., between
magnetic and nonmagnetic structures) or due to additional
broken symmetries (e.g., gauge symmetry in superfluids [53]).
A general systematic macroscopic approach for these systems
has been presented in Ref. [60]. Recently, this approach has
been applied to a number of systems including nematic liquid
crystals with smectic clusters [61].

Assuming local thermodynamic equilibrium, i.e., all fast
relaxing quantities being already in equilibrium, the local
formulation of the first law of thermodynamics, including the
magnetic induction B, reads [47,50,62]

dε = T dσ + μdρ + Πdφ + vidgi + HidBi

+ hm
i dm̂i + hMdM + hu

i d∇iu, (3)

connecting the macroscopic variables to the entropy density
σ . In Eq. (3), the thermodynamic quantities, i.e., chemical po-
tential (μ), temperature (T ), relative chemical potential (Π ),
the molecular field hu

i associated with the layer displacement

u, the magnetic Maxwell field (Hi) and the magnetic molecu-
lar fields (hm

i and hM), are defined as partial derivatives of the
energy density with respect to the appropriate variables [50].
Since the free energy has to be invariant under spatial rota-
tions, time inversion, and p̂i → −p̂i invariance, the conjugate
quantities inherit the symmetry properties of the variables.

While we use the assumption of local thermodynamic
equilibrium, we would like to emphasize that this approach
is nevertheless applicable to many nonequilibrium situations.
As a typical example, we refer to the Navier-Stokes equa-
tions for fluids, which are also used to describe the behavior
of hydrodynamic instabilities and the onset of turbulence as
well as fully developed turbulence. This situation should be
contrasted to approaches assuming the existence of a general-
ized thermodynamic potential for the complete dynamics, an
approach which cannot even describe oscillatory instabilities
near the onset of a pattern-forming instability, such as in the
case of Rayleigh-Bénard convection.

III. STATIC CONSIDERATIONS

First, we analyze the static properties of smectic-AM with-
out taking into account the static Maxwell equations in the
magnetic domain. Field effects will be discussed later in this
section.

The static behavior of the macroscopic system studied
here is conveniently described by the energy functional in
harmonic approximation; see Refs. [39,47,50]. We obtain,
including the kinetic energy density,

ε = +1

2
cM (δM )2 + 1

2
Li j (∇iM )(∇ jM ) + 1

2
B(∇zu)2 + 1

2
K (∇2

⊥u)2

+ 1

2
cρρ (δρ)2 + 1

2
cσσ (δσ )2 + 1

2
cφφ (δφ)2 + cρφ (δρ)(δφ) + cρσ (δρ)(δσ ) + cσφ (δσ )(δφ)

+ (γ1δρ + γ2δσ + γ3δφ + γ4[∇zu]) δM + (θ1δρ + θ2δσ + θ3δφ) ∇zu

+ 1

2
F (m̂ × δm̂ − p̂ × δ p̂)2 + 1

2ρ
g2 + 1

2
Km

i jkl (∇im̂ j )(∇km̂l ), (4)

where ∇z is a shorthand notation for p̂i∇i. A “δ” denotes
deviations from the equilibrium value, in particular δM =
M − M0, δm̂i = m̂i − m̂0

i , δφ = φ − φ0, δρ = ρ − ρ0, δT =
T − T0, and δ p̂i = p̂i − p̂0

i , which is given in Eq. (2).
The stiffness of fluctuations of the magnetization is given

by cM . Inhomogeneous deviations of the magnetization are
described by ∼Li j = L‖ p̂i p̂ j + L⊥δ⊥

i j .
Gradients of u describe deformations of the layers, in par-

ticular, compression or dilation (∼B) and layer bending (∼K).
They are of the standard form familiar from ordinary smectic-
A [48]. Bent of the layers is related to splay of p̂i, while
bent of p̂i leads to an energy ∼δ⊥

i j (∇z∇iu)(∇z∇ ju), which
is generally neglected. Twist of p̂i is forbidden in smectic-A
structures.

In addition, the energy density of a fluid binary mixture, in-
volving δσ , δρ, and δφ, is as in the nonmagnetic case. Related
to δM are the contributions ∼γ1, γ2, γ3, and ∼γ4. The cou-
pling terms ∼δM associated with the contributions ∼γ1, γ2,

and γ3 represent coupling terms between the variations of the
modulus of the magnetization, δM, and other scalar variables.
These include the variations of density, δρ, entropy density
δσ , as well as of concentration, δφ. A rather specific and quite
unusual static cross-coupling term is the contribution ∼γ4. It
reflects a coupling between variations of the modulus of the
magnetization and compression of the layering, ∇zu. In the
present system, δM and ∇zu are good scalars, that is, they
are invariant under all transformations and can thus lead to a
couple of extraordinary effects: a variation of the magnitude
of the magnetization leads to a compression of the layering
and, vice versa, a layer compression leads to variations of the
magnitude of the magnetization. This coupling can arise for
ferromagnetic smectics, which possess both variables, and is
therefore quite unique.

We also note that as usual, one has static cross-coupling
terms between layer compressions, ∇zu, and variations of
density, entropy density, and concentration variations. This
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type of static cross-coupling term exists for all layered (smec-
tic) liquid crystalline phases.

The contribution ∼F is zero for a combined rotation of m̂i

and p̂i reflecting the spontaneously broken rotational symme-
try for that case. Of course, relative rotations between m̂i and
p̂i do cost energy, as described by the F term. In harmonic
approximation, it reads

1
2 Fδ⊥

i j

[
δm̂iδm̂ j + (∇iu)(∇ ju) + 2m̂0

k p̂0
kδm̂i(∇ ju)

]
. (5)

Relative rotations have been introduced by de Gennes [63]
for nematic liquid crystalline elastomers and their effects have
also been incorporated in the macroscopic dynamics of uniax-
ial magnetic gels [64]. In ordinary smectic-A liquid crystals
(where no δm̂i exists), this contribution has to be absent,
F = 0.

The structure of the gradient energy, ∼Km
i jkl , is identical

with that of Frank’s deformation energy for the director field
of uniaxial nematic liquid crystals [49] with the director gra-
dients ∇ j n̂i replaced by ∇ j m̂i. It describes splay, bend, and
twist deformations of m̂i. Since twist in ∇ j n̂i is impossible,
the twist in ∇ j m̂i also has to be small, in order to keep the
quadratic structure of the relative rotations in Eq. (5) valid.

A positive-definite free energy is necessary to guarantee
static stability of the system. This is obtained by the conditions
cM > 0, F > 0, B > 0, L⊥ > 0, L|| > 0, Km

1 > 0, Km
2 > 0,

Km
3 > 0, and γ 2

4 < cMB, as well as γ 2
1 < cMcρρ , γ 2

2 < cMcσσ ,
and γ 2

3 < cMcφφ , which are related to the magnetic quantities
δM, ∇iM, and δm̂i.

Although the energy density given by Eq. (4) is bilinear
in deviations from equilibrium, there are intrinsic nonlinear
effects since the material parameters can be functions of the
(scalar) state variables, such as temperature, density, and mag-
netization M.

The harmonic approximation is a restriction to sufficiently
small deviations from the spatially homogeneous ground
state. Big changes, such as a complete reorientation of Mi

as in the magnetic Frederiks transition [48], require a fully
nonlinear analysis of all the variables that are involved. In
particular, a replacement ∇zu → ∇zu − 1

2 (∇⊥u)2 in Eq. (4)
takes care of effective layer compressions due to rotations, as
explained in Fig. 3(b) of Ref. [65].

We now discuss the influence of an external magnetic
field. An external magnetic field constitutes another preferred
direction Hi, which we will take as the z direction when neces-
sary. In equilibrium, the magnetization is parallel to the field,
Hi ‖ m̂i, due to the static Maxwell coupling energy −HiMi.
For deviations of the equilibrium orientation, the appropriate
ferromagnetic energy is

εm = 1
2 M0Hδ⊥

i j δm̂iδm̂ j, (6)

which is linear in the field. Equation (6) is based on the
approximate relation m̂ ≈ {m̂x, m̂y, 1 − 1

2 (m̂2
x + m̂2

y )} for any
unit vector that is (slightly) tilted away from the z direction.
Up to quadratic order in m̂2

⊥, this expression correctly gives
m̂2 = 1

Regarding the smectic layer normal, we assume that in
equilibrium the layer normal is parallel to the field. In
nonequilibrium, the well-known magnetic anisotropy energy

applies,

εa = 1
2χaH2(∇⊥u)2, (7)

with χa > 0 [49].
According to the Gibbs relation, given by Eq. (3), the

conjugate quantities to the hydrodynamic and macroscopic
variables follow from the free energy as variational or par-
tial derivatives with respect to the appropriate variable, while
all the other variables are kept constant. Including the field
energies εa and εm, we get

h′M = ∂ε

∂δM

∣∣∣∣
...

= cMδM + γ1δρ + γ2δσ + γ3δφ + γ4∇zu,

(8)

�M
i = ∂ε

∂ (∇iM )

∣∣∣∣
...

= (L‖ p̂i p̂ j + L⊥δ⊥
i j )∇ jM, (9)

h′u
i = ∂ε̃

∂∇iu

∣∣∣∣
...

= p̂i(B∇zu + θ1δρ + θ2δσ + θ3δφ + γ4δM )

+ δ⊥
i j (χaH2∇ ju + F [δm̂ j + ∇ ju]), (10)

�u
i j = ∂ε

∂∇i∇ ju

∣∣∣∣
...

= δ⊥
i j K∇2

⊥u, (11)

h′m
i = ∂ε

∂m̂i

∣∣∣∣
...

= δ⊥
i j (M0Hδm̂ j + F [∇ ju + δm̂ j]), (12)

�m
i j = ∂ε

∂ (∇im̂ j )

∣∣∣∣
...

= Km
i jkl∇l m̂k, (13)

δμ = ∂ε

∂δρ

∣∣∣∣
...

= γ1δM + θ1∇zu

+ cρρδρ + cρφδφ + cρσ δσ, (14)

δT = ∂ε

∂δσ

∣∣∣∣
...

= γ2δM + θ2∇zu

+ cσσ δσ + cρσ δρ + cσφδφ, (15)

δΠ = ∂ε

∂δφ

∣∣∣∣
...

= γ3δM + θ3∇zu

+ cφφδφ + cφρδρ + cφσ δσ, (16)

vi = ∂ε

∂gi

∣∣∣∣
...

= gi/ρ, (17)

with δ⊥
i j = δi j − p̂0

i p̂0
j = δi j − m̂0

i m̂0
j .

For the variables δM, δm̂i, and ∇iu, which enter the energy
at different gradient levels, we have split the conjugates hM =
h′M − ∇i�

M
i , hm

i = h′m
i − ∇ j�

m
i j , and hu

i = h′u
i − ∇ j�

u
i j .

All the static susceptibilities can be a function of the exter-
nal field. In a ferromagnetic phase, a linear field dependence
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∼M0H is possible, but also the conventional ∼H2 dependence
independent of M0 is possible. In addition, M0 is changed by
the external field, M(H ) = M0 + χ‖H in linear order, with
χ‖ the longitudinal magnetic susceptibility. In the general
case, M(H ) is a function that can be taken from experiment
or extended simulations. In the following, we will write M
[instead of M(H )] for simplicity.

IV. DYNAMICS

The hydrodynamic equations for conserved, broken-
symmetry, and slowly relaxing variables are

ρ̇ + ∇i(ρvi ) = 0, (18)

σ̇ + ∇i
(
σvi + j σR

i + j σD
i

) = 2R

T
, (19)

ġi + ∇ j
(
giv j + p δi j − p̂ih

u
j + σ th

i j + σ R
i j + σ D

i j

) = 0, (20)

φ̇ + v j∇ jφ + JφR + JφD + ∇i
(

jφR
i + jφD

i

) = 0, (21)

u̇ + v j∇ ju − vz + X uR + X uD = 0, (22)

Ṁ + vi∇iM + X MR + X MD = 0, (23)

˙̂mi + v j∇ j m̂i + (m̂ × ω)i + X mR
i + X mD

i = 0, (24)

where ωi = 1
2εi jk∇ jvk is the vorticity. The conserved quan-

tities and the entropy density contain the divergence of a
phenomenological current, while quasicurrents (without a
divergence) are associated with spontaneously broken con-
tinuous symmetry variables or macroscopic variables. In
particular, Eq. (23) describes the magnetization order parame-
ter modulus as a slowly relaxing quantity (similar to, e.g., the
nematic order parameter modulus [66] or the superfluid de-
gree of order [53,67]). For the concentration variable, we have
allowed for both possibilities, conserved or nonconserved.
Only for JφR + JφD = 0 is δφ conserved.

The superscripts D and R on the currents denote, respec-
tively, the dissipative and reversible parts.

We use the pressure p including the isotropic part of the
Maxwell stress,

p = ∂ (
∫
εdV )

∂V
= −ε + μρ + T σ + v · g + BiHi, (25)

and the off-diagonal terms of the Maxwell and the Ericksen-
type stresses,

2σ th
i j = −(HiBj + BiHj ) + �M

j ∇iM + �M
i ∇ jM

+ �u
ki∇k∇ ju + �u

k j∇k∇iu. (26)

The Maxwell stress is of the standard form [68,69] with
Bi = Hi + Mi and has been symmetrized with the help of the
requirement that the energy density should be invariant under
rigid rotations [47,50].

The entropy production 2R/T in Eq. (19) is a measure for
the energy dissipation of the system. Due to the second law of
thermodynamics, the dissipation R must satisfy

∫
R dV � 0:

For irreversible processes, R is positive, for reversible ones, it

is equal to zero (or a total divergence),

2R = − jσ∗
i ∇iT + Jφ∗Π − jφ∗

i ∇iΠ − σ ∗
i jAi j

+ X m∗
i hm

i − X u∗∇ih
u
i + X M∗hM � 0, (27)

where the upper sign applies to ∗ = D and the lower one to
∗ = R.

The energy conservation law,

ε̇ + ∇i(ε + p) vi + ∇i
(

j εR
i + j εD

i

) = 0, (28)

is redundant due to the Gibbs relation, given by Eq. (3), and
follows from Eqs. (18)–(26) and (27). In particular, j εD

i =
T j σD

i + Π jφD
i + v jσ

D
i j + hu

i X uD.
The phenomenological currents and quasicurrents are the

sum of the reversible and the dissipative parts, as can be
seen in Eqs. (19)–(23). The various transport contributions in
Eqs. (18)–(23) (as well as p and σ th

i j ) are reversible and add
up to zero in the entropy production. They are not material
dependent, but are given by general symmetry and thermody-
namic principles [50], such as transformation behavior under
translations (convective terms) or rotations (e.g., . . . × ω).

These phenomenological currents and quasicurrents are
treated in the following sections within “linear irreversible
thermodynamics” (guaranteeing general Onsager relations),
i.e., as linear relations between currents and thermodynamic
forces. The resulting expressions are nevertheless nonlinear
since all material parameters can be functions of the scalar
state variables (e.g., σ , ρ, M, φ).

V. REVERSIBLE CURRENTS

The reversible phenomenological currents, with super-
script R in Eqs. (18)–(24), give rise to zero entropy
production, given by Eq. (27). Taking into account the sym-
metry behavior regarding space inversion and time reversal as
well as under p̂i → −p̂i invariance, we obtain

jσR
i = −κR

i j∇ jT − DT R
i j ∇ jΠ, (29)

jφR
i = −DR

i j∇ jΠ − DT R
i j ∇ jT, (30)

JφR = 0, (31)

σ R
i j = λM

i j hM − cR
ki jh

m
k − νR

i jkl Akl , (32)

X uR = 0, (33)

X mR
i = γLεi jkm̂ jh

m
k − cR

i jkA jk, (34)

X MR = λM
i j Ai j, (35)

with Ai j = 1
2 (∇iv j + ∇ jvi ). In Eq. (34), we have explicitly

written the Larmor-type reversible rotation (∼γL) of m̂i.
The material tensors with a superscript R have to be odd

under time reversal and therefore must contain an odd number
of m̂i factors. In addition they are even in p̂i.

The second rank tensors κR
i j , DR

i j , and DT R
i j , which are the

reversible analogues to (the dissipative) heat conduction, dif-
fusion, and thermodiffusion, respectively, have the form

κR
i j = κR

1 εi jkm̂0
k . (36)
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They are antisymmetric κR
i j = −κR

ji, which ensures R = 0, and
they fulfill the general Onsager relation κR

i j (−m̂i ) = −κR
i j (m̂i )

based on time-reversal properties m̂i → −m̂i of the magneti-
zation. It should be noted that jσR

i and jφR
i are divergence free

and do not contribute to σ̇ or φ̇, respectively.
The symmetric tensor λM

i j = λ‖ p̂0
i p̂0

j + λ⊥δ⊥
i j is of the stan-

dard form and connects reversibly magnetization M with flow
Ai j or stress tensor σi j . A similar dynamic cross coupling
with the magnetic orientation m̂i is provided by the third rank
tensor which is odd under time reversal and is symmetric in
the last two indices,

cR
i jk = 1

2 cR
(
δ⊥

i j m̂
0
k + δ⊥

ik m̂0
j

)
. (37)

We note that Eqs. (36) and (37) are special cases of the ap-
propriate discussions given in Refs. [70] for the ferronematic
case.

The reversible analog to the viscosity tensor νR
i jkl is sym-

metric under the exchange of indices i ↔ j and k ↔ l ,
separately, but is antisymmetric for νR

i jkl ↔ −νR
kli j and is odd

under time reversal, guaranteeing R = 0:

νR
i jkl = +νR

1 (εikqδ
⊥
jl + εilqδ

⊥
jk + ε jlqδ

⊥
ik + ε jkqδ

⊥
il ) m̂0

q

+ νR
2

(
εikqm̂0

j m̂
0
l + εilqm̂0

j m̂
0
k

+ ε jlqm̂0
i m̂0

k + ε jkqm̂0
i m̂0

l

)
m̂0

q. (38)

Close inspection of the two terms given in Eq. (38) shows that
they are isomorphic to the same type of terms given by Liu
[55] for the hydrodynamics of the superfluid A phase of 3He
[54]. This common feature between the two systems can be
traced back to the fact that both have a unit vector, which
is odd under time reversal and is axial in nature: l̂0

i in the
case of 3He -A [54,55] and m̂0

i in the case of ferromagnetic
smectic AM . Here, l̂0

i is the preferred direction in (orbit) space
in the superfluid A phase of 3He; it characterizes the broken
rotational symmetry that exists in 3He -A. In contrast to the
director in nematics, n̂i, l̂0

i is odd under time reversal due to the
symmetry properties of the order parameter for the superfluid
phases of 3He. From this observation, it emerges that one has
reversible coupling terms between different components of the
density of momentum for all systems for which such a unit
vector exists. These include a number of liquid crystalline
phases, including ferronematics [70] und ferromagnetic ne-
matics, as well as various superfluid phases of 3He, including
the A1 phase [56,57] and also systems with an axial dynamic
preferred direction [71].

VI. DISSIPATIVE CURRENTS

For the derivation of the dissipative parts of the phe-
nomenological currents, one usually expands the dissipation
function R to second order in the thermodynamic forces and
then obtains the dissipative currents by taking the variational
derivatives with respect to the forces. We find, for the dissipa-
tion function of the AM phase,

2R = κi j (∇iT )
(∇ jT

) + Di j (∇iΠ )(∇ jΠ ) + 2DT Π
i j (∇iT )(∇ jΠ ) + μ̃(δΠ )2 + 2μM (δΠ )hM + bD

‖ (hM )2 + bD
⊥δ⊥

i j h
m
i hm

j

+ νi jkl Ai jAkl + 2DuΠ (∇zΠ )
(∇ih

u
i

) + 2DuT (∇zT )
(∇ih

u
i

) + cD
i jkhm

i A jk + 1

γu

(∇ih
u
i

)(∇ jh
u
j

)
. (39)

Here, νi jkl is the uniaxial viscosity tensor [47,50,72],
while by the symmetric second rank tensors κi j , Di j , and
DT

i j , heat conduction, diffusion, and thermodiffusion, respec-
tively, are described. Smectic permeation is given by one
coefficient 1/γu, while the magnetization relaxation contains
a transverse coefficient bD

⊥ (related to δm̂i) and a longi-
tudinal one bD

‖ (related to δM). Concentration relaxation
is governed by μ̃ and coupled to the relaxation of δM
via μM . For a conserved concentration variable, μ̃ = 0 and
μM = 0.

The third rank tensor cD
i jk is specific for smectic-AM and

contains one coefficient,

cD
i jk = cD

(
εimk p̂0

m p̂0
j + εim j p̂0

m p̂0
k

)
, (40)

describing a dissipative coupling between flow and the orien-
tation of the magnetization.

The range of possible values of the coefficients in Eq. (39)
is restricted by the positivity of the entropy production that re-
quires, e.g., D‖/γu > (DuΠ )2, κ‖/γu > (DuT )2, ν3bD

⊥ > (cD)2,
with bD

⊥, bD
‖ , and γu all positive.

To obtain the dissipative parts of the currents and quasicur-
rents, we take the partial derivatives of R with respect to the
appropriate thermodynamic force,

jσD
i = − ∂R

∂ (∇iT )

∣∣∣∣
...

= −κi j∇ jT − DT Π
i j ∇ jΠ − DuT p̂i∇ jh

u
j ,

(41)

jφD
i =− ∂R

∂ (∇ jΠ )

∣∣∣∣
...

=−Di j∇ jΠ − DT Π
i j ∇ jT − DuΠ p̂i∇ jh

u
j ,

(42)

JφD = ∂R

∂Π

∣∣∣∣
...

= μ̃ δΠ + μMhM , (43)

σ D
i j = − ∂R

∂Ai j

∣∣∣∣
...

= −νi jkl Akl − cD
k jih

m
k , (44)

X MD = ∂R

∂hM

∣∣∣∣
...

= b||hM + μMδΠ, (45)

X mD
i = ∂R

∂hm
i

∣∣∣∣
...

= bD
⊥δ⊥

i j h
m
j + cD

i jkA jk, (46)
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X uD = − ∂R

∂
(∇ihu

i

)
∣∣∣∣
...

= − 1

γu
∇ih

u
i − DuΠ∇zΠ − DuT ∇zT .

(47)

We note that both contributions, ∼cR
i jk (reversible) as well

as ∼cD
i jk (dissipative), describe couplings between extensional

flow and rotations of the magnetization orientation. It is
worthwhile to emphasize that this situation is unknown from
other smectic phases. For example, for usual smectic-A phases
or for ferroelectric smectic-AF phases, an effect analogous to
the contribution ∼cR

i jk does not exist since one has, in these
phases, no unit vector odd under time reversal.

VII. POSSIBLE EXPERIMENTS

A. Static couplings of the magnetization M

In magnetic fluids, the magnetization M generally depends
on density and temperature. In the AM phase, changes in
concentration as well as layer compression or dilation also
lead to changes in M. In the free energy, given by Eq. (4),
this is described by the susceptibilities γ3 and γ4, respectively.

We assume an externally fixed layer compression ∇zu ≡ N
and look for its influence on the magnetization (and concen-
tration). For the incompressible (δρ = 0) and isentropic case
(δσ = 0), we are left with Eqs. (8) and (16) describing static
equilibrium under the condition N = 0,

0 = cMδM + γ3δφ + γ4N, (48)

0 = γ3δM + cφφδφ + θ3N, (49)

with the solution

δM = (−γ4cφφ + γ3θ3)(det)−1N, (50)

δφ = (−cMθ3 + γ3γ4)(det)−1N, (51)

with det = cMcφφ − γ 2
3 > 0. Equations (50) and (51) demon-

strate that an externally imposed layer compression leads to
changes in the magnitude of the magnetization, as as well as
to concentration variations, which are directly proportional to
the magnitude of the applied layer compression.

In ferrosmectics (magnetic or magnetizable smectics) that
do not have a permanent spontaneous magnetization, the
effects ∼γ3 and ∼γ4 could arise as induced effects in the pres-
ence of an external magnetic field. Concerning effects ∼γ3,
this also applies for ferronematics (magnetic or magnetizable
nematics).

We also note that analogous effects ∼γ3 and ∼γ4 do ex-
ist in ferroelectric smectic-AF , with the electric polarization
replacing the magnetization.

B. Reversible dynamic coupling of flow
with the magnitude of the magnetization, M.

In simple fluids, ordinary sound is known as the only prop-
agating low-k excitation, exp i(kiri − ωt ), with ω2 ∼ k2. In a
smectic-A liquid crystal, ferromagnetic or paramagnetic, there
is an additional propagating mode, sometimes called second
sound. It is due to the spontaneously broken translational sym-
metry along the normal of the layers. This one-dimensional

compression or dilation mode, with susceptibility B, given by
Eq. (4), is anisotropic and leads to an anisotropic part in the
first sound spectrum. In a ferromagnetic smectic phase AM ,
the magnetization δM additionally provides a low-k coupling
with ∇ivi and ∇zvz via λM

i j in Eqs. (32) and (35). As a result,
both soundlike excitations are more complicated.

Disregarding dissipation, the solvability condition for the
linearized equations of motion, given by Eqs. (19)–(23), leads,
after some trivial algebra, to the dispersion relations for first
sound,

ω2
1 = c2

10k2 + B

ρ0

k4
z

k2
+ cM

ρ0

(
λM

1 k2 + λM
a k2

z

)2

k2
, (52)

with λM
a = λM

2 − λM
1 and kz shorthand for p̂iki. For the

isotropic first sound velocity (of simple fluids), we get ρ0c2
10 =

c2
ρρρ2

0 + 2c2
ρσ ρ0σ0 + c2

σσ σ 2
0 in our representation. The second

contribution (∼B) shows a uniaxial dependence on the angle
ϑ between ki and p̂i, k2 cos4 ϑ . The last contribution (∼cM)
reflects the anisotropy of the material tensor, λM

i j . In gen-
eral, first sound anisotropy has contributions ∼k2 cos4 ϑ and
∼k2 cos2 ϑ . In writing Eq. (52), we have assumed that c2

10k2

is the dominant contribution to first sound.
For second sound, we find

ω2
20 = (

c2
B + c2

2λ

)k2
⊥k2

z

k2
≡ c2

2k2 sin2 ϑ cos2 ϑ, (53)

with c2
B = B/ρ, related to the smectic compression mode, and

c2
2λ = (cM/ρ)(λM

a )2, related to the λM
i j coupling. The perpen-

dicular wave vector is k2
⊥ = k2 sin2 ϑ . This mode vanishes for

ki that is either parallel or perpendicular to p̂i.
It is well known that there is no damping for ordinary

first sound (∼c2
10) and the smectic compressional wave (∼c2

B)
in lowest order of the wave vector ω ∼ k. This is different
for the coupling of the magnetization provided by ∼λM

i j . The
relaxation of δM, given in lowest order in k by Ṁ + λM

i j Ai j +
b||cMM = 0, contains the dissipative contribution ∼b|| leading
to dissipation in the dispersion relations discussed above.

For second sound, we find the implicit relation

ω2
2 =

(
c2

B + ω2

ω2 + ib||cM
c2

2λ

)
k2
⊥k2

z

k2
, (54)

where the imaginary part (∼b||) indicates damping. As ex-
pected, only the λM

i j contribution is damped. The influence of
the relaxation of δM in the first sound spectrum shows up only
in the part (∼cM) of Eq. (52). The results for second sound
discussed above can be taken over accordingly for this part of
first sound.

It thus emerges that the presence of a relaxing variable
such as the magnitude of the magnetization for ferromagnetic
smectic-AM , or the magnitude of the macroscopic polarization
for ferroelectric smectic-AF , influences all soundlike excita-
tions to lowest order in the wave vector. It is expected that the
influence of the relaxation of δM is strongest, and therefore
most easily measurable, near a second-order phase transition
from smectic-AM to a phase of higher symmetry. This is based
on the fact that in the vicinity of such a phase transition, the
lifetime of the order parameter fluctuations is growing.

In closing this section, we note that the effects discussed
here exist neither in ferromagnetic nematics nor in usual
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smectic-A. On the other hand, they are structurally quite sim-
ilar to the analogous ones in ferroelectric smectic-AF [45].

C. Dissipative response to an external temperature gradient

In this section, we investigate the application of a constant
temperature gradient across the smectic layers, ∇zT ≡ Q,
which can result in a stationary, space-dependent nonequilib-
rium layer structure.

We first concentrate on the special case of a pure system
without a concentration variable. We take zero velocity vi = 0
(no flow), zero rotation of the direction of the magnetization
δm̂i = 0, and incompressibility δρ = 0. Stationarity u̇ = 0 in
Eq. (22) requires the quasicurrent X uD, given by Eq. (47), to
vanish (the reversible part X uR is zero anyhow), with the result

− 1

γu
∇ih

u
i = DuT Q. (55)

Similarly, using Eqs. (23) and (45) for the magnitude of the
magnetization, M, Ṁ = 0 leads to

hM = 0. (56)

Relating the molecular fields to the variables, given by
Eqs. (8) and (10), we first get an inhomogeneous layer com-
pression,

∇2
z u = γu

B̃
DuT Q, (57)

with B̃ = B − γ 2
4 /cM , and, second, a gradient in the magni-

tude of the magnetization,

∇zM = −γ4γu

cMB̃
DuT Q. (58)

Secondly, we have examined, in detail, the presence of a
concentration variable δφ, that is not conserved. In Eq. (21),
φ̇ = 0 requires JφD = 0. Together with X MD = 0, we have
two coupled conditions,

0 = μδ� + μMhM, (59)

0 = b‖hM + μMδΠ, (60)

with the solutions hM = 0 and δΠ = 0.
The third stationarity condition in Eq. (47), X uD = 0, can

be simplified to Eq. (55) using δΠ = 0. Finally, in terms of
the variables, the induced quantities read

∇zM = γuDuT

�
(cφφγ4 − γ3θ3) Q, (61)

∇zφ = γuDuT

�
(cMθ3 − γ3γ4) Q, (62)

∇2
z u = γuDuT

�
(γ 2

3 − cMcφφ ) Q, (63)

with � = B(cMcφφ − γ 2
3 ) + 2γ3γ4θ3 − cφφγ 2

4 − θ2
3 cM .

This result demonstrates that for an externally applied
constant temperature gradient, a dissipative stationary solu-
tion without flow, but involving layer compressions and a

gradient of the magnitude of the magnetization, can exist for
a nonconserved concentration. This observation underscores
the significance of the decomposition given in Eq. (1) for the
magnetization Mi into the direction of the magnetization m̂i

associated with broken rotational symmetry, and the magni-
tude of the magnetization, M, a macroscopic variable, which
relaxes on a long, but finite timescale.

We have also studied the case of a conserved concentration
variable under stationary conditions and without any flow. In
this case, we could not find a solution. This indicates that in
general, an applied constant temperature gradient will lead to
a time-dependent pattern and/or the occurrence of flow.

We close this section by pointing out that to find a sta-
tionary solution in an applied constant temperature gradient
for such a complex system as ferromagnetic smectic-AM is
rather special. It turns out that for other complex fluids,
such as ferroelectric smectic-AF , recently found experimen-
tally [42–44] and analyzed with respect to their macroscopic
properties in Ref. [45], we could not find a stationary solu-
tion without flow in an applied constant temperature gradient
at all.

VIII. SUMMARY AND PERSPECTIVE

Here we have derived the complete set of macroscopic
dynamic equations for ferromagnetic smectic-AM liquid crys-
tal with the spontaneous average magnetization parallel to
the layer normal of the layering. Compared to nonmagnetic
smectic-A phases, we find a number of static and reversible as
well as irreversible dynamic cross-coupling terms.

As additional macroscopic variables when compared to
simple fluids, we have the layer displacement u, familiar from
smectic liquid crystals and the magnetization density M. We
point out that the velocity of first sound becomes anisotropic
due to the influence of the modulus of the magnetization,
while the magnitude of the velocity of second sound is modi-
fied, while preserving the angular dependence familiar from
the usual second sound in nonmagnetic smectic-A phases.
For the static behavior, we investigate cross-coupling terms
between the magnitude of the magnetization, on the one hand,
and layer compression as well as osmotic pressure, on the
other hand. In addition, we point out that as a stationary dis-
sipative effect without flow, temperature gradients can induce
gradients in the magnetization parallel to the layer normal,
mediated by layer compressions. Such a stationary solution
turns out to be possible as well for an additional nonconserved
concentration variable. In general, time-dependent and/or
states with a flow are to be expected.

As a perspective, we would like to mention antiferro-
magnetic smectic-A phases for which the magnetization is
pointing “up” and “down” on alternating layers. Apparently,
antiferromagnetic liquid crystals have never been reported
in the field of liquid crystals, while they are well known in
solid-state physics.

We end with a speculative note concerning the synthesis
of ferromagnetic smectic-A liquid crystals. So far we have (a)
ferromagnetic nematics for which disk-shaped micelles with
an easy magnetic axis parallel to the normal of the platelike
objects are embedded in a thermotropic low molecular weight
nematic [9–11], and (b) lyotropic magnetic smectic-A for
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which ferrofluid particles (micelles) have been incorporated
into the layers of a lamellar lyotropic smectic with no net
magnetic order [19,20]. This leads to the suggestion to put
disklike micelles with an easy magnetic axis parallel to the
normal of the disks into a lyotropic layered phase with a
layer spacing comparable to the “thickness” of the magnetic
disks. Clearly, one challenge in this connection is the chemical
and sterical compatibility of the two subsystems—a challenge
well known from magnetic gels [73,74].

We close this section with a challenge for future work.
An intriguing possibility would be to combine ferroelectricity
and ferromagnetism for liquid crystalline systems such as

nematics or smectics. This would be the first class of triply
multiferroic systems at room temperature with fluidity.
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Czechowski, and B. Żywuski, J. Magn. Magn. Mater. 157-158,
589 (1996).

[7] V. Berejnov, J.-C. Bacri, V. Cabuil, R. Perzynski, and Y. L.
Raikher, Europhys. Lett. 41, 507 (1998).

[8] F. Brochard and P. G. de Gennes, J. Phys. France 31, 691 (1970).
[9] A. Mertelj, D. Lisjak, M. Drofenik, and M. Čopič, Nature
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